1
|
Stojanovski BM, Di Cera E. Codon switching of conserved Ser residues in coagulation and fibrinolytic proteases. J Thromb Haemost 2024; 22:2495-2501. [PMID: 38821294 PMCID: PMC11343676 DOI: 10.1016/j.jtha.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Unique among all amino acids, Ser is encoded by 2 sets of codons, TCN and AGY (N = any nucleotide, Y = pyrimidine), that cannot interconvert through single nucleotide substitutions. Both codons are documented at the essential residues S195 and S214 within the active site of serine proteases. However, it is not known how the codons interconverted during evolution because replacement of S195 or S214 by other amino acids typically results in loss of activity. OBJECTIVE To characterize the prevalence of codon switching among essential and non-essential Ser residues in coagulation and fibrinolytic proteases from different vertebrate lineages. METHODS TCN and AGY codon usage was analyzed in >550 sequences. RESULTS Evolutionary pressure to preserve the codon of S195 is absolute, with no evidence of interconversion. Pressure to preserve the codon of S214 is also strong, but an AGY↔TCN interconversion is observed in factor VII-inactive and protein C from ray-finned fish. In both cases, the interconversion occurred in genes that were rapidly evolving. In contrast, codon switching at nonessential Ser residues in the kringle domains of coagulation and fibrinolytic proteases is quite common and could be identified in half of the kringles analyzed. CONCLUSION Codon interconversion of essential Ser residues of coagulation and fibrinolytic proteases only occurred in genes that were rapidly evolving and that-at least in some cases-evolved following genome duplication. Interconversion is common at nonessential Ser residues as found in kringle domains.
Collapse
Affiliation(s)
- Bosko M Stojanovski
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, Missouri, USA
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, Missouri, USA.
| |
Collapse
|
2
|
Tapia SM, Pérez‐Torrado R, Adam AC, Macías LG, Barrio E, Querol A. Adaptive evolution in the Saccharomyces kudriavzevii Aro4p promoted a reduced production of higher alcohols. Microb Biotechnol 2022; 15:2958-2969. [PMID: 36307988 PMCID: PMC9733642 DOI: 10.1111/1751-7915.14154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 12/30/2022] Open
Abstract
The use of unconventional yeast species in human-driven fermentations has attracted a lot of attention in the last few years. This tool allows the alcoholic beverage industries to solve problems related to climate change or the consumer demand for newer high-quality products. In this sense, one of the most attractive species is Saccharomyces kudriavzevii, which shows interesting fermentative traits such as the increased and diverse aroma compound production in wines. Specifically, it has been observed that different isolates of this species can produce higher amounts of higher alcohols such as phenylethanol compared with Saccharomyces cerevisiae. In this work, we have shed light on this feature relating it to the S. kudriavzevii aromatic amino acid anabolic pathway in which the enzyme Aro4p plays an essential role. Unexpectedly, we observed that the presence of the S. kudriavzevii ARO4 variant reduces phenylethanol production compared with the S. cerevisiae ARO4 allele. Our experiments suggest that this can be explained by increased feedback inhibition, which might be a consequence of the changes detected in the Aro4p amino end such as L26 Q24 that have been under positive selection in the S. kudriavzevii specie.
Collapse
Affiliation(s)
- Sebastián M. Tapia
- Departamento de Biotecnología de los AlimentosInstituto de Agroquímica y Tecnología de Los Alimentos (IATA)‐CSICValenciaSpain
| | - Roberto Pérez‐Torrado
- Departamento de Biotecnología de los AlimentosInstituto de Agroquímica y Tecnología de Los Alimentos (IATA)‐CSICValenciaSpain
| | - Ana Cristina Adam
- Departamento de Biotecnología de los AlimentosInstituto de Agroquímica y Tecnología de Los Alimentos (IATA)‐CSICValenciaSpain
| | - Laura G. Macías
- Departamento de Biotecnología de los AlimentosInstituto de Agroquímica y Tecnología de Los Alimentos (IATA)‐CSICValenciaSpain,Departament de GenèticaUniversitat de ValènciaValenciaSpain
| | - Eladio Barrio
- Departamento de Biotecnología de los AlimentosInstituto de Agroquímica y Tecnología de Los Alimentos (IATA)‐CSICValenciaSpain,Departament de GenèticaUniversitat de ValènciaValenciaSpain
| | - Amparo Querol
- Departamento de Biotecnología de los AlimentosInstituto de Agroquímica y Tecnología de Los Alimentos (IATA)‐CSICValenciaSpain
| |
Collapse
|
3
|
Belinky F, Bykova A, Yurchenko V, Rogozin IB. No evidence for widespread positive selection on double substitutions within codons in primates and yeasts. Front Genet 2022; 13:991249. [PMID: 36159983 PMCID: PMC9500374 DOI: 10.3389/fgene.2022.991249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Nucleotide substitutions in protein-coding genes can be divided into synonymous (S) and non-synonymous (N) ones that alter amino acids (including nonsense mutations causing stop codons). The S substitutions are expected to have little effect on function. The N substitutions almost always are affected by strong purifying selection that eliminates them from evolving populations. However, additional mutations of nearby bases can modulate the deleterious effect of single N substitutions and, thus, could be subjected to the positive selection. This effect has been demonstrated for mutations in the serine codons, stop codons and double N substitutions in prokaryotes. In all abovementioned cases, a novel technique was applied that allows elucidating the effects of selection on double substitutions considering mutational biases. Here, we applied the same technique to study double N substitutions in eukaryotic lineages of primates and yeast. We identified markedly fewer cases of purifying selection relative to prokaryotes and no evidence of codon double substitutions under positive selection. This is consistent with previous studies of serine codons in primates and yeast. In general, the obtained results strongly suggest that there are major differences between studied pro- and eukaryotes; double substitutions in primates and yeasts largely reflect mutational biases and are not hallmarks of selection. This is especially important in the context of detection of positive selection in codons because it has been suggested that multiple mutations in codons cause false inferences of lineage-specific site positive selection. It is likely that this concern is applicable to previously studied prokaryotes but not to primates and yeasts where markedly fewer double substitutions are affected by positive selection.
