1
|
Rennert E, Vaikuntanathan S. A thermodynamic framework for nonequilibrium self-assembly and force morphology tradeoffs in branched actin networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.19.567734. [PMID: 39464062 PMCID: PMC11507704 DOI: 10.1101/2023.11.19.567734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Branched actin networks are involved in a variety of cellular processes, most notably the formation of lamellipodia in the leading edge of the cell. These systems adapt to varying loads through force dependent assembly rates that allow the network density and material properties to be modulated. Recent experimental work has described growth and force feedback mechanisms in these systems. Here, we consider the role played by energy dissipation in determining the kind of growth-force-morphology curves obtained in experiments. We construct a minimal model of the branched actin network self assembly process incorporating some of the established mechanisms. Our minimal analytically tractable model is able to reproduce experimental trends in density and growth rate. Further, we show how these trends depend crucially on entropy dissipation and change quantitatively if the entropy dissipation is parametrically set to values corresponding to a quasistatic state. Finally, we also identify the potential energy costs of adaptive behavior by branched actin networks, using insights from our minimal models. We suggest that the dissipative cost in the system beyond what is necessary to move the load may be necessary to maintain an adaptive steady state. Our results hence show how constraints from stochastic thermodynamics and non-equilibrium thermodynamics may bound or constrain the structures that result in such force generating processes.
Collapse
|
2
|
Osat S, Metson J, Kardar M, Golestanian R. Escaping Kinetic Traps Using Nonreciprocal Interactions. PHYSICAL REVIEW LETTERS 2024; 133:028301. [PMID: 39073937 DOI: 10.1103/physrevlett.133.028301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 06/10/2024] [Indexed: 07/31/2024]
Abstract
Kinetic traps are a notorious problem in equilibrium statistical mechanics, where temperature quenches ultimately fail to bring the system to low energy configurations. Using multifarious self-assembly as a model system, we introduce a mechanism to escape kinetic traps by utilizing nonreciprocal interactions between components. Introducing nonequilibrium effects offered by broken action-reaction symmetry in the system pushes the trajectory of the system out of arrested dynamics. The dynamics of the model is studied using tools from the physics of interfaces and defects. Our proposal can find applications in self-assembly, glassy systems, and systems with arrested dynamics to facilitate escape from local minima in rough energy landscapes.
Collapse
|
3
|
Chennakesavalu S, Manikandan SK, Hu F, Rotskoff GM. Adaptive nonequilibrium design of actin-based metamaterials: Fundamental and practical limits of control. Proc Natl Acad Sci U S A 2024; 121:e2310238121. [PMID: 38359294 PMCID: PMC10895351 DOI: 10.1073/pnas.2310238121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/13/2023] [Indexed: 02/17/2024] Open
Abstract
The adaptive and surprising emergent properties of biological materials self-assembled in far-from-equilibrium environments serve as an inspiration for efforts to design nanomaterials. In particular, controlling the conditions of self-assembly can modulate material properties, but there is no systematic understanding of either how to parameterize external control or how controllable a given material can be. Here, we demonstrate that branched actin networks can be encoded with metamaterial properties by dynamically controlling the applied force under which they grow and that the protocols can be selected using multi-task reinforcement learning. These actin networks have tunable responses over a large dynamic range depending on the chosen external protocol, providing a pathway to encoding "memory" within these structures. Interestingly, we obtain a bound that relates the dissipation rate and the rate of "encoding" that gives insight into the constraints on control-both physical and information theoretical. Taken together, these results emphasize the utility and necessity of nonequilibrium control for designing self-assembled nanostructures.
Collapse
Affiliation(s)
| | | | - Frank Hu
- Department of Chemistry, Stanford University, Stanford, CA94305
| | - Grant M. Rotskoff
- Department of Chemistry, Stanford University, Stanford, CA94305
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA94305
| |
Collapse
|
4
|
Zhang X, Dai X, Gao L, Xu D, Wan H, Wang Y, Yan LT. The entropy-controlled strategy in self-assembling systems. Chem Soc Rev 2023; 52:6806-6837. [PMID: 37743794 DOI: 10.1039/d3cs00347g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Self-assembly of various building blocks has been considered as a powerful approach to generate novel materials with tailorable structures and optimal properties. Understanding physicochemical interactions and mechanisms related to structural formation and transitions is of essential importance for this approach. Although it is well-known that diverse forces and energies can significantly contribute to the structures and properties of self-assembling systems, the potential entropic contribution remains less well understood. The past few years have witnessed rapid progress in addressing the entropic effects on the structures, responses, and functions in the self-assembling systems, and many breakthroughs have been achieved. This review provides a framework regarding the entropy-controlled strategy of self-assembly, through which the structures and properties can be tailored by effectively tuning the entropic contribution and its interplay with the enthalpic counterpart. First, we focus on the fundamentals of entropy in thermodynamics and the entropy types that can be explored for self-assembly. Second, we discuss the rules of entropy in regulating the structural organization in self-assembly and delineate the entropic force and superentropic effect. Third, we introduce the basic principles, significance and approaches of the entropy-controlled strategy in self-assembly. Finally, we present the applications where this strategy has been employed in fields like colloids, macromolecular systems and nonequilibrium assembly. This review concludes with a discussion on future directions and future research opportunities for developing and applying the entropy-controlled strategy in complex self-assembling systems.
Collapse
Affiliation(s)
- Xuanyu Zhang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Lijuan Gao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Duo Xu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Haixiao Wan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Yuming Wang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
5
|
Qureshi B, Juritz J, Poulton JM, Beersing-Vasquez A, Ouldridge TE. A universal method for analyzing copolymer growth. J Chem Phys 2023; 158:104906. [PMID: 36922142 DOI: 10.1063/5.0133489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
Polymers consisting of more than one type of monomer, known as copolymers, are vital to both living and synthetic systems. Copolymerization has been studied theoretically in a number of contexts, often by considering a Markov process in which monomers are added or removed from the growing tip of a long copolymer. To date, the analysis of the most general models of this class has necessitated simulation. We present a general method for analyzing such processes without resorting to simulation. Our method can be applied to models with an arbitrary network of sub-steps prior to addition or removal of a monomer, including non-equilibrium kinetic proofreading cycles. Moreover, the approach allows for a dependency of addition and removal reactions on the neighboring site in the copolymer and thermodynamically self-consistent models in which all steps are assumed to be microscopically reversible. Using our approach, thermodynamic quantities such as chemical work; kinetic quantities such as time taken to grow; and statistical quantities such as the distribution of monomer types in the growing copolymer can be directly derived either analytically or numerically from the model definition.
Collapse
Affiliation(s)
- Benjamin Qureshi
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jordan Juritz
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jenny M Poulton
- Foundation for Fundamental Research on Matter (FOM), Institute for Atomic and Molecular Physics (AMOLF), 1098 XE Amsterdam, The Netherlands
| | | | - Thomas E Ouldridge
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
6
|
McDonald MN, Zhu Q, Paxton WF, Peterson CK, Tree DR. Active control of equilibrium, near-equilibrium, and far-from-equilibrium colloidal systems. SOFT MATTER 2023; 19:1675-1694. [PMID: 36790855 DOI: 10.1039/d2sm01447e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The development of top-down active control over bottom-up colloidal assembly processes has the potential to produce materials, surfaces, and objects with applications in a wide range of fields spanning from computing to materials science to biomedical engineering. In this review, we summarize recent progress in the field using a taxonomy based on how active control is used to guide assembly. We find there are three distinct scenarios: (1) navigating kinetic pathways to reach a desirable equilibrium state, (2) the creation of a desirable metastable, kinetically trapped, or kinetically arrested state, and (3) the creation of a desirable far-from-equilibrium state through continuous energy input. We review seminal works within this framework, provide a summary of important application areas, and present a brief introduction to the fundamental concepts of control theory that are necessary for the soft materials community to understand this literature. In addition, we outline current and potential future applications of actively-controlled colloidal systems, and we highlight important open questions and future directions.
