1
|
Kwiatkowski A, Caserta G, Schulz AC, Frielingsdorf S, Pelmenschikov V, Weisser K, Belsom A, Rappsilber J, Sergueev I, Limberg C, Mroginski MA, Zebger I, Lenz O. ATP-Triggered Fe(CN) 2CO Synthon Transfer from the Maturase HypCD to the Active Site of Apo-[NiFe]-Hydrogenase. J Am Chem Soc 2024. [PMID: 39491524 DOI: 10.1021/jacs.4c09791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
[NiFe]-hydrogenases catalyze the reversible activation of H2 using a unique NiFe(CN)2CO metal site, which is assembled by a sophisticated multiprotein machinery. The [4Fe-4S] cluster-containing HypCD complex, which possesses an ATPase activity with a hitherto unknown function, serves as the hub for the assembly of the Fe(CN)2CO subfragment. HypCD is also thought to be responsible for the subsequent transfer of the iron fragment to the apo-form of the catalytic hydrogenase subunit, but the underlying mechanism has remained unexplored. Here, we performed a thorough spectroscopic characterization of different HypCD preparations using infrared, Mössbauer, and NRVS spectroscopy, revealing molecular details of the coordination of the Fe(CN)2CO fragment. Moreover, biochemical assays in combination with spectroscopy, AlphaFold structure predictions, protein-ligand docking calculations, and crosslinking MS deciphered unexpected mechanistic aspects of the ATP requirement of HypCD, which we found to actually trigger the transfer of the Fe(CN)2CO fragment to the apo-hydrogenase.
Collapse
Affiliation(s)
- Anna Kwiatkowski
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Giorgio Caserta
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Anne-Christine Schulz
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Stefan Frielingsdorf
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Vladimir Pelmenschikov
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Kilian Weisser
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Adam Belsom
- Institute of Biotechnology, Chair of Bioanalytics, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Juri Rappsilber
- Institute of Biotechnology, Chair of Bioanalytics, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
- Si-M/'Der Simulierte Mensch', a Science Framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, 10623 Berlin, Germany
- Wellcome Centre of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Ilya Sergueev
- Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607 Hamburg, Germany
| | - Christian Limberg
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Maria-Andrea Mroginski
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Ingo Zebger
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Oliver Lenz
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
2
|
Arriaza-Gallardo FJ, Zheng YC, Gehl M, Nomura S, Fernandes-Queiroz JP, Shima S. [Fe]-Hydrogenase, Cofactor Biosynthesis and Engineering. Chembiochem 2023; 24:e202300330. [PMID: 37671838 DOI: 10.1002/cbic.202300330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/07/2023]
Abstract
[Fe]-hydrogenase catalyzes the heterolytic cleavage of H2 and reversible hydride transfer to methenyl-tetrahydromethanopterin. The iron-guanylylpyridinol (FeGP) cofactor is the prosthetic group of this enzyme, in which mononuclear Fe(II) is ligated with a pyridinol and two CO ligands. The pyridinol ligand fixes the iron by an acyl carbon and a pyridinol nitrogen. Biosynthetic proteins for this cofactor are encoded in the hmd co-occurring (hcg) genes. The function of HcgB, HcgC, HcgD, HcgE, and HcgF was studied by using structure-to-function analysis, which is based on the crystal structure of the proteins and subsequent enzyme assays. Recently, we reported the catalytic properties of HcgA and HcgG, novel radical S-adenosyl methionine enzymes, by using an in vitro biosynthesis assay. Here, we review the properties of [Fe]-hydrogenase and the FeGP cofactor, and the biosynthesis of the FeGP cofactor. Finally, we discuss the expected engineering of [Fe]-hydrogenase and the FeGP cofactor.
Collapse
Affiliation(s)
| | - Yu-Cong Zheng
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany
| | - Manuel Gehl
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany
| | - Shunsuke Nomura
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany
| | - J Pedro Fernandes-Queiroz
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany
| | - Seigo Shima
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany
| |
Collapse
|
3
|
Guo S, Sang Y, Zheng C, Xue XS, Tang Z, Liu W. Enzymatic α-Ketothioester Decarbonylation Occurs in the Assembly Line of Barbamide for Skeleton Editing. J Am Chem Soc 2023; 145:5017-5028. [PMID: 36821526 DOI: 10.1021/jacs.2c10277] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The decarbonylation reaction has been developed significantly in organic chemistry as an effective approach to various synthetic applications, but enzymatic precedents for this reaction are rare. Based on investigations into the hybrid nonribosomal peptide synthetase (NRPS)-polyketide synthase (PKS) assembly line of barbamide, we report an on-line α-ketothioester decarbonylation reaction that leads to one-carbon truncation of the elongating skeleton. This enzymatic editing reaction occurs in the first round of lipopeptide extension and modification involving the multienzymes BarE and BarF, which successively house an NRPS module to initiate the biosynthesis and a PKS module to catalyze the first round of chain extension. Starting with processing a leucine-derived α-ketoacyl starter, the ketosynthase domain in BarE displays an unusual dual activity that results in net one-carbon chain elongation. It extrudes carbon monoxide from α-keto-isocaproyl thioester and then mediates decarboxylative condenses of the resultant isovaleryl thioester with malonyl thioester to form a diketide intermediate, followed by BarF-based O-methylation to stabilize the enol form of the β-carbonyl and afford an unusual E-double bond. Biochemical characterization, chemical synthesis, computational analysis, and the experimental outcome of site-directed mutagenesis illustrate the extraordinary catalytic capability of this ketosynthase domain. This work furthers the appreciation of assembly line chemistry and opens the door to new approaches for skeleton editing/engineering of related molecules using synthetic biology approaches.