Collapse
Affiliation(s)
- Frida Belinky
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| | - Anastassia Bykova
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- *Correspondence: Vyacheslav Yurchenko, ; Igor B. Rogozin,
| | - Igor B. Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Vyacheslav Yurchenko, ; Igor B. Rogozin,
| |
Collapse
|
4
|
Ho AT, Hurst LD. Unusual mammalian usage of TGA stop codons reveals that sequence conservation need not imply purifying selection. PLoS Biol 2022; 20:e3001588. [PMID: 35550630 PMCID: PMC9129041 DOI: 10.1371/journal.pbio.3001588] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/24/2022] [Accepted: 04/20/2022] [Indexed: 11/18/2022] Open
Abstract
The assumption that conservation of sequence implies the action of purifying selection is central to diverse methodologies to infer functional importance. GC-biased gene conversion (gBGC), a meiotic mismatch repair bias strongly favouring GC over AT, can in principle mimic the action of selection, this being thought to be especially important in mammals. As mutation is GC→AT biased, to demonstrate that gBGC does indeed cause false signals requires evidence that an AT-rich residue is selectively optimal compared to its more GC-rich allele, while showing also that the GC-rich alternative is conserved. We propose that mammalian stop codon evolution provides a robust test case. Although in most taxa TAA is the optimal stop codon, TGA is both abundant and conserved in mammalian genomes. We show that this mammalian exceptionalism is well explained by gBGC mimicking purifying selection and that TAA is the selectively optimal codon. Supportive of gBGC, we observe (i) TGA usage trends are consistent at the focal stop codon and elsewhere (in UTR sequences); (ii) that higher TGA usage and higher TAA→TGA substitution rates are predicted by a high recombination rate; and (iii) across species the difference in TAA <-> TGA substitution rates between GC-rich and GC-poor genes is largest in genomes that possess higher between-gene GC variation. TAA optimality is supported both by enrichment in highly expressed genes and trends associated with effective population size. High TGA usage and high TAA→TGA rates in mammals are thus consistent with gBGC’s predicted ability to “drive” deleterious mutations and supports the hypothesis that sequence conservation need not be indicative of purifying selection. A general trend for GC-rich trinucleotides to reside at frequencies far above their mutational equilibrium in high recombining domains supports the generality of these results.
Collapse
Affiliation(s)
- Alexander Thomas Ho
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
- * E-mail:
| | | |
Collapse
|
5
|
Ma X, Øvrebø JI, Thompson EM. Evolution of CDK1 Paralog Specializations in a Lineage With Fast Developing Planktonic Embryos. Front Cell Dev Biol 2022; 9:770939. [PMID: 35155443 PMCID: PMC8832800 DOI: 10.3389/fcell.2021.770939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/27/2021] [Indexed: 12/03/2022] Open
Abstract
The active site of the essential CDK1 kinase is generated by core structural elements, among which the PSTAIRE motif in the critical αC-helix, is universally conserved in the single CDK1 ortholog of all metazoans. We report serial CDK1 duplications in the chordate, Oikopleura. Paralog diversifications in the PSTAIRE, activation loop substrate binding platform, ATP entrance site, hinge region, and main Cyclin binding interface, have undergone positive selection to subdivide ancestral CDK1 functions along the S-M phase cell cycle axis. Apparent coevolution of an exclusive CDK1d:Cyclin Ba/b pairing is required for oogenic meiosis and early embryogenesis, a period during which, unusually, CDK1d, rather than Cyclin Ba/b levels, oscillate, to drive very rapid cell cycles. Strikingly, the modified PSTAIRE of odCDK1d shows convergence over great evolutionary distance with plant CDKB, and in both cases, these variants exhibit increased specialization to M-phase.