Collapse
Affiliation(s)
- Mark N McDonald
- Department of Chemical Engineering, Brigham Young University, Provo, Utah, USA.
| | - Qinyu Zhu
- Department of Chemical Engineering, Brigham Young University, Provo, Utah, USA.
| | - Walter F Paxton
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Cameron K Peterson
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, Utah, USA
| | - Douglas R Tree
- Department of Chemical Engineering, Brigham Young University, Provo, Utah, USA.
| |
Collapse
|
7
|
Osat S, Golestanian R. Non-reciprocal multifarious self-organization. NATURE NANOTECHNOLOGY 2023; 18:79-85. [PMID: 36509920 PMCID: PMC9879770 DOI: 10.1038/s41565-022-01258-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 10/06/2022] [Indexed: 05/14/2023]
Abstract
A hallmark of living systems is the ability to employ a common set of building blocks that can self-organize into a multitude of different structures. This capability can only be afforded in non-equilibrium conditions, as evident from the energy-consuming nature of the plethora of such dynamical processes. To achieve automated dynamical control of such self-assembled structures and transitions between them, we need to identify the fundamental aspects of non-equilibrium dynamics that can enable such processes. Here we identify programmable non-reciprocal interactions as a tool to achieve such functionalities. The design rule is composed of reciprocal interactions that lead to the equilibrium assembly of the different structures, through a process denoted as multifarious self-assembly, and non-reciprocal interactions that give rise to non-equilibrium dynamical transitions between the structures. The design of such self-organized shape-shifting structures can be implemented at different scales, from nucleic acids and peptides to proteins and colloids.
Collapse
Affiliation(s)
- Saeed Osat
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Göttingen, Germany
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Göttingen, Germany.
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK.
| |
Collapse
|
8
|
Trubiano A, Hagan MF. Optimization of non-equilibrium self-assembly protocols using Markov state models. J Chem Phys 2022; 157:244901. [PMID: 36586982 PMCID: PMC9788858 DOI: 10.1063/5.0130407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
The promise of self-assembly to enable the bottom-up formation of materials with prescribed architectures and functions has driven intensive efforts to uncover rational design principles for maximizing the yield of a target structure. Yet, despite many successful examples of self-assembly, ensuring kinetic accessibility of the target structure remains an unsolved problem in many systems. In particular, long-lived kinetic traps can result in assembly times that vastly exceed experimentally accessible timescales. One proposed solution is to design non-equilibrium assembly protocols in which system parameters change over time to avoid such kinetic traps. Here, we develop a framework to combine Markov state model (MSM) analysis with optimal control theory to compute a time-dependent protocol that maximizes the yield of the target structure at a finite time. We present an adjoint-based gradient descent method that, in conjunction with MSMs for a system as a function of its control parameters, enables efficiently optimizing the assembly protocol. We also describe an interpolation approach to significantly reduce the number of simulations required to construct the MSMs. We demonstrate our approach with two examples; a simple semi-analytic model for the folding of a polymer of colloidal particles, and a more complex model for capsid assembly. Our results show that optimizing time-dependent protocols can achieve significant improvements in the yields of selected structures, including equilibrium free energy minima, long-lived metastable structures, and transient states.
Collapse
Affiliation(s)
- Anthony Trubiano
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Michael F. Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA
| |
Collapse
|
9
|
Bone RA, Green JR. Optimizing dynamical functions for speed with stochastic paths. J Chem Phys 2022; 157:224101. [PMID: 36546817 DOI: 10.1063/5.0125479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Living systems are built from microscopic components that function dynamically; they generate work with molecular motors, assemble and disassemble structures such as microtubules, keep time with circadian clocks, and catalyze the replication of DNA. How do we implement these functions in synthetic nanostructured materials to execute them before the onset of dissipative losses? Answering this question requires a quantitative understanding of when we can improve performance and speed while minimizing the dissipative losses associated with operating in a fluctuating environment. Here, we show that there are four modalities for optimizing dynamical functions that can guide the design of nanoscale systems. We analyze Markov models that span the design space: a clock, ratchet, replicator, and self-assembling system. Using stochastic thermodynamics and an exact expression for path probabilities, we classify these models of dynamical functions based on the correlation of speed with dissipation and with the chosen performance metric. We also analyze random networks to identify the model features that affect their classification and the optimization of their functionality. Overall, our results show that the possible nonequilibrium paths can determine our ability to optimize the performance of dynamical functions, despite ever-present dissipation, when there is a need for speed.
Collapse
Affiliation(s)
- Rebecca A Bone
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
| | - Jason R Green
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
| |
Collapse
|
10
|
Koyuk T, Seifert U. Thermodynamic Uncertainty Relation in Interacting Many-Body Systems. PHYSICAL REVIEW LETTERS 2022; 129:210603. [PMID: 36461951 DOI: 10.1103/physrevlett.129.210603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/01/2022] [Accepted: 10/06/2022] [Indexed: 06/17/2023]
Abstract
The thermodynamic uncertainty relation (TUR) has been well studied for systems with few degrees of freedom. While, in principle, the TUR holds for more complex systems with many interacting degrees of freedom as well, little is known so far about its behavior in such systems. We analyze the TUR in the thermodynamic limit for mixtures of driven particles with short-range interactions. Our main result is an explicit expression for the optimal estimate of the total entropy production in terms of single-particle currents and correlations between two-particle currents. Quantitative results for various versions of a driven lattice gas demonstrate the practical implementation of this approach.
Collapse
Affiliation(s)
- Timur Koyuk
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Udo Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| |
Collapse
|
11
|
Bone RA, Sharpe DJ, Wales DJ, Green JR. Stochastic paths controlling speed and dissipation. Phys Rev E 2022; 106:054151. [PMID: 36559408 DOI: 10.1103/physreve.106.054151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/28/2022] [Indexed: 11/24/2022]
Abstract
Natural processes occur in a finite amount of time and dissipate energy, entropy, and matter. Near equilibrium, thermodynamic intuition suggests that fast irreversible processes will dissipate more energy and entropy than slow quasistatic processes connecting the same initial and final states. For small systems, recently discovered thermodynamic speed limits suggest that faster processes will dissipate more than slower processes. Here, we test the hypothesis that this relationship between speed and dissipation holds for stochastic paths far from equilibrium. To analyze stochastic paths on finite timescales, we derive an exact expression for the path probabilities of continuous-time Markov chains from the path summation solution to the master equation. We present a minimal model for a driven system in which relative energies of the initial and target states control the speed, and the nonequilibrium currents of a cycle control the dissipation. Although the hypothesis holds near equilibrium, we find that faster processes can dissipate less under far-from-equilibrium conditions because of strong currents. This model serves as a minimal prototype for designing kinetics to sculpt the nonequilibrium path space so that faster paths produce less dissipation.
