1
|
Nian X, Wu S, He J, Holford P, Beattie GAC, Wang D, Cen Y, He Y, Zhang S. The conserved role of miR-2 and novel miR-109 in the increase in fecundity of Diaphorina citri induced by symbiotic bacteria and pathogenic fungi. mBio 2024; 15:e0154124. [PMID: 39373536 PMCID: PMC11559015 DOI: 10.1128/mbio.01541-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/15/2024] [Indexed: 10/08/2024] Open
Abstract
Infection with pathogens can increase the fecundity and other fitness-related traits of insect vectors for their own advantage. Our previous research has reported the pivotal role of DcKr-h1 in the fecundity improvement of Diaphorina citri induced by the bacterium, "Candidatus Liberibacter asiaticus" (CLas), and the fungus, Cordyceps fumosorosea (Cf). However, the posttranscriptional regulation of this process remains poorly understood. Given the significance of miRNAs in gene regulation, we delved into their roles in shaping phenotypes and their underlying molecular mechanisms. Our results indicated that two miRNAs, miR-2 and novel-miR-109, jointly inhibited DcKr-h1 expression by binding to its 3' untranslated region (UTR). In the D. citri-CLas interaction, the expression levels of miR-2 and novel-miR-109 in the ovaries of CLas-positive psyllids were lower compared to CLas-negative individuals. Overexpression of miR-2 or novel-miR-109 significantly decreased fecundity and CLas titer in ovaries and caused reproductive defects reminiscent of DcKr-h1 knockdown. Similarly, in the D. citri-Cf interaction, the levels of miR-2 and novel-miR-109 markedly decreased in the ovaries. Upregulation of miR-2 or novel-miR-109 also resulted in reduced fecundity and ovary defects similar to those caused by DcKr-h1 silencing. Moreover, feeding antagomir-2 or antagomir-109 partially rescued the defective phenotypes caused by DcKr-h1 silencing in both model systems, and miR-2 and novel-miR-109 were repressed by juvenile hormone (JH) and regulated the genes associated with egg development. This study shows a conserved regulatory mechanism, whereby JH suppresses the expression of miR-2 and novel-miR-109 which, together with JH-induced transcription of DcKr-h1, increases female fecundity induced by both symbiotic bacteria and pathogenic fungi. IMPORTANCE Infection with pathogens can increase the fecundity and other fitness-related traits of insect vectors for their own advantage. Our previous research has reported that DcKr-h1 plays a critical role in the increase in fecundity of Diaphorina citri induced by the bacterium, "Candidatus Liberibacter asiaticus" (CLas) and the fungus, Cordyceps fumosorosea (Cf). However, the posttranscriptional regulation of this process remains poorly understood. Given the significance of miRNAs in gene regulation, we delved into their roles in shaping phenotypes and their underlying molecular mechanisms. Our results indicated that two miRNAs, miR-2 and novel-miR-109, jointly inhibited DcKr-h1 expression by binding to its 3' untranslated region (UTR). In both D. citri-CLas and D. citri-Cf interactions, the increased juvenile hormone (JH) titer and reduced abundance of miR-2 and novel-miR-109 ensure high levels of DcKr-h1 expression, consequently stimulating ovarian development and enhancing fecundity. These observations provide evidence that miR-2 and miR-109 are crucial players in the JH-dependent increase in fecundity in psyllids induced by infection with different pathogens.
Collapse
Affiliation(s)
- Xiaoge Nian
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
- School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Shujie Wu
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Jielan He
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Paul Holford
- School of Science, Western Sydney University, Penrith, Australia
| | | | - Desen Wang
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yijing Cen
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yurong He
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Songdou Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Yu SS, Zhang Q, Zheng LY, Xie QP, Wang JJ, Dou W. The miR-31b targets arylsulfatase B to regulate the ovarian development of Bactrocera dorsalis. PEST MANAGEMENT SCIENCE 2024. [PMID: 39494722 DOI: 10.1002/ps.8513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Reproduction is the basis of insect population growth and evolution, and encompasses ovarian development, reproductive behavior, and fecundity. Bactrocera dorsalis is a globally significant agricultural pest that is subject to quarantine, with mated females that can lay over 3000 eggs. The post-transcriptional regulation of ovarian development remains unclear. Here, miR-31b is shown to be involved in regulating Bactrocera dorsalis ovarian development. RESULTS CRISPR/Cas9 was used to generate miR-31b loss-of-function mutations in Bactrocera dorsalis. The removal of miR-31b resulted in severely impaired ovarian development in adults, with phenotypes that included dramatically reduced egg production and hatching rates. The relationship between miR-31b and its target gene arylsulfatase B (ARSB) was subsequently identified using the methods of bioinformatics, transcriptomic sequencing, quantitative polymerase chain reaction (qPCR), RNA pull-down and dual-luciferase reporter assay. Finally, miR-31b was confirmed to bind the target gene arylsulfatase B to affect metabolism and thereby further hindered ovarian development of Bactrocera dorsalis. CONCLUSION Overall, these results provide new insights into molecular mechanisms at the post-transcriptional level in regulating ovarian development and insect reproduction, consequently providing potential targets to control arthropod pests through the reproductive strategy. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shan-Shan Yu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
- International China-Belgium Joint Laboratory on Sustainable Crop Pest Control between Southwest University in China and Ghent University in Belgium, Southwest University, Chongqing, China
| | - Qiang Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
- International China-Belgium Joint Laboratory on Sustainable Crop Pest Control between Southwest University in China and Ghent University in Belgium, Southwest University, Chongqing, China
| | - Li-Yuan Zheng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
- International China-Belgium Joint Laboratory on Sustainable Crop Pest Control between Southwest University in China and Ghent University in Belgium, Southwest University, Chongqing, China
| | - Qian-Ping Xie
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
- International China-Belgium Joint Laboratory on Sustainable Crop Pest Control between Southwest University in China and Ghent University in Belgium, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
- International China-Belgium Joint Laboratory on Sustainable Crop Pest Control between Southwest University in China and Ghent University in Belgium, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
- International China-Belgium Joint Laboratory on Sustainable Crop Pest Control between Southwest University in China and Ghent University in Belgium, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Afkhami M. Neurobiology of egg-laying behavior in Drosophila: neural control of the female reproductive system. J Neurogenet 2024:1-15. [PMID: 39250036 DOI: 10.1080/01677063.2024.2396352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Egg-laying is one of the key aspects of female reproductive behavior in insects. Egg-laying has been studied since the dawn of Drosophila melanogaster as a model organism. The female's internal state, hormones, and external factors, such as nutrition, light, and social environment, affect egg-laying output. However, only recently, neurobiological features of egg-laying behavior have been studied in detail. fruitless and doublesex, two key players in the sex determination pathway, have become focal points in identifying neurons of reproductive significance in both central and peripheral nervous systems. The reproductive tract and external terminalia house sensory neurons that carry the sensory information of egg maturation, mating and egg-laying. These sensory signals include the presence of male accessory gland products and mechanical stimuli. The abdominal neuromere houses neurons that receive information from the reproductive tract, including sex peptide abdominal ganglion neurons (SAGs), and send their information to the brain. In the brain, neuronal groups like aDNs and pC1 clusters modulate egg-laying decision-making, and other neurons like oviINs and oviDNs are necessary for egg-laying itself. Lastly, motor neurons involved in egg-laying, which are mostly octopaminergic, reside in the abdominal neuromere and orchestrate the muscle movements required for laying the egg. Egg-laying neuronal control is important in various evolutionary processes like cryptic female choice, and using different Drosophila species can provide intriguing avenues for the future of the field.
Collapse
Affiliation(s)
- Mehrnaz Afkhami
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
4
|
Li J, Holford P, Beattie GAC, Wu S, He J, Tan S, Wang D, He Y, Cen Y, Nian X. Adipokinetic hormone signaling mediates the enhanced fecundity of Diaphorina citri infected by ' Candidatus Liberibacter asiaticus'. eLife 2024; 13:RP93450. [PMID: 38985571 PMCID: PMC11236419 DOI: 10.7554/elife.93450] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Abstract
Diaphorina citri serves as the primary vector for 'Candidatus Liberibacter asiaticus (CLas),' the bacterium associated with the severe Asian form of huanglongbing. CLas-positive D. citri are more fecund than their CLas-negative counterparts and require extra energy expenditure. Therefore, understanding the molecular mechanisms linking metabolism and reproduction is of particular importance. In this study, we found adipokinetic hormone (DcAKH) and its receptor (DcAKHR) were essential for increasing lipid metabolism and fecundity in response to CLas infection in D. citri. Knockdown of DcAKH and DcAKHR not only resulted in the accumulation of triacylglycerol and a decline of glycogen, but also significantly decreased fecundity and CLas titer in ovaries. Combined in vivo and in vitro experiments showed that miR-34 suppresses DcAKHR expression by binding to its 3' untranslated region, whilst overexpression of miR-34 resulted in a decline of DcAKHR expression and CLas titer in ovaries and caused defects that mimicked DcAKHR knockdown phenotypes. Additionally, knockdown of DcAKH and DcAKHR significantly reduced juvenile hormone (JH) titer and JH signaling pathway genes in fat bodies and ovaries, including the JH receptor, methoprene-tolerant (DcMet), and the transcription factor, Krüppel homolog 1 (DcKr-h1), that acts downstream of it, as well as the egg development related genes vitellogenin 1-like (DcVg-1-like), vitellogenin A1-like (DcVg-A1-like) and the vitellogenin receptor (DcVgR). As a result, CLas hijacks AKH/AKHR-miR-34-JH signaling to improve D. citri lipid metabolism and fecundity, while simultaneously increasing the replication of CLas, suggesting a mutualistic interaction between CLas and D. citri ovaries.
Collapse
Affiliation(s)
- Jiayun Li
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Paul Holford
- School of Science, Western Sydney University, Penrith, Australia
| | | | - Shujie Wu
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Jielan He
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Shijian Tan
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Desen Wang
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yurong He
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yijing Cen
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Xiaoge Nian
- National Key Laboratory of Green Pesticide, Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| |
Collapse
|
5
|
Mahalle RM, Mota-Sanchez D, Pittendrigh BR, Kim YH, Seong KM. miRNA Dynamics for Pest Management: Implications in Insecticide Resistance. INSECTS 2024; 15:238. [PMID: 38667368 PMCID: PMC11049821 DOI: 10.3390/insects15040238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Utilizing chemical agents in pest management in modern agricultural practices has been the predominant approach since the advent of synthetic insecticides. However, insecticide resistance is an emerging issue, as pest populations evolve to survive exposure to chemicals that were once effective in controlling them, underlining the need for advanced and innovative approaches to managing pests. In insects, microRNAs (miRNAs) serve as key regulators of a wide range of biological functions, characterized by their dynamic expression patterns and the ability to target genes. Recent studies are increasingly attributed to the significance of miRNAs in contributing to the evolution of insecticide resistance in numerous insect species. Abundant miRNAs have been discovered in insects using RNA sequencing and transcriptome analysis and are known to play vital roles in regulation at both the transcriptional and post-transcriptional levels. Globally, there is growing research interest in the characterization and application of miRNAs, especially for their potential role in managing insecticide resistance. This review focuses on how miRNAs contribute to regulating insecticide resistance across various insect species. Furthermore, we discuss the gain and loss of functions of miRNAs and the techniques for delivering miRNAs into the insect system. The review emphasizes the application of miRNA-based strategies to studying their role in diminishing insecticide resistance, offering a more efficient and lasting approach to insect management.
Collapse
Affiliation(s)
- Rashmi Manohar Mahalle
- Institute of Agricultural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - David Mota-Sanchez
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA;
| | | | - Young Ho Kim
- Department of Ecological Science, Kyungpook National University, Sangju 37224, Republic of Korea;
| | - Keon Mook Seong
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
6
|
Mahalle RM, Sun W, Posos-Parra OA, Jung S, Mota-Sanchez D, Pittendrigh BR, Seong KM. Identification of differentially expressed miRNAs associated with diamide detoxification pathways in Spodoptera frugiperda. Sci Rep 2024; 14:4308. [PMID: 38383681 PMCID: PMC10881993 DOI: 10.1038/s41598-024-54771-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 02/16/2024] [Indexed: 02/23/2024] Open
Abstract
The fall armyworm (FAW) Spodoptera frugiperda is a severe economic pest of multiple crops globally. Control of this pest is often achieved using insecticides; however, over time, S. frugiperda has developed resistance to new mode of action compounds, including diamides. Previous studies have indicated diamide resistance is a complex developmental process involving multiple detoxification genes. Still, the mechanism underlying the possible involvement of microRNAs in post-transcriptional regulation of resistance has not yet been elucidated. In this study, a global screen of microRNAs (miRNAs) revealed 109 known and 63 novel miRNAs. Nine miRNAs (four known and five novel) were differentially expressed between insecticide-resistant and -susceptible strains. Gene Ontology analysis predicted putative target transcripts of the differentially expressed miRNAs encoding significant genes belonging to detoxification pathways. Additionally, miRNAs are involved in response to diamide exposure, indicating they are probably associated with the detoxification pathway. Thus, this study provides comprehensive evidence for the link between repressed miRNA expression and induced target transcripts that possibly mediate diamide resistance through post-transcriptional regulation. These findings highlight important clues for further research to unravel the roles and mechanisms of miRNAs in conferring diamide resistance.