Collapse
Affiliation(s)
- Xiaofei Ma
- College of Life Sciences, Northwest Normal University, Lanzhou, China
- Sars International Centre, University of Bergen, Bergen, Norway
| | - Jan Inge Øvrebø
- Sars International Centre, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Eric M. Thompson
- Sars International Centre, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
6
|
Trigila AP, Pisciottano F, Franchini LF. Hearing loss genes reveal patterns of adaptive evolution at the coding and non-coding levels in mammals. BMC Biol 2021; 19:244. [PMID: 34784928 PMCID: PMC8594068 DOI: 10.1186/s12915-021-01170-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 10/21/2021] [Indexed: 11/26/2022] Open
Abstract
Background Mammals possess unique hearing capacities that differ significantly from those of the rest of the amniotes. In order to gain insights into the evolution of the mammalian inner ear, we aim to identify the set of genetic changes and the evolutionary forces that underlie this process. We hypothesize that genes that impair hearing when mutated in humans or in mice (hearing loss (HL) genes) must play important roles in the development and physiology of the inner ear and may have been targets of selective forces across the evolution of mammals. Additionally, we investigated if these HL genes underwent a human-specific evolutionary process that could underlie the evolution of phenotypic traits that characterize human hearing. Results We compiled a dataset of HL genes including non-syndromic deafness genes identified by genetic screenings in humans and mice. We found that many genes including those required for the normal function of the inner ear such as LOXHD1, TMC1, OTOF, CDH23, and PCDH15 show strong signatures of positive selection. We also found numerous noncoding accelerated regions in HL genes, and among them, we identified active transcriptional enhancers through functional enhancer assays in transgenic zebrafish. Conclusions Our results indicate that the key inner ear genes and regulatory regions underwent adaptive evolution in the basal branch of mammals and along the human-specific branch, suggesting that they could have played an important role in the functional remodeling of the cochlea. Altogether, our data suggest that morphological and functional evolution could be attained through molecular changes affecting both coding and noncoding regulatory regions. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01170-6.
Collapse
Affiliation(s)
- Anabella P Trigila
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Buenos Aires, Argentina
| | - Francisco Pisciottano
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Buenos Aires, Argentina.,Current address: Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Buenos Aires, Argentina
| | - Lucía F Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Moreira A, Croze M, Delehelle F, Cussat-Blanc S, Luga H, Mollereau C, Balaresque P. Hearing Sensitivity of Primates: Recurrent and Episodic Positive Selection in Hair Cells and Stereocilia Protein-Coding Genes. Genome Biol Evol 2021; 13:6302699. [PMID: 34137817 PMCID: PMC8358225 DOI: 10.1093/gbe/evab133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2021] [Indexed: 12/29/2022] Open
Abstract
The large spectrum of hearing sensitivity observed in primates results from the impact of environmental and behavioral pressures to optimize sound perception and localization. Although evidence of positive selection in auditory genes has been detected in mammals including in Hominoids, selection has never been investigated in other primates. We analyzed 123 genes highly expressed in the inner ear of 27 primate species and tested to what extent positive selection may have shaped these genes in the order Primates tree. We combined both site and branch-site tests to obtain a comprehensive picture of the positively selected genes (PSGs) involved in hearing sensitivity, and drew a detailed description of the most affected branches in the tree. We chose a conservative approach, and thus focused on confounding factors potentially affecting PSG signals (alignment, GC-biased gene conversion, duplications, heterogeneous sequencing qualities). Using site tests, we showed that around 12% of these genes are PSGs, an α selection value consistent with average human genome estimates (10-15%). Using branch-site tests, we showed that the primate tree is heterogeneously affected by positive selection, with the black snub-nosed monkey, the bushbaby, and the orangutan, being the most impacted branches. A large proportion of these genes is inclined to shape hair cells and stereocilia, which are involved in the mechanotransduction process, known to influence frequency perception. Adaptive selection, and more specifically recurrent adaptive evolution, could have acted in parallel on a set of genes (ADGRV1, USH2A, PCDH15, PTPRQ, and ATP8A2) involved in stereocilia growth and the whole complex of bundle links connecting them, in species across different habitats, including high altitude and nocturnal environments.
