1
|
Fiorucci L, Schiavina M, Felli IC, Pierattelli R, Ravera E. Are Protein Conformational Ensembles in Agreement with Experimental Data? A Geometrical Interpretation of the Problem. J Chem Inf Model 2024; 64:5392-5401. [PMID: 38959217 DOI: 10.1021/acs.jcim.4c00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The conformational variability of biological macromolecules can play an important role in their biological function. Therefore, understanding conformational variability is expected to be key for predicting the behavior of a particular molecule in the context of organism-wide studies. Several experimental methods have been developed and deployed for accessing this information, and computational methods are continuously updated for the profitable integration of different experimental sources. The outcome of this endeavor is conformational ensembles, which may vary significantly in properties and composition when different ensemble reconstruction methods are used, and this raises the issue of comparing the predicted ensembles against experimental data. In this article, we discuss a geometrical formulation to provide a framework for understanding the agreement of an ensemble prediction to the experimental observations.
Collapse
Affiliation(s)
- Letizia Fiorucci
- Department of Chemistry "Ugo Schiff" and Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Marco Schiavina
- Department of Chemistry "Ugo Schiff" and Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Isabella C Felli
- Department of Chemistry "Ugo Schiff" and Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Roberta Pierattelli
- Department of Chemistry "Ugo Schiff" and Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Enrico Ravera
- Department of Chemistry "Ugo Schiff" and Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
- Florence Data Science, University of Florence, Viale G.B. Morgagni 59, 50134 Florence, Italy
| |
Collapse
|
2
|
Theophall GG, Ramirez LMS, Premo A, Reverdatto S, Manigrasso MB, Yepuri G, Burz DS, Ramasamy R, Schmidt AM, Shekhtman A. Disruption of the productive encounter complex results in dysregulation of DIAPH1 activity. J Biol Chem 2023; 299:105342. [PMID: 37832872 PMCID: PMC10656230 DOI: 10.1016/j.jbc.2023.105342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
The diaphanous-related formin, Diaphanous 1 (DIAPH1), is required for the assembly of Filamentous (F)-actin structures. DIAPH1 is an intracellular effector of the receptor for advanced glycation end products (RAGE) and contributes to RAGE signaling and effects such as increased cell migration upon RAGE stimulation. Mutations in DIAPH1, including those in the basic "RRKR" motif of its autoregulatory domain, diaphanous autoinhibitory domain (DAD), are implicated in hearing loss, macrothrombocytopenia, and cardiovascular diseases. The solution structure of the complex between the N-terminal inhibitory domain, DID, and the C-terminal DAD, resolved by NMR spectroscopy shows only transient interactions between DID and the basic motif of DAD, resembling those found in encounter complexes. Cross-linking studies placed the RRKR motif into the negatively charged cavity of DID. Neutralizing the cavity resulted in a 5-fold decrease in the binding affinity and 4-fold decrease in the association rate constant of DAD for DID, indicating that the RRKR interactions with DID form a productive encounter complex. A DIAPH1 mutant containing a neutralized RRKR binding cavity shows excessive colocalization with actin and is unresponsive to RAGE stimulation. This is the first demonstration of a specific alteration of the surfaces responsible for productive encounter complexation with implications for human pathology.
Collapse
Affiliation(s)
- Gregory G Theophall
- Department of Chemistry, State University of New York at Albany, Albany, New York, USA
| | - Lisa M S Ramirez
- Department of Chemistry, State University of New York at Albany, Albany, New York, USA
| | - Aaron Premo
- Department of Chemistry, State University of New York at Albany, Albany, New York, USA
| | - Sergey Reverdatto
- Department of Chemistry, State University of New York at Albany, Albany, New York, USA
| | - Michaele B Manigrasso
- Department of Medicine, Diabetes Research Program, New York University Grossman School of Medicine, New York, New York, USA
| | - Gautham Yepuri
- Department of Medicine, Diabetes Research Program, New York University Grossman School of Medicine, New York, New York, USA
| | - David S Burz
- Department of Chemistry, State University of New York at Albany, Albany, New York, USA
| | - Ravichandran Ramasamy
- Department of Medicine, Diabetes Research Program, New York University Grossman School of Medicine, New York, New York, USA
| | - Ann Marie Schmidt
- Department of Medicine, Diabetes Research Program, New York University Grossman School of Medicine, New York, New York, USA
| | - Alexander Shekhtman
- Department of Chemistry, State University of New York at Albany, Albany, New York, USA.
