1
|
Roy T, Satpati S, Sinjari A, Anoop A, Thimmakondu VS, Ghosal S. Energetic and Spectroscopic Properties of Astrophysically Relevant MgC 4H Radicals Using High-Level Ab Initio Calculations. J Phys Chem A 2024; 128:1466-1476. [PMID: 38364260 DOI: 10.1021/acs.jpca.3c06828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Considering the importance of magnesium-bearing hydrocarbon molecules (MgCnH; n = 2, 4, and 6) in the carbon-rich circumstellar envelopes (e.g., IRC+10216), a total of 28 constitutional isomers of MgC4H have been theoretically investigated using density functional theory (DFT) and coupled-cluster methods. The zero-point vibrational energy corrected relative energies at the ROCCSD(T)/cc-pCVTZ level of theory reveal that the linear isomer, 1-magnesapent-2,4-diyn-1-yl (1, 2Σ+), is the global minimum geometry on the MgC4H potential energy surface. The latter has been detected both in the laboratory and in the evolved carbon star, IRC+10216. The calculated spectroscopic data for 1 match well with the experimental observations (error ∼ 0.78%) which validates our theoretical methodology. Plausible isomerization processes happening among different isomers are examined using DFT and coupled-cluster methods. CASPT2 calculations have been performed for a few isomers exhibiting multireference characteristics. The second most stable isomer, 1-ethynyl-1λ3-magnesacycloprop-2-ene-2,3-diyl (2, 2A1, μ = 2.54 D), is 146 kJ mol-1 higher in energy than 1 and possibly the next promising candidate to be detected in the laboratory or in the interstellar medium in future.
Collapse
Affiliation(s)
- Tarun Roy
- Department of Chemistry, National Institute of Technology Durgapur, M G Avenue, Durgapur, West Bengal 713209, India
| | - Sayon Satpati
- Department of Chemistry, National Institute of Technology Durgapur, M G Avenue, Durgapur, West Bengal 713209, India
| | - Aland Sinjari
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030, United States
- Nuclear Science Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, United States
| | - Anakuthil Anoop
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Venkatesan S Thimmakondu
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030, United States
| | - Subhas Ghosal
- Department of Chemistry, National Institute of Technology Durgapur, M G Avenue, Durgapur, West Bengal 713209, India
| |
Collapse
|
2
|
Wang L, Jiang X, Trabelsi T, Wang G, Francisco JS, Zeng X, Zhou M. Spectroscopic Study of [Mg, H, N, C, O] Species: Implications for the Astrochemical Magnesium Chemistry. J Am Chem Soc 2024; 146:4162-4171. [PMID: 38306246 DOI: 10.1021/jacs.3c13144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Magnesium is an abundant metal element in space, and magnesium chemistry has vital importance in the evolution of interstellar medium (ISM) and circumstellar regions, such as the asymptotic giant branch star IRC+10216 where a variety of Mg compounds bearing H, C, N, and O have been detected and proposed as the important components in the gas-phase molecular clouds and solid-state dust grains. Herein, we report the formation and infrared spectroscopic characterization of the Mg-bearing molecules HMg, [Mg, N, C], [Mg, H, N, C], [Mg, N, C, O], and [Mg, H, N, C, O] from the reactions of Mg/Mg+ and the prebiotic isocyanic acid (HNCO) in the solid neon matrix. Based on their thermal diffusion and photochemical behavior, a complex reactivity landscape involving association, decomposition, and isomerization reactions of these Mg-bearing molecules is developed, which can not only help understand the chemical processes of the magnesium (iso)cyanides in astrochemistry but also provide implications on the presence of magnesium (iso)cyanates in the ISM and the chemical model for the dust grain surface reactions. It also provides a new paradigm of the key intermediate nature of the cationic complexes in the formation of neutral interstellar species.
Collapse
Affiliation(s)
- Lina Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Xin Jiang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Tarek Trabelsi
- Department of Earth and Environment Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6243, United States
| | - Guanjun Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Joseph S Francisco
- Department of Earth and Environment Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6243, United States
| | - Xiaoqing Zeng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Mingfei Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| |
Collapse
|
3
|
Schmitt-Kopplin P, Hertkorn N, Harir M, Moritz F, Lucio M, Bonal L, Quirico E, Takano Y, Dworkin JP, Naraoka H, Tachibana S, Nakamura T, Noguchi T, Okazaki R, Yabuta H, Yurimoto H, Sakamoto K, Yada T, Nishimura M, Nakato A, Miyazaki A, Yogata K, Abe M, Usui T, Yoshikawa M, Saiki T, Tanaka S, Terui F, Nakazawa S, Okada T, Watanabe SI, Tsuda Y. Soluble organic matter Molecular atlas of Ryugu reveals cold hydrothermalism on C-type asteroid parent body. Nat Commun 2023; 14:6525. [PMID: 37845217 PMCID: PMC10579312 DOI: 10.1038/s41467-023-42075-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/19/2023] [Indexed: 10/18/2023] Open
Abstract
The sample from the near-Earth carbonaceous asteroid (162173) Ryugu is analyzed in the context of carbonaceous meteorites soluble organic matter. The analysis of soluble molecules of samples collected by the Hayabusa2 spacecraft shines light on an extremely high molecular diversity on the C-type asteroid. Sequential solvent extracts of increasing polarity of Ryugu samples are analyzed using mass spectrometry with complementary ionization methods and structural information confirmed by nuclear magnetic resonance spectroscopy. Here we show a continuum in the molecular size and polarity, and no organomagnesium molecules are detected, reflecting a low temperature and water-rich environment on the parent body approving earlier mineralogical and chemical data. High abundance of sulfidic and nitrogen rich compounds as well as high abundance of ammonium ions confirm the water processing. Polycyclic aromatic hydrocarbons are also detected in a structural continuum of carbon saturations and oxidations, implying multiple origins of the observed organic complexity, thus involving generic processes such as earlier carbonization and serpentinization with successive low temperature aqueous alteration.
Collapse
Grants
- This research is partly supported by the Japan Society for the Promotion of Science (JSPS) under KAKENHI grant numbers; JP20H00202, JP20H05846, JP20K20485, JP20K14549, JP21J00504, JP21H01203, and JP21H04501, and JP21KK0062. J.P.D., J.C.A., E.T.P., D.P.G., H.L.M., J.E.E., and H.V.G. are grateful to NASA for support of the Consortium for Hayabusa2 Analysis of Organic Solubles. Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 364653263 – TRR 235 (CRC 235)
Collapse
Affiliation(s)
- Philippe Schmitt-Kopplin
- Technische Universität München, Analytische Lebensmittel Chemie, Maximus-von-Forum 2, 85354, Freising, Germany.
- Helmholtz Munich, Analytical BioGeoChemistry, Ingolstaedter Landstraße 1, 85764, Neuherberg, Germany.