Collapse
Affiliation(s)
- Andreia Moreira
- Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), Faculté de Médecine Purpan, CNRS UMR5288, Université de Toulouse, Université Toulouse III Paul Sabatier, France.,Institut de Recherche en Informatique de Toulouse (IRIT), CNRS UMR5505, Université Toulouse III Paul Sabatier, France
| | - Myriam Croze
- Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), Faculté de Médecine Purpan, CNRS UMR5288, Université de Toulouse, Université Toulouse III Paul Sabatier, France
| | - Franklin Delehelle
- Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), Faculté de Médecine Purpan, CNRS UMR5288, Université de Toulouse, Université Toulouse III Paul Sabatier, France.,Institut de Recherche en Informatique de Toulouse (IRIT), CNRS UMR5505, Université Toulouse III Paul Sabatier, France
| | - Sylvain Cussat-Blanc
- Institut de Recherche en Informatique de Toulouse (IRIT), CNRS UMR5505, Université Toulouse III Paul Sabatier, France
| | - Hervé Luga
- Institut de Recherche en Informatique de Toulouse (IRIT), CNRS UMR5505, Université Toulouse III Paul Sabatier, France
| | - Catherine Mollereau
- Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), Faculté de Médecine Purpan, CNRS UMR5288, Université de Toulouse, Université Toulouse III Paul Sabatier, France
| | - Patricia Balaresque
- Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), Faculté de Médecine Purpan, CNRS UMR5288, Université de Toulouse, Université Toulouse III Paul Sabatier, France
| |
Collapse
|
8
|
Ho AT, Hurst LD. Effective Population Size Predicts Local Rates but Not Local Mitigation of Read-through Errors. Mol Biol Evol 2021; 38:244-262. [PMID: 32797190 PMCID: PMC7783166 DOI: 10.1093/molbev/msaa210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In correctly predicting that selection efficiency is positively correlated with the effective population size (Ne), the nearly neutral theory provides a coherent understanding of between-species variation in numerous genomic parameters, including heritable error (germline mutation) rates. Does the same theory also explain variation in phenotypic error rates and in abundance of error mitigation mechanisms? Translational read-through provides a model to investigate both issues as it is common, mostly nonadaptive, and has good proxy for rate (TAA being the least leaky stop codon) and potential error mitigation via "fail-safe" 3' additional stop codons (ASCs). Prior theory of translational read-through has suggested that when population sizes are high, weak selection for local mitigation can be effective thus predicting a positive correlation between ASC enrichment and Ne. Contra to prediction, we find that ASC enrichment is not correlated with Ne. ASC enrichment, although highly phylogenetically patchy, is, however, more common both in unicellular species and in genes expressed in unicellular modes in multicellular species. By contrast, Ne does positively correlate with TAA enrichment. These results imply that local phenotypic error rates, not local mitigation rates, are consistent with a drift barrier/nearly neutral model.
Collapse
Affiliation(s)
- Alexander T Ho
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
- Corresponding author: E-mail:
| | - Laurence D Hurst
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| |
Collapse
|
9
|
Extra base hits: Widespread empirical support for instantaneous multiple-nucleotide changes. PLoS One 2021; 16:e0248337. [PMID: 33711070 PMCID: PMC7954308 DOI: 10.1371/journal.pone.0248337] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/24/2021] [Indexed: 01/03/2023] Open
Abstract
Despite many attempts to introduce evolutionary models that permit substitutions to instantly alter more than one nucleotide in a codon, the prevailing wisdom remains that such changes are rare and generally negligible or are reflective of non-biological artifacts, such as alignment errors. Codon models continue to posit that only single nucleotide change have non-zero rates. Here, we develop and test a simple hierarchy of codon-substitution models with non-zero evolutionary rates for only one-nucleotide (1H), one- and two-nucleotide (2H), or any (3H) codon substitutions. Using over 42, 000 empirical alignments, we find widespread statistical support for multiple hits: 61% of alignments prefer models with 2H allowed, and 23%-with 3H allowed. Analyses of simulated data suggest that these results are not likely to be due to simple artifacts such as model misspecification or alignment errors. Further modeling reveals that synonymous codon island jumping among codons encoding serine, especially along short branches, contributes significantly to this 3H signal. While serine codons were prominently involved in multiple-hit substitutions, there were other common exchanges contributing to better model fit. It appears that a small subset of sites in most alignments have unusual evolutionary dynamics not well explained by existing model formalisms, and that commonly estimated quantities, such as dN/dS ratios may be biased by model misspecification. Our findings highlight the need for continued evaluation of assumptions underlying workhorse evolutionary models and subsequent evolutionary inference techniques. We provide a software implementation for evolutionary biologists to assess the potential impact of extra base hits in their data in the HyPhy package and in the Datamonkey.org server.
Collapse
|
10
|
Belinky F, Ganguly I, Poliakov E, Yurchenko V, Rogozin IB. Analysis of Stop Codons within Prokaryotic Protein-Coding Genes Suggests Frequent Readthrough Events. Int J Mol Sci 2021; 22:ijms22041876. [PMID: 33672790 PMCID: PMC7918605 DOI: 10.3390/ijms22041876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Nonsense mutations turn a coding (sense) codon into an in-frame stop codon that is assumed to result in a truncated protein product. Thus, nonsense substitutions are the hallmark of pseudogenes and are used to identify them. Here we show that in-frame stop codons within bacterial protein-coding genes are widespread. Their evolutionary conservation suggests that many of them are not pseudogenes, since they maintain dN/dS values (ratios of substitution rates at non-synonymous and synonymous sites) significantly lower than 1 (this is a signature of purifying selection in protein-coding regions). We also found that double substitutions in codons—where an intermediate step is a nonsense substitution—show a higher rate of evolution compared to null models, indicating that a stop codon was introduced and then changed back to sense via positive selection. This further supports the notion that nonsense substitutions in bacteria are relatively common and do not necessarily cause pseudogenization. In-frame stop codons may be an important mechanism of regulation: Such codons are likely to cause a substantial decrease of protein expression levels.