Collapse
Affiliation(s)
- Shengjie Guo
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yueqian Sang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiao-Song Xue
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhijun Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
4
|
Stepwise assembly of the active site of [NiFe]-hydrogenase. Nat Chem Biol 2023; 19:498-506. [PMID: 36702959 DOI: 10.1038/s41589-022-01226-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/16/2022] [Indexed: 01/27/2023]
Abstract
[NiFe]-hydrogenases are biotechnologically relevant enzymes catalyzing the reversible splitting of H2 into 2e- and 2H+ under ambient conditions. Catalysis takes place at the heterobimetallic NiFe(CN)2(CO) center, whose multistep biosynthesis involves careful handling of two transition metals as well as potentially harmful CO and CN- molecules. Here, we investigated the sequential assembly of the [NiFe] cofactor, previously based on primarily indirect evidence, using four different purified maturation intermediates of the catalytic subunit, HoxG, of the O2-tolerant membrane-bound hydrogenase from Cupriavidus necator. These included the cofactor-free apo-HoxG, a nickel-free version carrying only the Fe(CN)2(CO) fragment, a precursor that contained all cofactor components but remained redox inactive and the fully mature HoxG. Through biochemical analyses combined with comprehensive spectroscopic investigation using infrared, electronic paramagnetic resonance, Mössbauer, X-ray absorption and nuclear resonance vibrational spectroscopies, we obtained detailed insight into the sophisticated maturation process of [NiFe]-hydrogenase.
Collapse
|
5
|
Opel F, Itzenhäuser MA, Wehner I, Lupacchini S, Lauterbach L, Lenz O, Klähn S. Toward a synthetic hydrogen sensor in cyanobacteria: Functional production of an oxygen-tolerant regulatory hydrogenase in Synechocystis sp. PCC 6803. Front Microbiol 2023; 14:1122078. [PMID: 37032909 PMCID: PMC10073562 DOI: 10.3389/fmicb.2023.1122078] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/22/2023] [Indexed: 04/11/2023] Open
Abstract
Cyanobacteria have raised great interest in biotechnology, e.g., for the sustainable production of molecular hydrogen (H2) using electrons from water oxidation. However, this is hampered by various constraints. For example, H2-producing enzymes compete with primary metabolism for electrons and are usually inhibited by molecular oxygen (O2). In addition, there are a number of other constraints, some of which are unknown, requiring unbiased screening and systematic engineering approaches to improve the H2 yield. Here, we introduced the regulatory [NiFe]-hydrogenase (RH) of Cupriavidus necator (formerly Ralstonia eutropha) H16 into the cyanobacterial model strain Synechocystis sp. PCC 6803. In its natural host, the RH serves as a molecular H2 sensor initiating a signal cascade to express hydrogenase-related genes when no additional energy source other than H2 is available. Unlike most hydrogenases, the C. necator enzymes are O2-tolerant, allowing their efficient utilization in an oxygenic phototroph. Similar to C. necator, the RH produced in Synechocystis showed distinct H2 oxidation activity, confirming that it can be properly matured and assembled under photoautotrophic, i.e., oxygen-evolving conditions. Although the functional H2-sensing cascade has not yet been established in Synechocystis yet, we utilized the associated two-component system consisting of a histidine kinase and a response regulator to drive and modulate the expression of a superfolder gfp gene in Escherichia coli. This demonstrates that all components of the H2-dependent signal cascade can be functionally implemented in heterologous hosts. Thus, this work provides the basis for the development of an intrinsic H2 biosensor within a cyanobacterial cell that could be used to probe the effects of random mutagenesis and systematically identify promising genetic configurations to enable continuous and high-yield production of H2 via oxygenic photosynthesis.
