1
|
Garone ME, Chase SE, Zhang C, Krendel M. Myosin 1e deficiency affects migration of 4T1 breast cancer cells. Cytoskeleton (Hoboken) 2024; 81:723-736. [PMID: 38140937 PMCID: PMC11193843 DOI: 10.1002/cm.21819] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/03/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023]
Abstract
Metastasis of breast cancer cells to distant tissue sites is responsible for the majority of deaths associated with breast cancer. Previously we have examined the role of class I myosin motor protein, myosin 1e (myo1e), in cancer metastasis using the Mouse Mammary Tumor Virus-Polyoma Middle T Antigen (MMTV-PyMT) mouse model. Mice deficient in myo1e formed tumors with a more differentiated phenotype relative to the wild-type mice and formed no detectable lung metastases. In the current study, we investigated how the absence of myo1e affects cell migration and invasion in vitro, using the highly invasive and migratory breast cancer cell line, 4T1. 4T1 cells deficient in myo1e exhibited an altered morphology and slower rates of migration in the wound-healing and transwell migration assays compared to the WT 4T1 cells. While integrin trafficking and Golgi reorientation did not appear to be altered upon myo1e loss, we observed lower rates of focal adhesion disassembly in myo1e-deficient cells, which could help explain the cell migration defect.
Collapse
Affiliation(s)
- Michael E. Garone
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Sharon E. Chase
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Chunling Zhang
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Mira Krendel
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
2
|
Liu PJ, Sayeeda K, Zhuang C, Krendel M. Roles of myosin 1e and the actin cytoskeleton in kidney functions and familial kidney disease. Cytoskeleton (Hoboken) 2024; 81:737-752. [PMID: 38708443 PMCID: PMC11538376 DOI: 10.1002/cm.21861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024]
Abstract
Mammalian kidneys are responsible for removing metabolic waste and maintaining fluid and electrolyte homeostasis via selective filtration. One of the proteins closely linked to selective renal filtration is myosin 1e (Myo1e), an actin-dependent molecular motor found in the specialized kidney epithelial cells involved in the assembly and maintenance of the renal filter. Point mutations in the gene encoding Myo1e, MYO1E, have been linked to familial kidney disease, and Myo1e knockout in mice leads to the disruption of selective filtration. In this review, we discuss the role of the actin cytoskeleton in renal filtration, the known and hypothesized functions of Myo1e, and the possible explanations for the impact of MYO1E mutations on renal function.
Collapse
Affiliation(s)
- Pei-Ju Liu
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Kazi Sayeeda
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Cindy Zhuang
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Mira Krendel
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
3
|
Zheng S, Hong Z, Tan Y, Wang Y, Li J, Zhang Z, Feng T, Hong Z, Lin G, Ye D. MYO6 contributes to tumor progression and enzalutamide resistance in castration-resistant prostate cancer by activating the focal adhesion signaling pathway. Cell Commun Signal 2024; 22:517. [PMID: 39449086 PMCID: PMC11515482 DOI: 10.1186/s12964-024-01897-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Enzalutamide (Enz) resistance is a poor prognostic factor for patients with castration-resistant prostate cancer (CRPC), which often involves aberrant expression of the androgen receptor (AR). Myosin VI (MYO6), one member of the myosin family, plays an important role in regulating cell survival and is highly expressed in prostate cancer (PCa). However, whether MYO6 is involved in Enz resistance in CRPC and its mechanism remain unclear. METHODS Multiple open-access databases were utilized to examine the relationship between MYO6 expression and PCa progression, and to screen differentially expressed genes (DEGs) and potential signaling pathways associated with the MYO6-regulated Enz resistance. Both in vitro and in vivo tumorigenesis assays were employed to examine the impact of MYO6 on the growth and Enz resistance of PCa cells. Human PCa tissues and related clinical biochemical data were utilized to identify the role of MYO6 in promoting PCa progression and Enz resistance. The molecular mechanisms underlying the regulation of gene expression, PCa progression, and Enz resistance in CRPC by MYO6 were investigated. RESULTS MYO6 expression increases in patients with PCa and is positively correlated with AR expression in PCa cell lines and tissues. Overexpression of AR increases MYO6 expression to promote PCa cell proliferation, migration and invasion, and to inhibit PCa cell apoptosis; whereas knockdown of MYO6 expression reverses these outcomes and enhances Enz function in suppressing the proliferation of the Enz- sensitive and resistant PCa cells both in vitro and in vivo. Mechanistically, AR binds directly to the promoter region (residues - 503 to - 283 base pairs) of MYO6 gene and promotes its transcription. Furthermore, MYO6 activates focal adhesion kinase (FAK) phosphorylation at tyrosine-397 through integrin beta 8 (ITGB8) modulation to promote PCa progression and Enz resistance. Notably, inhibition of FAK activity by Y15, an inhibitor of FAK, can resensitize CRPC cells to Enz treatment in cell lines and mouse xenograft models. CONCLUSIONS MYO6 has pro-tumor and Enz-resistant effects in CRPC, suggesting that targeting MYO6 may be beneficial for ENZ-resistant CRPC therapy through the AR/MYO6/FAK signaling pathway.