Collapse
Affiliation(s)
- Rebecca A Bone
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
| | - Daniel J Sharpe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, Cambridge, United Kingdom
| | - David J Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, Cambridge, United Kingdom
| | - Jason R Green
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts 02125, USA.,Department of Physics, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
| |
Collapse
|
12
|
Xing Z, Lu H, Shu DW, Fu YQ. Non-Euclidean geometry model for chemo-mechanical coupling in self-assembled polymers towards dynamic elasticity. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Oberreiter L, Seifert U, Barato AC. Universal minimal cost of coherent biochemical oscillations. Phys Rev E 2022; 106:014106. [PMID: 35974563 DOI: 10.1103/physreve.106.014106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Biochemical clocks are essential for virtually all living systems. A biochemical clock that is isolated from an external periodic signal and subjected to fluctuations can oscillate coherently only for a finite number of oscillations. Furthermore, such an autonomous clock can oscillate only if it consumes free energy. What is the minimum amount of free-energy consumption required for a certain number of coherent oscillations? We conjecture a universal bound that answers this question. A system that oscillates coherently for N oscillations has a minimal free-energy cost per oscillation of 4π^{2}Nk_{B}T. Our bound is valid for general finite Markov processes, is conjectured based on extensive numerical evidence, is illustrated with numerical simulations of a known model for a biochemical oscillator, and applies to existing experimental data.
Collapse
Affiliation(s)
- Lukas Oberreiter
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Udo Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Andre C Barato
- Department of Physics, University of Houston, Houston, Texas 77204, USA
| |
Collapse
|
14
|
Tociu L, Rassolov G, Fodor E, Vaikuntanathan S. Mean-field theory for the structure of strongly interacting active liquids. J Chem Phys 2022; 157:014902. [DOI: 10.1063/5.0096710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Active systems, which are driven out of equilibrium by local non-conservative forces, exhibit unique behaviors and structures with potential utility for the design of novel materials. An important and difficult challenge along the path towards such a goal is to precisely predict how the structure of active systems is modified as their driving forces push them out of equilibrium. Here, we use tools from liquid-state theories to approach this challenge for a classic minimal isotropic active matter model. First, we construct a nonequilibrium mean-field framework which can predict the structure of systems of weakly interacting particles. Second, motivated by equilibrium solvation theories, we modify this theory to extend it with surprisingly high accuracy to strongly interacting particles, distinguishing it from most existing similarly tractable approaches. Our results provide insight into spatial organization in strongly interacting out-of-equilibrium systems and strategies to control them.
Collapse
Affiliation(s)
- Laura Tociu
- The University of Chicago, United States of America
| | | | | | | |
Collapse
|
15
|
Bupathy A, Frenkel D, Sastry S. Temperature protocols to guide selective self-assembly of competing structures. Proc Natl Acad Sci U S A 2022; 119:2119315119. [PMID: 35165184 PMCID: PMC8872760 DOI: 10.1073/pnas.2119315119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2022] [Indexed: 11/18/2022] Open
Abstract
Multicomponent self-assembly mixtures offer the possibility of encoding multiple target structures with the same set of interacting components. Selective retrieval of one of the stored structures has been attempted by preparing an initial state that favors the assembly of the required target, through seeding, concentration patterning, or specific choices of interaction strengths. This may not be possible in an experiment where on-the-fly reconfiguration of the building blocks to switch functionality may be required. In this paper, we explore principles of inverse design of a multicomponent, self-assembly mixture capable of encoding two competing structures that can be selected through simple temperature protocols. We design the target structures to realize the generic situation in which one of the targets has the lower nucleation barrier, while the other is globally more stable. We observe that, to avoid the formation of spurious or chimeric aggregates, the number of neighboring component pairs that occur in both structures should be minimal. Our design also requires the inclusion of components that are part of only one of the target structures. We observe, however, that to maximize the selectivity of retrieval, the component library itself should be maximally shared by the two targets, within such a constraint. We demonstrate that temperature protocols can be designed that lead to the formation of either one of the target structures with high selectivity. We discuss the important role played by secondary aggregation products in improving selectivity, which we term "vestigial aggregates."
Collapse
Affiliation(s)
- Arunkumar Bupathy
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Daan Frenkel
- Centre for Computational Chemistry, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Srikanth Sastry
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India;
| |
Collapse
|
16
|
Yan J, Touchette H, Rotskoff GM. Learning nonequilibrium control forces to characterize dynamical phase transitions. Phys Rev E 2022; 105:024115. [PMID: 35291069 DOI: 10.1103/physreve.105.024115] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Sampling the collective, dynamical fluctuations that lead to nonequilibrium pattern formation requires probing rare regions of trajectory space. Recent approaches to this problem, based on importance sampling, cloning, and spectral approximations, have yielded significant insight into nonequilibrium systems but tend to scale poorly with the size of the system, especially near dynamical phase transitions. Here we propose a machine learning algorithm that samples rare trajectories and estimates the associated large deviation functions using a many-body control force by leveraging the flexible function representation provided by deep neural networks, importance sampling in trajectory space, and stochastic optimal control theory. We show that this approach scales to hundreds of interacting particles and remains robust at dynamical phase transitions.
Collapse
Affiliation(s)
- Jiawei Yan
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Hugo Touchette
- Department of Mathematical Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Grant M Rotskoff
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
17
|
Ben-Ari A, Ben-Ari L, Bisker G. Nonequilibrium self-assembly of multiple stored targets in a dimer-based system. J Chem Phys 2021; 155:234113. [PMID: 34937365 DOI: 10.1063/5.0069161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nonequilibrium self-assembly can be found in various biological processes where chemical potential gradients are exploited to steer the system to a desired organized structure with a particular function. Microtubules, for example, are composed of two globular protein subunits, α-tubulin and β-tubulin, which bind together to form polar dimers that self-assemble a hollow cylinder structure in a process driven by GTPase activity. Inspired by this process, we define a generic self-assembly lattice model containing particles of two subunits, which is driven out-of-equilibrium by a dimer-favoring local driving force. Using Monte Carlo simulations, we characterize the ability of this system to restore pre-encoded target structures as a function of the initial seed size, interaction energy, chemical potential, number of target structures, and strength of the nonequilibrium drive. We demonstrate some intriguing consequences of the drive, such as a smaller critical seed and an improved target assembly stability, compared to the equilibrium scenario. Our results can expand the theoretical basis of nonequilibrium self-assembly and provide deeper understanding of how nonequilibrium driving can overcome equilibrium constraints.
Collapse
Affiliation(s)
- Adi Ben-Ari
- Faculty of Engineering, School of Electrical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Liron Ben-Ari
- Faculty of Engineering, School of Electrical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gili Bisker
- Faculty of Engineering, Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
18
|
Sinha NJ, Langenstein MG, Pochan DJ, Kloxin CJ, Saven JG. Peptide Design and Self-assembly into Targeted Nanostructure and Functional Materials. Chem Rev 2021; 121:13915-13935. [PMID: 34709798 DOI: 10.1021/acs.chemrev.1c00712] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peptides have been extensively utilized to construct nanomaterials that display targeted structure through hierarchical assembly. The self-assembly of both rationally designed peptides derived from naturally occurring domains in proteins as well as intuitively or computationally designed peptides that form β-sheets and helical secondary structures have been widely successful in constructing nanoscale morphologies with well-defined 1-d, 2-d, and 3-d architectures. In this review, we discuss these successes of peptide self-assembly, especially in the context of designing hierarchical materials. In particular, we emphasize the differences in the level of peptide design as an indicator of complexity within the targeted self-assembled materials and highlight future avenues for scientific and technological advances in this field.