Collapse
Affiliation(s)
- Rashmi Manohar Mahalle
- Institute of Agricultural Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Weilin Sun
- Department of Entomology, Center for Urban and Industrial Pest Management, Purdue University, West Lafayette, IN, USA
| | - Omar A Posos-Parra
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Sunghoon Jung
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon, Republic of Korea
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - David Mota-Sanchez
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Barry R Pittendrigh
- Department of Entomology, Center for Urban and Industrial Pest Management, Purdue University, West Lafayette, IN, USA
| | - Keon Mook Seong
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
7
|
Nian X, Luo Y, He X, Wu S, Li J, Wang D, Holford P, Beattie GAC, Cen Y, Zhang S, He Y. Infection with 'Candidatus Liberibacter asiaticus' improves the fecundity of Diaphorina citri aiding its proliferation: A win-win strategy. Mol Ecol 2024; 33:e17214. [PMID: 38018658 DOI: 10.1111/mec.17214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/21/2023] [Accepted: 10/30/2023] [Indexed: 11/30/2023]
Abstract
The evolution of insect vector-pathogen relationships has long been of interest in the field of molecular ecology. One system of special relevance, due to its economic impacts, is that between Diaphorina citri and 'Candidatus Liberibacter asiaticus' (CLas), the cause of the severe Asian form of huanglongbing. CLas-positive D. citri are more fecund than their CLas-negative counterparts, boosting opportunities for pathogens to acquire new vector hosts. The molecular mechanism behind this life-history shift remains unclear. Here, we found that CLas promoted ovarian development and increased the expression of the vitellogenin receptor (DcVgR) in ovaries. DcVgR RNAi significantly decreased fecundity and CLas titer in ovaries, extended the preoviposition period, shortened the oviposition period and blocked ovarian development. Given their importance in gene regulation, we explored the role of miRNAs in shaping these phenotypes and their molecular triggers. Our results showed that one miRNA, miR-275, suppressed DcVgR expression by binding to its 3' UTR. Overexpression of miR-275 knocked down DcVgR expression and CLas titer in ovaries, causing reproductive defects that mimicked DcVgR knockdown phenotypes. We focused, further, on roles of the Juvenile Hormone (JH) pathway in shaping the observed fecundity phenotype, given its known impacts on ovarian development. After CLas infection, this pathway was upregulated, thereby increasing DcVgR expression. From these combined results, we conclude that CLas hijacks the JH signalling pathway and miR-275, thereby targeting DcVgR to increase D. citri fecundity. These changes simultaneously increase CLas replication, suggesting a pathogen-vector host mutualism, or a seemingly helpful, but cryptically costly life-history manipulation.
Collapse
Affiliation(s)
- Xiaoge Nian
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Yaru Luo
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Xinyu He
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Shujie Wu
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Jiayun Li
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Desen Wang
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Paul Holford
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
| | | | - Yijing Cen
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Songdou Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yurong He
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
Hussain M, Qi Z, Hedges LM, Nouzova M, Noriega FG, Asgari S. Investigating the role of aae-miR-34-5p in the regulation of juvenile hormone biosynthesis genes in the mosquito Aedes aegypti. Sci Rep 2023; 13:19023. [PMID: 37923767 PMCID: PMC10624809 DOI: 10.1038/s41598-023-46154-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023] Open
Abstract
Juvenile hormone (JH) controls the development and reproduction of insects. Therefore, a tight regulation of the expression of JH biosynthetic enzymes is critical. microRNAs (miRNAs) play significant roles in the post-transcriptional regulation of gene expression by interacting with complementary sequences in target genes. Previously, we reported that several miRNAs were differentially expressed during three developmental stages of Aedes aegypti mosquitoes with different JH levels (no JH, high JH, and low JH). One of these miRNAs was aae-miR-34-5p. In this study, we identified the presence of potential target sequences of aae-miR-34-5p in the transcripts of some genes encoding JH biosynthetic enzymes. We analysed the developmental expression patterns of aae-miR-34-5p and the predicted target genes involved in JH biogenesis. Increases in miRNA abundance were followed, with a delay, by decreases in transcript levels of target genes. Application of an inhibitor and a mimic of aae-miR-34-5p led respectively to increased and decreased levels of thiolase transcripts, which is one of the early genes of JH biosynthesis. Female adult mosquitoes injected with an aae-miR-34-5p inhibitor exhibited significantly increased transcript levels of three genes encoding JH biosynthetic enzymes, acetoacetyl-CoA thiolase (thiolase), farnesyl diphosphate phosphatase, and farnesal dehydrogenase. Overall, our results suggest a potential role of miRNAs in JH production by directly targeting genes involved in its biosynthesis.
Collapse
Affiliation(s)
- Mazhar Hussain
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Zhi Qi
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Lauren M Hedges
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Marcela Nouzova
- Institute of Parasitology, Biology Centre CAS, České Budějovice, Czech Republic
| | - Fernando G Noriega
- Department of Biological Sciences and Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
- Department of Parasitology, University of South Bohemia, České Budějovice, Czech Republic
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
9
|
Nath A, Bora U. RNAinsecta: A tool for prediction of precursor microRNA in insects and search for their target in the model organism Drosophila melanogaster. PLoS One 2023; 18:e0287323. [PMID: 37812647 PMCID: PMC10561860 DOI: 10.1371/journal.pone.0287323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/03/2023] [Indexed: 10/11/2023] Open
Abstract
INTRODUCTION AND BACKGROUND Pre-MicroRNAs are the hairpin loops from which microRNAs are produced that have been found to negatively regulate gene expression in several organisms. In insects, microRNAs participate in several biological processes including metamorphosis, reproduction, immune response, etc. Numerous tools have been designed in recent years to predict novel pre-microRNA using binary machine learning classifiers where prediction models are trained with true and pseudo pre-microRNA hairpin loops. Currently, there are no existing tool that is exclusively designed for insect pre-microRNA detection. AIM Application of machine learning algorithms to develop an open source tool for prediction of novel precursor microRNA in insects and search for their miRNA targets in the model insect organism, Drosophila melanogaster. METHODS Machine learning algorithms such as Random Forest, Support Vector Machine, Logistic Regression and K-Nearest Neighbours were used to train insect true and false pre-microRNA features with 10-fold Cross Validation on SMOTE and Near-Miss datasets. miRNA targets IDs were collected from miRTarbase and their corresponding transcripts were collected from FlyBase. We used miRanda algorithm for the target searching. RESULTS In our experiment, SMOTE performed significantly better than Near-Miss for which it was used for modelling. We kept the best performing parameters after obtaining initial mean accuracy scores >90% of Cross Validation. The trained models on Support Vector Machine achieved accuracy of 92.19% while the Random Forest attained an accuracy of 80.28% on our validation dataset. These models are hosted online as web application called RNAinsecta. Further, searching target for the predicted pre-microRNA in Drosophila melanogaster has been provided in RNAinsecta.
Collapse
Affiliation(s)
- Adhiraj Nath
- Department of BSBE, IIT Guwahati, North Guwahati, Assam, India
| | - Utpal Bora
- Department of BSBE, IIT Guwahati, North Guwahati, Assam, India
| |
Collapse
|
10
|
Wang N, Chen M, Zhou Y, Zhou WW, Zhu ZR. The microRNA pathway core genes are indispensable for development and reproduction in the brown planthopper, Nilaparvata lugens. INSECT MOLECULAR BIOLOGY 2023; 32:528-543. [PMID: 37162032 DOI: 10.1111/imb.12848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/28/2023] [Indexed: 05/11/2023]
Abstract
MicroRNAs (miRNAs) are small single-stranded non-coding RNAs involved in a variety of cellular events by regulating gene expression at the post-transcriptional level. Several core genes in miRNA biogenesis have been reported to participate in a wide range of physiological events, in some insect species. However, the functional significance of miRNA pathway core genes in Nilaparvata lugens remains unknown. In the present study, we conducted a systematic characterisation of five core genes involved in miRNA biogenesis. We first performed spatiotemporal expression analysis and found that miRNA core genes exhibited similar expression patterns, with high expression levels in eggs and relatively high transcriptional levels in the ovaries and fat bodies of females. RNA interference experiments showed that injecting third-instar nymphs with dsRNAs targeting the miRNA core genes, NlAgo1, NlDicer1, and NlDrosha resulted in high mortality rates and various degrees of body melanism, moulting defects, and wing deformities. Further investigations revealed that the suppression of miRNA core genes severely impaired ovarian development and oocyte maturation, resulting in significantly reduced fecundity and disruption of intercellular spaces between follicle cells. Moreover, the expression profiles of miR-34-5p, miR-275-3p, miR-317-3p, miR-14, Let-7-1, and miR-2a-3p were significantly altered in response to the knockdown of miRNA core genes mixture, suggesting that they play essential roles in regulating miRNA-mediated gene expression. Therefore, our results provide a solid theoretical basis for the miRNA pathway in N. lugens and suggest that the NlAgo1, NlDicer1, and NlDrosha-dependent miRNA core genes are essential for the development and reproduction of this agricultural pest.
Collapse
Affiliation(s)
- Ni Wang
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
| | - Min Chen
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Ying Zhou
- Hainan Institute, Zhejiang University, Sanya, China
| | - Wen-Wu Zhou
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
| | - Zeng-Rong Zhu
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
| |
Collapse
|
11
|
Gao Y, Yang L, Chen Y, Liu P, Zhou Y, Chen X, Gu J. Aal-circRNA-407 regulates ovarian development of Aedes albopictus, a major arbovirus vector, via the miR-9a-5p/Foxl axis. PLoS Pathog 2023; 19:e1011374. [PMID: 37146060 DOI: 10.1371/journal.ppat.1011374] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/17/2023] [Accepted: 04/19/2023] [Indexed: 05/07/2023] Open
Abstract
Aedes albopictus shows a rapid global expansion and dramatic vectorial capacity for various arboviruses, thus posing a severe threat to global health. Although many noncoding RNAs have been confirmed to play functional roles in various biological processes in Ae. albopictus, the roles of circRNA remain a mystery. In the present study, we first performed high-throughput circRNA sequencing in Ae. albopictus. Then, we identified a cysteine desulfurase (CsdA) superfamily gene-originated circRNA, named aal-circRNA-407, which was the third most abundant circRNA in adult females and displayed a fat body highly expressed manifestation and blood feeding-dependent onset. SiRNA-mediated knockdown of circRNA-407 resulted in a decrease in the number of developing follicles and a reduction in follicle size post blood meal. Furthermore, we demonstrated that circRNA-407 can act as a sponge of aal-miR-9a-5p to promote the expression of its target gene Foxl and eventually regulate ovarian development. Our study is the first to report a functional circRNA in mosquitoes, expanding our current understanding of important biological roles in mosquitoes and providing an alternative genetic strategy for mosquito control.
Collapse
Affiliation(s)
- Yonghui Gao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Lu Yang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Yulan Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Peiwen Liu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Ying Zhou
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoguang Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Jinbao Gu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Asad S, Mehdi AM, Pujhari S, Rückert C, Ebel GD, Rasgon JL. Identification of MicroRNAs in the West Nile Virus Vector Culex tarsalis (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:182-293. [PMID: 36477983 PMCID: PMC10216877 DOI: 10.1093/jme/tjac182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 05/28/2023]
Abstract
MicroRNAs (miRNAs) are a group of small noncoding RNAs that regulate gene expression during important biological processes including development and pathogen defense in most living organisms. Presently, no miRNAs have been identified in the mosquito Culex tarsalis (Diptera: Culicidae), one of the most important vectors of West Nile virus (WNV) in North America. We used small RNA sequencing data and in vitro and in vivo experiments to identify and validate a repertoire of miRNAs in Cx. tarsalis mosquitoes. Using bioinformatic approaches we analyzed small RNA sequences from the Cx. tarsalis CT embryonic cell line to discover orthologs for 86 miRNAs. Consistent with other mosquitoes such as Aedes albopictus and Culex quinquefasciatus, miR-184 was found to be the most abundant miRNA in Cx. tarsalis. We also identified 20 novel miRNAs from the recently sequenced Cx. tarsalis genome, for a total of 106 miRNAs identified in this study. The presence of selected miRNAs was biologically validated in both the CT cell line and in adult Cx. tarsalis mosquitoes using RT-qPCR and sequencing. These results will open new avenues of research into the role of miRNAs in Cx. tarsalis biology, including development, metabolism, immunity, and pathogen infection.
Collapse
Affiliation(s)
- Sultan Asad
- Department of Entomology, The Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Ahmed M Mehdi
- The University of Queensland, Brisbane, Australia Diamantina Institute, Faculty of Medicine, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Sujit Pujhari
- Department of Entomology, The Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Pharmacology Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Claudia Rückert
- Department of Biochemistry and Molecular Biology, University of Nevada Reno, Reno, NV, 89557, USA
- Department of Microbiology, Immunology and Pathology, Center for Vector-borne Infectious Diseases, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USAand
| | - Gregory D Ebel
- Department of Microbiology, Immunology and Pathology, Center for Vector-borne Infectious Diseases, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USAand
| | - Jason L Rasgon
- Department of Entomology, The Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
13
|
Zhang R, Zhang S, Li T, Li H, Zhang H, Zheng W. RNA sequencing identifies an ovary-enriched microRNA, miR-311-3p, involved in ovarian development and fecundity by targeting Endophilin B1 in Bactrocera dorsalis. PEST MANAGEMENT SCIENCE 2023; 79:688-700. [PMID: 36239581 DOI: 10.1002/ps.7236] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The oriental fruit fly, Bactrocera dorsalis, is a highly invasive pest in East Asia and the Pacific. With the development of pesticides resistance, environment-friendly pesticides are urgently needed. MicroRNAs (miRNAs) are critical regulators of numerous biological processes, including reproduction. Thus, it is significant to identify reproductive-related miRNAs in this notorious pest to facilitate its control, such as RNAi-based biopesticides targeting essential miRNAs. RESULTS A high-throughput sequencing was carried out to identify miRNAs involved in reproduction from the ovary and fat body at four developmental stages [1 day (d), 5, 9, and 13 days post-eclosion] in female B. dorsalis. Results showed that 98 and 74 miRNAs were differentially expressed in ovary and fat body, respectively, during sexual maturation. Gene ontology analysis showed that target genes involved in oogenesis and lipid particle accounted for 33% and 15% of the total targets, respectively. Among these differentially expressed miRNAs, we found by qPCR that miR-311-3p was enriched in the ovary and down-regulated during sexual maturation. Injection of agomir-miR-311-3p resulted in arrested ovarian development, reduced egg deposition and progeny viability. Endophilin B1 was confirmed to be the target of miR-311-3p, via dual-luciferase assay and expression profiling. Knockdown of Endophilin B1 resulted in reproductive defects similar to those caused by injection of miR-311-3p agomir. Thus, miR-311-3p might play a critical role in female reproduction by targeting Endophilin B1. CONCLUSION Our data not only provides knowledge on the abundance of reproductive-related miRNAs and target genes, but also promotes new control strategies for this pest. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rui Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shengfeng Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tianran Li
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Haozhe Li
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongyu Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weiwei Zheng
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
14
|
Wang M, Li H, Zhang W, Zhuo F, Li T, Lowry A, Zhang A. Reproduction system development of Ceracris kiangsu Tsai female adults and its relationship with fitness characteristics. Front Physiol 2023; 14:1136559. [PMID: 36960153 PMCID: PMC10028736 DOI: 10.3389/fphys.2023.1136559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
Research on the ovarian development of insect pests helps provide key information for predicting pest occurrences, and currently, there is very limited information about the reproductive system of Ceracris kiangsu Tsai. This study aimed to assess the reproductive fitness of 321 adult female insects by using traditional methods to dissect female adults, measure female ovaries, and assess the process of egg formation. The phenotypic traits including body weight and body length were also measured and used to estimate the model of ovarian developmental stages. Four ovarian developmental stages before the oviposition were identified, and the fundamental ovarian structure of C. kiangsu displayed red dots on the matured eggs inside the calyx at ovarian developmental stage V. The accessory glands of C. kiangsu had the deepest folds at stage Ⅲ. Redundancy analysis (RDA) was used to explore the correlation between ovarian development, body weight, and body length. A significant positive correlation was observed for body weight (p = 0.001) and body length (p = 0.009), which varied with the grade of ovarian development evaluated by the ovarian developmental stage, ovarian length, ovarian width, and ovarian cross-sectional area. A partial least square (PLS) regression was used to model the ovarian developmental stage, with a stage-based PLS being identified as the more effective method, which was y = 1.509x 1 + 0.114x 2. The model provides a potentially rapid way to identify the population source as either "native" or "immigrant" from the phenotypic traits without dissection. The aforementioned model may be used to estimate adult emergence periods and identify migratory populations from their ovarian development, potentially aiding in implementing proper prevention measures.