Collapse
MESH Headings
- Humans
- Male
- Prostatic Neoplasms, Castration-Resistant/pathology
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Benzamides/pharmacology
- Phenylthiohydantoin/pharmacology
- Phenylthiohydantoin/analogs & derivatives
- Phenylthiohydantoin/therapeutic use
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Signal Transduction/drug effects
- Animals
- Nitriles/pharmacology
- Cell Line, Tumor
- Myosin Heavy Chains/genetics
- Myosin Heavy Chains/metabolism
- Disease Progression
- Focal Adhesions/drug effects
- Focal Adhesions/metabolism
- Mice
- Gene Expression Regulation, Neoplastic/drug effects
- Cell Proliferation/drug effects
- Mice, Nude
- Cell Movement/drug effects
- Receptors, Androgen/metabolism
- Receptors, Androgen/genetics
Collapse
Affiliation(s)
- Shengfeng Zheng
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
- Qingdao Institute, School of Life Medicine, Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Qingdao, China
| | - Zhe Hong
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China.
| | - Yao Tan
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Nursing Administration, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Yue Wang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Junhong Li
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Zihao Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Tao Feng
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Zongyuan Hong
- Department of Pharmacology and Laboratory of Quantitative Pharmacology, Wannan Medical College, Wuhu, Anhui, 241000, China.
| | - Guowen Lin
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China.
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China.
| |
Collapse
|
4
|
Mehrabipour M, Jasemi NSK, Dvorsky R, Ahmadian MR. A Systematic Compilation of Human SH3 Domains: A Versatile Superfamily in Cellular Signaling. Cells 2023; 12:2054. [PMID: 37626864 PMCID: PMC10453029 DOI: 10.3390/cells12162054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
SRC homology 3 (SH3) domains are fundamental modules that enable the assembly of protein complexes through physical interactions with a pool of proline-rich/noncanonical motifs from partner proteins. They are widely studied modular building blocks across all five kingdoms of life and viruses, mediating various biological processes. The SH3 domains are also implicated in the development of human diseases, such as cancer, leukemia, osteoporosis, Alzheimer's disease, and various infections. A database search of the human proteome reveals the existence of 298 SH3 domains in 221 SH3 domain-containing proteins (SH3DCPs), ranging from 13 to 720 kilodaltons. A phylogenetic analysis of human SH3DCPs based on their multi-domain architecture seems to be the most practical way to classify them functionally, with regard to various physiological pathways. This review further summarizes the achievements made in the classification of SH3 domain functions, their binding specificity, and their significance for various diseases when exploiting SH3 protein modular interactions as drug targets.
Collapse
Affiliation(s)
- Mehrnaz Mehrabipour
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| | - Neda S. Kazemein Jasemi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| | - Radovan Dvorsky
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
- Center for Interdisciplinary Biosciences, P. J. Šafárik University, 040 01 Košice, Slovakia
| | - Mohammad R. Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| |
Collapse
|
5
|
Pang W, Wang M, Bi Q, Li H, Zhou Q, Ye X, Xiang W, Xiao L. Activity-Dependent Differential Regulation of Auts2 Isoforms In Vitro and In Vivo. Mol Neurobiol 2023; 60:2973-2985. [PMID: 36754912 DOI: 10.1007/s12035-023-03241-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder of unknown cause, although one hypothesis suggests a potential imbalance between excitation and inhibition that leads to changes in neuronal activity and a disturbance in the brain network. However, the mechanisms through which neuronal activity contributes to the development of ASD remain largely unexplained. In this study, we described that neuronal activity at the transcriptional and translational levels regulated the expression of Auts2 isoforms. The prolonged stimulation of cultured cortical neurons significantly reduced the auts2 transcripts, accompanied by the decrease of FL-Auts2 protein, as well as one of the short isoforms (S-Auts2 var.1). Blocking neuronal activity increased the number of auts2 transcripts but not protein levels. Furthermore, blocking the NMDA receptors during stimulation could partially restore the FL-Auts2 and S-Auts2 var.1 at protein level, but not at mRNA level. Finally, Auts2 expression in the hippocampus was reduced in mice exposed to an enriched environment, a behavior paradigm designed to increase the brain activity through abundant sensory and social stimulations. Thus, our study revealed a novel regulatory effect of neuronal activity on the transcription and translation of ASD-risk gene auts2.