Collapse
Affiliation(s)
- Frida Belinky
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (F.B.); (I.G.)
| | - Ishan Ganguly
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (F.B.); (I.G.)
| | - Eugenia Poliakov
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, 119435 Moscow, Russia
- Correspondence: (V.Y.); (I.B.R.)
| | - Igor B. Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (F.B.); (I.G.)
- Correspondence: (V.Y.); (I.B.R.)
| |
Collapse
|
11
|
Evolution of the genetic code; Evidence from serine codon use disparity in Escherichia coli. Proc Natl Acad Sci U S A 2020; 117:28572-28575. [PMID: 33168748 DOI: 10.1073/pnas.2014567117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Among the 20 amino acids, three of them-leucine (Leu), arginine (Arg), and serine (Ser)-are encoded by six different codons. In comparison, all of the other 17 amino acids are encoded by either 4, 3, 2, or 1 codon. Peculiarly, Ser is separated into two disparate Ser codon boxes, differing by at least two-base substitutions, in contrast to Leu and Arg, of which codons are mutually exchangeable by a single-base substitution. We propose that these two different Ser codons independently emerged during evolution. In this hypothesis, at the time of the origin of life there were only seven primordial amino acids: Valine (coded by GUX [X = U, C, A or G]), alanine (coded by GCX), aspartic acid (coded by GAY [Y = U or C]), glutamic acid (coded by GAZ [Z = A or G]), glycine (coded by GGX), Ser (coded by AGY), and Arg (coded by CGX and AGZ). All of these were derived from GGX for glycine by single-base substitutions. Later in evolution, another class of Ser codons, UCX, were derived from alanine codons, GCX, distinctly different from the other primordial Ser codon, AGY. From the analysis of the Escherichia coli genome, we find extensive disparities in the usage of these two Ser codons, as some genes use only AGY for Ser in their genes. In contrast, others use only UCX, pointing to distinct differences in their origins, consistent with our hypothesis.
Collapse
|
12
|
Lichman BR, Godden GT, Hamilton JP, Palmer L, Kamileen MO, Zhao D, Vaillancourt B, Wood JC, Sun M, Kinser TJ, Henry LK, Rodriguez-Lopez C, Dudareva N, Soltis DE, Soltis PS, Buell CR, O’Connor SE. The evolutionary origins of the cat attractant nepetalactone in catnip. SCIENCE ADVANCES 2020; 6:eaba0721. [PMID: 32426505 PMCID: PMC7220310 DOI: 10.1126/sciadv.aba0721] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/02/2020] [Indexed: 05/07/2023]
Abstract
Catnip or catmint (Nepeta spp.) is a flowering plant in the mint family (Lamiaceae) famed for its ability to attract cats. This phenomenon is caused by the compound nepetalactone, a volatile iridoid that also repels insects. Iridoids are present in many Lamiaceae species but were lost in the ancestor of the Nepetoideae, the subfamily containing Nepeta. Using comparative genomics, ancestral sequence reconstructions, and phylogenetic analyses, we probed the re-emergence of iridoid biosynthesis in Nepeta. The results of these investigations revealed mechanisms for the loss and subsequent re-evolution of iridoid biosynthesis in the Nepeta lineage. We present evidence for a chronology of events that led to the formation of nepetalactone biosynthesis and its metabolic gene cluster. This study provides insights into the interplay between enzyme and genome evolution in the origins, loss, and re-emergence of plant chemical diversity.
Collapse
Affiliation(s)
- Benjamin R. Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
- Corresponding author. (B.R.L.); (C.R.B.); (S.E.O.)
| | - Grant T. Godden
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - John P. Hamilton
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA
| | - Lira Palmer
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Mohamed O. Kamileen
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Dongyan Zhao
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA
| | - Brieanne Vaillancourt
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA
| | - Joshua C. Wood
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA
| | - Miao Sun
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Taliesin J. Kinser
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Laura K. Henry
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Carlos Rodriguez-Lopez
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Douglas E. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Pamela S. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - C. Robin Buell
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA
- MSU AgBioResearch, Michigan State University, 446 West Circle Drive, East Lansing, MI 48824, USA
- Corresponding author. (B.R.L.); (C.R.B.); (S.E.O.)
| | - Sarah E. O’Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
- Corresponding author. (B.R.L.); (C.R.B.); (S.E.O.)
| |
Collapse
|
13
|
Weber M, Burgos R, Yus E, Yang J, Lluch‐Senar M, Serrano L. Impact of C-terminal amino acid composition on protein expression in bacteria. Mol Syst Biol 2020; 16:e9208. [PMID: 32449593 PMCID: PMC7246954 DOI: 10.15252/msb.20199208] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 11/30/2022] Open
Abstract
The C-terminal sequence of a protein is involved in processes such as efficiency of translation termination and protein degradation. However, the general relationship between features of this C-terminal sequence and levels of protein expression remains unknown. Here, we identified C-terminal amino acid biases that are ubiquitous across the bacterial taxonomy (1,582 genomes). We showed that the frequency is higher for positively charged amino acids (lysine, arginine), while hydrophobic amino acids and threonine are lower. We then studied the impact of C-terminal composition on protein levels in a library of Mycoplasma pneumoniae mutants, covering all possible combinations of the two last codons. We found that charged and polar residues, in particular lysine, led to higher expression, while hydrophobic and aromatic residues led to lower expression, with a difference in protein levels up to fourfold. We further showed that modulation of protein degradation rate could be one of the main mechanisms driving these differences. Our results demonstrate that the identity of the last amino acids has a strong influence on protein expression levels.