| |
Collapse
|
3
|
Parigi G, Ravera E, Piccioli M, Luchinat C. Paramagnetic NMR restraints for the characterization of protein structural rearrangements. Curr Opin Struct Biol 2023; 80:102595. [PMID: 37075534 DOI: 10.1016/j.sbi.2023.102595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 04/21/2023]
Abstract
Mobility is a common feature of biomacromolecules, often fundamental for their function. Thus, in many cases, biomacromolecules cannot be described by a single conformation, but rather by a conformational ensemble. NMR paramagnetic data demonstrated quite informative to monitor this conformational variability, especially when used in conjunction with data from different sources. Due to their long-range nature, paramagnetic data can, for instance, i) clearly demonstrate the occurrence of conformational rearrangements, ii) reveal the presence of minor conformational states, sampled only for a short time, iii) indicate the most representative conformations within the conformational ensemble sampled by the molecule, iv) provide an upper limit to the weight of each conformation.
Collapse
Affiliation(s)
- Giacomo Parigi
- Magnetic Resonance Center (CERM), University of Florence, Via Sacconi 6, Sesto Fiorentino, 50019, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Via Sacconi 6, Sesto Fiorentino, 50019, Italy.
| | - Enrico Ravera
- Magnetic Resonance Center (CERM), University of Florence, Via Sacconi 6, Sesto Fiorentino, 50019, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Via Sacconi 6, Sesto Fiorentino, 50019, Italy
| | - Mario Piccioli
- Magnetic Resonance Center (CERM), University of Florence, Via Sacconi 6, Sesto Fiorentino, 50019, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Via Sacconi 6, Sesto Fiorentino, 50019, Italy.
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, Via Sacconi 6, Sesto Fiorentino, 50019, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Via Sacconi 6, Sesto Fiorentino, 50019, Italy.
| |
Collapse
|
4
|
Gilep A, Varaksa T, Bukhdruker S, Kavaleuski A, Ryzhykau Y, Smolskaya S, Sushko T, Tsumoto K, Grabovec I, Kapranov I, Okhrimenko I, Marin E, Shevtsov M, Mishin A, Kovalev K, Kuklin A, Gordeliy V, Kaluzhskiy L, Gnedenko O, Yablokov E, Ivanov A, Borshchevskiy V, Strushkevich N. Structural insights into 3Fe-4S ferredoxins diversity in M. tuberculosis highlighted by a first redox complex with P450. Front Mol Biosci 2023; 9:1100032. [PMID: 36699703 PMCID: PMC9868604 DOI: 10.3389/fmolb.2022.1100032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Ferredoxins are small iron-sulfur proteins and key players in essential metabolic pathways. Among all types, 3Fe-4S ferredoxins are less studied mostly due to anaerobic requirements. Their complexes with cytochrome P450 redox partners have not been structurally characterized. In the present work, we solved the structures of both 3Fe-4S ferredoxins from M. tuberculosis-Fdx alone and the fusion FdxE-CYP143. Our SPR analysis demonstrated a high-affinity binding of FdxE to CYP143. According to SAXS data, the same complex is present in solution. The structure reveals extended multipoint interactions and the shape/charge complementarity of redox partners. Furthermore, FdxE binding induced conformational changes in CYP143 as evident from the solved CYP143 structure alone. The comparison of FdxE-CYP143 and modeled Fdx-CYP51 complexes further revealed the specificity of ferredoxins. Our results illuminate the diversity of electron transfer complexes for the production of different secondary metabolites.