Collapse
Affiliation(s)
- Meizhi Wang
- College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing, China
- MARA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Hongmei Li
- MARA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
- CABI East and Southeast Asia, Beijing, China
- *Correspondence: Hongmei Li, ; Aihuan Zhang,
| | - Wei Zhang
- Research Institute of Subtropical Forestry/Chinese Academy of Forestry, Fuyang, China
| | - Fuyan Zhuo
- National Agro-Tech Extension and Service Center, Beijing, China
| | - Tianjiao Li
- National Agro-Tech Extension and Service Center, Beijing, China
| | | | - Aihuan Zhang
- College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing, China
- *Correspondence: Hongmei Li, ; Aihuan Zhang,
| |
Collapse
|
15
|
Zhu GH, Gaddelapati SC, Jiao Y, Koo J, Palli SR. CRISPR-Cas9 Genome Editing Uncovers the Mode of Action of Methoprene in the Yellow Fever Mosquito, Aedes aegypti. CRISPR J 2022; 5:813-824. [PMID: 36374965 PMCID: PMC9805843 DOI: 10.1089/crispr.2022.0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Methoprene, a juvenile hormone (JH) analog, is widely used for insect control, but its mode of action is not known. To study methoprene action in the yellow fever mosquito, Aedes aegypti, the E93 (ecdysone-induced transcription factor) was knocked out using the CRISPR-Cas9 system. The E93 mutant pupae retained larval tissues similar to methoprene-treated insects. These insects completed pupal ecdysis and died as pupa. In addition, the expression of transcription factors, broad complex and Krüppel homolog 1 (Kr-h1), increased and that of programmed cell death (PCD) and autophagy genes decreased in E93 mutants. These data suggest that methoprene functions through JH receptor, methoprene-tolerant, and induces the expression of Kr-h1, which suppresses the expression of E93, resulting in a block in PCD and autophagy of larval tissues. Failure in the elimination of larval tissues and the formation of adult structures results in their death. These results answered long-standing questions on the mode of action of methoprene.
Collapse
Affiliation(s)
- Guan-Heng Zhu
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| | - Sharath Chandra Gaddelapati
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| | - Yaoyu Jiao
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| | - Jinmo Koo
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA.,Address correspondence to: Subba Reddy Palli, Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA.
| |
Collapse
|
16
|
miR-125-3p and miR-276b-3p Regulate the Spermatogenesis of Bactrocera dorsalis by Targeting the orb2 Gene. Genes (Basel) 2022; 13:genes13101861. [PMID: 36292746 PMCID: PMC9601815 DOI: 10.3390/genes13101861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/04/2022] Open
Abstract
Bactrocera dorsalis is considered a major threat to horticultural crops. It has evolved resistance against insecticides. It is believed that development of new methods is highly desirable to control this destructive agricultural pest. Sterile insect technique is emerging as a potential tool to control this insect pest by reducing their reproductive ability. Here we report that orb2 has high expression in the testis of B. dorsalis which is the target of miR-125-3p and miR-276b-3p and plays a critical role in the spermatogenesis. Dual luciferase reporter assay using HEKT293 cells demonstrates that orb2 gene is downregulated by miR-125-3p and miR-276b-3p and is a common target of these miRNAs. Dietary treatment of adult male flies separately and in combination of agomir-125-3p (Ago-125-3p) and agomir-276b-3p (Ago-276b-3p) significantly downregulated the mRNA of orb2. The combined treatments of agomirs suppressed the level of mRNA of orb2 significantly more than any single treatment. Altered expression of miR-125-3p and miR-276b-3p significantly decreased the total and live spermatozoa in the testis which ultimately caused reduction in male fertility. Furthermore, we demonstrate that miR-125-3p, miR-276b-3p, and orb2 dsRNA are the novel agents that could be used in a genetic-based sterile insect technique (SIT) to control the B. dorsalis.
Collapse
|
17
|
Yang K, Zeng L, Ge A, Wang S, Zeng J, Yuan X, Mei Z, Wang G, Ge J. A systematic review of the research progress of non-coding RNA in neuroinflammation and immune regulation in cerebral infarction/ischemia-reperfusion injury. Front Immunol 2022; 13:930171. [PMID: 36275741 PMCID: PMC9585453 DOI: 10.3389/fimmu.2022.930171] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/08/2022] [Indexed: 11/15/2022] Open
Abstract
Cerebral infarction/ischemia-reperfusion injury is currently the disease with the highest mortality and disability rate of cardiovascular disease. Current studies have shown that nerve cells die of ischemia several hours after ischemic stroke, which activates the innate immune response in the brain, promotes the production of neurotoxic substances such as inflammatory cytokines, chemokines, reactive oxygen species and − nitrogen oxide, and mediates the destruction of blood-brain barrier and the occurrence of a series of inflammatory cascade reactions. Meanwhile, the expression of adhesion molecules in cerebral vascular endothelial cells increased, and immune inflammatory cells such as polymorphonuclear neutrophils, lymphocytes and mononuclear macrophages passed through vascular endothelial cells and entered the brain tissue. These cells recognize antigens exposed by the central nervous system in the brain, activate adaptive immune responses, and further mediate secondary neuronal damage, aggravating neurological deficits. In order to reduce the above-mentioned damage, the body induces peripheral immunosuppressive responses through negative feedback, which increases the incidence of post-stroke infection. This process is accompanied by changes in the immune status of the ischemic brain tissue in local and systemic systems. A growing number of studies implicate noncoding RNAs (ncRNAs) as novel epigenetic regulatory elements in the dysfunction of various cell subsets in the neurovascular unit after cerebral infarction/ischemia-reperfusion injury. In particular, recent studies have revealed advances in ncRNA biology that greatly expand the understanding of epigenetic regulation of immune responses and inflammation after cerebral infarction/ischemia-reperfusion injury. Identification of aberrant expression patterns and associated biological effects of ncRNAs in patients revealed their potential as novel biomarkers and therapeutic targets for cerebral infarction/ischemia-reperfusion injury. Therefore, this review systematically presents recent studies on the involvement of ncRNAs in cerebral infarction/ischemia-reperfusion injury and neuroimmune inflammatory cascades, and elucidates the functions and mechanisms of cerebral infarction/ischemia-reperfusion-related ncRNAs, providing new opportunities for the discovery of disease biomarkers and targeted therapy. Furthermore, this review introduces clustered regularly interspaced short palindromic repeats (CRISPR)-Display as a possible transformative tool for studying lncRNAs. In the future, ncRNA is expected to be used as a target for diagnosing cerebral infarction/ischemia-reperfusion injury, judging its prognosis and treatment, thereby significantly improving the prognosis of patients.
Collapse
Affiliation(s)
- Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Liuting Zeng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xiao Yuan
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Guozuo Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
- Hunan Academy of Chinese Medicine, Changsha, China
- *Correspondence: Jinwen Ge,
| |
Collapse
|
18
|
Bishop C, Hussain M, Hugo LE, Asgari S. Analysis of Aedes aegypti microRNAs in response to Wolbachia wAlbB infection and their potential role in mosquito longevity. Sci Rep 2022; 12:15245. [PMID: 36085160 PMCID: PMC9463151 DOI: 10.1038/s41598-022-19574-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
The mosquito Aedes aegypti is the primary vector of a range of medically important viruses including dengue, Zika, West Nile, yellow fever, and chikungunya viruses. The endosymbiotic bacterium Wolbachia pipientis wAlbB strain is a promising biocontrol agent for blocking viral transmission by Ae. aegypti. To predict the long-term efficacy of field applications, a thorough understanding of the interactions between symbiont, host, and pathogen is required. Wolbachia influences host physiology in a variety of ways including reproduction, immunity, metabolism, and longevity. MicroRNAs (miRNAs) are highly conserved small non-coding RNAs that regulate gene expression in eukaryotes and viruses. Several miRNAs are known to regulate biological processes in Drosophila and mosquitoes, including facilitating Wolbachia maintenance. We generated the first chromosomal map of Ae. aegypti miRNAs, and compared miRNA expression profiles between a wAlbB-transinfected Ae. aegypti mosquito line and a tetracycline cleared derivative, using deep small RNA-sequencing. We found limited modulation of miRNAs in response to wAlbB infection. Several miRNAs were modulated in response to age, some of which showed greater upregulation in wAlbB-infected mosquitoes than in tetracycline cleared ones. By selectively inhibiting some differentially expressed miRNAs, we identified miR-2946-3p and miR-317-3p as effecting mosquito longevity in Wolbachia-infected mosquitoes.
Collapse
Affiliation(s)
- Cameron Bishop
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mazhar Hussain
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Leon E Hugo
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, 4006, Australia
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
19
|
Yang J, Chen S, Xu X, Lin G, Lin S, Bai J, Song Q, You M, Xie M. Novel-miR-310 mediated response mechanism to Cry1Ac protoxin in Plutella xylostella (L.). Int J Biol Macromol 2022; 219:587-596. [PMID: 35952810 DOI: 10.1016/j.ijbiomac.2022.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/16/2022] [Accepted: 08/02/2022] [Indexed: 12/12/2022]
Abstract
The diamondback moth (DBM), Plutella xylostella (L.), has evolved resistance to multiple insecticides including Bacillus thuringiensis (Bt). ATP-binding cassette (ABC) transporters are a class of transmembrane protein families, involved in multiple physiological processes and pesticide resistances in insects. However, the role and regulatory mechanism of ABC transporter in mediating the response to Bt Cry1Ac toxin remain unclear. Here, we characterized a MAPK signaling pathway-enriched ABCG subfamily gene PxABCG20 from DBM, and found it was differentially expressed in the Cry1Ac-resistant and Cry1Ac-susceptible strains. RNAi knockdown of PxABCG20 increased the tolerance of DBM to Cry1Ac protoxin. To explore the regulatory mechanism of PxABCG20 expression, we predicted the potential miRNAs targeting PxABCG20 using two target prediction algorithms. Luciferase reporter assay confirmed that novel-miR-310 was able to down-regulate PxABCG20 expression in HEK293T cells. Furthermore, injection of novel-miR-310 agomir markedly inhibited PxABCG20 expression, resulting in increased tolerance to Cry1Ac protoxin in susceptible strain, while injection of novel-miR-310 antagomir markedly induced the expression of PxABCG20, leading to decreased tolerance to Cry1Ac protoxin. Our work provides theoretical basis for exploring novel targets for the DBM response to Cry1Ac toxin and expands the understanding of miRNA role in mediating the susceptibility of insect pest to Cry1Ac toxin.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shiyao Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuejiao Xu
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Guifang Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sujie Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianlin Bai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qisheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Miao Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
20
|
Wang N, Zhang C, Chen M, Shi Z, Zhou Y, Shi X, Zhou W, Zhu Z. Characterization of MicroRNAs Associated with Reproduction in the Brown Planthopper, Nilaparvata lugens. Int J Mol Sci 2022; 23:7808. [PMID: 35887156 PMCID: PMC9316625 DOI: 10.3390/ijms23147808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Insects have a robust capacity to produce offspring for propagation, and the reproductive events of female insects have been achieved at the molecular and physiological levels via regulatory gene pathways. However, the roles of MicroRNAs (miRNAs) in the reproductive development of the brown planthopper (BPH), Nilaparvata lugens, remain largely unexplored. To understand the roles of miRNAs in reproductive development, miRNAs were identified by Solexa sequencing in short-winged (SW) female adults of BPH. Small RNA libraries derived from three developmental phases (1 day, 3 days, and 5 days after emergence) were constructed and sequenced. We identified 905 miRNAs, including 263 known and 642 novel miRNAs. Among them, a total of 43 miRNAs were differentially expressed in the three developmental phases, and 14,568 putative targets for 43 differentially expressed miRNAs (DEMs) were predicted by TargetScan and miRanda. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the predicted miRNA targets illustrated the putative roles for these DEMs in reproduction. The progress events were annotated, including oogenesis, lipid biosynthetic process, and related pathways such as apoptosis, ABC transporters, and amino acid metabolism. Four highly abundant DEMs (miR-9a-5p, miR-34-5p, miR-275-3p, and miR-317-3p) were further screened, and miR-34-5p was confirmed to be involved in the regulation of reproduction. Overexpression of miR-34-5p via injecting its mimics reduced fecundity and decreased Vg expression. Moreover, target genes prediction for miR-34-5p showed they might be involved in 20E signaling cascades, apoptosis, and gonadal development, including hormone receptor 4 (HR4), caspase-1 (Cp-1), and spermatogenesis-associated protein 20 (SPATA20). These findings provide a valuable resource for future studies on the role of miRNAs in BPH reproductive development.