Collapse
Affiliation(s)
- Marc Weber
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Raul Burgos
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Eva Yus
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Jae‐Seong Yang
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Maria Lluch‐Senar
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Luis Serrano
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- ICREABarcelonaSpain
| |
Collapse
|
14
|
Belinky F, Sela I, Rogozin IB, Koonin EV. Crossing fitness valleys via double substitutions within codons. BMC Biol 2019; 17:105. [PMID: 31842858 PMCID: PMC6916188 DOI: 10.1186/s12915-019-0727-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Single nucleotide substitutions in protein-coding genes can be divided into synonymous (S), with little fitness effect, and non-synonymous (N) ones that alter amino acids and thus generally have a greater effect. Most of the N substitutions are affected by purifying selection that eliminates them from evolving populations. However, additional mutations of nearby bases potentially could alleviate the deleterious effect of single substitutions, making them subject to positive selection. To elucidate the effects of selection on double substitutions in all codons, it is critical to differentiate selection from mutational biases. RESULTS We addressed the evolutionary regimes of within-codon double substitutions in 37 groups of closely related prokaryotic genomes from diverse phyla by comparing the fractions of double substitutions within codons to those of the equivalent double S substitutions in adjacent codons. Under the assumption that substitutions occur one at a time, all within-codon double substitutions can be represented as "ancestral-intermediate-final" sequences (where "intermediate" refers to the first single substitution and "final" refers to the second substitution) and can be partitioned into four classes: (1) SS, S intermediate-S final; (2) SN, S intermediate-N final; (3) NS, N intermediate-S final; and (4) NN, N intermediate-N final. We found that the selective pressure on the second substitution markedly differs among these classes of double substitutions. Analogous to single S (synonymous) substitutions, SS double substitutions evolve neutrally, whereas analogous to single N (non-synonymous) substitutions, SN double substitutions are subject to purifying selection. In contrast, NS show positive selection on the second step because the original amino acid is recovered. The NN double substitutions are heterogeneous and can be subject to either purifying or positive selection, or evolve neutrally, depending on the amino acid similarity between the final or intermediate and the ancestral states. CONCLUSIONS The results of the present, comprehensive analysis of the evolutionary landscape of within-codon double substitutions reaffirm the largely conservative regime of protein evolution. However, the second step of a double substitution can be subject to positive selection when the first step is deleterious. Such positive selection can result in frequent crossing of valleys on the fitness landscape.
Collapse
Affiliation(s)
- Frida Belinky
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Itamar Sela
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Igor B Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
15
|
Schwartz GW, Shauli T, Linial M, Hershberg U. Serine substitutions are linked to codon usage and differ for variable and conserved protein regions. Sci Rep 2019; 9:17238. [PMID: 31754132 PMCID: PMC6872785 DOI: 10.1038/s41598-019-53452-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 11/01/2019] [Indexed: 11/11/2022] Open
Abstract
Serine is the only amino acid that is encoded by two disjoint codon sets (TCN & AGY) so that a tandem substitution of two nucleotides is required to switch between the two sets. We show that these codon sets underlie distinct substitution patterns at positions subject to purifying and diversifying selections. We found that in humans, positions that are conserved among ~100 vertebrates, and thus subjected to purifying selection, are enriched for substitutions involving serine (TCN, denoted S'), proline, and alanine, (S'PA). In contrast, the less conserved positions are enriched for serine encoded with AGY codons (denoted S″), glycine and asparagine, (GS″N). We tested this phenomenon in the HIV envelope glycoprotein (gp120), and the V-gene that encodes B-cell receptors/antibodies. These fast evolving proteins both have hypervariable positions, which are under diversifying selection, closely adjacent to highly conserved structural regions. In both instances, we identified an opposite abundance of two groups of serine substitutions, with enrichment of S'PA in the conserved positions, and GS″N in the hypervariable regions. Finally, we analyzed the substitutions across 60,000 individual human exomes to show that, when serine has a specific functional constraint of phosphorylation capability, S' codons are 32-folds less prone than S″ to substitutions to Threonine or Tyrosine that could potentially retain the phosphorylation site capacity. Combined, our results, that cover evolutionary signals at different temporal scales, demonstrate that through its encoding by two codon sets, serine allows for the existence of alternating substitution patterns within positions of functional maintenance versus sites of rapid diversification.
Collapse
Affiliation(s)
- Gregory W Schwartz
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Tair Shauli
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Linial
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Uri Hershberg
- Drexel School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, USA.
- Department of Microbiology and Immunology, Drexel College of Medicine, Drexel University, Philadelphia, USA.