Collapse
Affiliation(s)
- Franz Opel
- Department of Solar Materials, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | | | - Isabel Wehner
- Department of Solar Materials, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Sara Lupacchini
- Department of Solar Materials, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Lars Lauterbach
- Institute of Applied Microbiology (iAMB), RWTH Aachen University, Aachen, Germany
| | - Oliver Lenz
- Institute of Chemistry, Technical University of Berlin, Berlin, Germany
| | - Stephan Klähn
- Department of Solar Materials, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
- *Correspondence: Stephan Klähn,
| |
Collapse
|
6
|
Wickham-Smith C, Malys N, Winzer K. Improving carbon monoxide tolerance of Cupriavidus necator H16 through adaptive laboratory evolution. Front Bioeng Biotechnol 2023; 11:1178536. [PMID: 37168609 PMCID: PMC10164946 DOI: 10.3389/fbioe.2023.1178536] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/06/2023] [Indexed: 05/13/2023] Open
Abstract
Background: The toxic gas carbon monoxide (CO) is abundantly present in synthesis gas (syngas) and certain industrial waste gases that can serve as feedstocks for the biological production of industrially significant chemicals and fuels. For efficient bacterial growth to occur, and to increase productivity and titres, a high resistance to the gas is required. The aerobic bacterium Cupriavidus necator H16 can grow on CO2 + H2, although it cannot utilise CO as a source of carbon and energy. This study aimed to increase its CO resistance through adaptive laboratory evolution. Results: To increase the tolerance of C. necator to CO, the organism was continually subcultured in the presence of CO both heterotrophically and autotrophically. Ten individual cultures were evolved heterotrophically with fructose in this manner and eventually displayed a clear growth advantage over the wild type strain. Next-generation sequencing revealed several mutations, including a single point mutation upstream of a cytochrome bd ubiquinol oxidase operon (cydA2B2), which was present in all evolved isolates. When a subset of these mutations was engineered into the parental H16 strain, only the cydA2B2 upstream mutation enabled faster growth in the presence of CO. Expression analysis, mutation, overexpression and complementation suggested that cydA2B2 transcription is upregulated in the evolved isolates, resulting in increased CO tolerance under heterotrophic but not autotrophic conditions. However, through subculturing on a syngas-like mixture with increasing CO concentrations, C. necator could also be evolved to tolerate high CO concentrations under autotrophic conditions. A mutation in the gene for the soluble [NiFe]-hydrogenase subunit hoxH was identified in the evolved isolates. When the resulting amino acid change was engineered into the parental strain, autotrophic CO resistance was conferred. A strain constitutively expressing cydA2B2 and the mutated hoxH gene exhibited high CO tolerance under both heterotrophic and autotrophic conditions. Conclusion: C. necator was evolved to tolerate high concentrations of CO, a phenomenon which was dependent on the terminal respiratory cytochrome bd ubiquinol oxidase when grown heterotrophically and the soluble [NiFe]-hydrogenase when grown autotrophically. A strain exhibiting high tolerance under both conditions was created and presents a promising chassis for syngas-based bioproduction processes.
Collapse
|
7
|
Fan Q, Caserta G, Lorent C, Zebger I, Neubauer P, Lenz O, Gimpel M. High-Yield Production of Catalytically Active Regulatory [NiFe]-Hydrogenase From Cupriavidus necator in Escherichia coli. Front Microbiol 2022; 13:894375. [PMID: 35572669 PMCID: PMC9100943 DOI: 10.3389/fmicb.2022.894375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Hydrogenases are biotechnologically relevant metalloenzymes that catalyze the reversible conversion of molecular hydrogen into protons and electrons. The O2-tolerant [NiFe]-hydrogenases from Cupriavidus necator (formerly Ralstonia eutropha) are of particular interest as they maintain catalysis even in the presence of molecular oxygen. However, to meet the demands of biotechnological applications and scientific research, a heterologous production strategy is required to overcome the low production yields in their native host. We have previously used the regulatory hydrogenase (RH) from C. necator as a model for the development of such a heterologous hydrogenase production process in E. coli. Although high protein yields were obtained, the purified enzyme was inactive due to the lack of the catalytic center, which contains an inorganic nickel-iron cofactor. In the present study, we significantly improved the production process to obtain catalytically active RH. We optimized important factors such as O2 content, metal availability, production temperature and time as well as the co-expression of RH-specific maturase genes. The RH was successfully matured during aerobic cultivation of E. coli by co-production of seven hydrogenase-specific maturases and a nickel permease, which was confirmed by activity measurements and spectroscopic investigations of the purified enzyme. The improved production conditions resulted in a high yield of about 80 mg L–1 of catalytically active RH and an up to 160-fold space-time yield in E. coli compared to that in the native host C. necator [<0.1 U (L d) –1]. Our strategy has important implications for the use of E. coli K-12 and B strains in the recombinant production of complex metalloenzymes, and provides a blueprint for the production of catalytically active [NiFe]-hydrogenases in biotechnologically relevant quantities.
Collapse
Affiliation(s)
- Qin Fan
- Chair of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Giorgio Caserta
- Department of Chemistry, Technische Universität Berlin, Berlin, Germany
| | - Christian Lorent
- Department of Chemistry, Technische Universität Berlin, Berlin, Germany
| | - Ingo Zebger
- Department of Chemistry, Technische Universität Berlin, Berlin, Germany
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Oliver Lenz
- Department of Chemistry, Technische Universität Berlin, Berlin, Germany
| | - Matthias Gimpel
- Chair of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Berlin, Germany
- *Correspondence: Matthias Gimpel,
| |
Collapse
|
8
|
Lupacchini S, Appel J, Stauder R, Bolay P, Klähn S, Lettau E, Adrian L, Lauterbach L, Bühler B, Schmid A, Toepel J. Rewiring cyanobacterial photosynthesis by the implementation of an oxygen-tolerant hydrogenase. Metab Eng 2021; 68:199-209. [PMID: 34673236 DOI: 10.1016/j.ymben.2021.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/11/2021] [Accepted: 10/16/2021] [Indexed: 10/20/2022]
Abstract
Molecular hydrogen (H2) is considered as an ideal energy carrier to replace fossil fuels in future. Biotechnological H2 production driven by oxygenic photosynthesis appears highly promising, as biocatalyst and H2 syntheses rely mainly on light, water, and CO2 and not on rare metals. This biological process requires coupling of the photosynthetic water oxidizing apparatus to a H2-producing hydrogenase. However, this strategy is impeded by the simultaneous release of oxygen (O2) which is a strong inhibitor of most hydrogenases. Here, we addressed this challenge, by the introduction of an O2-tolerant hydrogenase into phototrophic bacteria, namely the cyanobacterial model strain Synechocystis sp. PCC 6803. To this end, the gene cluster encoding the soluble, O2-tolerant, and NAD(H)-dependent hydrogenase from Ralstonia eutropha (ReSH) was functionally transferred to a Synechocystis strain featuring a knockout of the native O2 sensitive hydrogenase. Intriguingly, photosynthetically active cells produced the O2 tolerant ReSH, and activity was confirmed in vitro and in vivo. Further, ReSH enabled the constructed strain Syn_ReSH+ to utilize H2 as sole electron source to fix CO2. Syn_ReSH+ also was able to produce H2 under dark fermentative conditions as well as in presence of light, under conditions fostering intracellular NADH excess. These findings highlight a high level of interconnection between ReSH and cyanobacterial redox metabolism. This study lays a foundation for further engineering, e.g., of electron transfer to ReSH via NADPH or ferredoxin, to finally enable photosynthesis-driven H2 production.