Collapse
Affiliation(s)
- Ni Wang
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (N.W.); (C.Z.); (M.C.); (Z.S.); (X.S.); (W.Z.)
- Hainan Research Institute, Zhejiang University, Sanya 572000, China;
| | - Chao Zhang
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (N.W.); (C.Z.); (M.C.); (Z.S.); (X.S.); (W.Z.)
- Hainan Research Institute, Zhejiang University, Sanya 572000, China;
| | - Min Chen
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (N.W.); (C.Z.); (M.C.); (Z.S.); (X.S.); (W.Z.)
- Hainan Research Institute, Zhejiang University, Sanya 572000, China;
| | - Zheyi Shi
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (N.W.); (C.Z.); (M.C.); (Z.S.); (X.S.); (W.Z.)
- Hainan Research Institute, Zhejiang University, Sanya 572000, China;
| | - Ying Zhou
- Hainan Research Institute, Zhejiang University, Sanya 572000, China;
| | - Xiaoxiao Shi
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (N.W.); (C.Z.); (M.C.); (Z.S.); (X.S.); (W.Z.)
| | - Wenwu Zhou
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (N.W.); (C.Z.); (M.C.); (Z.S.); (X.S.); (W.Z.)
- Hainan Research Institute, Zhejiang University, Sanya 572000, China;
| | - Zengrong Zhu
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (N.W.); (C.Z.); (M.C.); (Z.S.); (X.S.); (W.Z.)
- Hainan Research Institute, Zhejiang University, Sanya 572000, China;
| |
Collapse
|
21
|
Li R, Meng Q, Qi J, Hu L, Huang J, Zhang Y, Yang J, Sun J. Microinjection-based CRISPR/Cas9 mutagenesis in the decapoda crustaceans, Neocaridina heteropoda and Eriocheir sinensis. J Exp Biol 2022; 225:274276. [DOI: 10.1242/jeb.243702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/31/2022] [Indexed: 11/20/2022]
Abstract
CRISPR/Cas9 technology has been applied to many arthropods. However, application of this technology to crustaceans remains limited due to the unique characteristics of embryos. Our group has developed a microinjection system to introduce the CRISPR/Cas9 system into Neocaridina heteropoda embryos (one-cell stage). Using the developed method, we mutated the target gene Nh-scarlet (N. heteropoda scarlet), which functions in eye development and pigmentation. The results showed that both eye color and shape were altered in individuals in which Nh-scarlet was knocked out. Furthermore, this system was also successfully applied to another decapod crustacean, Eriocheir sinensis. DNA sequencing revealed that the zoeae with red eyes had an edited version of Es-scarlet. This study provides a stable microinjection method for freshwater crustaceans, and will contribute to functional genomics studies in various decapods.
Collapse
Affiliation(s)
- Ran Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Qinghao Meng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Jiachen Qi
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Lezhen Hu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Jinwei Huang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Yichen Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Jiale Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
| |
Collapse
|
22
|
Wang XX, Li J, Wang TX, Yang YN, Zhang HK, Zhou M, Kang L, Wei LY. A novel non-invasive identification of genome editing mutants from insect exuviae. INSECT SCIENCE 2022; 29:21-32. [PMID: 33860620 DOI: 10.1111/1744-7917.12914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/17/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
With the wide application of genome editing in insects, a simple and efficient identification method is urgently needed to meet the increasing demand for mutation detection. Here, taking migratory locusts as a model system, we developed a non-invasive method to accurately identify genome-edited mutants by using DNA from insect exuviae. We compared the quantity and quality of genomic DNA from exuviae in five instar hoppers and found that the 1st instar exuviae had the highest DNA yield and content, while the 3rd instar exuviae had the best quality. Consensus genotypes were identified from genomic DNA of hoppers at different developmental stages in the same individuals. Moreover, we demonstrated that the amplification products from DNA extracted from locust exuviae are the consensus sequences with those from the hemolymph and foreleg pre-tarsus. Therefore, non-invasive samples provide the same genotyping results as minimally invasive and invasive samples of the same individuals. Furthermore, this identification method that uses genomic DNA from exuviae can be used for early screening of positive genome-edited individuals in each generation for adult crossing. In our study, the non-invasive identification method was not only simpler and provided results earlier than existing methods, but also had a better reproducibility and accuracy. This non-invasive identification approach using genomic DNA from exuviae can be adapted to meet the growing demand for genetic analysis and will find wide application in insect genome editing research.
Collapse
Affiliation(s)
- Xiao-Xiao Wang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei Province, 071002, China
| | - Jing Li
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei Province, 071002, China
| | - Tong-Xin Wang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei Province, 071002, China
| | - Yi-Nuo Yang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei Province, 071002, China
| | - Hai-Kang Zhang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei Province, 071002, China
| | - Meng Zhou
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei Province, 071002, China
| | - Le Kang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei Province, 071002, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li-Ya Wei
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei Province, 071002, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
23
|
Yang Y, Zhang Y, Wang A, Duan A, Xue C, Wang K, Zhao M, Zhang J. Four MicroRNAs, miR-13b-3p, miR-278-5p, miR-10483-5p, and miR-10485-5p, Mediate Insecticide Tolerance in Spodoptera frugiperda. Front Genet 2022; 12:820778. [PMID: 35126473 PMCID: PMC8814628 DOI: 10.3389/fgene.2021.820778] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/30/2021] [Indexed: 11/24/2022] Open
Abstract
Spodoptera frugiperda is the world’s major agricultural pest and has the distinctive features of high fecundity, strong migratory capacity, and high resistance to most insecticides. At present, the control of S. frugiperda in China relies mainly on the spraying of chemical insecticides. MicroRNAs (miRNAs) are a class of small, single-stranded, non-coding RNAs and play crucial regulatory roles in various physiological processes, including the insecticide resistance in insects. However, little is known about the regulatory roles of miRNAs on the resistance of S. frugiperda to insecticides. In the present research, the miRNAs that were differentially expressed after cyantraniliprole, spinetoram, and emamectin benzoate treatment were analyzed by RNA-Seq. A total of 504 miRNAs were systematically identified from S. frugiperda, and 24, 22, and 31 miRNAs were differentially expressed after treatments of cyantraniliprole, spinetoram, and emamectin benzoate. GO and KEGG enrichment analyses were used to predict the function of differentially expressed target genes of miRNAs. Importantly, ten miRNAs were significantly differentially expressed among the treatments of three insecticides. miR-278-5p, miR-13b-3p, miR-10485-5p, and miR-10483-5p were significantly downregulated among the treatments of three insecticides by RT-qPCR. Furthermore, the overexpression of miR-278-5p, miR-13b-3p, miR-10485-5p, and miR-10483-5p significantly increased the mortality of S. frugiperda to cyantraniliprole and emamectin benzoate. The mortality was significantly increased with spinetoram treatment after the overexpression of miR-13b-3p, miR-10485-5p, and miR-10483-5p. These results suggest that miRNAs, which are differentially expressed in response to insecticides, may play a key regulatory role in the insecticide tolerance in S. frugiperda.
Collapse
Affiliation(s)
- Yuanxue Yang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yun Zhang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Aiyu Wang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ailing Duan
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Chao Xue
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Kaiyun Wang
- Department of Plant Protection, Shandong Agricultural University, Taian, China
| | - Ming Zhao
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
- *Correspondence: Jianhua Zhang, ; Ming Zhao,
| | - Jianhua Zhang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
- *Correspondence: Jianhua Zhang, ; Ming Zhao,
| |
Collapse
|
24
|
Zhu GH, Albishi NM, Chen X, Brown RL, Palli SR. Expanding the Toolkit for Genome Editing in a Disease Vector, Aedes aegypti: Transgenic Lines Expressing Cas9 and Single Guide RNA Induce Efficient Mutagenesis. CRISPR J 2021; 4:846-853. [PMID: 33450159 PMCID: PMC8742270 DOI: 10.1089/crispr.2020.0052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
CRISPR-Cas9 mediated genome editing methods are being used for the analysis of gene function. However, it is hard to identify gene knockout mutants for genes whose knockout does not cause distinct phenotypes. To overcome this issue in the disease vector, Aedes aegypti, a transgenic Cas9/single guide RNA (sgRNA) method, was used to knock out the eye marker gene, kynurenine 3-monooxygenase (kmo), and the juvenile hormone receptor, Methoprene-tolerant (Met). PiggyBac transformation vectors were prepared to express sgRNAs targeting kmo and Met under the control of the U6 promoter. Transgenic Ae. aegypti expressing kmo-sgRNA or Met-sgRNA under the control of the U6 promoter and enhanced green fluorescent protein (eGFP) under the control of the hr5ie1 promoter were produced. The U6-sgRNA adults were mated with AAEL010097-Cas9 adults. The progeny were screened, and the insects expressing eGFP and DsRed were selected and evaluated for mutations in target genes. About 77% and 78% of the progeny that were positive for both eGFP and DsRed in kmo-sgRNA and Met-sgRNA groups, respectively, showed mutations in their target genes.
Collapse
Affiliation(s)
- Guan-Heng Zhu
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| | - Najla M. Albishi
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| | - Xien Chen
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| | - Rachel L. Brown
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
25
|
Yang RL, Zhang Q, Fan JY, Yue Y, Chen EH, Yuan GR, Dou W, Wang JJ. RNA interference of Argonaute-1 delays ovarian development in the oriental fruit fly, Bactrocera dorsalis (Hendel). PEST MANAGEMENT SCIENCE 2021; 77:3921-3933. [PMID: 33884743 DOI: 10.1002/ps.6419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/03/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND With the development of rapid resistance, new modes of action for pesticides are needed for insect control, such as RNAi-based biopesticides targeting essential genes. To explore the function of Argonaute-1 (Ago-1) and potential miRNAs in ovarian development of Bactrocera dorsalis, an important agricultural pest, and to develop a novel control strategy for the pest, BdAgo-1 was first identified in B. dorsalis. RESULTS Spatiotemporal expression analysis indicated that BdAgo-1 had a relatively high transcriptional level in the ovarian tissues of adult female B. dorsalis during the sexual maturation period. RNA interference (RNAi) experiment showed that BdAgo-1 knockdown significantly decreased the expression levels of ovarian development-related genes and delayed ovarian development. Although RNAi-mediated silencing of Ago-1 led to a reduced ovary surface area, a subsequent oviposition assay revealed that the influence was minimal over a longer time period. Small RNA libraries were constructed and sequenced from different ovarian developmental stages of B. dorsalis adults. Among 161 identified miRNAs, 84 miRNAs were differentially expressed during the three developmental stages of the B. dorsalis ovary. BdAgo-1 silencing caused significant down-regulation of seven differentially expressed miRNAs (DEMs) showing relatively high expression levels (>1000 TPM (Transcripts per kilobase of exon model per million mapped reads)). The expression patterns of these seven core DEMs and their putative target genes were analyzed in the ovaries of B. dorsalis. CONCLUSION The results indicate that Ago-1 and Ago-1-dependent miRNAs are indispensable for normal ovarian development in B. dorsalis and help identify miRNA targets useful for control of this pest.
Collapse
Affiliation(s)
- Rui-Lin Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Qiang Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jia-Yao Fan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yong Yue
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Er-Hu Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Guo-Rui Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
26
|
Shan S, Wang SN, Song X, Khashaveh A, Lu ZY, Dhiloo KH, Li RJ, Gao XW, Zhang YJ. Characterization and target gene analysis of microRNAs in the antennae of the parasitoid wasp Microplitis mediator. INSECT SCIENCE 2021; 28:1033-1048. [PMID: 32496619 DOI: 10.1111/1744-7917.12832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
MicroRNAs (miRNAs), a class of non-coding single-strand RNA molecules encoded by endogenous genes, are about 21-24 nucleotides long and are involved in the post-transcriptional regulation of gene expression in plants and animals. Generally, the types and quantities of miRNAs in the different tissues of an organism are diverse, and these divergences may be related to their specific functions. Here we have identified 296 known miRNAs and 46 novel miRNAs in the antennae of the parasitoid wasp Microplitis mediator by high-throughput sequencing. Thirty-three miRNAs were predicted to target olfactory-associated genes, including odorant binding proteins (OBPs), chemosensory proteins, odorant receptors (ORs), ionotropic receptors (IRs) and gustatory receptors. Among these, 17 miRNAs were significantly highly expressed in the antennae, four miRNAs were highly expressed both in the antennae and head or wings, while the remaining 12 miRNAs were mainly expressed in the head, thorax, abdomen, legs and wings. Notably, miR-9a-5p and miR-2525-3p were highly expressed in male antennae, whereas miR-1000-5p and novel-miR-13 were enriched in female antennae. The 17 miRNAs highly expressed in antennae are likely to be associated with olfaction, and were predicted to target one OBP (targeted by miR-3751-3p), one IR (targeted by miR-7-5p) and 14 ORs (targeted by 15 miRNAs including miR-6-3p, miR-9a-5p, miR-9b-5p, miR-29-5p, miR-71-5p, miR-275-3p, miR-1000-5p, miR-1000-3p, miR-2525-3p, miR-6012-3p, miR-9719-3p, novel-miR-10, novel-miR-13, novel-miR-14 and novel-miR-28). These candidate olfactory-associated miRNAs are all likely to be involved in chemoreception through the regulation of chemosensory gene expression in the antennae of M. mediator.