- Department of Human Biology, Faculty of Science, University of Haifa, Haifa, Israel.
| |
Collapse
|
16
|
Ho AT, Hurst LD. In eubacteria, unlike eukaryotes, there is no evidence for selection favouring fail-safe 3' additional stop codons. PLoS Genet 2019; 15:e1008386. [PMID: 31527909 PMCID: PMC6764699 DOI: 10.1371/journal.pgen.1008386] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/27/2019] [Accepted: 08/27/2019] [Indexed: 12/23/2022] Open
Abstract
Errors throughout gene expression are likely deleterious, hence genomes are under selection to ameliorate their consequences. Additional stop codons (ASCs) are in-frame nonsense ‘codons’ downstream of the primary stop which may be read by translational machinery should the primary stop have been accidentally read through. Prior evidence in several eukaryotes suggests that ASCs are selected to prevent potentially-deleterious consequences of read-through. We extend this evidence showing that enrichment of ASCs is common but not universal for single cell eukaryotes. By contrast, there is limited evidence as to whether the same is true in other taxa. Here, we provide the first systematic test of the hypothesis that ASCs act as a fail-safe mechanism in eubacteria, a group with high read-through rates. Contra to the predictions of the hypothesis we find: there is paucity, not enrichment, of ASCs downstream; substitutions that degrade stops are more frequent in-frame than out-of-frame in 3’ sequence; highly expressed genes are no more likely to have ASCs than lowly expressed genes; usage of the leakiest primary stop (TGA) in highly expressed genes does not predict ASC enrichment even compared to usage of non-leaky stops (TAA) in lowly expressed genes, beyond downstream codon +1. Any effect at the codon immediately proximal to the primary stop can be accounted for by a preference for a T/U residue immediately following the stop, although if anything, TT- and TC- starting codons are preferred. We conclude that there is no compelling evidence for ASC selection in eubacteria. This presents an unusual case in which the same error could be solved by the same mechanism in eukaryotes and prokaryotes but is not. We discuss two possible explanations: that, owing to the absence of nonsense mediated decay, bacteria may solve read-through via gene truncation and in eukaryotes certain prion states cause raised read-through rates. In all organisms, gene expression is error-prone. One such error, translational read-through, occurs where the primary stop codon of an expressed gene is missed by the translational machinery. Failure to terminate is likely to be costly, hence genomes are under selection to prevent this from happening. One proposed error-proofing strategy involves in-frame proximal additional stop codons (ASCs) which may act as a ‘fail-safe’ mechanism by providing another opportunity for translation to terminate. There is evidence for ASC enrichment in several eukaryotes. We extend this evidence showing it to be common but not universal in single celled eukaryotes. However, the situation in bacteria is poorly understood, despite bacteria having high read-through rates. Here, we test the fail-safe hypothesis within a broad range of bacteria. To our surprise, we find that not only are ASCs not enriched, but they may even be selected against. This provides evidence for an unusual circumstance where eukaryotes and prokaryotes could solve the same problem the same way but don’t. What are we to make of this? We suggest that if read-through is the problem, ASCs are not necessarily the expected solution. Owing to the absence of nonsense-mediated decay, a process that makes gene truncation in eukaryotes less viable, we propose bacteria may rescue a leaky stop by mutation that creates a new stop upstream. Alternatively, raised read-through rates in some particular conditions in eukaryotes might explain the difference.
Collapse
Affiliation(s)
- Alexander T. Ho
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
- * E-mail:
| | - Laurence D. Hurst
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| |
Collapse
|
17
|
Kleinnijenhuis AJ. Visualization of Genetic Drift Processes Using the Conserved Collagen 1α1 GXY Domain. J Mol Evol 2019; 87:106-130. [PMID: 30863881 DOI: 10.1007/s00239-019-09890-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/06/2019] [Indexed: 11/30/2022]
Abstract
Speciation proceeds by the accumulation of DNA differences in time. The genetic code changes as a result of genetic drift and by selective pressure. In variable domains, exposure to high selective pressure obscures the view on background mutations. Therefore, we characterized and visualized background mutations using the highly conserved collagen 1α1 GXY domain. Typical change routes were identified and the data set showed several indications that changes in the collagen 1α1 GXY domain have taken place randomly within a functionally restricted space. The types of nucleotide and codon group differences are similar across the vertebrate subphylum and gradually become less functionally neutral with increasing distance between species, which offers the opportunity for rapid visualization of evolutionary relations using a single domain. It was concluded that the findings and approach of the study could be important for analytical method development in authenticity research, especially when conserved domains are targeted.