Collapse
Affiliation(s)
- Sara Lupacchini
- Department of Solar Materials, Helmholtz Centre for Environmental Research -UFZ, 04318, Leipzig, Germany
| | - Jens Appel
- Department of Biology, Botanical Institute, University Kiel, 24118, Kiel, Germany
| | - Ron Stauder
- Department of Solar Materials, Helmholtz Centre for Environmental Research -UFZ, 04318, Leipzig, Germany
| | - Paul Bolay
- Department of Solar Materials, Helmholtz Centre for Environmental Research -UFZ, 04318, Leipzig, Germany
| | - Stephan Klähn
- Department of Solar Materials, Helmholtz Centre for Environmental Research -UFZ, 04318, Leipzig, Germany
| | - Elisabeth Lettau
- Institute for Chemistry, Technische Universität Berlin, 10623, Berlin, Germany
| | - Lorenz Adrian
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research -UFZ, 04318, Leipzig, Germany; Chair of Geobiotechnology, Technische Universität Berlin, 10923, Berlin, Germany
| | - Lars Lauterbach
- Institute for Chemistry, Technische Universität Berlin, 10623, Berlin, Germany; Institute of Applied Microbiology, Rheinisch-Westfälische Technische Hochschule Aachen, 52074, Aachen, Germany
| | - Bruno Bühler
- Department of Solar Materials, Helmholtz Centre for Environmental Research -UFZ, 04318, Leipzig, Germany
| | - Andreas Schmid
- Department of Solar Materials, Helmholtz Centre for Environmental Research -UFZ, 04318, Leipzig, Germany
| | - Jörg Toepel
- Department of Solar Materials, Helmholtz Centre for Environmental Research -UFZ, 04318, Leipzig, Germany.
| |
Collapse
|
9
|
Electron inventory of the iron-sulfur scaffold complex HypCD essential in [NiFe]-hydrogenase cofactor assembly. Biochem J 2021; 478:3281-3295. [PMID: 34409988 PMCID: PMC8454700 DOI: 10.1042/bcj20210224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022]
Abstract
The [4Fe-4S] cluster containing scaffold complex HypCD is the central construction site for the assembly of the [Fe](CN)2CO cofactor precursor of [NiFe]-hydrogenase. While the importance of the HypCD complex is well established, not much is known about the mechanism by which the CN- and CO ligands are transferred and attached to the iron ion. We report an efficient expression and purification system producing the HypCD complex from E. coli with complete metal content. This enabled in-depth spectroscopic characterizations. The results obtained by EPR and Mössbauer spectroscopy demonstrate that the [Fe](CN)2CO cofactor and the [4Fe-4S] cluster of the HypCD complex are redox active. The data indicate a potential-dependent interconversion of the [Fe]2+/3+ and [4Fe-4S]2+/+ couple, respectively. Moreover, ATR FTIR spectroscopy reveals potential-dependent disulfide formation, which hints at an electron confurcation step between the metal centers. MicroScale thermophoresis indicates preferable binding between the HypCD complex and its in vivo interaction partner HypE under reducing conditions. Together, these results provide comprehensive evidence for an electron inventory fit to drive multi-electron redox reactions required for the assembly of the CN- and CO ligands on the scaffold complex HypCD.
Collapse
|
10
|
Abstract
The role of deuterium in disentangling key steps of the mechanisms of H2 activation by mimics of hydrogenases is presented. These studies have allowed to a better understanding of the mode of action of the natural enzymes and their mimics.
Collapse
Affiliation(s)
- Mar Gómez-Gallego
- Departamento de Química Orgánica I and Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Facultad de Química
- Universidad Complutense
- 28040-Madrid
- Spain
| | - Miguel A. Sierra
- Departamento de Química Orgánica I and Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Facultad de Química
- Universidad Complutense
- 28040-Madrid
- Spain
| |
Collapse
|
11
|
Britt RD, Rao G, Tao L. Bioassembly of complex iron-sulfur enzymes: hydrogenases and nitrogenases. Nat Rev Chem 2020; 4:542-549. [PMID: 33829110 PMCID: PMC8023223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nature uses multinuclear metal clusters to catalyse a number of important multielectron redox reactions. Examples that employ complex Fe-S clusters in catalysis include the Fe-Mo cofactor (FeMoco) of nitrogenase and its V and all-Fe variants, and the [FeFe] and [NiFe] hydrogenases. This Perspective begins with a focus on the catalytic H-cluster of [FeFe] hydrogenase, which is highly active in producing molecular H2. There has been much recent progress in characterizing the enzyme-catalysed assembly of the H-cluster, including information gleaned from spectroscopy combined with in vitro isotopic labelling of this cluster using chemical synthesis. We then compare the lessons learned from H-cluster biosynthesis to what is known about the bioassembly of the binuclear active site of [NiFe] hydrogenase and the nitrogenase active site cluster FeMoco.