Collapse
Affiliation(s)
- Wenbin Pang
- Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, China
- School of Pediatrics, Hainan Medical University, Haikou, China
| | - Meijuan Wang
- School of Basic Medicine and Life Science, Hainan Medical University, Haikou, China
| | - Qingshang Bi
- School of Basic Medicine and Life Science, Hainan Medical University, Haikou, China
| | - Hongai Li
- Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, China
- School of Pediatrics, Hainan Medical University, Haikou, China
| | - Qionglin Zhou
- School of Pediatrics, Hainan Medical University, Haikou, China
| | - Xiaoshan Ye
- School of Pediatrics, Hainan Medical University, Haikou, China
| | - Wei Xiang
- Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, China.
- School of Pediatrics, Hainan Medical University, Haikou, China.
- National Health Commission (NHC) Key Laboratory of Control of Tropical Diseases, Hainan Medical University, Haikou, China.
| | - Le Xiao
- Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, China.
- School of Pediatrics, Hainan Medical University, Haikou, China.
| |
Collapse
|
6
|
Krendel M, Leh S, Garone ME, Edwards-Richards A, Lin JJ, Brackman D, Knappskog P, Mikhailov A. Focal segmental glomerulosclerosis and proteinuria associated with Myo1E mutations: novel variants and histological phenotype analysis. Pediatr Nephrol 2023; 38:439-449. [PMID: 35723736 PMCID: PMC10506584 DOI: 10.1007/s00467-022-05634-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Pathogenic mutations in the non-muscle single-headed myosin, myosin 1E (Myo1e), are a rare cause of pediatric focal segmental glomerulosclerosis (FSGS). These mutations are biallelic, to date only reported as homozygous variants in consanguineous families. Myo1e regulates the actin cytoskeleton dynamics and cell adhesion, which are especially important for podocyte functions. METHODS DNA and RNA sequencing were used to identify novel MYO1E variants associated with FSGS. We studied the effects of these variants on the localization of Myo1e in kidney sections. We then analyzed the clinical and histological observations of all known pathogenic MYO1E variants. RESULTS We identified a patient compound heterozygote for two novel variants in MYO1E and a patient homozygous for a deletion of exon 19. Computer modeling predicted these variants to be disruptive. In both patients, Myo1e was mislocalized. As a rule, pathogenic MYO1E variants map to the Myo1e motor and neck domain and are most often associated with steroid-resistant nephrotic syndrome in children 1-11 years of age, leading to kidney failure in 4-10 years in a subset of patients. The ultrastructural features are the podocyte damage and striking diffuse and global Alport-like glomerular basement membrane (GBM) abnormalities. CONCLUSIONS We hypothesize that MYO1E mutations lead to disruption of the function of podocyte contractile actin cables resulting in abnormalities of the podocytes and the GBM and dysfunction of the glomerular filtration barrier. The characteristic clinicopathological data can help to tentatively differentiate this condition from other genetic podocytopathies and Alport syndrome until genetic testing is done. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Mira Krendel
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Sabine Leh
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Michael E Garone
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | | | - Jen-Jar Lin
- Department of Pediatrics, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Damien Brackman
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Per Knappskog
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Alexei Mikhailov
- Department of Pathology, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, USA.