- Max Planck Institute for Extraterrestrial Physics, Gießebachstraße 1, 85748, Garching bei München, Germany.
| | - Norbert Hertkorn
- Helmholtz Munich, Analytical BioGeoChemistry, Ingolstaedter Landstraße 1, 85764, Neuherberg, Germany
| | - Mourad Harir
- Helmholtz Munich, Analytical BioGeoChemistry, Ingolstaedter Landstraße 1, 85764, Neuherberg, Germany
| | - Franco Moritz
- Helmholtz Munich, Analytical BioGeoChemistry, Ingolstaedter Landstraße 1, 85764, Neuherberg, Germany
| | - Marianna Lucio
- Helmholtz Munich, Analytical BioGeoChemistry, Ingolstaedter Landstraße 1, 85764, Neuherberg, Germany
| | - Lydie Bonal
- Université Grenoble Alpes, CNRS, CNES, IPAG, 38000, Grenoble, France
| | - Eric Quirico
- Université Grenoble Alpes, CNRS, CNES, IPAG, 38000, Grenoble, France
| | - Yoshinori Takano
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, 237-0061, Japan
| | - Jason P Dworkin
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland, 20771, USA
| | - Hiroshi Naraoka
- Department of Earth and Planetary Sciences, Kyushu University, Motooka 744, Nishiku, Fukuoka, 819-0395, Japan
| | - Shogo Tachibana
- Tokyo Organization for Planetary and Space Science, University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, 252-5210, Japan
| | - Tomoki Nakamura
- Department of Earth Material Science, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
| | - Takaaki Noguchi
- Division of Earth and Planetary Sciences, Kyoto University, Kyoto, 606-8502, Japan
| | - Ryuji Okazaki
- Department of Earth and Planetary Sciences, Kyushu University, Motooka 744, Nishiku, Fukuoka, 819-0395, Japan
| | - Hikaru Yabuta
- Department of Earth and Planetary Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Hisayoshi Yurimoto
- Department of Earth and Planetary Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0810, Japan
| | - Kanako Sakamoto
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, 252-5210, Japan
| | - Toru Yada
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, 252-5210, Japan
| | - Masahiro Nishimura
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, 252-5210, Japan
| | - Aiko Nakato
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, 252-5210, Japan
| | - Akiko Miyazaki
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, 252-5210, Japan
| | - Kasumi Yogata
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, 252-5210, Japan
| | - Masanao Abe
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, 252-5210, Japan
| | - Tomohiro Usui
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, 252-5210, Japan
| | - Makoto Yoshikawa
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, 252-5210, Japan
| | - Takanao Saiki
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, 252-5210, Japan
| | - Satoshi Tanaka
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, 252-5210, Japan
| | - Fuyuto Terui
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, 252-5210, Japan
| | - Satoru Nakazawa
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, 252-5210, Japan
| | - Tatsuaki Okada
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, 252-5210, Japan
| | - Sei-Ichiro Watanabe
- Graduate School of Environment Studies, Nagoya University, Nagoya, 464-8601, Japan
| | - Yuichi Tsuda
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, 252-5210, Japan
| |
Collapse
|
4
|
Yoshimura T, Takano Y, Naraoka H, Koga T, Araoka D, Ogawa NO, Schmitt-Kopplin P, Hertkorn N, Oba Y, Dworkin JP, Aponte JC, Yoshikawa T, Tanaka S, Ohkouchi N, Hashiguchi M, McLain H, Parker ET, Sakai S, Yamaguchi M, Suzuki T, Yokoyama T, Yurimoto H, Nakamura T, Noguchi T, Okazaki R, Yabuta H, Sakamoto K, Yada T, Nishimura M, Nakato A, Miyazaki A, Yogata K, Abe M, Okada T, Usui T, Yoshikawa M, Saiki T, Tanaka S, Terui F, Nakazawa S, Watanabe SI, Tsuda Y, Tachibana S. Chemical evolution of primordial salts and organic sulfur molecules in the asteroid 162173 Ryugu. Nat Commun 2023; 14:5284. [PMID: 37723151 PMCID: PMC10507048 DOI: 10.1038/s41467-023-40871-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/10/2023] [Indexed: 09/20/2023] Open
Abstract
Samples from the carbonaceous asteroid (162173) Ryugu provide information on the chemical evolution of organic molecules in the early solar system. Here we show the element partitioning of the major component ions by sequential extractions of salts, carbonates, and phyllosilicate-bearing fractions to reveal primordial brine composition of the primitive asteroid. Sodium is the dominant electrolyte of the salt fraction extract. Anions and NH4+ are more abundant in the salt fraction than in the carbonate and phyllosilicate fractions, with molar concentrations in the order SO42- > Cl- > S2O32- > NO3- > NH4+. The salt fraction extracts contain anionic soluble sulfur-bearing species such as Sn-polythionic acids (n < 6), Cn-alkylsulfonates, alkylthiosulfonates, hydroxyalkylsulfonates, and hydroxyalkylthiosulfonates (n < 7). The sulfur-bearing soluble compounds may have driven the molecular evolution of prebiotic organic material transforming simple organic molecules into hydrophilic, amphiphilic, and refractory S allotropes.
Collapse
Affiliation(s)
- Toshihiro Yoshimura
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima 2-15, Yokosuka, Kanagawa, 237-0061, Japan.