Collapse
|
12
|
|
13
|
Structural Insight into [NiFe] Hydrogenase Maturation by Transient Complexes between Hyp Proteins. Acc Chem Res 2020; 53:875-886. [PMID: 32227866 DOI: 10.1021/acs.accounts.0c00022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
[NiFe] hydrogenases catalyze reversible hydrogen production/consumption. The core unit of [NiFe] hydrogenase consists of a large and a small subunit. The active site of the large subunit of [NiFe] hydrogenases contains a NiFe(CN)2CO cluster. The biosynthesis/maturation of these hydrogenases is a complex and dynamic process catalyzed primarily by six Hyp proteins (HypABCDEF), which play central roles in the maturation process. HypA and HypB are involved in the Ni insertion, whereas HypC, D, E, and F are required for the biosynthesis, assembly, and insertion of the Fe(CN)2CO group. HypE and HypF catalyze the synthesis of the CN group through the carbamoylation and cyanation of the C-terminus cysteine of HypE. HypC and HypD form a scaffold for the assembly of the Fe(CN)2CO moiety.Over the last decades, a large number of biochemical studies on maturation proteins have been performed, revealing basic functions of each Hyp protein and the overall framework of the maturation pathway. However, it is only in the last 10 years that structural insight has been gained, and our group has made significant contributions to the structural biology of hydrogenase maturation proteins.Since our first publication, where crystal structures of three Hyp proteins have been determined, we have performed a series of structural studies of all six Hyp proteins from a hyperthermophilic archaeon Thermococcus kodakarensis, providing molecular details of each Hyp protein. We have also determined the crystal structures of transient complexes between Hyp proteins that are formed during the maturation process to sequentially incorporate the components of the NiFe(CN)2CO cluster to immature large subunits of [NiFe] hydrogenases. Such complexes, whose crystal structures are determined, include HypA-HypB, HypA-HyhL (hydrogenase large subunit), HypC-HypD, and HypC-HypD-HypE. The structures of the HypC-HypD, and HypCDE complexes reveal a sophisticated process of transient formation of the HypCDE complex, providing insight into the molecular basis of Fe atom cyanation. The high-resolution structures of the carbamoylated and cyanated forms of HypE reveal a structural basis for the biological conversion of primary amide to nitrile. The structure of the HypA-HypB complex elucidates nucleotide-dependent transient complex formation between these two proteins and the molecular basis of acquisition and release of labile Ni. Furthermore, our recent structure analysis of a complex between HypA and immature HyhL reveals that spatial rearrangement of both the N- and C-terminal tails of HyhL will occur upon the [NiFe] cluster insertion, which function as a key checkpoint for the maturation completion. This Account will focus on recent advances in structural studies of the Hyp proteins and on mechanistic insights into the [NiFe] hydrogenase maturation.
Collapse
|
14
|
Hartmann S, Frielingsdorf S, Caserta G, Lenz O. A membrane-bound [NiFe]-hydrogenase large subunit precursor whose C-terminal extension is not essential for cofactor incorporation but guarantees optimal maturation. Microbiologyopen 2020; 9:1197-1206. [PMID: 32180370 PMCID: PMC7294309 DOI: 10.1002/mbo3.1029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 01/20/2023] Open
Abstract
[NiFe]‐hydrogenases catalyze the reversible conversion of molecular hydrogen into protons end electrons. This reaction takes place at a NiFe(CN)2(CO) cofactor located in the large subunit of the bipartite hydrogenase module. The corresponding apo‐protein carries usually a C‐terminal extension that is cleaved off by a specific endopeptidase as soon as the cofactor insertion has been accomplished by the maturation machinery. This process triggers complex formation with the small, electron‐transferring subunit of the hydrogenase module, revealing catalytically active enzyme. The role of the C‐terminal extension in cofactor insertion, however, remains elusive. We have addressed this problem by using genetic engineering to remove the entire C‐terminal extension from the apo‐form of the large subunit of the membrane‐bound [NiFe]‐hydrogenase (MBH) from Ralstonia eutropha. Unexpectedly, the MBH holoenzyme derived from this precleaved large subunit was targeted to the cytoplasmic membrane, conferred H2‐dependent growth of the host strain, and the purified protein showed exactly the same catalytic activity as native MBH. The only difference was a reduced hydrogenase content in the cytoplasmic membrane. These results suggest that in the case of the R. eutropha MBH, the C‐terminal extension is dispensable for cofactor insertion and seems to function only as a maturation facilitator.