| |
Collapse
|
7
|
Higuchi M, Ishiyama K, Maruoka M, Kanamori R, Takaori-Kondo A, Watanabe N. Paradoxical activation of c-Src as a drug-resistant mechanism. Cell Rep 2021; 34:108876. [PMID: 33761359 DOI: 10.1016/j.celrep.2021.108876] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/29/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
ATP-competitive inhibitors have been developed as promising anti-cancer agents. However, drug-resistance frequently occurs, and the underlying mechanisms are not fully understood. Here, we show that the activation of c-Src and its downstream phosphorylation cascade can be paradoxically induced by Src-targeted and RTK-targeted kinase inhibitors. We reveal that inhibitor binding induces a conformational change in c-Src, leading to the association of the active form c-Src with focal adhesion kinase (FAK). Reduction of the inhibitor concentration results in the dissociation of inhibitors from the c-Src-FAK complex, which allows c-Src to phosphorylate FAK and initiate FAK-Grb2-mediated Erk signaling. Furthermore, a drug-resistant mutation in c-Src, which reduces the affinity of inhibitors for c-Src, converts Src inhibitors into facilitators of cell proliferation by enhancing the phosphorylation of FAK and Erk in c-Src-mutated cells. Our data thus reveal paradoxical enhancement of cell growth evoked by target-based kinase inhibitors, providing potentially important clues for the future development of effective and safe cancer treatment.
Collapse
Affiliation(s)
- Makio Higuchi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenichi Ishiyama
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Hematology and Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masahiro Maruoka
- Laboratory of Single-Molecule Cell Biology, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Ryosuke Kanamori
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Naoki Watanabe
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto, Japan.
| |
Collapse
|
8
|
Nakamura S, Masuyama R, Sakai K, Fukuda K, Takeda K, Tanimura S. SH3P2 suppresses osteoclast differentiation through restricting membrane localization of myosin 1E. Genes Cells 2020; 25:707-717. [PMID: 32916757 DOI: 10.1111/gtc.12806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/23/2020] [Accepted: 09/02/2020] [Indexed: 01/21/2023]
Abstract
Osteoclasts are multinucleated cells responsible for bone resorption. Src homology 3 (SH3) domain-containing protein-2 (SH3P2)/osteoclast-stimulating factor-1 regulates osteoclast differentiation, but its exact role remains elusive. Here, we show that SH3P2 suppresses osteoclast differentiation. SH3P2 knockout (KO) mice displayed decreased femoral trabecular bone mass and enhanced localization of osteoclasts on the tibial trabecular bone surface, suggesting that SH3P2 suppresses bone resorption by osteoclasts. Osteoclast differentiation based on cellular multinuclearity induced by macrophage colony-stimulating factor and receptor activator of nuclear factor-κB ligand (RANKL) was enhanced in bone marrow-derived macrophages lacking SH3P2. RANKL induced SH3P2 dephosphorylation, which increased the association of actin-dependent motor protein myosin 1E (Myo1E) with SH3P2 and thereby prevented Myo1E localization to the plasma membrane. Consistent with this, Myo1E in the membrane fraction increased in SH3P2-KO cells. Together with the attenuated osteoclast differentiation in Myo1E knocked down cells, SH3P2 may suppress osteoclast differentiation by preventing their cell-to-cell fusion depending on Myo1E membrane localization.
Collapse
Affiliation(s)
- Shota Nakamura
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Ritsuko Masuyama
- Department of Gastronomy Management, College of Gastronomy Management, Ritsumeikan University, Kusatsu, Japan
| | - Kosuke Sakai
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Karin Fukuda
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kohsuke Takeda
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Susumu Tanimura
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
9
|
Murphy JM, Rodriguez YAR, Jeong K, Ahn EYE, Lim STS. Targeting focal adhesion kinase in cancer cells and the tumor microenvironment. Exp Mol Med 2020; 52:877-886. [PMID: 32514188 PMCID: PMC7338452 DOI: 10.1038/s12276-020-0447-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 01/07/2023] Open
Abstract
Focal adhesion kinase (FAK) is an integrin-associated protein tyrosine kinase that is frequently overexpressed in advanced human cancers. Recent studies have demonstrated that aside from FAK's catalytic activity in cancer cells, its cellular localization is also critical for regulating the transcription of chemokines that promote a favorable tumor microenvironment (TME) by suppressing destructive host immunity. In addition to the protumor roles of FAK in cancer cells, FAK activity within cells of the TME may also support tumor growth and metastasis through various mechanisms, including increased angiogenesis and vascular permeability and effects related to fibrosis in the stroma. Small molecule FAK inhibitors have demonstrated efficacy in alleviating tumor growth and metastasis, and some are currently in clinical development phases. However, several preclinical trials have shown increased benefits from dual therapies using FAK inhibitors in combination with other chemotherapies or with immune cell activators. This review will discuss the role of nuclear FAK as a driver for tumor cell survival as well as potential therapeutic strategies to target FAK in both tumors and the TME.