| | - Yoshinori Takano
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima 2-15, Yokosuka, Kanagawa, 237-0061, Japan
| | - Hiroshi Naraoka
- Department of Earth and Planetary Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Toshiki Koga
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima 2-15, Yokosuka, Kanagawa, 237-0061, Japan
| | - Daisuke Araoka
- Geological Survey of Japan (GSJ), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8567, Japan
| | - Nanako O Ogawa
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima 2-15, Yokosuka, Kanagawa, 237-0061, Japan
| | - Philippe Schmitt-Kopplin
- Helmholtz Zentrum München, Analytical BioGeoChemistry, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
- Technische Universität München, Analytische Lebensmittel Chemie, Maximus-von-Forum 2, 85354, Freising, Germany
| | - Norbert Hertkorn
- Helmholtz Zentrum München, Analytical BioGeoChemistry, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
| | - Yasuhiro Oba
- Institute of Low Temperature Science (ILTS), Hokkaido University, N19W8 Kita-ku, Sapporo, 060-0189, Japan
| | - Jason P Dworkin
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - José C Aponte
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - Takaaki Yoshikawa
- HORIBA Advanced Techno, Co., Ltd., Kisshoin, Minami-ku, Kyoto, 601-8510, Japan
| | - Satoru Tanaka
- HORIBA Techno Service Co., Ltd. Kisshoin, Minami-ku, Kyoto, 601-8510, Japan
| | - Naohiko Ohkouchi
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima 2-15, Yokosuka, Kanagawa, 237-0061, Japan
| | - Minako Hashiguchi
- Department of Earth and Planetary Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Hannah McLain
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - Eric T Parker
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - Saburo Sakai
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima 2-15, Yokosuka, Kanagawa, 237-0061, Japan
| | - Mihoko Yamaguchi
- Thermo Fisher Scientific Inc., 3-9 Moriyacho, Kanagawa-ku, Yokohama-shi, Kanagawa, 221-0022, Japan
| | - Takahiro Suzuki
- Thermo Fisher Scientific Inc., 3-9 Moriyacho, Kanagawa-ku, Yokohama-shi, Kanagawa, 221-0022, Japan
| | - Tetsuya Yokoyama
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo, 152-8551, Japan
| | - Hisayoshi Yurimoto
- Creative Research Institution (CRIS), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
| | - Tomoki Nakamura
- Department of Earth Science, Tohoku University, Sendai, 980-8678, Japan
| | - Takaaki Noguchi
- Department of Earth and Planetary Sciences, Kyoto University, Kyoto, 606-8502, Japan
| | - Ryuji Okazaki
- Department of Earth and Planetary Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hikaru Yabuta
- Earth and Planetary Systems Science Program, Hiroshima University, Higashi Hiroshima, 739-8526, Japan
| | - Kanako Sakamoto
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Toru Yada
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Masahiro Nishimura
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Aiko Nakato
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Akiko Miyazaki
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Kasumi Yogata
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Masanao Abe
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Tatsuaki Okada
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Tomohiro Usui
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Makoto Yoshikawa
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Takanao Saiki
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Satoshi Tanaka
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Fuyuto Terui
- Kanagawa Institute of Technology, Atsugi, 243-0292, Japan
| | - Satoru Nakazawa
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Sei-Ichiro Watanabe
- Department of Earth and Planetary Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Yuichi Tsuda
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Shogo Tachibana
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
- UTokyo Organization for Planetary and Space Science (UTOPS), University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
5
|
Furukawa Y, Saigusa D, Kano K, Uruno A, Saito R, Ito M, Matsumoto M, Aoki J, Yamamoto M, Nakamura T. Distributions of CHN compounds in meteorites record organic syntheses in the early solar system. Sci Rep 2023; 13:6683. [PMID: 37095091 PMCID: PMC10125961 DOI: 10.1038/s41598-023-33595-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 04/15/2023] [Indexed: 04/26/2023] Open
Abstract
Carbonaceous meteorites contain diverse soluble organic compounds. These compounds formed in the early solar system from volatiles accreted on tiny dust particles. However, the difference in the organic synthesis on respective dust particles in the early solar system remains unclear. We found micrometer-scale heterogeneous distributions of diverse CHN1-2 and CHN1-2O compounds in two primitive meteorites: the Murchison and NWA 801, using a surface-assisted laser desorption/ionization system connected to a high mass resolution mass spectrometer. These compounds contained mutual relationships of ± H2, ± CH2, ± H2O, and ± CH2O and showed highly similar distributions, indicating that they are the products of series reactions. The heterogeneity was caused by the micro-scale difference in the abundance of these compounds and the extent of the series reactions, indicating that these compounds formed on respective dust particles before asteroid accretion. The results of the present study provide evidence of heterogeneous volatile compositions and the extent of organic reactions among the dust particles that formed carbonaceous asteroids. The compositions of diverse small organic compounds associated with respective dust particles in meteorites are useful to understand different histories of volatile evolution in the early solar system.
Collapse
Affiliation(s)
| | - Daisuke Saigusa
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Akira Uruno
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Department of Medical Biochemistry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Ritsumi Saito
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Department of Medical Biochemistry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Motoo Ito
- Kochi Institute for Core Sample Research, X-star, Japan Agency for Marine-Earth Science and Technology, Nankoku, Japan
| | | | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Department of Medical Biochemistry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Tomoki Nakamura
- Department of Earth Science, Tohoku University, Sendai, Japan
| |
Collapse
|
6
|
Schmitt-Kopplin P, Matzka M, Ruf A, Menez B, Chennaoui Aoudjehane H, Harir M, Lucio M, Hertzog J, Hertkorn N, Gougeon RD, Hoffmann V, Hinman NW, Ferrière L, Greshake A, Gabelica Z, Trif L, Steele A. Complex carbonaceous matter in Tissint martian meteorites give insights into the diversity of organic geochemistry on Mars. SCIENCE ADVANCES 2023; 9:eadd6439. [PMID: 36630504 PMCID: PMC9833655 DOI: 10.1126/sciadv.add6439] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
We report a huge organic diversity in the Tissint Mars meteorite and the sampling of several mineralogical lithologies, which revealed that the organic molecules were nonuniformly distributed in functionality and abundance. The range of organics in Tissint meteorite were abundant C3-7 aliphatic branched carboxylic acids and aldehydes, olefins, and polyaromatics with and without heteroatoms in a homologous oxidation structural continuum. Organomagnesium compounds were extremely abundant in olivine macrocrystals and in the melt veins, reflecting specific organo-synsthesis processes in close interaction with the magnesium silicates and temperature stresses, as previously observed. The diverse chemistry and abundance in complex molecules reveal heterogeneity in organic speciation within the minerals grown in the martian mantle and crust that may have evolved over geological time.
Collapse
Affiliation(s)
- Philippe Schmitt-Kopplin
- Technische Universität München, Chair of Analytical Food Chemistry, Freising-Weihenstephan 85354, Germany
- Max Planck Institute for Extraterrestrial Physics, Center for Astrochemical Studies, Garching 85748, Germany
- Helmholtz München, Analytical BioGeoChemistry, Neuherberg 85764, Germany
| | - Marco Matzka
- Helmholtz München, Analytical BioGeoChemistry, Neuherberg 85764, Germany
| | - Alexander Ruf
- Technische Universität München, Chair of Analytical Food Chemistry, Freising-Weihenstephan 85354, Germany
- Excellence Cluster ORIGINS, Boltzmannstraße 2, Garching 85748, Germany
- Ludwig-Maximilians-University, Department of Chemistry and Pharmacy, Butenandtstr. 5-13, Munich 81377, Germany
| | - Benedicte Menez
- Université de Paris, Institut de Physique du Globe de Paris, CNRS - 1, rue Jussieu, Paris Cedex 05 75238, France
| | - Hasnaa Chennaoui Aoudjehane
- Faculty of Sciences Ain Chock, GAIA Laboratory, Hassan II University of Casablanca, km 8 Route d’El Jadida, Casablanca 20150, Morocco
| | - Mourad Harir
- Helmholtz München, Analytical BioGeoChemistry, Neuherberg 85764, Germany
| | - Marianna Lucio
- Helmholtz München, Analytical BioGeoChemistry, Neuherberg 85764, Germany
| | - Jasmine Hertzog
- Technische Universität München, Chair of Analytical Food Chemistry, Freising-Weihenstephan 85354, Germany
- Helmholtz München, Analytical BioGeoChemistry, Neuherberg 85764, Germany
| | - Norbert Hertkorn
- Helmholtz München, Analytical BioGeoChemistry, Neuherberg 85764, Germany
| | - Régis D. Gougeon
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne/AgroSupDijon, Institut Universitaire de la Vigne et du Vin Jules Guyot, Dijon 21000, France
| | - Victor Hoffmann
- Faculty of Geosciences, Dep. Geo- and Environmental Sciences, LMU, Muenchen, Germany
| | | | | | | | - Zelimir Gabelica
- Université de Haute Alsace, École Nationale Supérieure de Chimie de Mulhouse, F-68094 Mulhouse Cedex, France
| | - László Trif
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Budapest, Hungary
| | - Andrew Steele
- Earth and Planetary Laboratory, Carnegie Institution for Science, 5251 Broad Branch Rd., Washington, DC 20015, USA
| |
Collapse
|
7
|
Ruf A, Danger G. Network Analysis Reveals Spatial Clustering and Annotation of Complex Chemical Spaces: Application to Astrochemistry. Anal Chem 2022; 94:14135-14142. [PMID: 36209417 PMCID: PMC9583070 DOI: 10.1021/acs.analchem.2c01271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
How are molecules
linked to each other in complex systems?