Collapse
Affiliation(s)
- Sven Hartmann
- Institut für Chemie, Physikalische Chemie, Technische Universität Berlin, Berlin, Germany
| | - Stefan Frielingsdorf
- Institut für Chemie, Physikalische Chemie, Technische Universität Berlin, Berlin, Germany
| | - Giorgio Caserta
- Institut für Chemie, Physikalische Chemie, Technische Universität Berlin, Berlin, Germany
| | - Oliver Lenz
- Institut für Chemie, Physikalische Chemie, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
15
|
Schulz AC, Frielingsdorf S, Pommerening P, Lauterbach L, Bistoni G, Neese F, Oestreich M, Lenz O. Formyltetrahydrofolate Decarbonylase Synthesizes the Active Site CO Ligand of O2-Tolerant [NiFe] Hydrogenase. J Am Chem Soc 2019; 142:1457-1464. [DOI: 10.1021/jacs.9b11506] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Anne-Christine Schulz
- Institut für Chemie, Physikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Stefan Frielingsdorf
- Institut für Chemie, Physikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Phillip Pommerening
- Institut für Chemie, Organische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Lars Lauterbach
- Institut für Chemie, Physikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Giovanni Bistoni
- Department of Molecular Theory and Spectroscopy, Max Planck Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Department of Molecular Theory and Spectroscopy, Max Planck Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Martin Oestreich
- Institut für Chemie, Organische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Oliver Lenz
- Institut für Chemie, Physikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
16
|
Stegenta-Dąbrowska S, Drabczyński G, Sobieraj K, Koziel JA, Białowiec A. The Biotic and Abiotic Carbon Monoxide Formation During Aerobic Co-digestion of Dairy Cattle Manure With Green Waste and Sawdust. Front Bioeng Biotechnol 2019; 7:283. [PMID: 31737615 PMCID: PMC6828980 DOI: 10.3389/fbioe.2019.00283] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/04/2019] [Indexed: 11/24/2022] Open
Abstract
Carbon monoxide (CO), an air pollutant and a toxic gas to humans, can be generated during aerobic digestion of organic waste. CO is produced due to thermochemical processes, and also produced or consumed by cohorts of methanogenic, acetogenic, or sulfate-reducing bacteria. The exact mechanisms of biotic and abiotic formation of CO in aerobic digestion (particularly the effects of process temperature) are still not known. This study aimed to determine the temporal variation in CO concentrations during the aerobic digestion as a function of process temperature and activity of microorganisms. All experiments were conducted in controlled temperature reactors using homogeneous materials. The lab-scale tests with sterilized and non-sterilized mix of green waste, dairy cattle manure, sawdust (1:1:1 mass ratio) were carried out for 1 week at 10, 25, 30, 37, 40, 50, 60, 70°C to elucidate the biotic vs. abiotic effect. Gas concentrations of CO, O2, and CO2 inside the reactor were measured every 12 h. The CO concentrations observed for up to 30°C did not exceed 100 ppm v/v. For 50 and 60°C, significantly (p < 0.05) higher CO concentrations, reaching almost 600 ppm v/v, were observed. The regression analyses showed in both cases (sterile and non-sterile) a statistically significant effect (p < 0.05) of temperature on CO concentration, confirming that the increase in temperature causes an increase in CO concentration. The remaining factors (time, O2, and CO2 content) were not statistically significant (p > 0.05). A new polynomial model describing the effect of temperature, O2, and CO2 concentration on CO production during aerobic digestion of organic waste was formulated. It has been found that the proposed model for sterile variant had a better fit (R2 = 0.86) compared with non-sterile (R2 = 0.71). The model predicts CO emissions and could be considered for composting process optimization. The developed model could be further developed and useful for ambient air quality and occupational exposure to CO.
Collapse
Affiliation(s)
- Sylwia Stegenta-Dąbrowska
- Faculty of Life Sciences and Technology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Grzegorz Drabczyński
- Faculty of Life Sciences and Technology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Karolina Sobieraj
- Faculty of Life Sciences and Technology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Jacek A Koziel
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, United States
| | - Andrzej Białowiec
- Faculty of Life Sciences and Technology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.,Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, United States
| |
Collapse
|
17
|
Muraki N, Ishii K, Uchiyama S, Itoh SG, Okumura H, Aono S. Structural characterization of HypX responsible for CO biosynthesis in the maturation of NiFe-hydrogenase. Commun Biol 2019; 2:385. [PMID: 31646188 PMCID: PMC6802093 DOI: 10.1038/s42003-019-0631-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022] Open
Abstract
Several accessory proteins are required for the assembly of the metal centers in hydrogenases. In NiFe-hydrogenases, CO and CN- are coordinated to the Fe in the NiFe dinuclear cluster of the active center. Though these diatomic ligands are biosynthesized enzymatically, detail mechanisms of their biosynthesis remain unclear. Here, we report the structural characterization of HypX responsible for CO biosynthesis to assemble the active site of NiFe hydrogenase. CoA is constitutionally bound in HypX. Structural characterization of HypX suggests that the formyl-group transfer will take place from N10-formyl-THF to CoA to form formyl-CoA in the N-terminal domain of HypX, followed by decarbonylation of formyl-CoA to produce CO in the C-terminal domain though the direct experimental results are not available yet. The conformation of CoA accommodated in the continuous cavity connecting the N- and C-terminal domains will interconvert between the extended and the folded conformations for HypX catalysis.