Collapse
Affiliation(s)
- Shuang Shan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shan-Ning Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Plant and Environment Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Xuan Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zi-Yun Lu
- IPM Center of Hebei Province, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding, Hebei, China
| | - Khalid Hussain Dhiloo
- Department of Entomology, Faculty of Crop Protection, Sindh Agriculture University, Tandojam, Pakistan
| | - Rui-Jun Li
- College of Plant Protection, Agricultural University of Hebei, Baoding, Hebei, China
| | - Xi-Wu Gao
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
27
|
Aksoy E, Raikhel AS. Juvenile hormone regulation of microRNAs is mediated by E75 in the Dengue vector mosquito Aedes aegypti. Proc Natl Acad Sci U S A 2021; 118:e2102851118. [PMID: 34266957 PMCID: PMC8307694 DOI: 10.1073/pnas.2102851118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that play critical roles in controlling posttranscriptional gene regulation and have a profound effect on mosquito reproduction and metabolism. Juvenile hormone (JH) is critical for achieving reproductive competence in the main vector of human arboviral diseases, Aedes aegypti We report a JH-mediated mechanism governing miRNA expression. Using a transcription factor screen with multiple primary miRNA (pri-miRNA) promoters, we identified that the Ecdysone-induced protein E75 (E75) isoform (E75-RD) induced miRNA gene promoter activity. E75 binding sites were determined in miRNA promoters by means of cell transfection assay. E75-RD was found to be up-regulated by JH, as shown by the JH application and RNA interference (RNAi) of the JH receptor Methoprene-tolerant (Met). Small RNA sequencing from RNAi of Met and E75 displayed an overlapping miRNA cohort, suggesting E75 to be an intermediate component within the JH hierarchical network controlling miRNAs. Further experiments confirmed that E75-RD positively regulates several miRNAs including miR-2940. Reducing miR-2940 resulted in the arrest of follicle development and number of eggs laid. Performing miRNA target predictions and RT-qPCR from antagomir Ant-2940-3p-treated fat body tissues identified the mRNA target Clumsy (AAEL002518) The molecular interaction between this gene target and miR-2940 was confirmed using an in vitro dual luciferase assay in Drosophila S2 cells and in Ae. aegypti Aag2 cell lines. Finally, we performed a phenotypic rescue experiment to demonstrate that miR-2940/Clumsy is responsible for the disruption in egg development. Collectively, these results established the role of JH-mediated E75-RD in regulation of miRNA gene expression during the mosquito reproductive cycle.
Collapse
Affiliation(s)
- Emre Aksoy
- Department of Entomology, University of California, Riverside, CA 92521
- Graduate Program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, CA 92521
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115
| | - Alexander S Raikhel
- Department of Entomology, University of California, Riverside, CA 92521;
- Institute of Integrative Genome Biology, University of California, Riverside, CA 92521
| |
Collapse
|
28
|
He YZ, Aksoy E, Ding Y, Raikhel AS. Hormone-dependent activation and repression of microRNAs by the ecdysone receptor in the dengue vector mosquito Aedes aegypti. Proc Natl Acad Sci U S A 2021; 118:e2102417118. [PMID: 34155112 PMCID: PMC8256052 DOI: 10.1073/pnas.2102417118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Female mosquitoes transmit numerous devastating human diseases because they require vertebrate blood meal for egg development. MicroRNAs (miRNAs) play critical roles across multiple reproductive processes in female Aedes aegypti mosquitoes. However, how miRNAs are controlled to coordinate their activity with the demands of mosquito reproduction remains largely unknown. We report that the ecdysone receptor (EcR)-mediated 20-hydroxyecdysone (20E) signaling regulates miRNA expression in female mosquitoes. EcR RNA-interference silencing linked to small RNA-sequencing analysis reveals that EcR not only activates but also represses miRNA expression in the female mosquito fat body, a functional analog of the vertebrate liver. EcR directly represses the expression of clustered miR-275 and miR-305 before blood feeding when the 20E titer is low, whereas it activates their expression in response to the increased 20E titer after a blood meal. Furthermore, we find that SMRTER, an insect analog of the vertebrate nuclear receptor corepressors SMRT and N-CoR, interacts with EcR in a 20E-sensitive manner and is required for EcR-mediated repression of miRNA expression in Ae. aegypti mosquitoes. In addition, we demonstrate that miR-275 and miR-305 directly target glutamate semialdehyde dehydrogenase and AAEL009899, respectively, to facilitate egg development. This study reveals a mechanism for how miRNAs are controlled by the 20E signaling pathway to coordinate their activity with the demands of mosquito reproduction.
Collapse
Affiliation(s)
- Ya-Zhou He
- Department of Entomology, University of California, Riverside, CA 92521
- Institute of Integrative Genome Biology, University of California, Riverside, CA 92521
| | - Emre Aksoy
- Department of Entomology, University of California, Riverside, CA 92521
- Graduate Program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, CA 92521
| | - Yike Ding
- Department of Entomology, University of California, Riverside, CA 92521
- Institute of Integrative Genome Biology, University of California, Riverside, CA 92521
| | - Alexander S Raikhel
- Department of Entomology, University of California, Riverside, CA 92521;
- Institute of Integrative Genome Biology, University of California, Riverside, CA 92521
| |
Collapse
|
29
|
Xu TL, Sun YW, Feng XY, Zhou XN, Zheng B. Development of miRNA-Based Approaches to Explore the Interruption of Mosquito-Borne Disease Transmission. Front Cell Infect Microbiol 2021; 11:665444. [PMID: 34235091 PMCID: PMC8256169 DOI: 10.3389/fcimb.2021.665444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/02/2021] [Indexed: 01/21/2023] Open
Abstract
MicroRNA (miRNA or miR)-based approaches to interrupt the transmission of mosquito-borne diseases have been explored since 2005. A review of these studies and areas in which to proceed is needed. In this review, significant progress is reviewed at the level of individual miRNAs, and miRNA diversification and relevant confounders are described in detail. Current miRNA studies in mosquitoes include four steps, namely, identifying miRNAs, validating miRNA-pathogen interactions, exploring action mechanisms, and performing preapplication investigations. Notably, regarding the Plasmodium parasite, mosquito miRNAs generally bind to mosquito immunity- or development-related mRNAs, indirectly regulating Plasmodium infection; However, regarding arboviruses, mosquito miRNAs can bind to the viral genome, directly modifying viral replication. Thus, during explorations of miRNA-based approaches, researchers need select an ideal miRNA for investigation based on the mosquito species, tissue, and mosquito-borne pathogen of interest. Additionally, strategies for miRNA-based approaches differ for arboviruses and protozoan parasites.
Collapse
Affiliation(s)
- Tie-Long Xu
- Evidence-Based Medicine Research Center, Jiangxi University of Chinese Medicine, Nanchang, China.,National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, and WHO Collaborating Center for Tropical Diseases, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
| | - Ya-Wen Sun
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, and WHO Collaborating Center for Tropical Diseases, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
| | - Xin-Yu Feng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, and WHO Collaborating Center for Tropical Diseases, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China.,School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, and WHO Collaborating Center for Tropical Diseases, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China.,School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Zheng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, and WHO Collaborating Center for Tropical Diseases, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China.,School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Zhang Q, Dou W, Taning CNT, Smagghe G, Wang JJ. Regulatory roles of microRNAs in insect pests: prospective targets for insect pest control. Curr Opin Biotechnol 2021; 70:158-166. [PMID: 34090114 DOI: 10.1016/j.copbio.2021.05.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/28/2021] [Accepted: 05/06/2021] [Indexed: 01/23/2023]
Abstract
At the post-transcriptional level, microRNAs (miRNAs) play an important role in the regulation of gene expression, thereby influencing the outcome of many biological processes in insects, such as development, reproduction, metamorphosis, immunity, and insecticide resistance. The alteration of miRNA expression by mimic/agomir or inhibitor/antagomir via injection/feeding can lead to pest developmental abnormalities, death, or reduced pesticide resistance, indicating that miRNAs are potential targets for pest control. This review provides an overview of recent advances in understanding the regulatory roles of miRNA in agricultural and public health insect pest, and further highlights the potential of miRNAs as prospective targets in pest control.
Collapse
Affiliation(s)
- Qiang Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China; International China-Belgium Joint Laboratory on Sustainable Crop Pest Control between Southwest University in China and Ghent University in Belgium, Chongqing 400715, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China; International China-Belgium Joint Laboratory on Sustainable Crop Pest Control between Southwest University in China and Ghent University in Belgium, Chongqing 400715, China
| | | | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China; International China-Belgium Joint Laboratory on Sustainable Crop Pest Control between Southwest University in China and Ghent University in Belgium, Chongqing 400715, China; Department of Plants and Crops, Ghent University, Ghent 9000, Belgium.
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China; International China-Belgium Joint Laboratory on Sustainable Crop Pest Control between Southwest University in China and Ghent University in Belgium, Chongqing 400715, China.
| |
Collapse
|
31
|
Di R, Liu QY, Song SH, Tian DM, He JN, Ge Y, Wang XY, Hu WP, Mwacharo JM, Pan ZY, Wang JD, Ma Q, Cao GL, Jin HH, Liang XJ, Chu MX. Expression characteristics of pineal miRNAs at ovine different reproductive stages and the identification of miRNAs targeting the AANAT gene. BMC Genomics 2021; 22:217. [PMID: 33765915 PMCID: PMC7992348 DOI: 10.1186/s12864-021-07536-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/15/2021] [Indexed: 11/30/2022] Open
Abstract
Background Many recent studies have shown that miRNAs play important roles in the regulation of animal reproduction, including seasonal reproduction. The pineal gland is a crucial hub in the regulation of seasonal reproduction. However, little is known about the expression characteristics of pineal miRNAs in different reproductive seasons (anestrus and breeding season). Therefore, the expression profiles and regulatory roles of ovine pineal miRNAs were investigated during different reproductive stages using Solexa sequencing technology and dual luciferase reporter assays. Results A total of 427 miRNAs were identified in the sheep pineal gland. Significant differences in miRNA expression were demonstrated between anestrus and the breeding season in terms of the frequency distributions of miRNA lengths, number of expressed miRNAs, and specifically and highly expressed miRNAs in each reproductive stage. KEGG analysis of the differentially expressed (DE) miRNAs between anestrus and the breeding season indicated that they are significantly enriched in pathways related to protein synthesis, secretion and uptake. Furthermore, transcriptome analysis revealed that many target genes of DE miRNAs in the ribosome pathway showed relatively low expression in the breeding season. On the other hand, analyses combining miRNA-gene expression data with target relationship validation in vitro implied that miR-89 may participate in the negative regulation of aralkylamine N-acetyltransferase (AANAT) mRNA expression by targeting its 3’UTR at a unique binding site. Conclusions Our results provide new insights into the expression characteristics of sheep pineal miRNAs at different reproductive stages and into the negative regulatory effects of pineal miRNAs on AANAT mRNA expression. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07536-y.
Collapse
Affiliation(s)
- Ran Di
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2, Yuanmingyuan West Rd, Beijing, 100193, China
| | - Qiu-Yue Liu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2, Yuanmingyuan West Rd, Beijing, 100193, China
| | - Shu-Hui Song
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China
| | - Dong-Mei Tian
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China
| | - Jian-Ning He
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2, Yuanmingyuan West Rd, Beijing, 100193, China
| | - Ying Ge
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2, Yuanmingyuan West Rd, Beijing, 100193, China
| | - Xiang-Yu Wang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2, Yuanmingyuan West Rd, Beijing, 100193, China
| | - Wen-Ping Hu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2, Yuanmingyuan West Rd, Beijing, 100193, China
| | - Joram-Mwashigadi Mwacharo
- Small Ruminant Genomics, International Center for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia
| | - Zhang-Yuan Pan
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2, Yuanmingyuan West Rd, Beijing, 100193, China
| | - Jian-Dong Wang
- Research Center of Grass and Livestock, NingXia Academy of Agricultural and Forestry Sciences, No. 590, East Yellow River Road, Yinchuan, 750002, China
| | - Qing Ma
- Research Center of Grass and Livestock, NingXia Academy of Agricultural and Forestry Sciences, No. 590, East Yellow River Road, Yinchuan, 750002, China
| | - Gui-Ling Cao
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2, Yuanmingyuan West Rd, Beijing, 100193, China
| | - Hui-Hui Jin
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2, Yuanmingyuan West Rd, Beijing, 100193, China
| | - Xiao-Jun Liang
- Research Center of Grass and Livestock, NingXia Academy of Agricultural and Forestry Sciences, No. 590, East Yellow River Road, Yinchuan, 750002, China.
| | - Ming-Xing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2, Yuanmingyuan West Rd, Beijing, 100193, China.
| |
Collapse
|
32
|
Farley EJ, Eggleston H, Riehle MM. Filtering the Junk: Assigning Function to the Mosquito Non-Coding Genome. INSECTS 2021; 12:186. [PMID: 33671692 PMCID: PMC7926655 DOI: 10.3390/insects12020186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 01/21/2023]
Abstract
The portion of the mosquito genome that does not code for proteins contains regulatory elements that likely underlie variation for important phenotypes including resistance and susceptibility to infection with arboviruses and Apicomplexan parasites. Filtering the non-coding genome to uncover these functional elements is an expanding area of research, though identification of non-coding regulatory elements is challenging due to the lack of an amino acid-like code for the non-coding genome and a lack of sequence conservation across species. This review focuses on three types of non-coding regulatory elements: (1) microRNAs (miRNAs), (2) long non-coding RNAs (lncRNAs), and (3) enhancers, and summarizes current advances in technical and analytical approaches for measurement of each of these elements on a genome-wide scale. The review also summarizes and highlights novel findings following application of these techniques in mosquito-borne disease research. Looking beyond the protein-coding genome is essential for understanding the complexities that underlie differential gene expression in response to arboviral or parasite infection in mosquito disease vectors. A comprehensive understanding of the regulation of gene and protein expression will inform transgenic and other vector control methods rooted in naturally segregating genetic variation.