Collapse
Affiliation(s)
- Andrei Gilep
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus,Laboratory of Intermolecular Interactions, Institute of Biomedical Chemistry, Moscow, Russia
| | - Tatsiana Varaksa
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Sergey Bukhdruker
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anton Kavaleuski
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Yury Ryzhykau
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia,Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Sviatlana Smolskaya
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Tatsiana Sushko
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan,Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Irina Grabovec
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Ivan Kapranov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ivan Okhrimenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Egor Marin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Mikhail Shevtsov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Alexey Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Kirill Kovalev
- European Molecular Biology Laboratory, Hamburg Unit C/O DESY, Hamburg, Germany
| | - Alexander Kuklin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia,Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Valentin Gordeliy
- Institute of Crystallography, University of Aachen (RWTH), Aachen, Germany
| | - Leonid Kaluzhskiy
- Laboratory of Intermolecular Interactions, Institute of Biomedical Chemistry, Moscow, Russia
| | - Oksana Gnedenko
- Laboratory of Intermolecular Interactions, Institute of Biomedical Chemistry, Moscow, Russia
| | - Evgeniy Yablokov
- Laboratory of Intermolecular Interactions, Institute of Biomedical Chemistry, Moscow, Russia
| | - Alexis Ivanov
- Laboratory of Intermolecular Interactions, Institute of Biomedical Chemistry, Moscow, Russia
| | - Valentin Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia,Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia,*Correspondence: Valentin Borshchevskiy, ; Natallia Strushkevich,
| | - Natallia Strushkevich
- Skolkovo Institute of Science and Technology, Moscow, Russia,*Correspondence: Valentin Borshchevskiy, ; Natallia Strushkevich,
| |
Collapse
|
5
|
Andrałojć W, Wieruszewska J, Pasternak K, Gdaniec Z. Solution Structure of a Lanthanide-binding DNA Aptamer Determined Using High Quality pseudocontact shift restraints. Chemistry 2022; 28:e202202114. [PMID: 36043489 PMCID: PMC9828363 DOI: 10.1002/chem.202202114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 01/12/2023]
Abstract
In this contribution we report the high-resolution NMR structure of a recently identified lanthanide-binding aptamer (LnA). We demonstrate that the rigid lanthanide binding by LnA allows for the measurement of anisotropic paramagnetic NMR restraints which to date remain largely inaccessible for nucleic acids. One type of such restraints - pseudocontact shifts (PCS) induced by four different paramagnetic lanthanides - was extensively used throughout the current structure determination study and the measured PCS turned out to be exceptionally well reproduced by the final aptamer structure. This finding opens the perspective for a broader application of paramagnetic effects in NMR studies of nucleic acids through the transplantation of the binding site found in LnA into other DNA/RNA systems.
Collapse
Affiliation(s)
- Witold Andrałojć
- Institute of Bioorganic ChemistryPolish Academy of SciencesNoskowskiego 12/1461-704 PoznanPoland
| | - Julia Wieruszewska
- Institute of Bioorganic ChemistryPolish Academy of SciencesNoskowskiego 12/1461-704 PoznanPoland
| | - Karol Pasternak
- Institute of Bioorganic ChemistryPolish Academy of SciencesNoskowskiego 12/1461-704 PoznanPoland
| | - Zofia Gdaniec
- Institute of Bioorganic ChemistryPolish Academy of SciencesNoskowskiego 12/1461-704 PoznanPoland
| |
Collapse
|
6
|
Ravera E, Gigli L, Fiorucci L, Luchinat C, Parigi G. The evolution of paramagnetic NMR as a tool in structural biology. Phys Chem Chem Phys 2022; 24:17397-17416. [PMID: 35849063 DOI: 10.1039/d2cp01838a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Paramagnetic NMR data contain extremely accurate long-range information on metalloprotein structures and, when used in the frame of integrative structural biology approaches, they allow for the retrieval of structural details to a resolution that is not achievable using other techniques. Paramagnetic data thus represent an extremely powerful tool to refine protein models in solution, especially when coupled to X-ray or cryoelectron microscopy data, to monitor the formation of complexes and determine the relative arrangements of their components, and to highlight the presence of conformational heterogeneity. More recently, theoretical and computational advancements in quantum chemical calculations of paramagnetic NMR observables are progressively opening new routes in structural biology, because they allow for the determination of the structure within the coordination sphere of the metal center, thus acting as a loupe on sites that are difficult to observe but very important for protein function.