Collapse
Affiliation(s)
- Norifumi Muraki
- Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787 Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787 Japan
- Department of Structural Molecular Science, The Graduate University for Advanced Studies, 38 Nishogo-naka, Myodaiji-cho, Okazaki 444-8585 Japan
| | - Kentaro Ishii
- Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787 Japan
| | - Susumu Uchiyama
- Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787 Japan
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Satoru G. Itoh
- Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787 Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787 Japan
- Department of Structural Molecular Science, The Graduate University for Advanced Studies, 38 Nishogo-naka, Myodaiji-cho, Okazaki 444-8585 Japan
| | - Hisashi Okumura
- Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787 Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787 Japan
- Department of Structural Molecular Science, The Graduate University for Advanced Studies, 38 Nishogo-naka, Myodaiji-cho, Okazaki 444-8585 Japan
| | - Shigetoshi Aono
- Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787 Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787 Japan
- Department of Structural Molecular Science, The Graduate University for Advanced Studies, 38 Nishogo-naka, Myodaiji-cho, Okazaki 444-8585 Japan
| |
Collapse
|
18
|
Lacasse MJ, Sebastiampillai S, Côté JP, Hodkinson N, Brown ED, Zamble DB. A whole-cell, high-throughput hydrogenase assay to identify factors that modulate [NiFe]-hydrogenase activity. J Biol Chem 2019; 294:15373-15385. [PMID: 31455635 DOI: 10.1074/jbc.ra119.008101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/08/2019] [Indexed: 12/25/2022] Open
Abstract
[NiFe]-hydrogenases have attracted attention as potential therapeutic targets or components of a hydrogen-based economy. [NiFe]-hydrogenase production is a complicated process that requires many associated accessory proteins that supply the requisite cofactors and substrates. Current methods for measuring hydrogenase activity have low throughput and often require specialized conditions and reagents. In this work, we developed a whole-cell high-throughput hydrogenase assay based on the colorimetric reduction of benzyl viologen to explore the biological networks of these enzymes in Escherichia coli We utilized this assay to screen the Keio collection, a set of nonlethal single-gene knockouts in E. coli BW25113. The results of this screen highlighted the assay's specificity and revealed known components of the intricate network of systems that underwrite [NiFe]-hydrogenase activity, including nickel homeostasis and formate dehydrogenase activities as well as molybdopterin and selenocysteine biosynthetic pathways. The screen also helped identify several new genetic components that modulate hydrogenase activity. We examined one E. coli strain with undetectable hydrogenase activity in more detail (ΔeutK), finding that nickel delivery to the enzyme active site was completely abrogated, and tracked this effect to an ancillary and unannotated lack of the fumarate and nitrate reduction (FNR) anaerobic regulatory protein. Collectively, these results demonstrate that the whole-cell assay developed here can be used to uncover new information about bacterial [NiFe]-hydrogenase production and to probe the cellular components of microbial nickel homeostasis.
Collapse
Affiliation(s)
- Michael J Lacasse
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | | | - Jean-Philippe Côté
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Nicholas Hodkinson
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Eric D Brown
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Deborah B Zamble
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada .,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
19
|
Takors R, Kopf M, Mampel J, Bluemke W, Blombach B, Eikmanns B, Bengelsdorf FR, Weuster-Botz D, Dürre P. Using gas mixtures of CO, CO 2 and H 2 as microbial substrates: the do's and don'ts of successful technology transfer from laboratory to production scale. Microb Biotechnol 2018; 11:606-625. [PMID: 29761637 PMCID: PMC6011938 DOI: 10.1111/1751-7915.13270] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/26/2018] [Accepted: 03/28/2018] [Indexed: 01/26/2023] Open
Abstract
The reduction of CO2 emissions is a global effort which is not only supported by the society and politicians but also by the industry. Chemical producers worldwide follow the strategic goal to reduce CO2 emissions by replacing existing fossil-based production routes with sustainable alternatives. The smart use of CO and CO2 /H2 mixtures even allows to produce important chemical building blocks consuming the said gases as substrates in carboxydotrophic fermentations with acetogenic bacteria. However, existing industrial infrastructure and market demands impose constraints on microbes, bioprocesses and products that require careful consideration to ensure technical and economic success. The mini review provides scientific and industrial facets finally to enable the successful implementation of gas fermentation technologies in the industrial scale.
Collapse
Affiliation(s)
- Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Michael Kopf
- BASF SE, Bio-Process Development, Carl-Bosch-Str. 38, 67056, Ludwigshafen, Germany
| | - Joerg Mampel
- BRAIN AG, Darmstädter Straße 34-36, 64673, Zwingenberg, Germany
| | - Wilfried Bluemke
- Evonik Technology and Infrastructure GmbH, Process Technology & Engineering, Rodenbacher Chaussee 4, 63457, Hanau-Wolfgang, Germany
| | - Bastian Blombach
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Bernhard Eikmanns
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Frank R Bengelsdorf
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Dirk Weuster-Botz
- Department of Mechanical Engineering, Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany
| | - Peter Dürre
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
20
|
Heinrich D, Raberg M, Steinbüchel A. Studies on the aerobic utilization of synthesis gas (syngas) by wild type and recombinant strains of Ralstonia eutropha H16. Microb Biotechnol 2017; 11:647-656. [PMID: 29027357 PMCID: PMC6011924 DOI: 10.1111/1751-7915.12873] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 01/11/2023] Open
Abstract
The biotechnical platform strain Ralstonia eutropha H16 was genetically engineered to express a cox subcluster of the carboxydotrophic Oligotropha carboxidovoransOM5, including (i) the structural genes coxM, -S and -L, coding for an aerobic carbon monoxide dehydrogenase (CODH) and (ii) the genes coxD, -E, -F and -G, essential for the maturation of CODH. The coxOc genes expressed under control of the CO2 -inducible promoter PL enabled R. eutropha to oxidize CO to CO2 for the use as carbon source, as demonstrated by 13 CO experiments, but the recombinant strains remained dependent on H2 as external energy supply. Therefore, a synthetic metabolism, which could be described as 'carboxyhydrogenotrophic', was established in R. eutropha. With this extension of the bacterium's substrate range, growth in CO-, H2 - and CO2 -containing artificial synthesis gas atmosphere was enhanced, and poly(3-hydroxybutyrate) synthesis was increased by more than 20%.