Collapse
Affiliation(s)
| | | | - Michelle M. Riehle
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (E.J.F.); (H.E.)
| |
Collapse
|
33
|
Hillary VE, Ceasar SA. Genome engineering in insects for the control of vector borne diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 179:197-223. [PMID: 33785177 DOI: 10.1016/bs.pmbts.2020.12.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Insects cause many vector-borne infectious diseases and have become a major threat to human health. Although many control measures are undertaken, some insects are resistant to it, exacerbated by environmental changes which is a major challenge for control measures. Genetic studies by targeting the genomes of insects may offer an alternative strategy. Developments with novel genome engineering technologies have stretched our ability to target and modify any genomic sequence in Eukaryotes including insects. Genome engineering tools such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and most recently discovered, clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) systems hold the potential to control the vector-borne diseases. In this chapter, we review the vector control strategy undertaken by employing three major genome engineering tools (ZFNs, TALENs, and CRISPR/Cas9) and discuss the future prospects of this system to control insect vectors. Finally, we also discuss the CRISPR-based gene drive system and its concerns due to ecological impacts.
Collapse
Affiliation(s)
- V Edwin Hillary
- Division of Biotechnology, Entomology Research Institute, Loyola College, University of Madras, Chennai, Tamil Nadu, India
| | - S Antony Ceasar
- Division of Biotechnology, Entomology Research Institute, Loyola College, University of Madras, Chennai, Tamil Nadu, India; Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Kalamassery, Kochi, India.
| |
Collapse
|
34
|
Zhang X, Raikhel AS. Hormonal regulation of microRNA expression dynamics in the gut of the yellow fever mosquito Aedes aegypti. RNA Biol 2020; 18:1682-1691. [PMID: 33317406 DOI: 10.1080/15476286.2020.1864181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The yellow fever mosquito Aedes aegypti is an obligatory blood feeder and a major arboviral disease vector, evoking severe public health concerns worldwide. In adult female mosquitoes, the gut is critical for blood digestion and pathogen entry. We aimed for a systematic exploration of microRNA expression dynamics in the gut during the gonadotrophic cycle. Small RNA libraries were constructed from female mosquito gut tissues at five time points. Unsupervised hierarchical clustering revealed three expression clusters (early, mid and late) peaking at sequential time points - 24, 48 and 72 h posteclosion. Differentially expressed miRNAs were identified at 24 h post-blood meal (PBM). Depletions of Methoprene-tolerant [Met; the juvenile hormone (JH) receptor] and Ecdysone receptor [EcR; the receptor to 20-hydroxyecdysone (20E)] were performed using dsRNA to these genes to investigate impacts on microRNA expressions. Our results suggest that Met-mediated signalling downregulates miRNA expression from the early cluster and upregulates that from the late cluster. EcR signalling either up- or downregulated miRNA levels at 24 h PBM, indicating a differential effect of this receptor in miRNA gene expression. Furthermore, miR-281, which is the most abundant miRNA in the gut tissue, is induced and repressed by Met- and EcR-mediated signalling, respectively. Systematic depletion using synthetic antagomir and phenotype examinations indicate that miR-281 is obligatory for the normal progression of blood digestion, ovarian development and reproduction. Collectively, this study unveils expression dynamics of microRNAs in the female gut tissue during the gonadotrophic cycle and demonstrates that they are affected by JH and 20E signalling.
Collapse
Affiliation(s)
- Xiufeng Zhang
- Department of Entomology and Institute of Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Alexander S Raikhel
- Department of Entomology and Institute of Integrative Genome Biology, University of California, Riverside, CA, USA
| |
Collapse
|
35
|
Lezcano ÓM, Sánchez-Polo M, Ruiz JL, Gómez-Díaz E. Chromatin Structure and Function in Mosquitoes. Front Genet 2020; 11:602949. [PMID: 33365050 PMCID: PMC7750206 DOI: 10.3389/fgene.2020.602949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/29/2020] [Indexed: 12/27/2022] Open
Abstract
The principles and function of chromatin and nuclear architecture have been extensively studied in model organisms, such as Drosophila melanogaster. However, little is known about the role of these epigenetic processes in transcriptional regulation in other insects including mosquitoes, which are major disease vectors and a worldwide threat for human health. Some of these life-threatening diseases are malaria, which is caused by protozoan parasites of the genus Plasmodium and transmitted by Anopheles mosquitoes; dengue fever, which is caused by an arbovirus mainly transmitted by Aedes aegypti; and West Nile fever, which is caused by an arbovirus transmitted by Culex spp. In this contribution, we review what is known about chromatin-associated mechanisms and the 3D genome structure in various mosquito vectors, including Anopheles, Aedes, and Culex spp. We also discuss the similarities between epigenetic mechanisms in mosquitoes and the model organism Drosophila melanogaster, and advocate that the field could benefit from the cross-application of state-of-the-art functional genomic technologies that are well-developed in the fruit fly. Uncovering the mosquito regulatory genome can lead to the discovery of unique regulatory networks associated with the parasitic life-style of these insects. It is also critical to understand the molecular interactions between the vectors and the pathogens that they transmit, which could hold the key to major breakthroughs on the fight against mosquito-borne diseases. Finally, it is clear that epigenetic mechanisms controlling mosquito environmental plasticity and evolvability are also of utmost importance, particularly in the current context of globalization and climate change.
Collapse
Affiliation(s)
| | | | - José L. Ruiz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Elena Gómez-Díaz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
36
|
Zhang Q, Dou W, Song ZH, Jin TJ, Yuan GR, De Schutter K, Smagghe G, Wang JJ. Identification and profiling of Bactrocera dorsalis microRNAs and their potential roles in regulating the developmental transitions of egg hatching, molting, pupation and adult eclosion. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 127:103475. [PMID: 33059019 DOI: 10.1016/j.ibmb.2020.103475] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/28/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
MicroRNAs (miRNAs) are endogenous small noncoding RNAs (18-25 nt) that are involved in many physiological processes including development, cancer, immunity, apoptosis and host-microbe interactions through post-transcriptional regulation of gene expression. In this study, we measured the profile of small RNAs over the developmental transitions of the oriental fruit fly Bactrocera dorsalis from egg hatching, molting, and pupation to adult eclosion. We identified 250 miRNAs, including 83 known and 167 novel miRNAs, and 47 isomiRNAs. In addition, we identified the miRNAs differentially expressed over the developmental transitions. Interestingly, the miR-309 cluster, the miR-2 cluster/family and the let-7 cluster were among these differentially expressed miRNAs, suggesting a role in the regulation of egg hatching, molting and pupation/adult eclosion, respectively. Moreover, a detailed analysis of the temporal expression patterns of 14 highly expressed miRNAs in the pupal stage revealed three types of expression profiles. Furthermore, injection of a miR-100 mimic in the 3rd instar larvae resulted in a significant decrease in pupation and adult eclosion rates, whereas injection of a miR-317 antagomir resulted in a significant decrease in the pupation rate and a decrease in the pupation time, indicating that miR-100 and miR-317 are involved in the process of pupation. Finally, injection of a miR-100/miR-285 mimic or antagomir in pupae resulted in a significant decrease in the eclosion rate and a significant increase in the prevalence of a partial eclosion phenotype, implying the involvement of miR-100 and miR-285 in the process of adult eclosion. This study identified critical miRNAs involved in the transitions of this important holometabolic model and pest insect B. dorsalis from egg hatching to adult eclosion, thus providing a useful resource for exploring the regulatory role of miRNAs during insect post-embryonic development.
Collapse
Affiliation(s)
- Qiang Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China; International China-Belgium Joint Laboratory on Sustainable Crop Pest Control Between Southwest University in China and Ghent University in Belgium, Chongqing, 400715, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China; International China-Belgium Joint Laboratory on Sustainable Crop Pest Control Between Southwest University in China and Ghent University in Belgium, Chongqing, 400715, China
| | - Zhong-Hao Song
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China; International China-Belgium Joint Laboratory on Sustainable Crop Pest Control Between Southwest University in China and Ghent University in Belgium, Chongqing, 400715, China
| | - Tong-Jun Jin
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China; International China-Belgium Joint Laboratory on Sustainable Crop Pest Control Between Southwest University in China and Ghent University in Belgium, Chongqing, 400715, China
| | - Guo-Rui Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China; International China-Belgium Joint Laboratory on Sustainable Crop Pest Control Between Southwest University in China and Ghent University in Belgium, Chongqing, 400715, China
| | - Kristof De Schutter
- International China-Belgium Joint Laboratory on Sustainable Crop Pest Control Between Southwest University in China and Ghent University in Belgium, Chongqing, 400715, China; Department of Plants and Crops, Ghent University, Ghent, 9000, Belgium
| | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China; International China-Belgium Joint Laboratory on Sustainable Crop Pest Control Between Southwest University in China and Ghent University in Belgium, Chongqing, 400715, China; Department of Plants and Crops, Ghent University, Ghent, 9000, Belgium.
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China; International China-Belgium Joint Laboratory on Sustainable Crop Pest Control Between Southwest University in China and Ghent University in Belgium, Chongqing, 400715, China.
| |
Collapse
|
37
|
Wang Q, Ge X, Zhang J, Chen L. Effect of lncRNA WT1-AS regulating WT1 on oxidative stress injury and apoptosis of neurons in Alzheimer's disease via inhibition of the miR-375/SIX4 axis. Aging (Albany NY) 2020; 12:23974-23995. [PMID: 33234729 PMCID: PMC7762490 DOI: 10.18632/aging.104079] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 08/17/2020] [Indexed: 12/12/2022]
Abstract
Objective: To study the effect of lncRNA WT1-AS on oxidative stress injury (OSI) and apoptosis of neurons in Alzheimer's disease (AD) and its specific mechanisms related to the microRNA-375 (miR-375)/SIX4 axis and WT1 expression. Results: After bioinformatic prediction, WT1-AS was found to be downregulated in Aβ25-35treated SH-SY5Y cells, and WT1-AS overexpression inhibited WT1 expression. WT1 could target miR-375 to promote its expression. miR-375 bound to SIX4, and miR-375 overexpression inhibited SIX4 expression. WT1-AS inhibited OSI and apoptosis, while WT1 and miR-375 overexpression or SIX4 silencing reversed the WT1-AS effect on OSI and apoptosis. In vivo experiments revealed that WT1-AS improved learning/memory abilities and inhibited OSI and apoptosis in AD mice. Conclusion: Overexpression of WT1-AS can inhibit the miR-375/SIX4 axis, OSI and neuronal apoptosis in AD by inhibiting WT1 expression. Methods: Related lncRNAs were identified, and miR-375 downstream targets were predicted. WT1-AS, WT1, miR-375 and SIX4 expression was detected in a cell model induced by Aβ25-35. The binding of WT1 with miR-375 and that of miR-375 with SIX4 were further confirmed. Adenosine triphosphate (ATP), reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and lactate dehydrogenase (LDH) activities, and apoptosis levels were tested after mitochondrial membrane potential observation. Learning/memory abilities and neuronal apoptosis were tested in a mouse model.
Collapse
Affiliation(s)
- Quanbao Wang
- Department of Neurology, The People’s Hospital of Linyi City, Linyi 276000, P.R. China
| | - Xiumin Ge
- Department of Neurology, Linyi Mental Health Center, Linyi 276000, P.R. China
| | - Jie Zhang
- Department of Emergency Internal Medicine, The People’s Hospital of Linyi City, Linyi 276000, P.R. China
| | - Licheng Chen
- Department of Neurology, The People’s Hospital of Linyi City, Linyi 276000, P.R. China
| |
Collapse
|
38
|
Ahmed TH, Saunders TR, Mullins D, Rahman MZ, Zhu J. Molecular action of pyriproxyfen: Role of the Methoprene-tolerant protein in the pyriproxyfen-induced sterilization of adult female mosquitoes. PLoS Negl Trop Dis 2020; 14:e0008669. [PMID: 32866146 PMCID: PMC7485974 DOI: 10.1371/journal.pntd.0008669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/11/2020] [Accepted: 08/03/2020] [Indexed: 01/02/2023] Open
Abstract
Exposure of adult mosquitoes to pyriproxyfen (PPF), an analog of insect juvenile hormone (JH), has shown promise to effectively sterilize female mosquitoes. However, the underlying mechanisms of the PPF-induced decrease in mosquito fecundity are largely unknown. We performed a comprehensive study to dissect the mode of PPF action in Aedes aegypti mosquitoes. Exposure to PPF prompted the overgrowth of primary follicles in sugar-fed Ae. aegypti females but blocked the development of primary follicles at Christopher’s Stage III after blood feeding. Secondary follicles were precociously activated in PPF-treated mosquitoes. Moreover, PPF substantially altered the expression of many genes that are essential for mosquito physiology and oocyte development in the fat body and ovary. In particular, many metabolic genes were differentially expressed in response to PPF treatment, thereby affecting the mobilization and utilization of energy reserves. Furthermore, PPF treatment on the previtellogenic female adults considerably modified mosquito responses to JH and 20-hydroxyecdysone (20E), two major hormones that govern mosquito reproduction. Krüppel homolog 1, a JH-inducible transcriptional regulator, showed consistently elevated expression after PPF exposure. Conversely, PPF upregulated the expression of several key players of the 20E regulatory cascades, including HR3 and E75A, in the previtellogenic stage. After blood-feeding, the expression of these 20E response genes was significantly weaker in PPF-treated mosquitoes than the solvent-treated control groups. RNAi-mediated knockdown of the Methoprene-tolerant (Met) protein, the JH receptor, partially rescued the impaired follicular development after PPF exposure and substantially increased the hatching of the eggs produced by PPF-treated female mosquitoes. Thus, the results suggested that PPF relied on Met to exert its sterilizing effects on female mosquitoes. In summary, this study finds that PPF exposure disturbs normal hormonal responses and metabolism in Ae. aegypti, shedding light on the molecular targets and the downstream signaling pathways activated by PPF. Aedes aegypti mosquitoes are responsible for the transmission of dengue, yellow fever, chikungunya, and Zika fever. Insecticides are widely used as the primary tool in the prevention and control of these infectious diseases. In light of the rapid increase of insecticide resistance in mosquito populations, there is an urgent need to find new classes of insecticides with a different mode of action. Here we found that pyriproxyfen, an analog of insect juvenile hormone (JH), had a large impact on the oocyte development, both before and after blood feeding, in female mosquitoes. Pyriproxyfen disturbed normal hormonal responses and caused metabolic shifting in female adults. These actions appear to collectively impair oocyte development and substantially reduce viable progenies of female mosquitoes. Besides, we demonstrated the involvement of the JH receptor Met in pyriproxyfen-induced female sterilization. This study significantly advances our understanding of mosquito reproductive biology and the molecular basis of pyriproxyfen action, which are invaluable for the development of new mosquito control strategies.