Collapse
|
18
|
Multinucleotide mutations cause false inferences of lineage-specific positive selection. Nat Ecol Evol 2018; 2:1280-1288. [PMID: 29967485 PMCID: PMC6093625 DOI: 10.1038/s41559-018-0584-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 05/18/2018] [Indexed: 11/08/2022]
Abstract
Phylogenetic tests of adaptive evolution, such as the widely used branch-site test, assume that nucleotide substitutions occur singly and independently. But recent research has shown that errors at adjacent sites often occur during DNA replication, and the resulting multinucleotide mutations (MNMs) are overwhelmingly likely to be nonsynonymous. We evaluated whether the branch-site test (BST) might misinterpret sequence patterns produced by MNMs as false support for positive selection. We analyzed two genome-scale datasets– one from mammals and one from flies – and found that codons with multiple differences account for virtually all the support for lineage-specific positive selection in the BST. Simulations under conditions derived from these alignments but without positive selection show that realistic rates of MNMs cause a strong and systematic bias towards false inferences of selection. This bias is sufficient under empirically derived conditions to produce false positive inferences as often as the branch-site test infers positive selection from the empirical data. Although some genes with BST-positive results may have evolved adaptively, the test cannot distinguish sequence patterns produced by authentic positive selection from those caused by neutral fixation of MNMs. Many published inferences of adaptive evolution using this technique may therefore be artifacts of model violation caused by unincorporated neutral mutational processes. We introduce a model that incorporates MNMs and may help to ameliorate this bias.
Collapse
|
19
|
Purifying and positive selection in the evolution of stop codons. Sci Rep 2018; 8:9260. [PMID: 29915293 PMCID: PMC6006363 DOI: 10.1038/s41598-018-27570-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/18/2018] [Indexed: 12/13/2022] Open
Abstract
Modes of evolution of stop codons in protein-coding genes, especially the conservation of UAA, have been debated for many years. We reconstructed the evolution of stop codons in 40 groups of closely related prokaryotic and eukaryotic genomes. The results indicate that the UAA codons are maintained by purifying selection in all domains of life. In contrast, positive selection appears to drive switches from UAG to other stop codons in prokaryotes but not in eukaryotes. Changes in stop codons are significantly associated with increased substitution frequency immediately downstream of the stop. These positions are otherwise more strongly conserved in evolution compared to sites farther downstream, suggesting that such substitutions are compensatory. Although GC content has a major impact on stop codon frequencies, its contribution to the decreased frequency of UAA differs between bacteria and archaea, presumably, due to differences in their translation termination mechanisms.
Collapse
|
20
|
Selection on start codons in prokaryotes and potential compensatory nucleotide substitutions. Sci Rep 2017; 7:12422. [PMID: 28963504 PMCID: PMC5622118 DOI: 10.1038/s41598-017-12619-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/06/2017] [Indexed: 11/29/2022] Open
Abstract
Reconstruction of the evolution of start codons in 36 groups of closely related bacterial and archaeal genomes reveals purifying selection affecting AUG codons. The AUG starts are replaced by GUG and especially UUG significantly less frequently than expected under the neutral expectation derived from the frequencies of the respective nucleotide triplet substitutions in non-coding regions and in 4-fold degenerate sites. Thus, AUG is the optimal start codon that is actively maintained by purifying selection. However, purifying selection on start codons is significantly weaker than the selection on the same codons in coding sequences, although the switches between the codons result in conservative amino acid substitutions. The only exception is the AUG to UUG switch that is strongly selected against among start codons. Selection on start codons is most pronounced in evolutionarily conserved, highly expressed genes. Mutation of the start codon to a sub-optimal form (GUG or UUG) tends to be compensated by mutations in the Shine-Dalgarno sequence towards a stronger translation initiation signal. Together, all these findings indicate that in prokaryotes, translation start signals are subject to weak but significant selection for maximization of initiation rate and, consequently, protein production.
Collapse
|
21
|
Self-Referential Encoding on Modules of Anticodon Pairs-Roots of the Biological Flow System. Life (Basel) 2017; 7:life7020016. [PMID: 28383509 PMCID: PMC5492138 DOI: 10.3390/life7020016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/24/2017] [Accepted: 03/26/2017] [Indexed: 12/22/2022] Open
Abstract
The proposal that the genetic code was formed on the basis of (proto)tRNA Dimer-Directed Protein Synthesis is reviewed and updated. The tRNAs paired through the anticodon loops are an indication on the process. Dimers are considered mimics of the ribosomes-structures that hold tRNAs together and facilitate the transferase reaction, and of the translation process-anticodons are at the same time codons for each other. The primitive protein synthesis system gets stabilized when the product peptides are stable and apt to bind the producers therewith establishing a self-stimulating production cycle. The chronology of amino acid encoding starts with Glycine and Serine, indicating the metabolic support of the Glycine-Serine C1-assimilation pathway, which is also consistent with evidence on origins of bioenergetics mechanisms. Since it is not possible to reach for substrates simpler than C1 and compounds in the identified pathway are apt for generating the other central metabolic routes, it is considered that protein synthesis is the beginning and center of a succession of sink-effective mechanisms that drive the formation and evolution of the metabolic flow system. Plasticity and diversification of proteins construct the cellular system following the orientation given by the flow and implementing it. Nucleic acid monomers participate in bioenergetics and the polymers are conservative memory systems for the synthesis of proteins. Protoplasmic fission is the final sink-effective mechanism, part of cell reproduction, guaranteeing that proteins don't accumulate to saturation, which would trigger inhibition.
Collapse
|