In a
proof-of-concept study, we have developed the method mol2net (https://zenodo.org/record/7025094) to generate and analyze the molecular network of complex astrochemical
data (from high-resolution Orbitrap MS1 analysis of H2O:CH3OH:NH3 interstellar ice analogs)
in a data-driven and unsupervised manner, without any prior knowledge
about chemical reactions. The molecular network is clustered according
to the initial NH3 content and unlocked HCN, NH3, and H2O as spatially resolved key transformations. In
comparison with the PubChem database, four subsets were annotated:
(i) saturated C-backbone molecules without N, (ii) saturated N-backbone
molecules, (iii) unsaturated C-backbone molecules without N, and (iv)
unsaturated N-backbone molecules. These findings were validated with
previous results (e.g., identifying the two major graph components
as previously described N-poor and N-rich molecular groups) but with
additional information about subclustering, key transformations, and
molecular structures, and thus, the structural characterization of
large complex organic molecules in interstellar ice analogs has been
significantly refined.
Collapse
Affiliation(s)
- Alexander Ruf
- Laboratoire de Physique des Interactions Ioniques et Moléculaires (PIIM), Université Aix-Marseille, CNRS, 13013 Marseille, France
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University, 81377 Munich, Germany
- Excellence Cluster ORIGINS, Boltzmannstraße 2, 85748 Garching, Germany
| | - Grégoire Danger
- Laboratoire de Physique des Interactions Ioniques et Moléculaires (PIIM), Université Aix-Marseille, CNRS, 13013 Marseille, France
- Aix-Marseille Université, CNRS, CNES, LAM, 13013 Marseille, France
- Institut Universitaire de France (IUF), 75231 Paris, France
| |
Collapse
|
8
|
Panda S, Sivadasan D, Job N, Sinjari A, Thirumoorthy K, Anoop A, Thimmakondu VS. Why Are MgC 3H Isomers Missing in the Interstellar Medium? J Phys Chem A 2022; 126:4465-4475. [PMID: 35767462 PMCID: PMC9382639 DOI: 10.1021/acs.jpca.2c02220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Considering the recent findings of linear doublet (2Σ+) MgCnH isomers (n = 2, 4, and 6) in the evolved carbon star IRC+10216, various structural isomers of MgC3H and MgC3H+ are theoretically investigated here. For MgC3H, 11 doublet and 8 quartet stationary points ranging from 0.0 to 71.8 and 0.0 to 110.1 kcal mol-1, respectively, have been identified initially at the UωB97XD/6-311++G(2d,2p) level. To get accurate relative energies, further energy evaluations are carried out for all isomers with coupled cluster methods and thermochemical modules such as G3//B3LYP, G4MP2, and CBS-QB3 methods. Unlike the even series, where the global minima are linear molecules with a Mg atom at one end, in the case of MgC3H, the global minimum geometry turns out to be a cyclic isomer, 2-magnesabicyclo[1.1.0]but-1,3,4-triyl (1, C2v, 2A1). In addition, five low-lying isomers, magnesium-substituted cyclopropenylidene (2, Cs, 2A'), 1-magnesabut-2,3-dien-1-yl-4-ylidene (3, Cs, 2A″), 1-magnesabut-2-yn-1-yl-4-ylidene (4, Cs, 2A″), 2λ3-magnesabicyclo[1.1.0]but-1,3-diyl-4-ylidene (5, C2v;, 2A1), and 1-magnesabut-2,3-dien-2-yl-4-ylidene (6, C∞v, 2Σ+), were also identified. The doublet linear isomer of MgC3H, 1-magnesabutatrienyl (10, C∞v, 2Σ+) turns out to be a minimum but lies 54.1 kcal mol-1 above 1 at the ROCCSD(T)/cc-pVTZ level. The quartet (4Σ+) electronic state of 10 was also found to be a minimum, but it lies 8.0 kcal mol-1 above 1 at the same level. Among quartets, isomer 10 is the most stable molecule. The next quartet electronic state (of isomer 11) is 34.4 kcal mol-1 above 10, and all other quartet electronic states of other isomers are not energetically close to low-lying doublet isomers 2 to 6. Overall, the chemical space of MgC3H contains more cyclic isomers (1, 2, and 3) on the low-energy side unlike their even-numbered MgCnH counterparts (n = 2, 4, and 6). Though the quartet electronic state of 10 is linear, it is not the global minimum geometry on the MgC3H potential energy surface. Isomerization pathways among the low-lying isomers (doublets of 1-4 and a quartet of 10) reveal that these molecules are kinetically stable. For the cation, MgC3H+, the cyclic isomers (1+, 2+, and 3+) are on the low-energy side. The singlet linear isomer, 10+, is a fourth-order saddle point. The low-lying cations are quite polar, with dipole moment values of >7.00 D. The current theoretical data would be helpful to both laboratory astrophysicists and radioastronomers for further studies on the MgC3H0/+ isomers.