Collapse
Affiliation(s)
- Nairiti J Sinha
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Matthew G Langenstein
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Darrin J Pochan
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Christopher J Kloxin
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States.,Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jeffery G Saven
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
19
|
Chennakesavalu S, Rotskoff GM. Probing the theoretical and computational limits of dissipative design. J Chem Phys 2021; 155:194114. [PMID: 34800948 DOI: 10.1063/5.0067695] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Self-assembly, the process by which interacting components form well-defined and often intricate structures, is typically thought of as a spontaneous process arising from equilibrium dynamics. When a system is driven by external nonequilibrium forces, states statistically inaccessible to the equilibrium dynamics can arise, a process sometimes termed direct self-assembly. However, if we fix a given target state and a set of external control variables, it is not well-understood (i) how to design a protocol to drive the system toward the desired state nor (ii) the cost of persistently perturbing the stationary distribution. In this work, we derive a bound that relates the proximity to the chosen target with the dissipation associated with the external drive, showing that high-dimensional external control can guide systems toward target distribution but with an inevitable cost. Remarkably, the bound holds arbitrarily far from equilibrium. Second, we investigate the performance of deep reinforcement learning algorithms and provide evidence for the realizability of complex protocols that stabilize otherwise inaccessible states of matter.
Collapse
Affiliation(s)
| | - Grant M Rotskoff
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
20
|
A strong nonequilibrium bound for sorting of cross-linkers on growing biopolymers. Proc Natl Acad Sci U S A 2021; 118:2102881118. [PMID: 34518221 DOI: 10.1073/pnas.2102881118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2021] [Indexed: 12/18/2022] Open
Abstract
Understanding the role of nonequilibrium driving in self-organization is crucial for developing a predictive description of biological systems, yet it is impeded by their complexity. The actin cytoskeleton serves as a paradigm for how equilibrium and nonequilibrium forces combine to give rise to self-organization. Motivated by recent experiments that show that actin filament growth rates can tune the morphology of a growing actin bundle cross-linked by two competing types of actin-binding proteins [S. L. Freedman et al., Proc. Natl. Acad. Sci. U.S.A. 116, 16192-16197 (2019)], we construct a minimal model for such a system and show that the dynamics of a growing actin bundle are subject to a set of thermodynamic constraints that relate its nonequilibrium driving, morphology, and molecular fluxes. The thermodynamic constraints reveal the importance of correlations between these molecular fluxes and offer a route to estimating microscopic driving forces from microscopy experiments.
Collapse
|
21
|
Whitelam S, Tamblyn I. Neuroevolutionary Learning of Particles and Protocols for Self-Assembly. PHYSICAL REVIEW LETTERS 2021; 127:018003. [PMID: 34270312 DOI: 10.1103/physrevlett.127.018003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
Within simulations of molecules deposited on a surface we show that neuroevolutionary learning can design particles and time-dependent protocols to promote self-assembly, without input from physical concepts such as thermal equilibrium or mechanical stability and without prior knowledge of candidate or competing structures. The learning algorithm is capable of both directed and exploratory design: it can assemble a material with a user-defined property, or search for novelty in the space of specified order parameters. In the latter mode it explores the space of what can be made, rather than the space of structures that are low in energy but not necessarily kinetically accessible.
Collapse
Affiliation(s)
- Stephen Whitelam
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, Califronia 94720, USA
| | - Isaac Tamblyn
- National Research Council of Canada Ottawa, Ontario K1N 5A2, Canada Vector Institute for Artificial Intelligence Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
22
|
Hagan MF, Grason GM. Equilibrium mechanisms of self-limiting assembly. REVIEWS OF MODERN PHYSICS 2021; 93:025008. [PMID: 35221384 PMCID: PMC8880259 DOI: 10.1103/revmodphys.93.025008] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Self-assembly is a ubiquitous process in synthetic and biological systems, broadly defined as the spontaneous organization of multiple subunits (e.g. macromolecules, particles) into ordered multi-unit structures. The vast majority of equilibrium assembly processes give rise to two states: one consisting of dispersed disassociated subunits, and the other, a bulk-condensed state of unlimited size. This review focuses on the more specialized class of self-limiting assembly, which describes equilibrium assembly processes resulting in finite-size structures. These systems pose a generic and basic question, how do thermodynamic processes involving non-covalent interactions between identical subunits "measure" and select the size of assembled structures? In this review, we begin with an introduction to the basic statistical mechanical framework for assembly thermodynamics, and use this to highlight the key physical ingredients that ensure equilibrium assembly will terminate at finite dimensions. Then, we introduce examples of self-limiting assembly systems, and classify them within this framework based on two broad categories: self-closing assemblies and open-boundary assemblies. These include well-known cases in biology and synthetic soft matter - micellization of amphiphiles and shell/tubule formation of tapered subunits - as well as less widely known classes of assemblies, such as short-range attractive/long-range repulsive systems and geometrically-frustrated assemblies. For each of these self-limiting mechanisms, we describe the physical mechanisms that select equilibrium assembly size, as well as potential limitations of finite-size selection. Finally, we discuss alternative mechanisms for finite-size assemblies, and draw contrasts with the size-control that these can achieve relative to self-limitation in equilibrium, single-species assemblies.
Collapse
Affiliation(s)
- Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454, USA
| | - Gregory M Grason
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
23
|
Korbel J, Lindner SD, Hanel R, Thurner S. Thermodynamics of structure-forming systems. Nat Commun 2021; 12:1127. [PMID: 33602947 PMCID: PMC7893045 DOI: 10.1038/s41467-021-21272-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 01/21/2021] [Indexed: 01/31/2023] Open
Abstract
Structure-forming systems are ubiquitous in nature, ranging from atoms building molecules to self-assembly of colloidal amphibolic particles. The understanding of the underlying thermodynamics of such systems remains an important problem. Here, we derive the entropy for structure-forming systems that differs from Boltzmann-Gibbs entropy by a term that explicitly captures clustered states. For large systems and low concentrations the approach is equivalent to the grand-canonical ensemble; for small systems we find significant deviations. We derive the detailed fluctuation theorem and Crooks' work fluctuation theorem for structure-forming systems. The connection to the theory of particle self-assembly is discussed. We apply the results to several physical systems. We present the phase diagram for patchy particles described by the Kern-Frenkel potential. We show that the Curie-Weiss model with molecule structures exhibits a first-order phase transition.