Collapse
Affiliation(s)
- James M Murphy
- Department of Biochemistry and Molecular Biology, University of South Alabama, College of Medicine, Mobile, AL, 36688, USA
| | - Yelitza A R Rodriguez
- Department of Biochemistry and Molecular Biology, University of South Alabama, College of Medicine, Mobile, AL, 36688, USA
| | - Kyuho Jeong
- Department of Biochemistry and Molecular Biology, University of South Alabama, College of Medicine, Mobile, AL, 36688, USA
| | - Eun-Young Erin Ahn
- Department of Pathology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Ssang-Taek Steve Lim
- Department of Biochemistry and Molecular Biology, University of South Alabama, College of Medicine, Mobile, AL, 36688, USA.
| |
Collapse
|
10
|
Navinés-Ferrer A, Martín M. Long-Tailed Unconventional Class I Myosins in Health and Disease. Int J Mol Sci 2020; 21:ijms21072555. [PMID: 32272642 PMCID: PMC7177449 DOI: 10.3390/ijms21072555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 01/21/2023] Open
Abstract
Long-tailed unconventional class I myosin, Myosin 1E (MYO1E) and Myosin 1F (MYO1F) are motor proteins that use chemical energy from the hydrolysis of adenosine triphosphate (ATP) to produce mechanical work along the actin cytoskeleton. On the basis of their motor properties and structural features, myosins perform a variety of essential roles in physiological processes such as endocytosis, exocytosis, cell adhesion, and migration. The long tailed unconventional class I myosins are characterized by having a conserved motor head domain, which binds actin and hydrolyzes ATP, followed by a short neck with an isoleucine-glutamine (IQ) motif, which binds calmodulin and is sensitive to calcium, and a tail that contains a pleckstrin homology domain (PH), a tail homology 1 domain (TH1), wherein these domains allow membrane binding, a tail homology 2 domain (TH2), an ATP-insensitive actin-binding site domain, and a single Src homology 3 domain (SH3) susceptible to binding proline rich regions in other proteins. Therefore, these motor proteins are able to bind actin, plasma membrane, and other molecules (adaptor, kinases, membrane proteins) that contribute to their function, ranging from increasing membrane tension to molecular trafficking and cellular adhesion. MYO1E and MYO1F function in host self-defense, with a better defined role in innate immunity in cell migration and phagocytosis. Impairments of their function have been identified in patients suffering pathologies ranging from tumoral processes to kidney diseases. In this review, we summarize our current knowledge of specific features and functions of MYO1E and MYO1F in various tissues, as well as their involvement in disease.
Collapse
Affiliation(s)
- A. Navinés-Ferrer
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine, University of Barcelona, 08036 Barcelona, Spain
- Laboratory of Clinic and Experimental Respiratory Immunoallergy, IDIBAPS, 08036 Barcelona, Spain
| | - M. Martín
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine, University of Barcelona, 08036 Barcelona, Spain
- Laboratory of Clinic and Experimental Respiratory Immunoallergy, IDIBAPS, 08036 Barcelona, Spain
- ARADyAL research network, Carlos III Health Institute, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-93-4024541; Fax: +34-93-4035882
| |
Collapse
|
11
|
Girón-Pérez DA, Vadillo E, Schnoor M, Santos-Argumedo L. Myo1e modulates the recruitment of activated B cells to inguinal lymph nodes. J Cell Sci 2020; 133:jcs.235275. [PMID: 31964710 DOI: 10.1242/jcs.235275] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 01/06/2020] [Indexed: 12/31/2022] Open
Abstract
The inclusion of lymphocytes in high endothelial venules and their migration to the lymph nodes are critical steps in the immune response. Cell migration is regulated by the actin cytoskeleton and myosins. Myo1e is a long-tailed class I myosin and is highly expressed in B cells, which have not been studied in the context of cell migration. By using intravital microscopy in an in vivo model and performing in vitro experiments, we studied the relevance of Myo1e for the adhesion and inclusion of activated B cells in high endothelial venules. We observed reduced expression of integrins and F-actin in the membrane protrusions of B lymphocytes, which might be explained by deficiencies in vesicular trafficking. Interestingly, the lack of Myo1e reduced the phosphorylation of focal adhesion kinase (FAK; also known as PTK2), AKT (also known as AKT1) and RAC-1, disturbing the FAK-PI3K-RAC-1 signaling pathway. Taken together, our results indicate a critical role of Myo1e in the mechanism of B-cell adhesion and migration.