Collapse
Affiliation(s)
- Tahmina Hossain Ahmed
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| | - T. Randolph Saunders
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Donald Mullins
- Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Mohammad Zillur Rahman
- Quantitative Science Core, Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Jinsong Zhu
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
39
|
Zhou M, Jia X, Wan H, Wang S, Zhang X, Zhang Z, Wang Y. miR-9 and miR-263 Regulate the Key Genes of the ERK Pathway in the Ovary of Mud Crab Scylla paramamosain. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:594-606. [PMID: 32651722 DOI: 10.1007/s10126-020-09981-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Mud crab Scylla paramamosain is one of the most important economic crabs in China. The molecular regulatory mechanism of ovarian development has received considerable attention in recent years. Some studies found that ERK (extracellular signal-regulated protein kinase) signaling pathway plays an important role in ovarian development and is negatively regulated by microRNAs (miRNAs). However, the study about the regulation of miRNA on the ERK pathway in crustacean's ovary remains unknown. In this study, the target genes of the ERK signaling pathway regulated by selected miRNAs identified from the ovary of mud crab in our previous research were predicted by using bioinformatics tools. The results showed that the ERK2 might be a target gene of miR-9c, miR-263a, and miR-263b; MEK2 may be a target gene of miR-263a; and Rap-1b may be a target gene of miR-9, miR-9c, and miR-263a. Results of in vitro dual-luciferase reporter assay showed that the relative luciferase activities were significantly lower in HEK293T cells co-transfected with the combination of miRNA mimics and pmir-RB-REPORTTM-target gene-3'UTR than those with the combination of mimics NC and pmir-RB-REPORTTM-target gene-3'UTR. In contrast, the relative luciferase activities were significantly higher in HEK293T cells co-transfected with miRNA inhibitor than those with inhibitor NC. To further validate in vitro results, the miRNA reagents were injected into the living female mud crabs, and the expression levels of miRNAs and target genes after the injection were analyzed by quantitative real-time PCR. The in vivo experimental results showed that miRNAs (miR-9c/miR-263a) agomir (enhancers)/antagomir (inhibitors) can enhance/decrease the expression of two miRNAs, respectively, and the expression of target genes in the ovary was declined/increased after injection of agomir/antagomir reagent. In conclusion, miR-9/miR-263 can negatively regulate the expression of the ERK pathway genes (ERK2, MEK2, and Rap-1b) in the ovary of mud crab.
Collapse
Affiliation(s)
- Mingcan Zhou
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen, 361021, China
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiwei Jia
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Haifu Wan
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Shuhong Wang
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Xin Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ziping Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Yilei Wang
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
40
|
Song J, Zhou S. Post-transcriptional regulation of insect metamorphosis and oogenesis. Cell Mol Life Sci 2020; 77:1893-1909. [PMID: 31724082 PMCID: PMC11105025 DOI: 10.1007/s00018-019-03361-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/18/2019] [Accepted: 10/30/2019] [Indexed: 12/17/2022]
Abstract
Metamorphic transformation from larvae to adults along with the high fecundity is key to insect success. Insect metamorphosis and reproduction are governed by two critical endocrines, juvenile hormone (JH), and 20-hydroxyecdysone (20E). Recent studies have established a crucial role of microRNA (miRNA) in insect metamorphosis and oogenesis. While miRNAs target genes involved in JH and 20E-signaling pathways, these two hormones reciprocally regulate miRNA expression, forming regulatory loops of miRNA with JH and 20E-signaling cascades. Insect metamorphosis and oogenesis rely on the coordination of hormones, cognate genes, and miRNAs for precise regulation. In addition, the alternative splicing of genes in JH and 20E-signaling pathways has distinct functions in insect metamorphosis and oogenesis. We, therefore, focus in this review on recent advances in post-transcriptional regulation, with the emphasis on the regulatory role of miRNA and alternative splicing, in insect metamorphosis and oogenesis. We will highlight important new findings of miRNA interactions with hormonal signaling and alternative splicing of JH receptor heterodimer gene Taiman.
Collapse
Affiliation(s)
- Jiasheng Song
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Shutang Zhou
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
41
|
Fu X, Liu P, Dimopoulos G, Zhu J. Dynamic miRNA-mRNA interactions coordinate gene expression in adult Anopheles gambiae. PLoS Genet 2020; 16:e1008765. [PMID: 32339167 PMCID: PMC7205314 DOI: 10.1371/journal.pgen.1008765] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/07/2020] [Accepted: 04/08/2020] [Indexed: 01/01/2023] Open
Abstract
microRNAs (miRNAs) are increasingly recognized as important regulators of many biological processes in mosquitoes, vectors of numerous devastating infectious diseases. Identification of bona fide targets remains the bottleneck for functional studies of miRNAs. In this study, we used CLEAR-CLIP assays to systematically analyze miRNA-mRNA interactions in adult female Anopheles gambiae mosquitoes. Thousands of miRNA-target pairs were captured after direct ligation of the miRNA and its cognate target transcript in endogenous Argonaute–miRNA–mRNA complexes. Using two interactions detected in this manner, miR-309-SIX4 and let-7-kr-h1, we demonstrated the reliability of this experimental approach in identifying in vivo gene regulation by miRNAs. The miRNA-mRNA interaction dataset provided an invaluable opportunity to decipher targeting rules of mosquito miRNAs. Enriched motifs in the diverse targets of each miRNA indicated that the majority of mosquito miRNAs rely on seed-based canonical target recognition, while noncanonical miRNA binding sites are widespread and often contain motifs complementary to the central or 3’ ends of miRNAs. The time-lapse study of miRNA-target interactomes in adult female mosquitoes revealed dynamic miRNA regulation of gene expression in response to varying nutritional sources and physiological demands. Interestingly, some miRNAs exhibited flexibility to use distinct sequences at different stages for target recognition. Furthermore, many miRNA-mRNA interactions displayed stage-specific patterns, especially for those genes involved in metabolism, suggesting that miRNAs play critical roles in precise control of gene expression to cope with enormous physiological demands associated with egg production. The global mapping of miRNA-target interactions contributes to our understanding of miRNA targeting specificity in non-model organisms. It also provides a roadmap for additional studies focused on regulatory functions of miRNAs in Anopheles gambiae. Metazoan miRNAs typically bind to partially complementary sites in their target mRNAs. The interactions between miRNAs and target RNAs are generally stage-specific and context-dependent. Thus, identification of authentic miRNA targets remains a big challenge. Target identification is even more difficult in mosquitoes where miRNA-mRNA pairing rules are poorly characterized. Using an experimental approach, this study captures thousands of endogenous miRNA-target interactions in female mosquitoes at several critical stages during adult reproduction. Analyses of the target sequences reveal how individual miRNAs accomplish their target recognition in mosquitoes. Interestingly, many mosquito miRNAs exhibit flexibility to use distinct sequences at different stages to pair with their targets, greatly altering target selectivity and expanding target repertoire of miRNAs. Drastic changes in mRNA abundance have been previously reported when adult female mosquitoes attend to varying nutritional sources and physiological demands. The temporal patterns of miRNA-target interactions obtained in this study provide new insights into the roles of miRNAs in tightly controlled gene expression associated with blood-feeding and mosquito oogenesis.
Collapse
Affiliation(s)
- Xiaonan Fu
- The Interdisciplinary Ph.D. Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Pengcheng Liu
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jinsong Zhu
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
42
|
Dong S, Fu X, Dong Y, Simões ML, Zhu J, Dimopoulos G. Broad spectrum immunomodulatory effects of Anopheles gambiae microRNAs and their use for transgenic suppression of Plasmodium. PLoS Pathog 2020; 16:e1008453. [PMID: 32330198 PMCID: PMC7202664 DOI: 10.1371/journal.ppat.1008453] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 05/06/2020] [Accepted: 03/03/2020] [Indexed: 11/18/2022] Open
Abstract
Malaria, caused by the protozoan parasite Plasmodium and transmitted by Anopheles mosquitoes, represents a major threat to human health. Plasmodium’s infection cycle in the Anopheles vector is critical for transmission of the parasite between humans. The midgut-stage bottleneck of infection is largely imposed by the mosquito’s innate immune system. microRNAs (miRNAs, small noncoding RNAs that bind to target RNAs to regulate gene expression) are also involved in regulating immunity and the anti-Plasmodium defense in mosquitoes. Here, we characterized the mosquito’s miRNA responses to Plasmodium infection using an improved crosslinking and immunoprecipitation (CLIP) method, termed covalent ligation of endogenous Argonaute-bound RNAs (CLEAR)-CLIP. Three candidate miRNAs’ influence on P. falciparum infection and midgut microbiota was studied through transgenically expressed miRNA sponges (miR-SPs) in midgut and fat body tissues. MiR-SPs mediated conditional depletion of aga-miR-14 or aga-miR-305, but not aga-miR-8, increased mosquito resistance to both P. falciparum and P. berghei infection, and enhanced the mosquitoes’ antibacterial defenses. Transcriptome analysis revealed that depletion of aga-miR-14 or aga-miR-305 resulted in an increased expression of multiple immunity-related and anti-Plasmodium genes in mosquito midguts. The overall fitness cost of conditionally expressed miR-SPs was low, with only one of eight fitness parameters being adversely affected. Taken together, our results demonstrate that targeting mosquito miRNA by conditional expression of miR-SPs may have potential for the development of malaria control through genetically engineered mosquitoes. Malaria is caused by the Plasmodium parasite that is transmitted by Anopheles mosquitoes. The mosquito’s innate immune system plays an important role in controlling parasite infection. We have identified mosquito microRNAs (miRNAs) that are involved in regulating mosquito immunity to parasite infection. Transgenic mosquitoes that deplete the immunity-related miRNAs aga-miR-14 or aga-miR-305 through miRNA sponges, show increased resistance to both human and rodent parasite infection, and enhanced antibacterial defenses. Depletion of aga-miR-14 or aga-miR-305 resulted in an increased expression of multiple immunity-related and anti-Plasmodium genes, and the overall fitness cost of transgenic mosquitoes upon depletion of aga-miR-14 or aga-miR-305 was negligible. We show that targeting mosquito miRNA by transgenic expression of miRNA sponges may have potential for the development of malaria control through genetically engineered mosquitoes.
Collapse
Affiliation(s)
- Shengzhang Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
| | - Xiaonan Fu
- The Interdisciplinary Ph.D. Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, United States of America
| | - Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
| | - Maria L. Simões
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
| | - Jinsong Zhu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, United States of America
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
- * E-mail:
| |
Collapse
|
43
|
miRNA-1-3p is an early embryonic male sex-determining factor in the Oriental fruit fly Bactrocera dorsalis. Nat Commun 2020; 11:932. [PMID: 32071305 PMCID: PMC7029022 DOI: 10.1038/s41467-020-14622-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 07/18/2019] [Indexed: 11/08/2022] Open
Abstract
Regulation of male sexual differentiation by a Y chromosome-linked male determining factor (M-factor) is one of a diverse array of sex determination mechanisms found in insects. By deep sequencing of small RNAs from Bactrocera dorsalis early embryos, we identified an autosomal-derived microRNA, miR-1-3p, that has predicted target sites in the transformer gene (Bdtra) required for female sex determination. We further demonstrate by both in vitro and in vivo tests that miR-1-3p suppresses Bdtra expression. Injection of a miR-1-3p mimic in early embryos results in 87-92% phenotypic males, whereas knockdown of miR-1-3p by an inhibitor results in 67-77% phenotypic females. Finally, CRISPR/Cas9-mediated knockout of miR-1-3p results in the expression of female-specific splice variants of Bdtra and doublesex (Bddsx), and induced sex reversal of XY individuals into phenotypic females. These results indicate that miR-1-3p is required for male sex determination in early embryogenesis in B. dorsalis as an intermediate male determiner.
Collapse
|
44
|
Xiao S, Wang B, Li K, Xiong S, Ye X, Wang J, Zhang J, Yan Z, Wang F, Song Q, Stanley DW, Ye G, Fang Q. Identification and characterization of miRNAs in an endoparasitoid wasp, Pteromalus puparum. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21633. [PMID: 31587364 DOI: 10.1002/arch.21633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 06/10/2023]
Abstract
MicroRNAs (miRNAs) are a form of endogenous small noncoding RNAs that regulate protein-coding gene expression at the posttranscriptional level. So far, knowledge of miRNAs in parasitoids remains rudimentary. We investigated miRNAs in Pteromalus puparum, a pupal endoparasitoid wasp with genome and transcriptome sequences completed. In this study, we constructed eight small RNA libraries from selected developmental stages and genders: male embryos, male larvae, male pupae, male adults, mixed-sex embryos, mixed-sex larvae, mixed-sex pupae, and female adults. We identified 254 mature miRNAs with 5p/3p arm features originated from 75 known and 119 novel miRNA genes in P. puparum, 88 of which reside in 26 clusters. The miRNAs in more than half of the clusters exhibit a consistent expression pattern, indicating they were co-transcribed from a long transcript. Comparing miRNA expression in the eight libraries, we found that 84 mature miRNAs were differentially expressed between embryos and larvae, 20 between larvae and pupae, and 26 between pupae and adults. We found some miRNAs were differentially expressed between sexes in embryos (10), larvae (29), pupae (8), and adults (14). Target predictions resulted in 211,571 miRNA-mRNA interactions for 254 different mature miRNAs. These miRNAs may be involved in sexual and developmental regulation of gene expression.