Collapse
Affiliation(s)
- Jan Korbel
- grid.22937.3d0000 0000 9259 8492Section for the Science of Complex Systems, CeMSIIS, Medical University of Vienna, Vienna, Austria ,grid.484678.1Complexity Science Hub Vienna, Vienna, Austria
| | - Simon David Lindner
- grid.22937.3d0000 0000 9259 8492Section for the Science of Complex Systems, CeMSIIS, Medical University of Vienna, Vienna, Austria ,grid.484678.1Complexity Science Hub Vienna, Vienna, Austria
| | - Rudolf Hanel
- grid.22937.3d0000 0000 9259 8492Section for the Science of Complex Systems, CeMSIIS, Medical University of Vienna, Vienna, Austria ,grid.484678.1Complexity Science Hub Vienna, Vienna, Austria
| | - Stefan Thurner
- grid.22937.3d0000 0000 9259 8492Section for the Science of Complex Systems, CeMSIIS, Medical University of Vienna, Vienna, Austria ,grid.484678.1Complexity Science Hub Vienna, Vienna, Austria ,grid.209665.e0000 0001 1941 1940Santa Fe Institute, Santa Fe, NM USA
| |
Collapse
|
24
|
Das A, Limmer DT. Variational design principles for nonequilibrium colloidal assembly. J Chem Phys 2021; 154:014107. [DOI: 10.1063/5.0038652] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Avishek Das
- Department of Chemistry, University of California, Berkeley, California 94609, USA
| | - David T. Limmer
- Department of Chemistry, University of California, Berkeley, California 94609, USA
- Kavli Energy NanoScience Institute, Berkeley, California 94609, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94609, USA
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94609, USA
| |
Collapse
|
25
|
Wu H, Friedrich H, Patterson JP, Sommerdijk NAJM, de Jonge N. Liquid-Phase Electron Microscopy for Soft Matter Science and Biology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001582. [PMID: 32419161 DOI: 10.1002/adma.202001582] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 05/20/2023]
Abstract
Innovations in liquid-phase electron microscopy (LP-EM) have made it possible to perform experiments at the optimized conditions needed to examine soft matter. The main obstacle is conducting experiments in such a way that electron beam radiation can be used to obtain answers for scientific questions without changing the structure and (bio)chemical processes in the sample due to the influence of the radiation. By overcoming these experimental difficulties at least partially, LP-EM has evolved into a new microscopy method with nanometer spatial resolution and sub-second temporal resolution for analysis of soft matter in materials science and biology. Both experimental design and applications of LP-EM for soft matter materials science and biological research are reviewed, and a perspective of possible future directions is given.
Collapse
Affiliation(s)
- Hanglong Wu
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Heiner Friedrich
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Joseph P Patterson
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - Nico A J M Sommerdijk
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Niels de Jonge
- INM - Leibniz Institute for New Materials, Saarbrücken, 66123, Germany
- Department of Physics, Saarland University, Saarbrücken, 66123, Germany
| |
Collapse
|
26
|
Whitelam S, Tamblyn I. Learning to grow: Control of material self-assembly using evolutionary reinforcement learning. Phys Rev E 2020; 101:052604. [PMID: 32575260 DOI: 10.1103/physreve.101.052604] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
We show that neural networks trained by evolutionary reinforcement learning can enact efficient molecular self-assembly protocols. Presented with molecular simulation trajectories, networks learn to change temperature and chemical potential in order to promote the assembly of desired structures or choose between competing polymorphs. In the first case, networks reproduce in a qualitative sense the results of previously known protocols, but faster and with higher fidelity; in the second case they identify strategies previously unknown, from which we can extract physical insight. Networks that take as input the elapsed time of the simulation or microscopic information from the system are both effective, the latter more so. The evolutionary scheme we have used is simple to implement and can be applied to a broad range of examples of experimental self-assembly, whether or not one can monitor the experiment as it proceeds. Our results have been achieved with no human input beyond the specification of which order parameter to promote, pointing the way to the design of synthesis protocols by artificial intelligence.
Collapse
Affiliation(s)
- Stephen Whitelam
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Isaac Tamblyn
- National Research Council of Canada, Ottawa, Ontario, Canada and Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada
| |
Collapse
|
27
|
Karalius A, Zhang Y, Kravchenko O, Elofsson U, Szabó Z, Yan M, Ramström O. Formation and Out‐of‐Equilibrium, High/Low State Switching of a Nitroaldol Dynamer in Neutral Aqueous Media. Angew Chem Int Ed Engl 2020; 59:3434-3438. [DOI: 10.1002/anie.201911706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/19/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Antanas Karalius
- Department of ChemistryKTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
| | - Yang Zhang
- Department of ChemistryKTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
| | - Oleksandr Kravchenko
- Department of ChemistryKTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
| | - Ulla Elofsson
- Bioscience and Materials divisionResearch Institutes of Sweden Box 5607 114 86 Stockholm Sweden
| | - Zoltán Szabó
- Department of ChemistryKTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
| | - Mingdi Yan
- Department of ChemistryKTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
- Department of ChemistryUniversity of Massachusetts Lowell One University Ave. Lowell MA 01854 USA
| | - Olof Ramström
- Department of ChemistryKTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
- Department of ChemistryUniversity of Massachusetts Lowell One University Ave. Lowell MA 01854 USA
- Department of Chemistry and Biomedical SciencesLinnaeus University 39182 Kalmar Sweden
| |
Collapse
|
28
|
Karalius A, Zhang Y, Kravchenko O, Elofsson U, Szabó Z, Yan M, Ramström O. Formation and Out‐of‐Equilibrium, High/Low State Switching of a Nitroaldol Dynamer in Neutral Aqueous Media. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Antanas Karalius
- Department of ChemistryKTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
| | - Yang Zhang
- Department of ChemistryKTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
| | - Oleksandr Kravchenko
- Department of ChemistryKTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
| | - Ulla Elofsson
- Bioscience and Materials divisionResearch Institutes of Sweden Box 5607 114 86 Stockholm Sweden
| | - Zoltán Szabó
- Department of ChemistryKTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
| | - Mingdi Yan
- Department of ChemistryKTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
- Department of ChemistryUniversity of Massachusetts Lowell One University Ave. Lowell MA 01854 USA
| | - Olof Ramström
- Department of ChemistryKTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
- Department of ChemistryUniversity of Massachusetts Lowell One University Ave. Lowell MA 01854 USA
- Department of Chemistry and Biomedical SciencesLinnaeus University 39182 Kalmar Sweden
| |
Collapse
|
29
|
Das A, Limmer DT. Variational control forces for enhanced sampling of nonequilibrium molecular dynamics simulations. J Chem Phys 2019; 151:244123. [DOI: 10.1063/1.5128956] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Avishek Das
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - David T. Limmer
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Kavli Energy NanoScience Institute, Berkeley, California 94720, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
30
|
Abstract
Biomolecular machines are protein complexes that convert between different forms of free energy. They are utilized in nature to accomplish many cellular tasks. As isothermal nonequilibrium stochastic objects at low Reynolds number, they face a distinct set of challenges compared with more familiar human-engineered macroscopic machines. Here we review central questions in their performance as free energy transducers, outline theoretical and modeling approaches to understand these questions, identify both physical limits on their operational characteristics and design principles for improving performance, and discuss emerging areas of research.
Collapse
Affiliation(s)
- Aidan I Brown
- Department of Physics , University of California, San Diego , La Jolla , California 92093 , United States
| | - David A Sivak
- Department of Physics , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada
| |
Collapse
|
31
|
Mechanical and kinetic factors drive sorting of F-actin cross-linkers on bundles. Proc Natl Acad Sci U S A 2019; 116:16192-16197. [PMID: 31346091 DOI: 10.1073/pnas.1820814116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In cells, actin-binding proteins (ABPs) sort to different regions to establish F-actin networks with diverse functions, including filopodia used for cell migration and contractile rings required for cell division. Recent experimental work uncovered a competition-based mechanism that may facilitate spatial localization of ABPs: binding of a short cross-linker protein to 2 actin filaments promotes the binding of other short cross-linkers and inhibits the binding of longer cross-linkers (and vice versa). We hypothesize this sorting arises because F-actin is semiflexible and cannot bend over short distances. We develop a mathematical theory and lattice models encompassing the most important physical parameters for this process and use coarse-grained simulations with explicit cross-linkers to characterize and test our predictions. Our theory and data predict an explicit dependence of cross-linker separation on bundle polymerization rate. We perform experiments that confirm this dependence, but with an unexpected cross-over in dominance of one cross-linker at high growth rates to the other at slow growth rates, and we investigate the origin of this cross-over with further simulations. The nonequilibrium mechanism that we describe can allow cells to organize molecular material to drive biological processes, and our results can guide the choice and design of cross-linkers for engineered protein-based materials.