Collapse
Affiliation(s)
- Daniel A Girón-Pérez
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CP 07360, Mexico City, Mexico
| | - Eduardo Vadillo
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CP 07360, Mexico City, Mexico
| | - Michael Schnoor
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CP 07360, Mexico City, Mexico
| | - Leopoldo Santos-Argumedo
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CP 07360, Mexico City, Mexico
| |
Collapse
|
12
|
Intermittent rolling is a defect of the extravasation cascade caused by Myosin1e-deficiency in neutrophils. Proc Natl Acad Sci U S A 2019; 116:26752-26758. [PMID: 31811025 DOI: 10.1073/pnas.1902502116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neutrophil extravasation is a migratory event in response to inflammation that depends on cytoskeletal dynamics regulated by myosins. Myosin-1e (Myo1e) is a long-tailed class-I myosin that has not yet been studied in the context of neutrophil-endothelial interactions and neutrophil extravasation. Intravital microscopy of TNFα-inflamed cremaster muscles in Myo1e-deficient mice revealed that Myo1e is required for efficient neutrophil extravasation. Specifically, Myo1e deficiency caused increased rolling velocity, decreased firm adhesion, aberrant crawling, and strongly reduced transmigration. Interestingly, we observed a striking discontinuous rolling behavior termed "intermittent rolling," during which Myo1e-deficient neutrophils showed alternating rolling and jumping movements. Surprisingly, chimeric mice revealed that these effects were due to Myo1e deficiency in leukocytes. Vascular permeability was not significantly altered in Myo1e KO mice. Myo1e-deficient neutrophils showed diminished arrest, spreading, uropod formation, and chemotaxis due to defective actin polymerization and integrin activation. In conclusion, Myo1e critically regulates adhesive interactions of neutrophils with the vascular endothelium and neutrophil extravasation. Myo1e may therefore be an interesting target in chronic inflammatory diseases characterized by excessive neutrophil recruitment.
Collapse
|
13
|
Barger SR, James ML, Pellenz CD, Krendel M, Sirotkin V. Human myosin 1e tail but not motor domain replaces fission yeast Myo1 domains to support myosin-I function during endocytosis. Exp Cell Res 2019; 384:111625. [PMID: 31542284 DOI: 10.1016/j.yexcr.2019.111625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 10/26/2022]
Abstract
In both unicellular and multicellular organisms, long-tailed class I myosins function in clathrin-mediated endocytosis. Myosin 1e (Myo1e) in vertebrates and Myo1 in fission yeast have similar domain organization, yet whether these proteins or their individual protein domains are functionally interchangeable remains unknown. In an effort to assess functional conservation of class I myosins, we tested whether human Myo1e could replace Myo1 in fission yeast Schizosaccharomyces pombe and found that it was unable to substitute for yeast Myo1. To determine if any individual protein domain is responsible for the inability of Myo1e to function in yeast, we created human-yeast myosin-I chimeras. By functionally testing these chimeric myosins in vivo, we concluded that the Myo1e motor domain is unable to function in yeast, even when combined with the yeast Myo1 tail and a full complement of yeast regulatory light chains. Conversely, the Myo1e tail, when attached to the yeast Myo1 motor domain, supports localization to endocytic actin patches and partially rescues the endocytosis defect in myo1Δ cells. Further dissection showed that both the TH1 and TH2-SH3 domains in the human Myo1e tail are required for localization and function of chimeric myosin-I at endocytic sites. Overall, this study provides insights into the role of individual myosin-I domains, expands the utility of fission yeast as a simple model system to study the effects of disease-associated MYO1E mutations, and supports a model of co-evolution between a myosin motor and its actin track.