Collapse
Affiliation(s)
- Shan Xiao
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Beibei Wang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Kai Li
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, China
| | - Shijiao Xiong
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xinhai Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jiale Wang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jiao Zhang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Zhichao Yan
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fang Wang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qisheng Song
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri
| | - David W Stanley
- USDA Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia, Missouri
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
45
|
Chen E, Chen Z, Li S, Xing D, Guo H, Liu J, Ji X, Lin Y, Liu S, Xia Q. MicroRNAs bmo-miR-2739 and novel-miR-167 coordinately regulate the expression of the vitellogenin receptor in Bombyx mori oogenesis. Development 2020; 147:dev.183723. [DOI: 10.1242/dev.183723] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 02/19/2020] [Indexed: 12/15/2022]
Abstract
Vitellogenin receptors (VgRs) play critical roles in oogenesis by mediating endocytosis of vitellogenin and other nutrients in ovipara. We conducted small RNA sequencing and screening with a luciferase reporter system, and found that bmo-miR-2739 and a novel miRNA (novel-miR-167) coordinately regulate the expression of VgR in Bombyx mori (BmVgR). Further analyses suggested that these two miRNAs direct target repression by binding directly to the BmVgR 3ʹ untranslated region. Forced expression of either miRNA using the piggyBac system blocked vitellogenin (Vg) transport and retarded ovariole development. Antagomir silencing of bmo-miR-2739 or novel-miR-167 resulted in increased amounts of BmVgR protein in the ovaries and BmVgR mRNA in the fat body. This evidence combined with spatiotemporal expression profiles revealed that these two miRNAs function together to fine-tune the amount of BmVgR protein for ovarian development. Additionally, novel-miR-167 mainly switched on the posttranscriptional repression of BmVgR in non-ovarian tissues. The results of this study contribute to a better understanding of the function of miRNA during ovarian development of a lepidopteran and suggest a new strategy for controlling insect reproduction.
Collapse
Affiliation(s)
- Enxiang Chen
- Biological Science Research Center, Southwest University, Chongqing 400716, PR China
- Chongqing Key Laboratory of Sericulture Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Beibei, Chongqing 400716, PR China
| | - Zhiwei Chen
- Biological Science Research Center, Southwest University, Chongqing 400716, PR China
- Chongqing Key Laboratory of Sericulture Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Beibei, Chongqing 400716, PR China
| | - Shenglong Li
- Biological Science Research Center, Southwest University, Chongqing 400716, PR China
- Chongqing Key Laboratory of Sericulture Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Beibei, Chongqing 400716, PR China
| | - Dongxu Xing
- Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China
| | - Huizhen Guo
- Biological Science Research Center, Southwest University, Chongqing 400716, PR China
- Chongqing Key Laboratory of Sericulture Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Beibei, Chongqing 400716, PR China
| | - Jianqiu Liu
- Biological Science Research Center, Southwest University, Chongqing 400716, PR China
- Chongqing Key Laboratory of Sericulture Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Beibei, Chongqing 400716, PR China
| | - Xiaocun Ji
- Research Center of Bioenergy & Bioremediation, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Ying Lin
- Biological Science Research Center, Southwest University, Chongqing 400716, PR China
- Chongqing Key Laboratory of Sericulture Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Beibei, Chongqing 400716, PR China
| | - Shiping Liu
- Biological Science Research Center, Southwest University, Chongqing 400716, PR China
- Chongqing Key Laboratory of Sericulture Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Beibei, Chongqing 400716, PR China
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing 400716, PR China
- Chongqing Key Laboratory of Sericulture Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Beibei, Chongqing 400716, PR China
| |
Collapse
|
46
|
Liu T, Yang WQ, Xie YG, Liu PW, Xie LH, Lin F, Li CY, Gu JB, Wu K, Yan GY, Chen XG. Construction of an efficient genomic editing system with CRISPR/Cas9 in the vector mosquito Aedes albopictus. INSECT SCIENCE 2019; 26:1045-1054. [PMID: 30311353 DOI: 10.1111/1744-7917.12645] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 09/04/2018] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
Aedes (Stegomyia) albopictus, also known as the Asian tiger mosquito, is a mosquito which originated in Asia. In recent years, it has become increasingly rampant throughout the world. This mosquito can transmit several arboviruses, including dengue, Zika and chikungunya viruses, and is considered a public health threat. Despite the urgent need of genome engineering to analyze specific gene functions, progress in genetical manipulation of Ae. albopictus has been slow due to a lack of efficient methods and genetic markers. In the present study, we established targeted disruptions in two genes, kynurenine hydroxylase (kh) and dopachrome conversion enzyme (yellow), to analyze the feasibility of generating visible phenotypes with genome editing by the clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR-associated protein 9 (Cas9) system in Ae. albopictus. Following Cas9 single guide RNA ribonucleoprotein injection into the posterior end of pre-blastoderm embryos, 30%-50% of fertile survivors produced alleles that failed to complement existing kh and yellow mutations. Complete eye and body pigmentation defects were readily observed in G1 pupae and adults, indicating successful generation of highly heritable mutations. We conclude that the CRISPR/Cas9-mediated gene editing system can be used in Ae. albopictus and that it can be adopted as an efficient tool for genome-scale analysis and biological study.
Collapse
Affiliation(s)
- Tong Liu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wen-Qiang Yang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yu-Gu Xie
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Pei-Wen Liu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Li-Hua Xie
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Feng Lin
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Chen-Ying Li
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jin-Bao Gu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Kun Wu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Gui-Yun Yan
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiao-Guang Chen
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
47
|
Zheng Y, Shen W, Bi J, Chen MY, Wang RF, Ai H, Wang YF. Small RNA analysis provides new insights into cytoplasmic incompatibility in Drosophila melanogaster induced by Wolbachia. JOURNAL OF INSECT PHYSIOLOGY 2019; 118:103938. [PMID: 31491378 DOI: 10.1016/j.jinsphys.2019.103938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Wolbachia is a genus of endosymbiotic bacteria that induce a wide range of effects on their insect hosts. Cytoplasmic incompatibility (CI) is the most common phenotype mediated by Wolbachia and results in embryonic lethality when Wolbachia-infected males mate with uninfected females. Studies have revealed that bacteria can regulate many cellular processes in their hosts using small non-coding RNAs, so we investigated the involvement of small RNAs (sRNAs) in CI. Comparison of sRNA libraries between Wolbachia-infected and uninfected Drosophila melanogaster testes revealed 18 novel microRNAs (miRNAs), of which 12 were expressed specifically in Wolbachia-infected flies and one specifically in Wolbachia-uninfected flies. Furthermore, ten miRNAs showed differential expression, with four upregulated and six downregulated in Wolbachia-infected flies. Of the upregulated miRNAs, nov-miR-12 exhibited the highest upregulation in the testes of D. melanogaster. We then identified pipsqueak (psq) as the target gene of nov-miR-12 with the greatest complementarity in its 3' untranslated region (UTR). Wolbachia infection was correlated with reduced psq expression in D. melanogaster, and luciferase assays demonstrated that nov-miR-12 could downregulate psq through binding to its 3'UTR region. Knockdown of psq in Wolbachia-free fly testes significantly reduced egg hatching rate and mimicked the cellular abnormalities of Wolbachia-induced CI in embryos, including asynchronous nuclear division, chromatin bridging, and chromatin fragmentation. These results suggest that Wolbachia may induce CI in insect hosts by miRNA-mediated changes in host gene expression. Moreover, these findings reveal a potential molecular strategy for elucidating the complex interactions between endosymbionts and their insect hosts, such as Wolbachia-driven CI.
Collapse
Affiliation(s)
- Ya Zheng
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Wei Shen
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Jie Bi
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Meng-Yan Chen
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Rui-Fang Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Hui Ai
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
48
|
Knockout of juvenile hormone receptor, Methoprene-tolerant, induces black larval phenotype in the yellow fever mosquito, Aedes aegypti. Proc Natl Acad Sci U S A 2019; 116:21501-21507. [PMID: 31570611 PMCID: PMC6815201 DOI: 10.1073/pnas.1905729116] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Juvenile hormone (JH) analogs are used to control mosquitoes. However, both larval development and action of JH analogs are not well studied in these insects because RNA interference does not work well. A multiple single guide RNA-based CRISPR/Cas9 genome-editing method was used to knockout the methoprene-tolerant gene (Met, a JH receptor). The Met knockout larvae showed precocious development of pupal cuticle and expression of pupal/adult genes involved in the synthesis and melanization of cuticle and blood meal digestion. The methods developed here could help to overcome the major hurdle in functional genomics studies in Aedes aegypti and facilitate advances in understanding larval development and mode of action of JH analogs. The yellow fever mosquito, Aedes aegypti, vectors human pathogens. Juvenile hormones (JH) control almost every aspect of an insect’s life, and JH analogs are currently used to control mosquito larvae. Since RNA interference does not work efficiently during the larval stages of this insect, JH regulation of larval development and mode of action of JH analogs are not well studied. To overcome this limitation, we used a multiple single guide RNA-based CRISPR/Cas9 genome-editing method to knockout the methoprene-tolerant (Met) gene coding for a JH receptor. The Met knockout larvae exhibited a black larval phenotype during the L3 (third instar larvae) and L4 (fourth instar larvae) stages and died before pupation. However, Met knockout did not affect embryonic development or the L1 and L2 stages. Microscopy studies revealed the precocious synthesis of a dark pupal cuticle during the L3 and L4 stages. Gene expression analysis showed that Krüppel homolog 1, a key transcription factor in JH action, was down-regulated, but genes coding for proteins involved in melanization, pupal and adult cuticle synthesis, and blood meal digestion in adults were up-regulated in L4 Met mutants. These data suggest that, during the L3 and L4 stages, Met mediates JH suppression of pupal/adult genes involved in the synthesis and melanization of the cuticle and blood meal digestion. These results help to advance our knowledge of JH regulation of larval development and the mode of action of JH analogs in Ae. aegypti.
Collapse
|
49
|
Cui C, Wang Y, Liu J, Zhao J, Sun P, Wang S. A fungal pathogen deploys a small silencing RNA that attenuates mosquito immunity and facilitates infection. Nat Commun 2019; 10:4298. [PMID: 31541102 PMCID: PMC6754459 DOI: 10.1038/s41467-019-12323-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 09/02/2019] [Indexed: 02/01/2023] Open
Abstract
Insecticidal fungi represent a promising alternative to chemical pesticides for disease vector control. Here, we show that the pathogenic fungus Beauveria bassiana exports a microRNA-like RNA (bba-milR1) that hijacks the host RNA-interference machinery in mosquito cells by binding to Argonaute 1 (AGO1). bba-milR1 is highly expressed during fungal penetration of the mosquito integument, and suppresses host immunity by silencing expression of the mosquito Toll receptor ligand Spätzle 4 (Spz4). Later, upon entering the hemocoel, bba-milR1 expression is decreased, which avoids induction of the host proteinase CLIPB9 that activates the melanization response. Thus, our results indicate that the pathogen deploys a cross-kingdom small-RNA effector that attenuates host immunity and facilitates infection.
Collapse
Affiliation(s)
- Chunlai Cui
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingnan Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jing Zhao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Peilu Sun
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Sibao Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
50
|
Wang W, Wang X, Li X, Pu Q, Luo C, Xu L, Peng X, Liu S. Genetic Manipulation of MicroRNAs in the Silk Gland of Silkworm, Bombyx Mori. Biol Proced Online 2019; 21:16. [PMID: 31427900 PMCID: PMC6694536 DOI: 10.1186/s12575-019-0102-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/07/2019] [Indexed: 02/07/2023] Open
Abstract
Background MicroRNAs (miRNAs) are a class of non-coding RNAs with important post-transcriptional regulatory functions. To reveal the function of miRNAs in vivo, the critical step is to change their expression levels in the tissues or organs. In this work, we explored the application of several important genetic techniques in altering the expression of silk gland-specific miR-274 of silkworm (Bombyx mori). Results Injection of synthesized microRNA mimics and antagomirs exerted no effect on the expression of miR-274 in the silk gland, miR-274 sponge specifically absorbed miR-274 and down-regulated its expression, transgenic overexpression of miR-274 precursor significantly up-regulated miR-274, and finally tissue-specific CRISPR/Cas9 system achieved deletion of miR-274. Conclusions A practical technical system was established for studying the functions of miRNAs in silk gland of Bombyx mori. Our research provides methodological support for the functional study of miRNAs and other noncoding RNAs in the silk gland and more organs in other species.
Collapse
Affiliation(s)
- Wei Wang
- 1State Key Laboratory of Silkworm Genome Biology,Biological Science Research Center, Southwest University, Chongqing, 400715 People's Republic of China.,2Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715 People's Republic of China
| | - Xinran Wang
- 1State Key Laboratory of Silkworm Genome Biology,Biological Science Research Center, Southwest University, Chongqing, 400715 People's Republic of China.,2Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715 People's Republic of China
| | - Xuemei Li
- 1State Key Laboratory of Silkworm Genome Biology,Biological Science Research Center, Southwest University, Chongqing, 400715 People's Republic of China.,2Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715 People's Republic of China
| | - Qian Pu
- 1State Key Laboratory of Silkworm Genome Biology,Biological Science Research Center, Southwest University, Chongqing, 400715 People's Republic of China.,2Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715 People's Republic of China
| | - Chengyi Luo
- 1State Key Laboratory of Silkworm Genome Biology,Biological Science Research Center, Southwest University, Chongqing, 400715 People's Republic of China.,2Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715 People's Republic of China
| | - Lili Xu
- 1State Key Laboratory of Silkworm Genome Biology,Biological Science Research Center, Southwest University, Chongqing, 400715 People's Republic of China.,2Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715 People's Republic of China
| | - Xinyue Peng
- 1State Key Laboratory of Silkworm Genome Biology,Biological Science Research Center, Southwest University, Chongqing, 400715 People's Republic of China.,2Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715 People's Republic of China
| | - Shiping Liu
- 1State Key Laboratory of Silkworm Genome Biology,Biological Science Research Center, Southwest University, Chongqing, 400715 People's Republic of China.,2Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715 People's Republic of China
| |
Collapse
|