Collapse
|
32
|
Brown AI, Sivak DA. Pulling cargo increases the precision of molecular motor progress. ACTA ACUST UNITED AC 2019. [DOI: 10.1209/0295-5075/126/40004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Koyuk T, Seifert U. Operationally Accessible Bounds on Fluctuations and Entropy Production in Periodically Driven Systems. PHYSICAL REVIEW LETTERS 2019; 122:230601. [PMID: 31298898 DOI: 10.1103/physrevlett.122.230601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Indexed: 06/10/2023]
Abstract
For periodically driven systems, we derive a family of inequalities that relate entropy production with experimentally accessible data for the mean, its dependence on driving frequency, and the variance of a large class of observables. With one of these relations, overall entropy production can be bounded by just observing the time spent in a set of states. Among further consequences, the thermodynamic efficiency both of isothermal cyclic engines like molecular motors under a periodic load and of cyclic heat engines can be bounded using experimental data without requiring knowledge of the specific interactions within the system. We illustrate these results for a driven three-level system and for a colloidal Stirling engine.
Collapse
Affiliation(s)
- Timur Koyuk
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Udo Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| |
Collapse
|
34
|
Nicholson SB, Bone RA, Green JR. Typical Stochastic Paths in the Transient Assembly of Fibrous Materials. J Phys Chem B 2019; 123:4792-4802. [PMID: 31063371 DOI: 10.1021/acs.jpcb.9b02811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
When chemically fueled, molecular self-assembly can sustain dynamic aggregates of polymeric fibers-hydrogels-with tunable properties. If the fuel supply is finite, the hydrogel is transient, as competing reactions switch molecular subunits between active and inactive states, drive fiber growth and collapse, and dissipate energy. Because the process is away from equilibrium, the structure and mechanical properties can reflect the history of preparation. As a result, the formation of these active materials is not readily susceptible to a statistical treatment in which the configuration and properties of the molecular building blocks specify the resulting material structure. Here, we illustrate a stochastic-thermodynamic and information-theoretic framework for this purpose and apply it to these self-annihilating materials. Among the possible paths, the framework variationally identifies those that are typical-loosely, the minimum number with the majority of the probability. We derive these paths from computer simulations of experimentally-informed stochastic chemical kinetics and a physical kinetics model for the growth of an active hydrogel. The model reproduces features observed by confocal microscopy, including the fiber length, lifetime, and abundance as well as the observation of fast fiber growth and stochastic fiber collapse. The typical mesoscopic paths we extract are less than 0.23% of those possible, but they accurately reproduce material properties such as mean fiber length.
Collapse
Affiliation(s)
- Schuyler B Nicholson
- Department of Chemistry , University of Massachusetts Boston , Boston , Massachusetts 02125 , United States
| | - Rebecca A Bone
- Department of Chemistry , University of Massachusetts Boston , Boston , Massachusetts 02125 , United States
| | - Jason R Green
- Department of Chemistry , University of Massachusetts Boston , Boston , Massachusetts 02125 , United States.,Department of Physics , University of Massachusetts Boston , Boston , Massachusetts 02125 , United States.,Center for Quantum and Nonequilibrium Systems , University of Massachusetts Boston , Boston , Massachusetts 02125 , United States
| |
Collapse
|
35
|
Abstract
In the self-assembly process which drives the formation of cellular membranes, micelles, and capsids, a collection of separated subunits spontaneously binds together to form functional and more ordered structures. In this work, we study the statistical physics of self-assembly in a simpler scenario: the formation of dimers from a system of monomers. The properties of the model allow us to frame the microstate counting as a combinatorial problem whose solution leads to an exact partition function. From the associated equilibrium conditions, we find that such dimer systems come in two types: "search-limited" and "combinatorics-limited," only the former of which has states where partial assembly can be dominated by correct contacts. Using estimates of biophysical quantities in systems of single-stranded DNA dimerization, transcription factor and DNA interactions, and protein-protein interactions, we find that all of these systems appear to be of the search-limited type, i.e., their fully correct dimerization regimes are more limited by the ability of monomers to find one another in the constituent volume than by the combinatorial disadvantage of correct dimers. We derive the parameter requirements for fully correct dimerization and find that rather than the ratio of particle number and volume (i.e., number density) being the relevant quantity, it is the product of particle diversity and volume that is constrained. Ultimately, this work contributes to an understanding of self-assembly by using the simple case of a system of dimers to analytically study the combinatorics of assembly.
Collapse
Affiliation(s)
- Mobolaji Williams
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
36
|
Pretti E, Mao R, Mittal J. Modelling and simulation of DNA-mediated self-assembly for superlattice design. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1610951] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Evan Pretti
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | - Runfang Mao
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | - Jeetain Mittal
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| |
Collapse
|
37
|
Marsland R, England JL. Active regeneration unites high- and low-temperature features in cooperative self-assembly. Phys Rev E 2019; 98:022411. [PMID: 30253561 DOI: 10.1103/physreve.98.022411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Indexed: 12/29/2022]
Abstract
Cytoskeletal filaments are capable of self-assembly in the absence of externally supplied chemical energy, but the rapid turnover rates essential for their biological function require a constant flux of adenosine triphosphate (ATP) or guanosine triphosphate (GTP) hydrolysis. The same is true for two-dimensional protein assemblies employed in the formation of vesicles from cellular membranes, which rely on ATP-hydrolyzing enzymes to rapidly disassemble upon completion of the process. Recent observations suggest that the nucleolus, p granules, and other three-dimensional membraneless organelles may also demand dissipation of chemical energy to maintain their fluidity. Cooperative binding plays a crucial role in the dynamics of these higher-dimensional structures, but is absent from classic models of one-dimensional cytoskeletal assembly. In this paper, we present a thermodynamically consistent model of active regeneration with cooperative assembly, and compute the maximum turnover rate and minimum disassembly time as a function of the chemical driving force and the binding energy. We find that these driven structures resemble different equilibrium states above and below the nucleation barrier. In particular, we show that the maximal acceleration under large binding energies unites infinite-temperature local fluctuations with low-temperature nucleation kinetics.
Collapse
Affiliation(s)
- Robert Marsland
- Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, 400 Technology Square, Cambridge, Massachusetts 02139, USA
| | - Jeremy L England
- Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, 400 Technology Square, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
38
|
Nonequilibrium correlations in minimal dynamical models of polymer copying. Proc Natl Acad Sci U S A 2019; 116:1946-1951. [PMID: 30659156 DOI: 10.1073/pnas.1808775116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Living systems produce "persistent" copies of information-carrying polymers, in which template and copy sequences remain correlated after physically decoupling. We identify a general measure of the thermodynamic efficiency with which these nonequilibrium states are created and analyze the accuracy and efficiency of a family of dynamical models that produce persistent copies. For the weakest chemical driving, when polymer growth occurs in equilibrium, both the copy accuracy and, more surprisingly, the efficiency vanish. At higher driving strengths, accuracy and efficiency both increase, with efficiency showing one or more peaks at moderate driving. Correlations generated within the copy sequence, as well as between template and copy, store additional free energy in the copied polymer and limit the single-site accuracy for a given chemical work input. Our results provide insight into the design of natural self-replicating systems and can aid the design of synthetic replicators.