Collapse
Affiliation(s)
- Sunanda Panda
- Department
of Chemistry, Indian Institute of Technology
Kharagpur, Kharagpur 721 302, West Bengal, India
| | - Devipriya Sivadasan
- Department
of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - Nisha Job
- Department
of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - Aland Sinjari
- School
of Mathematics, Biological, Exercise & Physical Sciences, San Diego Miramar College, San Diego, California 92126-2910, United States
| | - Krishnan Thirumoorthy
- Department
of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - Anakuthil Anoop
- Department
of Chemistry, Indian Institute of Technology
Kharagpur, Kharagpur 721 302, West Bengal, India
| | - Venkatesan S. Thimmakondu
- Department
of Chemistry and Biochemistry, San Diego
State University, San Diego, California 92182-1030, United States
| |
Collapse
|
9
|
Wang R, Zhou J, Qu G, Wang T, Jia H, Zhu L. FT-ICR/MS deciphers formation of unknown macromolecular disinfection byproducts from algal organic matters after plasma oxidation. WATER RESEARCH 2022; 218:118492. [PMID: 35489152 DOI: 10.1016/j.watres.2022.118492] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Algal organic matter (AOM) is a potential precursor of disinfection byproducts (DBPs) in water treatment. It is a major challenge to identify macromolecular DBPs due to the diversity of AOM. In this study, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR/MS) was applied to diagnose the AOM diversity after algae removal by plasma oxidation and to recognize the macromolecular DBPs in subsequent chlorination. Significant removal of AOM released by M. aeruginosa, C. raciborskii, and A. spiroies was achieved by plasma oxidation, accompanied by decrease in the proportion of CHNO formulas and increase in CHO formulas. Without plasma treatment, chlorination generated approximately 2486 macromolecular carbonaceous DBPs (C-DBPs) and 1984 nitrogenous DBPs (N-DBPs), with C11HnOmClx and C18HnNmOzClx as the most abundant DBPs. The numbers of C-DBPs and N-DBPs decreased by 63.3% and 62.9%, respectively, if plasma treatment was applied prior to chlorination. Network computational analysis revealed that Cl substitution was the main formation pathway of AOM-derived DBP formation rather than HOCl addition. The precursors of macromolecular DBPs contained a characteristic atomic number of C and O (7 ≤ C ≤ 18; 3 ≤ O ≤ 11). This study firstly disclosed the relationship between AOM diversity and novel macromolecular DBPs during algae-laden water treatment.
Collapse
Affiliation(s)
- Ruigang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Guangzhou Qu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
10
|
Chirality in Organic and Mineral Systems: A Review of Reactivity and Alteration Processes Relevant to Prebiotic Chemistry and Life Detection Missions. Symmetry (Basel) 2022. [DOI: 10.3390/sym14030460] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Chirality is a central feature in the evolution of biological systems, but the reason for biology’s strong preference for specific chiralities of amino acids, sugars, and other molecules remains a controversial and unanswered question in origins of life research. Biological polymers tend toward homochiral systems, which favor the incorporation of a single enantiomer (molecules with a specific chiral configuration) over the other. There have been numerous investigations into the processes that preferentially enrich one enantiomer to understand the evolution of an early, racemic, prebiotic organic world. Chirality can also be a property of minerals; their interaction with chiral organics is important for assessing how post-depositional alteration processes could affect the stereochemical configuration of simple and complex organic molecules. In this paper, we review the properties of organic compounds and minerals as well as the physical, chemical, and geological processes that affect organic and mineral chirality during the preservation and detection of organic compounds. We provide perspectives and discussions on the reactions and analytical techniques that can be performed in the laboratory, and comment on the state of knowledge of flight-capable technologies in current and future planetary missions, with a focus on organics analysis and life detection.
Collapse
|
11
|
Exploring the link between molecular cloud ices and chondritic organic matter in laboratory. Nat Commun 2021; 12:3538. [PMID: 34112800 PMCID: PMC8192538 DOI: 10.1038/s41467-021-23895-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/18/2021] [Indexed: 11/27/2022] Open
Abstract
Carbonaceous meteorites are fragments of asteroids rich in organic material. In the forming solar nebula, parent bodies may have accreted organic materials resulting from the evolution of icy grains observed in dense molecular clouds. The major issues of this scenario are the secondary processes having occurred on asteroids, which may have modified the accreted matter. Here, we explore the evolution of organic analogs of protostellar/protoplanetary disk material once accreted and submitted to aqueous alteration at 150 °C. The evolution of molecular compounds during up to 100 days is monitored by high resolution mass spectrometry. We report significant evolution of the molecular families, with the decreases of H/C and N/C ratios. We find that the post-aqueous products share compositional similarities with the soluble organic matter of the Murchison meteorite. These results give a comprehensive scenario of the possible link between carbonaceous meteorites and ices of dense molecular clouds. Several scenarios exist to explain the origins of the organic matter found in carbonaceous chondrites. Here, the authors show laboratory experiments confirming that a significant portion of the soluble organic matter can originate from organic ices inherited from the dense molecular cloud.
Collapse
|
12
|
Zherebker A, Kostyukevich Y, Volkov DS, Chumakov RG, Friederici L, Rüger CP, Kononikhin A, Kharybin O, Korochantsev A, Zimmermann R, Perminova IV, Nikolaev E. Speciation of organosulfur compounds in carbonaceous chondrites. Sci Rep 2021; 11:7410. [PMID: 33795703 PMCID: PMC8016918 DOI: 10.1038/s41598-021-86576-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/17/2021] [Indexed: 11/17/2022] Open
Abstract
Despite broad application of different analytical techniques for studies on organic matter of chondrite meteorites, information about composition and structure of individual compounds is still very limited due to extreme molecular diversity of extraterrestrial organic matter. Here we present the first application of isotopic exchange assisted Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) for analysis of alkali extractable fraction of insoluble organic matter (IOM) of the Murchison and Allende meteorites. This allowed us to determine the individual S-containing ions with different types of sulfur atoms in IOM. Thiols, thiophenes, sulfoxides, sulfonyls and sulfonates were identified in both samples but with different proportions, which contribution corroborated with the hydrothermal and thermal history of the meteorites. The results were supported by XPS and thermogravimetric analysis coupled to FTICR MS. The latter was applied for the first time for analysis of chondritic IOM. To emphasize the peculiar extraterrestrial origin of IOM we have compared it with coal kerogen, which is characterized by the comparable complexity of molecular composition but its aromatic nature and low oxygen content can be ascribed almost exclusively to degradation of biomacromolecules.