Collapse
Affiliation(s)
- Enrico Ravera
- Magnetic Resonance Center (CERM), University of Florence, via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019, Italy.,Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy.
| | - Lucia Gigli
- Magnetic Resonance Center (CERM), University of Florence, via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019, Italy.,Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy.
| | - Letizia Fiorucci
- Magnetic Resonance Center (CERM), University of Florence, via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019, Italy.,Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy.
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019, Italy.,Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy.
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM), University of Florence, via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019, Italy.,Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy.
| |
Collapse
|
7
|
Parigi G, Ravera E, Luchinat C. Paramagnetic effects in NMR for protein structures and ensembles: Studies of metalloproteins. Curr Opin Struct Biol 2022; 74:102386. [DOI: 10.1016/j.sbi.2022.102386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 11/28/2022]
|
8
|
Miao Q, Nitsche C, Orton H, Overhand M, Otting G, Ubbink M. Paramagnetic Chemical Probes for Studying Biological Macromolecules. Chem Rev 2022; 122:9571-9642. [PMID: 35084831 PMCID: PMC9136935 DOI: 10.1021/acs.chemrev.1c00708] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 12/11/2022]
Abstract
Paramagnetic chemical probes have been used in electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopy for more than four decades. Recent years witnessed a great increase in the variety of probes for the study of biological macromolecules (proteins, nucleic acids, and oligosaccharides). This Review aims to provide a comprehensive overview of the existing paramagnetic chemical probes, including chemical synthetic approaches, functional properties, and selected applications. Recent developments have seen, in particular, a rapid expansion of the range of lanthanoid probes with anisotropic magnetic susceptibilities for the generation of structural restraints based on residual dipolar couplings and pseudocontact shifts in solution and solid state NMR spectroscopy, mostly for protein studies. Also many new isotropic paramagnetic probes, suitable for NMR measurements of paramagnetic relaxation enhancements, as well as EPR spectroscopic studies (in particular double resonance techniques) have been developed and employed to investigate biological macromolecules. Notwithstanding the large number of reported probes, only few have found broad application and further development of probes for dedicated applications is foreseen.
Collapse
Affiliation(s)
- Qing Miao
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
- School
of Chemistry &Chemical Engineering, Shaanxi University of Science & Technology, Xi’an710021, China
| | - Christoph Nitsche
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Henry Orton
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Mark Overhand
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Gottfried Otting
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Marcellus Ubbink
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
9
|
Müntener T, Joss D, Häussinger D, Hiller S. Pseudocontact Shifts in Biomolecular NMR Spectroscopy. Chem Rev 2022; 122:9422-9467. [PMID: 35005884 DOI: 10.1021/acs.chemrev.1c00796] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Paramagnetic centers in biomolecules, such as specific metal ions that are bound to a protein, affect the nuclei in their surrounding in various ways. One of these effects is the pseudocontact shift (PCS), which leads to strong chemical shift perturbations of nuclear spins, with a remarkably long range of 50 Å and beyond. The PCS in solution NMR is an effect originating from the anisotropic part of the dipole-dipole interaction between the magnetic momentum of unpaired electrons and nuclear spins. The PCS contains spatial information that can be exploited in multiple ways to characterize structure, function, and dynamics of biomacromolecules. It can be used to refine structures, magnify effects of dynamics, help resonance assignments, allows for an intermolecular positioning system, and gives structural information in sensitivity-limited situations where all other methods fail. Here, we review applications of the PCS in biomolecular solution NMR spectroscopy, starting from early works on natural metalloproteins, following the development of non-natural tags to chelate and attach lanthanoid ions to any biomolecular target to advanced applications on large biomolecular complexes and inside living cells. We thus hope to not only highlight past applications but also shed light on the tremendous potential the PCS has in structural biology.