Collapse
|
39
|
Arango-Restrepo A, Barragán D, Rubi JM. Self-assembling outside equilibrium: emergence of structures mediated by dissipation. Phys Chem Chem Phys 2019; 21:17475-17493. [DOI: 10.1039/c9cp01088b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Self-assembly under non-equilibrium conditions may give rise to the formation of structures not available at equilibrium.
Collapse
Affiliation(s)
- A. Arango-Restrepo
- Departament de Física de la Matéria Condensada
- Facultat de Física
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - D. Barragán
- Escuela de Química
- Facultad de Ciencias
- Universidad Nacional de Colombia
- Medellín
- Colombia
| | - J. M. Rubi
- Departament de Física de la Matéria Condensada
- Facultat de Física
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| |
Collapse
|
40
|
Leddy O, Lu Z, Dinner AR. Entropic constraints on the steady-state fitness of competing self-replicators. J Chem Phys 2018; 149:224105. [PMID: 30553248 PMCID: PMC7789856 DOI: 10.1063/1.5048934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/13/2018] [Indexed: 11/15/2022] Open
Abstract
Recent developments in nonequilibrium statistical mechanics suggest that the history of entropy production in a system determines the relative likelihood of competing processes. This presents the possibility of interpreting and predicting the self-organization of complex active systems, but existing theories rely on quantities that are challenging to obtain. Here, we address this issue for a general class of Markovian systems in which two types of self-replicating molecular assemblies (self-replicators) compete for a pool of limiting resource molecules within a nonequilibrium steady state. We derive exact relations that show that the relative fitness of these species depends on a path function, ψ, which is a sum of the entropy production and a relative-entropy term. In the limit of infinite path length, ψ reduces to the entropy production. We demonstrate use of the theory by numerically studying two models inspired by biological systems, including a simplified model of a competition between strains of the yeast prion Sup35 in the presence of driven disaggregation by the ATPase Hsp104.
Collapse
Affiliation(s)
- Owen Leddy
- Department of Chemistry and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Zhiyue Lu
- Department of Chemistry and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Aaron R Dinner
- Department of Chemistry and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
41
|
Bisker G, England JL. Nonequilibrium associative retrieval of multiple stored self-assembly targets. Proc Natl Acad Sci U S A 2018; 115:E10531-E10538. [PMID: 30348806 PMCID: PMC6233095 DOI: 10.1073/pnas.1805769115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many biological systems rely on the ability to self-assemble different target structures using the same set of components. Equilibrium self-assembly suffers from a limited capacity in such cases, due to an increasing number of decoy states that grows rapidly with the number of targets encoded. Moreover, improving the kinetic stability of a target at equilibrium carries the price of introducing kinetic traps, leading to slower assembly. Using a toy physical model of interacting particles, we demonstrate that local driving can improve both the assembly time and kinetic stability of multitarget self-assembly, as well as reduce fluctuations around the target configuration. We further show that the local drive can result in a steady-state probability distribution over target structures that deviates from the Boltzmann distribution in a way that depends on the types of interactions that stabilize the targets. Our results illustrate the role that nonequilibrium driving plays in overcoming tradeoffs that are inherent to equilibrium assemblies.
Collapse
Affiliation(s)
- Gili Bisker
- Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jeremy L England
- Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139;
| |
Collapse
|
42
|
Dasbiswas K, Mandadapu KK, Vaikuntanathan S. Topological localization in out-of-equilibrium dissipative systems. Proc Natl Acad Sci U S A 2018; 115:E9031-E9040. [PMID: 30206153 PMCID: PMC6166820 DOI: 10.1073/pnas.1721096115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this paper, we report that notions of topological protection can be applied to stationary configurations that are driven far from equilibrium by active, dissipative processes. We consider two physically disparate systems: stochastic networks governed by microscopic single-particle dynamics, and collections of driven interacting particles described by coarse-grained hydrodynamic theory. We derive our results by mapping to well-known electronic models and exploiting the resulting correspondence between a bulk topological number and the spectrum of dissipative modes localized at the boundary. For the Markov networks, we report a general procedure to uncover the topological properties in terms of the transition rates. For the active fluid on a substrate, we introduce a topological interpretation of fluid dissipative modes at the edge. In both cases, the presence of dissipative couplings to the environment that break time-reversal symmetry are crucial to ensuring topological protection. These examples constitute proof of principle that notions of topological protection do indeed extend to dissipative processes operating out of equilibrium. Such topologically robust boundary modes have implications for both biological and synthetic systems.
Collapse
Affiliation(s)
- Kinjal Dasbiswas
- The James Franck Institute, The University of Chicago, Chicago, IL 60637
- Department of Physics, University of California, Merced, CA 95343
| | - Kranthi K Mandadapu
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Suriyanarayanan Vaikuntanathan
- The James Franck Institute, The University of Chicago, Chicago, IL 60637;
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
43
|
Wong F, Amir A, Gunawardena J. Energy-speed-accuracy relation in complex networks for biological discrimination. Phys Rev E 2018; 98:012420. [PMID: 30110782 DOI: 10.1103/physreve.98.012420] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Indexed: 06/08/2023]
Abstract
Discriminating between correct and incorrect substrates is a core process in biology, but how is energy apportioned between the conflicting demands of accuracy (μ), speed (σ), and total entropy production rate (P)? Previous studies have focused on biochemical networks with simple structure or relied on simplifying kinetic assumptions. Here, we use the linear framework for timescale separation to analytically examine steady-state probabilities away from thermodynamic equilibrium for networks of arbitrary complexity. We also introduce a method of scaling parameters that is inspired by Hopfield's treatment of kinetic proofreading. Scaling allows asymptotic exploration of high-dimensional parameter spaces. We identify in this way a broad class of complex networks and scalings for which the quantity σln(μ)/P remains asymptotically finite whenever accuracy improves from equilibrium, so that μ_{eq}/μ→0. Scalings exist, however, even for Hopfield's original network, for which σln(μ)/P is asymptotically infinite, illustrating the parametric complexity. Outside the asymptotic regime, numerical calculations suggest that, under more restrictive parametric assumptions, networks satisfy the bound, σln(μ/μ_{eq})/P<1, and we discuss the biological implications for discrimination by ribosomes and DNA polymerase. The methods introduced here may be more broadly useful for analyzing complex networks that implement other forms of cellular information processing.
Collapse
Affiliation(s)
- Felix Wong
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ariel Amir
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Jeremy Gunawardena
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
44
|
Chiuchiù D, Pigolotti S. Mapping of uncertainty relations between continuous and discrete time. Phys Rev E 2018; 97:032109. [PMID: 29776092 DOI: 10.1103/physreve.97.032109] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Indexed: 11/07/2022]
Abstract
Lower bounds on fluctuations of thermodynamic currents depend on the nature of time, discrete or continuous. To understand the physical reason, we compare current fluctuations in discrete-time Markov chains and continuous-time master equations. We prove that current fluctuations in the master equations are always more likely, due to random timings of transitions. This comparison leads to a mapping of the moments of a current between discrete and continuous time. We exploit this mapping to obtain uncertainty bounds. Our results reduce the quests for uncertainty bounds in discrete and continuous time to a single problem.