Collapse
Affiliation(s)
- Alexander Zherebker
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow region, Russia, 143025
| | - Yury Kostyukevich
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow region, Russia, 143025
| | - Dmitry S Volkov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | | | - Lukas Friederici
- Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, University of Rostock, 18059, Rostock, Germany
| | - Christopher P Rüger
- Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, University of Rostock, 18059, Rostock, Germany
| | - Alexey Kononikhin
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow region, Russia, 143025.,V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Center of Chemical Physic, Russian Academy of Sciences, Moscow, Russia
| | - Oleg Kharybin
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow region, Russia, 143025
| | - Alexander Korochantsev
- Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences, Kosygina 19, Moscow, Russia, 119334
| | - Ralf Zimmermann
- Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, University of Rostock, 18059, Rostock, Germany.,Joint Mass Spectrometry Centre of Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Irina V Perminova
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.
| | - Eugene Nikolaev
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow region, Russia, 143025.
| |
Collapse
|
13
|
Heck PR, Greer J, Boesenberg JS, Bouvier A, Caffee MW, Cassata WS, Corrigan C, Davis AM, Davis DW, Fries M, Hankey M, Jenniskens P, Schmitt‐Kopplin P, Sheu S, Trappitsch R, Velbel M, Weller B, Welten K, Yin Q, Sanborn ME, Ziegler K, Rowland D, Verosub KL, Zhou Q, Liu Y, Tang G, Li Q, Li X, Zajacz Z. The fall, recovery, classification, and initial characterization of the Hamburg, Michigan H4 chondrite. METEORITICS & PLANETARY SCIENCE 2020; 55:2341-2359. [PMID: 33510569 PMCID: PMC7820957 DOI: 10.1111/maps.13584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/30/2020] [Accepted: 09/23/2020] [Indexed: 06/12/2023]
Abstract
The Hamburg meteorite fell on January 16, 2018, near Hamburg, Michigan, after a fireball event widely observed in the U.S. Midwest and in Ontario, Canada. Several fragments fell onto frozen surfaces of lakes and, thanks to weather radar data, were recovered days after the fall. The studied rock fragments show no or little signs of terrestrial weathering. Here, we present the initial results from an international consortium study to describe the fall, characterize the meteorite, and probe the collision history of Hamburg. About 1 kg of recovered meteorites was initially reported. Petrology, mineral chemistry, trace element and organic chemistry, and O and Cr isotopic compositions are characteristic of H4 chondrites. Cosmic ray exposure ages based on cosmogenic 3He, 21Ne, and 38Ar are ~12 Ma, and roughly agree with each other. Noble gas data as well as the cosmogenic 10Be concentration point to a small 40-60 cm diameter meteoroid. An 40Ar-39Ar age of 4532 ± 24 Ma indicates no major impact event occurring later in its evolutionary history, consistent with data of other H4 chondrites. Microanalyses of phosphates with LA-ICPMS give an average Pb-Pb age of 4549 ± 36 Ma. This is in good agreement with the average SIMS Pb-Pb phosphate age of 4535.3 ± 9.5 Ma and U-Pb Concordia age of 4535 ± 10 Ma. The weighted average age of 4541.6 ± 9.5 Ma reflects the metamorphic phosphate crystallization age after parent body formation in the early solar system.
Collapse
|
14
|
Naraoka H, Hashiguchi M, Sato Y, Hamase K. New Applications of High-Resolution Analytical Methods to Study Trace Organic Compounds in Extraterrestrial Materials. Life (Basel) 2019; 9:life9030062. [PMID: 31357539 PMCID: PMC6789776 DOI: 10.3390/life9030062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/21/2019] [Accepted: 07/22/2019] [Indexed: 11/16/2022] Open
Abstract
Organic compounds are present as complex mixtures in extraterrestrial materials including meteorites, which may have played important roles in the origin of life on the primitive Earth. However, the distribution and formation mechanisms of meteoritic organic compounds are not well understood, because conventional analytical methods have limited resolution and sensitivity to resolve their molecular complexity. In this study, advanced instrumental development and analyses are proposed in order to study the trace organic compounds of extraterrestrial materials: (1) a clean room environment to avoid organic contamination during analysis; (2) high-mass-resolution analysis (up to ~150,000 m/m) coupled with high-performance liquid chromatography (HPLC) in order to determine the elemental composition using exact mass for inferring the chemical structure; (3) superior chromatographic separation using a two-dimensional system in order to determine the structural and optical isomers of amino acids; and (4) in situ organic compound analysis and molecular imaging of the sample surface. This approach revealed a higher complexity of organic compounds with a heterogeneous distribution in meteorites. These new methods can be applied to study the chemical evolution of meteoritic organic compounds as well as the molecular occurrence in very-low-mass extraterrestrial materials such as asteroid-returned samples.
Collapse
Affiliation(s)
- Hiroshi Naraoka
- Research Center for Planetary Trace Organic Compounds, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
- Department of Earth and Planetary Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Minako Hashiguchi
- Research Center for Planetary Trace Organic Compounds, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yu Sato
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kenji Hamase
- Research Center for Planetary Trace Organic Compounds, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
15
|
Smith KE, House CH, Arevalo RD, Dworkin JP, Callahan MP. Organometallic compounds as carriers of extraterrestrial cyanide in primitive meteorites. Nat Commun 2019; 10:2777. [PMID: 31239434 PMCID: PMC6592946 DOI: 10.1038/s41467-019-10866-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/05/2019] [Indexed: 11/08/2022] Open
Abstract
Extraterrestrial delivery of cyanide may have been crucial for the origin of life on Earth since cyanide is involved in the abiotic synthesis of numerous organic compounds found in extant life; however, little is known about the abundance and species of cyanide present in meteorites. Here, we report cyanide abundance in a set of CM chondrites ranging from 50 ± 1 to 2472 ± 38 nmol·g-1, which relates to the degree of aqueous alteration of the meteorite and indicates that parent body processing influenced cyanide abundance. Analysis of the Lewis Cliff 85311 meteorite shows that its releasable cyanide is primarily in the form of [FeII(CN)5(CO)]3- and [FeII(CN)4(CO)2]2-. Meteoritic delivery of iron cyanocarbonyl complexes to early Earth likely provided an important point source of free cyanide. Iron cyanocarbonyl complexes may have served as precursors to the unusual FeII(CN)(CO) moieties that form the catalytic centers of hydrogenases, which are thought to be among the earliest enzymes.
Collapse
Affiliation(s)
- Karen E Smith
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID, 83725, USA
- Department of Geosciences and Penn State Astrobiology Research Center, Pennsylvania State University, University Park, PA, 16801, USA
| | - Christopher H House
- Department of Geosciences and Penn State Astrobiology Research Center, Pennsylvania State University, University Park, PA, 16801, USA
| | - Ricardo D Arevalo
- Department of Geology, University of Maryland, College Park, MD, 20742, USA
| | - Jason P Dworkin
- Goddard Center for Astrobiology, NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
- Astrochemistry Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - Michael P Callahan
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID, 83725, USA.
- Goddard Center for Astrobiology, NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA.
- Astrochemistry Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA.
| |
Collapse
|
16
|
Profiling Murchison Soluble Organic Matter for New Organic Compounds with APPI- and ESI-FT-ICR MS. Life (Basel) 2019; 9:life9020048. [PMID: 31174398 PMCID: PMC6617137 DOI: 10.3390/life9020048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 11/30/2022] Open
Abstract
The investigation of the abundant organic matter in primitive meteorite such as carbonaceous chondrites is of major interest in the field of origin of life. In this study, the soluble organic fraction of the Murchison meteorite was analyzed by atmospheric pressure photoionization (APPI) and electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), in both detection modes. Such an approach ensured that we obtained an extensive description of the organic matter of the CM2 meteorite. Indeed, while in total close to 16,000 unique features were assigned, only 4% are common to all analyses, illustrating the complementarity of both the detection modes and the ionization sources. ESI FT-ICR MS analysis, in negative-ion mode, ensured to observe specifically CHOS and CHNOS species, whereas the positive-ion mode is more dedicated to the detection of CHNO and CHN species. Moreover, new organomagnesium components were observed in (+) ESI. Eventually, (+) APPI FT-ICR MS analysis was a preferred method for the detection of less polar or nonpolar species such as polycyclic aromatic hydrocarbons but also heteroatom aromatic species composing the organic matter of Murchison.