Collapse
Affiliation(s)
- Thomas Müntener
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Daniel Joss
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| |
Collapse
|
10
|
Di Savino A, Foerster JM, Ullmann GM, Ubbink M. Enhancing the population of the encounter complex affects protein complex formation efficiency. FEBS J 2021; 289:535-548. [PMID: 34403572 PMCID: PMC9293183 DOI: 10.1111/febs.16159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/08/2021] [Accepted: 08/16/2021] [Indexed: 11/30/2022]
Abstract
Optimal charge distribution is considered to be important for efficient formation of protein complexes. Electrostatic interactions guide encounter complex formation that precedes the formation of an active protein complex. However, disturbing the optimized distribution by introduction of extra charged patches on cytochrome c peroxidase does not lead to a reduction in productive encounters with its partner cytochrome c. To test whether a complex with a high population of encounter complex is more easily affected by suboptimal charge distribution, the interactions of cytochrome c mutant R13A with wild‐type cytochrome c peroxidase and a variant with an additional negative patch were studied. The complex of the peroxidase and cytochrome c R13A was reported to have an encounter state population of 80%, compared to 30% for the wild‐type cytochrome c. NMR analysis confirms the dynamic nature of the interaction and demonstrates that the mutant cytochrome c samples the introduced negative patch. Kinetic experiments show that productive complex formation is fivefold to sevenfold slower at moderate and high ionic strength values for cytochrome c R13A but the association rate is not affected by the additional negative patch on cytochrome c peroxidase, showing that the total charge on the protein surface can compensate for less optimal charge distribution. At low ionic strength (44 mm), the association with the mutant cytochrome c reaches the same high rates as found for wild‐type cytochrome c, approaching the diffusion limit.
Collapse
|
11
|
Gaalswyk K, Liu Z, Vogel HJ, MacCallum JL. An Integrative Approach to Determine 3D Protein Structures Using Sparse Paramagnetic NMR Data and Physical Modeling. Front Mol Biosci 2021; 8:676268. [PMID: 34476238 PMCID: PMC8407082 DOI: 10.3389/fmolb.2021.676268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022] Open
Abstract
Paramagnetic nuclear magnetic resonance (NMR) methods have emerged as powerful tools for structure determination of large, sparsely protonated proteins. However traditional applications face several challenges, including a need for large datasets to offset the sparsity of restraints, the difficulty in accounting for the conformational heterogeneity of the spin-label, and noisy experimental data. Here we propose an integrative approach to structure determination combining sparse paramagnetic NMR with physical modelling to infer approximate protein structural ensembles. We use calmodulin in complex with the smooth muscle myosin light chain kinase peptide as a model system. Despite acquiring data from samples labeled only at the backbone amide positions, we are able to produce an ensemble with an average RMSD of ∼2.8 Å from a reference X-ray crystal structure. Our approach requires only backbone chemical shifts and measurements of the paramagnetic relaxation enhancement and residual dipolar couplings that can be obtained from sparsely labeled samples.
Collapse
Affiliation(s)
- Kari Gaalswyk
- Department of Chemistry, University of Calgary, Calgary, AB, Canada
| | - Zhihong Liu
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Hans J. Vogel
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | | |
Collapse
|
12
|
Hou XN, Sekiyama N, Ohtani Y, Yang F, Miyanoiri Y, Akagi KI, Su XC, Tochio H. Conformational Space Sampled by Domain Reorientation of Linear Diubiquitin Reflected in Its Binding Mode for Target Proteins. Chemphyschem 2021; 22:1505-1517. [PMID: 33928740 DOI: 10.1002/cphc.202100187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/28/2021] [Indexed: 11/06/2022]
Abstract
Linear polyubiquitin chains regulate diverse signaling proteins, in which the chains adopt various conformations to recognize different target proteins. Thus, the structural plasticity of the chains plays an important role in controlling the binding events. Herein, paramagnetic NMR spectroscopy is employed to explore the conformational space sampled by linear diubiquitin, a minimal unit of linear polyubiquitin, in its free state. Rigorous analysis of the data suggests that, regarding the relative positions of the ubiquitin units, particular regions of conformational space are preferentially sampled by the molecule. By combining these results with further data collected for charge-reversal derivatives of linear diubiquitin, structural insights into the factors underlying the binding events of linear diubiquitin are obtained.