Collapse
Affiliation(s)
- Sarah R Barger
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Michael L James
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Christopher D Pellenz
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Mira Krendel
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Vladimir Sirotkin
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
14
|
Small molecule FAK activator promotes human intestinal epithelial monolayer wound closure and mouse ulcer healing. Sci Rep 2019; 9:14669. [PMID: 31604999 PMCID: PMC6789032 DOI: 10.1038/s41598-019-51183-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/24/2019] [Indexed: 01/23/2023] Open
Abstract
GI mucosal healing requires epithelial sheet migration. The non-receptor tyrosine kinase focal adhesion kinase (FAK) stimulates epithelial motility. A virtual screen identified the small drug-like FAK mimic ZINC40099027, which activates FAK. We assessed whether ZINC40099027 promotes FAK-Tyr-397 phosphorylation and wound healing in Caco-2 monolayers and two mouse intestinal injury models. Murine small bowel ulcers were generated by topical serosal acetic acid or subcutaneous indomethacin in C57BL/6J mice. One day later, we began treatment with ZINC40099027 or DMSO, staining the mucosa for phosphorylated FAK and Ki-67 and measuring mucosal ulcer area, serum creatinine, ALT, and body weight at day 4. ZINC40099027 (10–1000 nM) dose-dependently activated FAK phosphorylation, without activating Pyk2-Tyr-402 or Src-Tyr-419. ZINC40099027 did not stimulate proliferation, and stimulated wound closure independently of proliferation. The FAK inhibitor PF-573228 prevented ZINC40099027-stimulated wound closure. In both mouse ulcer models, ZINC40099027accelerated mucosal wound healing. FAK phosphorylation was increased in jejunal epithelium at the ulcer edge, and Ki-67 staining was unchanged in jejunal mucosa. ZINC40099027 serum concentration at sacrifice resembled the effective concentration in vitro. Weight, creatinine and ALT did not differ between groups. Small molecule FAK activators can specifically promote epithelial restitution and mucosal healing and may be useful to treat gut mucosal injury.
Collapse
|
15
|
Zhang Y, Cao F, Zhou Y, Feng Z, Sit B, Krendel M, Yu CH. Tail domains of myosin-1e regulate phosphatidylinositol signaling and F-actin polymerization at the ventral layer of podosomes. Mol Biol Cell 2019; 30:622-635. [PMID: 30601698 PMCID: PMC6589698 DOI: 10.1091/mbc.e18-06-0398] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
During podosome formation, distinct phosphatidylinositol 3,4,5-trisphosphate lipid (PI(3,4,5)P3) production and F-actin polymerization take place at integrin-mediated adhesions. Membrane-associated actin regulation factors, such as myosin-1, serve as key molecules to link phosphatidylinositol signals to podosome assembly. Here, we report that long-tailed myosin-1e (Myo1e) is enriched at the ventral layer of the podosome core in a PI(3,4,5)P3-dependent manner. The combination of TH1 and TH2 (TH12) of Myo1e tail domains contains the essential motif for PI(3,4,5)P3-dependent membrane association and ventral localization at the podosome. TH12 KR2A (K772A and R782A) becomes dissociated from the plasma membrane. While F-actin polymerizations are initialized from the ventral layer of the podosome, TH12 precedes the recruitment of N-WASP and Arp2/3 in the initial phase of podosome formation. Overexpression of TH12, not TH12 KR2A, impedes PI(3,4,5)P3 signaling, restrains F-actin polymerization, and inhibits podosome formation. TH12 also suppresses gelatin degradation and migration speed of invadopodia-forming A375 melanoma cells. Thus, TH12 domain of Myo1e serves as a regulatory component to connect phosphatidylinositol signaling to F-actin polymerization at the podosome.