Collapse
Affiliation(s)
- Davide Chiuchiù
- Biological Complexity Unit, Okinawa Institute of Science and Technology and Graduate University, Onna, Okinawa 904-0495, Japan
| | - Simone Pigolotti
- Biological Complexity Unit, Okinawa Institute of Science and Technology and Graduate University, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
45
|
Ray U, Chan GKL, Limmer DT. Importance sampling large deviations in nonequilibrium steady states. I. J Chem Phys 2018; 148:124120. [DOI: 10.1063/1.5003151] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ushnish Ray
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Garnet Kin-Lic Chan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - David T. Limmer
- Department of Chemistry, University of California, Berkeley, California 94609, USA
- Kavli Energy NanoScience Institute, Berkeley, California 94609, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94609, USA
| |
Collapse
|
46
|
Wang Y, Fang L, Chen G, Song L, Deng Z. Freeze the Moment: High Speed Capturing of Weakly Bonded Dynamic Nanoparticle Assemblies in Solution by Ag Ion Soldering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1703303. [PMID: 29316229 DOI: 10.1002/smll.201703303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 11/15/2017] [Indexed: 06/07/2023]
Abstract
Despite the versatile forms of colloidal aggregates, these spontaneously formed structures are often hard to find a suitable application in nanotechnology and materials science. A determinate reason is the lack of a suitable method to capture the transiently formed and quickly evolving colloidal structures in solution. To address this challenge, a simple but highly efficient strategy is herein reported to capture the dynamic and metastable colloidal assemblies formed in an aqueous or nonaqueous solution. This process takes advantage of a recently developed Ag ion soldering reaction to realize a rapid fixation of as-formed metastable assemblies. This method works efficiently for both solid (3D) nanoparticle aggregates and weakly bonded fractal nanoparticle chains (1D). In both cases, very high capturing speed and close to 100% efficiency are achieved to fully retain a quickly growing structure. The soldered nanochains further enable a fabrication of discrete, uniform, and functionalizable nanoparticle clusters with enriched linear conformation by mechanical shearing, which would otherwise be difficult to make. The captured products are water dispersible and mechanically robust, favoring an exploration of their properties toward possible applications. The work paves a way to previously untouched aspects of colloidal science and thus would create new chances in nanotechnology.
Collapse
Affiliation(s)
- Yueliang Wang
- CAS Key Laboratory of Soft Matter Chemistry and Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Lingling Fang
- CAS Key Laboratory of Soft Matter Chemistry and Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Gaoli Chen
- CAS Key Laboratory of Soft Matter Chemistry and Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Lei Song
- CAS Key Laboratory of Soft Matter Chemistry and Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhaoxiang Deng
- CAS Key Laboratory of Soft Matter Chemistry and Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
47
|
Marsland R, England J. Limits of predictions in thermodynamic systems: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:016601. [PMID: 28976362 DOI: 10.1088/1361-6633/aa9101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The past twenty years have seen a resurgence of interest in nonequilibrium thermodynamics, thanks to advances in the theory of stochastic processes and in their thermodynamic interpretation. Fluctuation theorems provide fundamental constraints on the dynamics of systems arbitrarily far from thermal equilibrium. Thermodynamic uncertainty relations bound the dissipative cost of precision in a wide variety of processes. Concepts of excess work and excess heat provide the basis for a complete thermodynamics of nonequilibrium steady states, including generalized Clausius relations and thermodynamic potentials. But these general results carry their own limitations: fluctuation theorems involve exponential averages that can depend sensitively on unobservably rare trajectories; steady-state thermodynamics makes use of a dual dynamics that lacks any direct physical interpretation. This review aims to present these central results of contemporary nonequilibrium thermodynamics in such a way that the power of each claim for making physical predictions can be clearly assessed, using examples from current topics in soft matter and biophysics.
Collapse
|
48
|
Lee YS. Assembly of Lyotropic Liquid Crystals with Solid Crystal's Structural Order Translated from the Lipid Rafts in Cell Membranes. J Am Chem Soc 2017; 139:17044-17051. [PMID: 29111698 DOI: 10.1021/jacs.7b06720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Self-assembly offers a powerful way to control the complexity and hierarchy of nanoscale materials, and promises to create a diverse range of emergent properties. Successful syntheses that allow a delicate structural design of building units play an important role. However, as can be learned from many cellular processes and functions, coself-assembly using logically chosen additives should be equally effective in designing self-assembly. Herein I show that, translated from the dynamic nanoscale assemblies in cell membranes known as lipid rafts, coself-assembly of 1-decanol into cetyltrimethylammonium chloride micelles for the assembly of lyotropic liquid crystals generates new structural complexity and hierarchy, and a surprising property that is emerging from it. Designing the intermolecular forces in the way that cholesterol interacts with sphingolipids promotes the synergistic balance between the flexibility and rigidity, and the unique molecular recognition for silicic acid, followed by the micelle coalescence. This very much resembles the assembly process of the lipid rafts in cell membranes and triggers orders of magnitude of sharp increases in X-ray diffraction intensity. The analysis of the diffraction patterns shows that the structural order of these liquid crystals matches that of solid crystals, often of single crystals. Furthermore, the assembly of the liquid crystals promotes a substantial increase in the condensation rate of silicic acids by guiding them to form a silicate trimer along the surface of micelles. This very much resembles the role of the lipid rafts that sharply increases the reaction rate of biomolecules by guiding them to form discrete species along the surface of membranes. This finding demonstrates that it is possible to translate the key features of cellular processes and functions into artificial self-assembling systems of our choice using the building units that are readily available, thus creating novel soft materials.
Collapse
Affiliation(s)
- Yoon Seob Lee
- Department of Chemistry, University of Dayton , 300 College Park, Dayton, Ohio 45469, United States
| |
Collapse
|
49
|
Horowitz JM, Gingrich TR. Proof of the finite-time thermodynamic uncertainty relation for steady-state currents. Phys Rev E 2017; 96:020103. [PMID: 28950543 DOI: 10.1103/physreve.96.020103] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Indexed: 05/10/2023]
Abstract
The thermodynamic uncertainty relation offers a universal energetic constraint on the relative magnitude of current fluctuations in nonequilibrium steady states. However, it has only been derived for long observation times. Here, we prove a recently conjectured finite-time thermodynamic uncertainty relation for steady-state current fluctuations. Our proof is based on a quadratic bound to the large deviation rate function for currents in the limit of a large ensemble of many copies.
Collapse
Affiliation(s)
- Jordan M Horowitz
- Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, 400 Technology Square, Cambridge, Massachusetts 02139, USA
| | - Todd R Gingrich
- Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, 400 Technology Square, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
50
|
Pietzonka P, Ritort F, Seifert U. Finite-time generalization of the thermodynamic uncertainty relation. Phys Rev E 2017; 96:012101. [PMID: 29347157 DOI: 10.1103/physreve.96.012101] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Indexed: 06/07/2023]
Abstract
For fluctuating currents in nonequilibrium steady states, the recently discovered thermodynamic uncertainty relation expresses a fundamental relation between their variance and the overall entropic cost associated with the driving. We show that this relation holds not only for the long-time limit of fluctuations, as described by large deviation theory, but also for fluctuations on arbitrary finite time scales. This generalization facilitates applying the thermodynamic uncertainty relation to single molecule experiments, for which infinite time scales are not accessible. Importantly, often this finite-time variant of the relation allows inferring a bound on the entropy production that is even stronger than the one obtained from the long-time limit. We illustrate the relation for the fluctuating work that is performed by a stochastically switching laser tweezer on a trapped colloidal particle.
Collapse
Affiliation(s)
- Patrick Pietzonka
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Felix Ritort
- Departament de Física Fonamental, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain
- CIBER-BBN de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Udo Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| |
Collapse
|