Collapse
Affiliation(s)
- Xue-Ni Hou
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Naotaka Sekiyama
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yasuko Ohtani
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Feng Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, No.94 Weijin Road, Nankai District, Tianjin, 300071, P. R. China
| | - Yohei Miyanoiri
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ken-Ichi Akagi
- NIBIOHN, Section of Laboratory Equipment, Osaka, 567-0085, Japan.,RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, No.94 Weijin Road, Nankai District, Tianjin, 300071, P. R. China
| | - Hidehito Tochio
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
13
|
Di Savino A, Foerster JM, Ullmann GM, Ubbink M. The Charge Distribution on a Protein Surface Determines Whether Productive or Futile Encounter Complexes Are Formed. Biochemistry 2021; 60:747-755. [PMID: 33646750 PMCID: PMC8041253 DOI: 10.1021/acs.biochem.1c00021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
![]()
Protein complex formation
depends strongly on electrostatic interactions.
The distribution of charges on the surface of redox proteins is often
optimized by evolution to guide recognition and binding. To test the
degree to which the electrostatic interactions between cytochrome c peroxidase (CcP) and cytochrome c (Cc)
are optimized, we produced five CcP variants, each with a different
charge distribution on the surface. Monte Carlo simulations show that
the addition of negative charges attracts Cc to the new patches, and
the neutralization of the charges in the regular, stereospecific binding
site for Cc abolishes the electrostatic interactions in that region
entirely. For CcP variants with the charges in the regular binding
site intact, additional negative patches slightly enhance productive
complex formation, despite disrupting the optimized charge distribution.
Removal of the charges in the regular binding site results in a dramatic
decrease in the complex formation rate, even in the presence of highly
negative patches elsewhere on the surface. We conclude that additional
charge patches can result in either productive or futile encounter
complexes, depending on whether negative residues are located also
in the regular binding site.
Collapse
Affiliation(s)
- Antonella Di Savino
- Leiden University, Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Johannes M Foerster
- University of Bayreuth, Computational Biochemistry, Universitätsstraße 30, NW I, 95447 Bayreuth, Germany
| | - G Matthias Ullmann
- University of Bayreuth, Computational Biochemistry, Universitätsstraße 30, NW I, 95447 Bayreuth, Germany
| | - Marcellus Ubbink
- Leiden University, Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
14
|
Sequence-specific assignments in NMR spectra of paramagnetic systems: A non-systematic approach. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.119984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Pochapsky TC. A dynamic understanding of cytochrome P450 structure and function through solution NMR. Curr Opin Biotechnol 2020; 69:35-42. [PMID: 33360373 DOI: 10.1016/j.copbio.2020.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022]
Abstract
Many economically important biosyntheses incorporate regiospecific and stereospecific oxidations at unactivated carbons. Such oxidations are commonly catalyzed by cytochrome P450 monooxygenases, heme-containing enzymes that activate molecular oxygen while selectively binding and orienting the substrate for reaction. Despite the plethora of P450-catalyzed reactions, the P450 fold is highly conserved, and static structures are often insufficient for characterizing conformational states that contribute to specificity. High-resolution solution nuclear magnetic resonance (NMR) offers insights into dynamic processes and conformational changes that are required of a P450 in order to attain the combination of specificity and efficiency required for these reactions.