Collapse
|
17
|
Noun M, Baklouti D, Brunetto R, Borondics F, Calligaro T, Dionnet Z, Le Sergeant d'Hendecourt L, Nsouli B, Ribaud I, Roumie M, Della-Negra S. A Mineralogical Context for the Organic Matter in the Paris Meteorite Determined by A Multi-Technique Analysis. Life (Basel) 2019; 9:E44. [PMID: 31151218 PMCID: PMC6617381 DOI: 10.3390/life9020044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/17/2019] [Accepted: 05/25/2019] [Indexed: 11/25/2022] Open
Abstract
This study is a multi-technique investigation of the Paris carbonaceous chondrite directly applied on two selected 500 × 500 µm² areas of a millimetric fragment, without any chemical extraction. By mapping the partial hydration of the amorphous silicate phase dominating the meteorite sample matrix, infrared spectroscopy gave an interesting glimpse into the way the fluid may have circulated into the sample and partially altered it. The TOF-SIMS in-situ analysis allowed the studying and mapping of the wide diversity of chemical moieties composing the meteorite organic content. The results of the combined techniques show that at the micron scale, the organic matter was always spatially associated with the fine-grained and partially-hydrated amorphous silicates and to the presence of iron in different chemical states. These systematic associations, illustrated in previous studies of other carbonaceous chondrites, were further supported by the identification by TOF-SIMS of cyanide and/or cyanate salts that could be direct remnants of precursor ices that accreted with dust during the parent body formation, and by the detection of different metal-containing large organic ions. Finally, the results obtained emphasized the importance of studying the specific interactions taking place between organic and mineral phases in the chondrite matrix, in order to investigate their role in the evolution story of primitive organic matter in meteorite parent bodies.
Collapse
Affiliation(s)
- Manale Noun
- Institut de Physique Nucléaire d'Orsay, UMR 8608, CNRS/IN2P3, Université Paris-Sud, Université Paris-Saclay, F-91406 Orsay, France.
- Lebanese Atomic Energy Commission, NCSR, Beirut 11-8281, Lebanon.
| | - Donia Baklouti
- Institut d'Astrophysique Spatiale, UMR 8617, CNRS/Université Paris-Sud, Université Paris-Saclay, bâtiment 121, Université Paris-Sud, 91405 Orsay CEDEX, France.
| | - Rosario Brunetto
- Institut d'Astrophysique Spatiale, UMR 8617, CNRS/Université Paris-Sud, Université Paris-Saclay, bâtiment 121, Université Paris-Sud, 91405 Orsay CEDEX, France.
| | - Ferenc Borondics
- Synchrotron Soleil, L'Orme des Merisiers, BP48, Saint Aubin, 91192 Gif sur Yvette CEDEX, France.
| | - Thomas Calligaro
- Centre de Recherche et de Restauration des musées de France, UMR 171, Palais du Louvre, 75001 Paris, France.
- PSL Research University, Institut de Recherche Chimie Paris, Chimie ParisTech, CNRS UMR 8247, 75005 Paris, France.
| | - Zélia Dionnet
- Institut d'Astrophysique Spatiale, UMR 8617, CNRS/Université Paris-Sud, Université Paris-Saclay, bâtiment 121, Université Paris-Sud, 91405 Orsay CEDEX, France.
- Università degli Studi di Napoli Parthenope, Dip. di Scienze e Tecnologie, CDN IC4, I-80143 Naples, Italy.
| | - Louis Le Sergeant d'Hendecourt
- Institut d'Astrophysique Spatiale, UMR 8617, CNRS/Université Paris-Sud, Université Paris-Saclay, bâtiment 121, Université Paris-Sud, 91405 Orsay CEDEX, France.
- Université Aix-Marseille, Laboratoire de Physique des Interactions Ioniques et Moléculaires (PIIM), UMR CNRS 7345, F-13397 Marseille, France.
| | - Bilal Nsouli
- Lebanese Atomic Energy Commission, NCSR, Beirut 11-8281, Lebanon.
| | - Isabelle Ribaud
- Institut de Physique Nucléaire d'Orsay, UMR 8608, CNRS/IN2P3, Université Paris-Sud, Université Paris-Saclay, F-91406 Orsay, France.
| | - Mohamad Roumie
- Lebanese Atomic Energy Commission, NCSR, Beirut 11-8281, Lebanon.
| | - Serge Della-Negra
- Institut de Physique Nucléaire d'Orsay, UMR 8608, CNRS/IN2P3, Université Paris-Sud, Université Paris-Saclay, F-91406 Orsay, France.
| |
Collapse
|
18
|
Gonsior M, Powers LC, Williams E, Place A, Chen F, Ruf A, Hertkorn N, Schmitt-Kopplin P. The chemodiversity of algal dissolved organic matter from lysed Microcystis aeruginosa cells and its ability to form disinfection by-products during chlorination. WATER RESEARCH 2019; 155:300-309. [PMID: 30852317 DOI: 10.1016/j.watres.2019.02.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/21/2019] [Accepted: 02/09/2019] [Indexed: 06/09/2023]
Abstract
Algal-derived dissolved organic matter (ADOM) originating from lysed Microcystis aeruginosa cells was investigated as precursor material to form disinfection by-products upon disinfection with free chlorine. Non-targeted ultrahigh resolution 12 T negative mode electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) revealed high molecular diversity in solid-phase extracted and ionizable components of Microcystis aeruginosa ADOM. The toxin microcystin LR was effectively degraded by free chlorine, which was expected. However, we found a high diversity of disinfection by-products associated with the addition of free chlorine to the water-soluble and solid-phase extractable fraction of ADOM and of double-bond moieties in abundant and known unsaturated fatty acids. Aromatic DOM precursors were absent from known metabolites of Microcystis aeruginosa and no evidence for aromatic disinfection by-products (DBPs) was found, despite N-containing compounds. A large diversification of N-containing molecular formulas was observed after chlorination, which seems indicative for the breakdown and oxidation of larger peptides. Additionally, a diverse group of N-compounds with presumed chloramine functional groups was observed. This study highlights the importance to evaluate ADOM and its ability to form different DBPs when compared to allochthonous or terrestrially-derived DOM.