Collapse
Affiliation(s)
- Daniel Heinrich
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Matthias Raberg
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany.,Environmental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
21
|
Enzymatic and spectroscopic properties of a thermostable [NiFe]‑hydrogenase performing H 2-driven NAD +-reduction in the presence of O 2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1859:8-18. [PMID: 28970007 DOI: 10.1016/j.bbabio.2017.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/17/2017] [Accepted: 09/28/2017] [Indexed: 12/18/2022]
Abstract
Biocatalysts that mediate the H2-dependent reduction of NAD+ to NADH are attractive from both a fundamental and applied perspective. Here we present the first biochemical and spectroscopic characterization of an NAD+-reducing [NiFe]‑hydrogenase that sustains catalytic activity at high temperatures and in the presence of O2, which usually acts as an inhibitor. We isolated and sequenced the four structural genes, hoxFUYH, encoding the soluble NAD+-reducing [NiFe]‑hydrogenase (SH) from the thermophilic betaproteobacterium, Hydrogenophilus thermoluteolus TH-1T (Ht). The HtSH was recombinantly overproduced in a hydrogenase-free mutant of the well-studied, H2-oxidizing betaproteobacterium Ralstonia eutropha H16 (Re). The enzyme was purified and characterized with various biochemical and spectroscopic techniques. Highest H2-mediated NAD+ reduction activity was observed at 80°C and pH6.5, and catalytic activity was found to be sustained at low O2 concentrations. Infrared spectroscopic analyses revealed a spectral pattern for as-isolated HtSH that is remarkably different from those of the closely related ReSH and other [NiFe]‑hydrogenases. This indicates an unusual configuration of the oxidized catalytic center in HtSH. Complementary electron paramagnetic resonance spectroscopic analyses revealed spectral signatures similar to related NAD+-reducing [NiFe]‑hydrogenases. This study lays the groundwork for structural and functional analyses of the HtSH as well as application of this enzyme for H2-driven cofactor recycling under oxic conditions at elevated temperatures.
Collapse
|
22
|
Senger M, Stripp ST, Soboh B. Proteolytic cleavage orchestrates cofactor insertion and protein assembly in [NiFe]-hydrogenase biosynthesis. J Biol Chem 2017; 292:11670-11681. [PMID: 28539366 DOI: 10.1074/jbc.m117.788125] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/23/2017] [Indexed: 01/07/2023] Open
Abstract
Metalloenzymes catalyze complex and essential processes, such as photosynthesis, respiration, and nitrogen fixation. For example, bacteria and archaea use [NiFe]-hydrogenases to catalyze the uptake and release of molecular hydrogen (H2). [NiFe]-hydrogenases are redox enzymes composed of a large subunit that harbors a NiFe(CN)2CO metallo-center and a small subunit with three iron-sulfur clusters. The large subunit is synthesized with a C-terminal extension, cleaved off by a specific endopeptidase during maturation. The exact role of the C-terminal extension has remained elusive; however, cleavage takes place exclusively after assembly of the [NiFe]-cofactor and before large and small subunits form the catalytically active heterodimer. To unravel the functional role of the C-terminal extension, we used an enzymatic in vitro maturation assay that allows synthesizing functional [NiFe]-hydrogenase-2 of Escherichia coli from purified components. The maturation process included formation and insertion of the NiFe(CN)2CO cofactor into the large subunit, endoproteolytic cleavage of the C-terminal extension, and dimerization with the small subunit. Biochemical and spectroscopic analysis indicated that the C-terminal extension of the large subunit is essential for recognition by the maturation machinery. Only upon completion of cofactor insertion was removal of the C-terminal extension observed. Our results indicate that endoproteolytic cleavage is a central checkpoint in the maturation process. Here, cleavage temporally orchestrates cofactor insertion and protein assembly and ensures that only cofactor-containing protein can continue along the assembly line toward functional [NiFe]-hydrogenase.
Collapse
Affiliation(s)
- Moritz Senger
- Department of Physics, Experimental Molecular Biophysics, Freie Universitaet Berlin, 14195 Berlin, Germany
| | - Sven T Stripp
- Department of Physics, Experimental Molecular Biophysics, Freie Universitaet Berlin, 14195 Berlin, Germany
| | - Basem Soboh
- Department of Physics, Experimental Molecular Biophysics, Freie Universitaet Berlin, 14195 Berlin, Germany.
| |
Collapse
|