Collapse
Affiliation(s)
- Thomas C Pochapsky
- Departments of Chemistry, Biochemistry and The Rosenstiel Institute for Basic Medical Research, Brandeis University, 415 South St., Waltham, MA 02454, USA.
| |
Collapse
|
16
|
Di Savino A, Foerster JM, La Haye T, Blok A, Timmer M, Ullmann GM, Ubbink M. Efficient Encounter Complex Formation and Electron Transfer to Cytochrome c Peroxidase with an Additional, Distant Electrostatic Binding Site. Angew Chem Int Ed Engl 2020; 59:23239-23243. [PMID: 32827196 PMCID: PMC7756542 DOI: 10.1002/anie.202010006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Indexed: 12/14/2022]
Abstract
Electrostatic interactions can strongly increase the efficiency of protein complex formation. The charge distribution in redox proteins is often optimized to steer a redox partner to the electron transfer active binding site. To test whether the optimized distribution is more important than the strength of the electrostatic interactions, an additional negative patch was introduced on the surface of cytochrome c peroxidase, away from the stereospecific binding site, and its effect on the encounter complex as well as the rate of complex formation was determined. Monte Carlo simulations and paramagnetic relaxation enhancement NMR experiments indicate that the partner, cytochrome c, interacts with the new patch. Unexpectedly, the rate of the active complex formation was not reduced, but rather slightly increased. The findings support the idea that for efficient protein complex formation the strength of the electrostatic interaction is more critical than an optimized charge distribution.
Collapse
Affiliation(s)
- Antonella Di Savino
- Leiden UniversityInstitute of ChemistryEinsteinweg 552333 CCLeidenNetherlands
| | - Johannes M. Foerster
- University of BayreuthComputational BiochemistryUniversitätsstraße 30, NW I95447BayreuthGermany
| | - Thijmen La Haye
- Leiden UniversityInstitute of ChemistryEinsteinweg 552333 CCLeidenNetherlands
- Present address: University of DelftTNW Applied SciencesVan der Maasweg 92629 HZDelftThe Netherlands
| | - Anneloes Blok
- Leiden UniversityInstitute of ChemistryEinsteinweg 552333 CCLeidenNetherlands
| | - Monika Timmer
- Leiden UniversityInstitute of ChemistryEinsteinweg 552333 CCLeidenNetherlands
| | - G. Matthias Ullmann
- University of BayreuthComputational BiochemistryUniversitätsstraße 30, NW I95447BayreuthGermany
| | - Marcellus Ubbink
- Leiden UniversityInstitute of ChemistryEinsteinweg 552333 CCLeidenNetherlands
| |
Collapse
|
17
|
Eidenschenk C, Cheruzel L. Ru(II)-diimine complexes and cytochrome P450 working hand-in-hand. J Inorg Biochem 2020; 213:111254. [PMID: 32979791 PMCID: PMC7686262 DOI: 10.1016/j.jinorgbio.2020.111254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/19/2020] [Accepted: 09/06/2020] [Indexed: 10/23/2022]
Abstract
With a growing interest in utilizing visible light to drive biocatalytic processes, several light-harvesting units and approaches have been employed to harness the synthetic potential of heme monooxygenases and carry out selective oxyfunctionalization of a wide range of substrates. While the fields of cytochrome P450 and Ru(II) photochemistry have separately been prolific, it is not until the turn of the 21st century that they converged. Non-covalent and subsequently covalently attached Ru(II) complexes were used to promote rapid intramolecular electron transfer in bacterial P450 enzymes. Photocatalytic activity with Ru(II)-modified P450 enzymes was achieved under reductive conditions with a judicious choice of a sacrificial electron donor. The initial concept of Ru(II)-modified P450 enzymes was further improved using protein engineering, photosensitizer functionalization and was successfully applied to other P450 enzymes. In this review, we wish to present the recent contributions from our group and others in utilizing Ru(II) complexes coupled with P450 enzymes in the broad context of photobiocatalysis, protein assemblies and chemoenzymatic reactions. The merging of chemical catalysts with the synthetic potential of P450 enzymes has led to the development of several chemoenzymatic approaches. Moreover, strained Ru(II) compounds have been shown to selectively inhibit P450 enzymes by releasing aromatic heterocycle containing molecules upon visible light excitation taking advantage of the rapid ligand loss feature in those complexes.