Collapse
Affiliation(s)
- Michael Gonsior
- University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, Solomons, USA.
| | - Leanne C Powers
- University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, Solomons, USA
| | - Ernest Williams
- University of Maryland Center for Environmental Science, Institute of Marine and Environmental Technology, Baltimore, USA
| | - Allen Place
- University of Maryland Center for Environmental Science, Institute of Marine and Environmental Technology, Baltimore, USA
| | - Feng Chen
- University of Maryland Center for Environmental Science, Institute of Marine and Environmental Technology, Baltimore, USA
| | - Alexander Ruf
- Helmholtz Zentrum Muenchen, Research Unit Analytical BioGeoChemistry, Neuherberg, Germany; Technische Universität München, Chair of Analytical Food Chemistry, Freising-Weihenstephan, Germany; Université Aix-Marseille, Laboratoire de Physique des Interactions Ioniques et Moléculaires (PIIM), UMR CNRS 7345, 13397, Marseille, France
| | - Norbert Hertkorn
- Helmholtz Zentrum Muenchen, Research Unit Analytical BioGeoChemistry, Neuherberg, Germany
| | - Philippe Schmitt-Kopplin
- Helmholtz Zentrum Muenchen, Research Unit Analytical BioGeoChemistry, Neuherberg, Germany; Technische Universität München, Chair of Analytical Food Chemistry, Freising-Weihenstephan, Germany
| |
Collapse
|
19
|
Ruf A, Poinot P, Geffroy C, Le Sergeant d'Hendecourt L, Danger G. Data-Driven UPLC-Orbitrap MS Analysis in Astrochemistry. Life (Basel) 2019; 9:life9020035. [PMID: 31052536 PMCID: PMC6617268 DOI: 10.3390/life9020035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/13/2019] [Accepted: 04/23/2019] [Indexed: 12/03/2022] Open
Abstract
Meteorites have been found to be rich and highly diverse in organic compounds. Next to previous direct infusion high resolution mass spectrometry experiments (DI-HR-MS), we present here data-driven strategies to evaluate UPLC-Orbitrap MS analyses. This allows a comprehensive mining of structural isomers extending the level of information on the molecular diversity in astrochemical materials. As a proof-of-concept study, Murchison and Allende meteorites were analyzed. Both, global organic fingerprint and specific isomer analyses are discussed. Up to 31 different isomers per molecular composition are present in Murchison suggesting the presence of ≈440,000 different compounds detected therein. By means of this time-resolving high resolution mass spectrometric method, we go one step further toward the characterization of chemical structures within complex extraterrestrial mixtures, enabling a better understanding of organic chemical evolution, from interstellar ices toward small bodies in the Solar System.
Collapse
Affiliation(s)
- Alexander Ruf
- Laboratoire de Physique des Interactions Ioniques et Moléculaires (PIIM), Université Aix-Marseille, Saint Jérôme-AVE Escadrille Normandie Niemen, 13013 Marseille, France.
| | - Pauline Poinot
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, UMR CNRS 7285, 86073 Poitiers, France.
| | - Claude Geffroy
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, UMR CNRS 7285, 86073 Poitiers, France.
| | - Louis Le Sergeant d'Hendecourt
- Laboratoire de Physique des Interactions Ioniques et Moléculaires (PIIM), Université Aix-Marseille, Saint Jérôme-AVE Escadrille Normandie Niemen, 13013 Marseille, France.
| | - Gregoire Danger
- Laboratoire de Physique des Interactions Ioniques et Moléculaires (PIIM), Université Aix-Marseille, Saint Jérôme-AVE Escadrille Normandie Niemen, 13013 Marseille, France.
| |
Collapse
|
20
|
Data-Driven Astrochemistry: One Step Further within the Origin of Life Puzzle. Life (Basel) 2018; 8:life8020018. [PMID: 29857564 PMCID: PMC6027145 DOI: 10.3390/life8020018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 01/15/2023] Open
Abstract
Astrochemistry, meteoritics and chemical analytics represent a manifold scientific field, including various disciplines. In this review, clarifications on astrochemistry, comet chemistry, laboratory astrophysics and meteoritic research with respect to organic and metalorganic chemistry will be given. The seemingly large number of observed astrochemical molecules necessarily requires explanations on molecular complexity and chemical evolution, which will be discussed. Special emphasis should be placed on data-driven analytical methods including ultrahigh-resolving instruments and their interplay with quantum chemical computations. These methods enable remarkable insights into the complex chemical spaces that exist in meteorites and maximize the level of information on the huge astrochemical molecular diversity. In addition, they allow one to study even yet undescribed chemistry as the one involving organomagnesium compounds in meteorites. Both targeted and non-targeted analytical strategies will be explained and may touch upon epistemological problems. In addition, implications of (metal)organic matter toward prebiotic chemistry leading to the emergence of life will be discussed. The precise description of astrochemical organic and metalorganic matter as seeds for life and their interactions within various astrophysical environments may appear essential to further study questions regarding the emergence of life on a most fundamental level that is within the molecular world and its self-organization properties.
Collapse
|
21
|
Do dihydroxymagnesium carboxylates form Grignard-type reagents? A theoretical investigation on decarboxylative fragmentation. J Mol Model 2018; 24:106. [PMID: 29589173 DOI: 10.1007/s00894-018-3639-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
Abstract
Dihydroxymagnesium carboxylates [(OH)2MgO2CR] were probed for decarboxylation on a theoretical level, by utilizing both Møller-Plesset perturbation theory (MP2) and density functional theory (B3LYP-DFT) computations. This study is connected to the question of whether this recently introduced, astrobiologically relevant chemical class may form Grignard-type reagent molecules. To extract trends for a broad molecular mass range, different linear alkyl chain lengths between C4 and C11 were computed. The forward energy barrier for decarboxylation reactions increases linearly as a function of the ligand's chain length. Decarboxylation-type fragmentations of these organomagnesium compounds seem to be improbable in non-catalytic, low energetic environments. A high forward energy barrier (EMP2 > 55 kcal mol-1) towards a described transition state restricts the release of CO2. Nevertheless, we propose the release of CO2 on a theoretical level, as been revealed via an intramolecular nucleophilic attack mechanism. Once the challenging transition state for decarboxylation is overcome, a stable Mg-C bond is formed. These mechanistic insights were gained by help of natural bond orbital analysis. The Cα atom (first carbon atom in the ligand chain attached to the carboxyl group) is thought to prefer binding towards the electrophilic magnesium coordination center, rather than towards the electrophilic CO2-carbon atom. Additionally, the putatively formed Grignard-type OH-bearing product molecules possess a more polarized Mg-C bond in comparison to RMgCl species. Therefore, carbanion formation from OH-bearing Grignard-type molecules is made feasible for triggering C-C bond formation reactions. Graphical abstract This study asks whether recently introduced, astrobiologically dihydroxymagnesium carboxylates form Grignard-type reagent molecules via decarboxylative fragmentation.
Collapse
|