Collapse
Affiliation(s)
- Yage Zhang
- School of Biomedical Sciences, Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Fakun Cao
- School of Biomedical Sciences, Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Yuhuan Zhou
- School of Biomedical Sciences, Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Zhen Feng
- School of Biomedical Sciences, Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Brian Sit
- School of Biomedical Sciences, Faculty of Medicine, University of Hong Kong, Hong Kong.,Randall Division of Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London WC2R 2LS, United Kingdom
| | - Mira Krendel
- SUNY Upstate Medical University, Syracuse, NY 13210
| | - Cheng-Han Yu
- School of Biomedical Sciences, Faculty of Medicine, University of Hong Kong, Hong Kong
| |
Collapse
|
16
|
Wang D, Gao B, Yue J, Liu F, Liu Y, Fu W, Si Y. Exosomes from mesenchymal stem cells expressing miR-125b inhibit neointimal hyperplasia via myosin IE. J Cell Mol Med 2018; 23:1528-1540. [PMID: 30484954 PMCID: PMC6349157 DOI: 10.1111/jcmm.14060] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/18/2018] [Accepted: 11/06/2018] [Indexed: 12/12/2022] Open
Abstract
Intercellular communication between mesenchymal stem cells (MSCs) and their target cells in the perivascular environment is modulated by exosomes derived from MSCs. However, the potential role of exosome-mediated microRNA transfer in neointimal hyperplasia remains to be investigated. To evaluate the effects of MSC-derived exosomes (MSC-Exo) on neointimal hyperplasia, their effects upon vascular smooth muscle cell (VSMC) growth in vitro and neointimal hyperplasia in vivo were assessed in a model of balloon-induced vascular injury. Our results showed that MSC-Exo were internalised by VSMCs and inhibited proliferation and migration in vitro. Further analysis revealed that miR-125b was enriched in MSC-Exo, and repressed the expression of myosin 1E (Myo1e) by targeting its 3' untranslated region. Additionally, MSC-Exo and exosomally transferred miR-125b repressed Myo1e expression and suppressed VSMC proliferation and migration and neointimal hyperplasia in vivo. In summary, our findings revealed that MSC-Exo can transfer miR-125b to VSMCs and inhibit VSMC proliferation and migration in vitro and neointimal hyperplasia in vivo by repressing Myo1e, indicating that miR-125b may be a therapeutic target in the treatment of vascular diseases.
Collapse
Affiliation(s)
- Dongqing Wang
- Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, China.,Department of Endovascular Surgery, the First Affiliated Hospital, Zhengzhou University, Henan, China
| | - Bin Gao
- Department of Vascular Surgery, the Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Jianing Yue
- Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Fei Liu
- Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Yifan Liu
- Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Weiguo Fu
- Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Yi Si
- Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| |
Collapse
|
17
|
Heim JB, McDonald CA, Wyles SP, Sominidi-Damodaran S, Squirewell EJ, Li M, Motsonelidze C, Böttcher RT, van Deursen J, Meves A. FAK auto-phosphorylation site tyrosine 397 is required for development but dispensable for normal skin homeostasis. PLoS One 2018; 13:e0200558. [PMID: 30001432 PMCID: PMC6042779 DOI: 10.1371/journal.pone.0200558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/28/2018] [Indexed: 12/31/2022] Open
Abstract
Focal adhesion kinase (FAK) is an intensely studied non-receptor tyrosine kinase with roles in cancer and other common human diseases. Despite the large interest in FAK, the in vivo contribution of FAK auto-phosphorylation site tyrosine (Y) 397 to FAK function is incompletely understood. To study FAK Y397 in vivo we analyzed mice with 'non-phosphorylatable' Y-to-phenylalanine (F) and 'phospho-mimicking' Y-to-glutamate (E) mutations in the germline. We found that FAK Y397F mice die early during embryogenesis with abnormal angiogenesis like FAK kinase-dead mice. When Y397 is mutated to a glutamate mice survive beyond mid-gestation like mice where Y397 is lost by deletion of FAK exon 15. In culture, defects in proliferation, invasion and gene expression were more severe with the FAK Y397F than with the FAK Y397E mutation despite the inability of FAK Y397E to bind SRC. Conditional expression of FAK Y397F or Y397E in unchallenged avascular epidermis, however, resulted in no appreciable phenotype. We conclude that FAK Y397 is required for the highly dynamic tissue remodeling during development but dispensable for normal homeostasis of avascular epidermis. In contrast to the Y397F mutation, FAK Y397E retains sufficient biological activity to allow for development beyond mid-gestation.
Collapse
Affiliation(s)
- Joel B. Heim
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Cera A. McDonald
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Saranya P. Wyles
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | | | - Edwin J. Squirewell
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Ming Li
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | | | - Ralph T. Böttcher
- Department of Molecular Medicine, Max Planck Institute for Biochemistry, Martinsried, Germany
- German Center for Cardiovascular Research-Munich Partner Site, Munich, Germany
| | - Jan van Deursen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Cancer Center, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Alexander Meves
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Cancer Center, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|