Collapse
Affiliation(s)
- Celine Eidenschenk
- Department Biochemical and Cellular Pharmacology, Genentech, One DNA Way, South San Francisco, CA 94080, USA
| | - Lionel Cheruzel
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, USA.
| |
Collapse
|
18
|
Medeiros Selegato D, Bracco C, Giannelli C, Parigi G, Luchinat C, Sgheri L, Ravera E. Comparison of Different Reweighting Approaches for the Calculation of Conformational Variability of Macromolecules from Molecular Simulations. Chemphyschem 2020; 22:127-138. [DOI: 10.1002/cphc.202000714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/14/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Denise Medeiros Selegato
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP) Via L. Sacconi 6 50019 Sesto Fiorentino Italy
- Dipartimento di Chimica “Ugo Schiff” Università degli Studi di Firenze Via della Lastruccia 3 50019 Sesto Fiorentino Italy
- Present address: Fundación MEDINA, Centro de Excelentia en Investigación de Medicamentos Innovadores and Andalucía MSD España Granada Spain
| | - Cesare Bracco
- Dipartimento di Matematica e Informatica “U. Dini” Università degli Studi di Firenze Viale Morgagni 67/a 50134 Florence Italy
| | - Carlotta Giannelli
- Dipartimento di Matematica e Informatica “U. Dini” Università degli Studi di Firenze Viale Morgagni 67/a 50134 Florence Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP) Via L. Sacconi 6 50019 Sesto Fiorentino Italy
- Dipartimento di Chimica “Ugo Schiff” Università degli Studi di Firenze Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP) Via L. Sacconi 6 50019 Sesto Fiorentino Italy
- Dipartimento di Chimica “Ugo Schiff” Università degli Studi di Firenze Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| | - Luca Sgheri
- Istituto per le Applicazioni del Calcolo (CNR) sede di Firenze via Madonna del Piano 10 50019 Sesto Fiorentino Italy
| | - Enrico Ravera
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP) Via L. Sacconi 6 50019 Sesto Fiorentino Italy
- Dipartimento di Chimica “Ugo Schiff” Università degli Studi di Firenze Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| |
Collapse
|
19
|
Di Savino A, Foerster JM, La Haye T, Blok A, Timmer M, Ullmann GM, Ubbink M. Efficient Encounter Complex Formation and Electron Transfer to Cytochrome
c
Peroxidase with an Additional, Distant Electrostatic Binding Site. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Antonella Di Savino
- Leiden University Institute of Chemistry Einsteinweg 55 2333 CC Leiden Netherlands
| | - Johannes M. Foerster
- University of Bayreuth Computational Biochemistry Universitätsstraße 30, NW I 95447 Bayreuth Germany
| | - Thijmen La Haye
- Leiden University Institute of Chemistry Einsteinweg 55 2333 CC Leiden Netherlands
- Present address: University of Delft TNW Applied Sciences Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Anneloes Blok
- Leiden University Institute of Chemistry Einsteinweg 55 2333 CC Leiden Netherlands
| | - Monika Timmer
- Leiden University Institute of Chemistry Einsteinweg 55 2333 CC Leiden Netherlands
| | - G. Matthias Ullmann
- University of Bayreuth Computational Biochemistry Universitätsstraße 30, NW I 95447 Bayreuth Germany
| | - Marcellus Ubbink
- Leiden University Institute of Chemistry Einsteinweg 55 2333 CC Leiden Netherlands
| |
Collapse
|
20
|
Paramagnetic NMR Spectroscopy Is a Tool to Address Reactivity, Structure, and Protein–Protein Interactions of Metalloproteins: The Case of Iron–Sulfur Proteins. MAGNETOCHEMISTRY 2020. [DOI: 10.3390/magnetochemistry6040046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The study of cellular machineries responsible for the iron–sulfur (Fe–S) cluster biogenesis has led to the identification of a large number of proteins, whose importance for life is documented by an increasing number of diseases linked to them. The labile nature of Fe–S clusters and the transient protein–protein interactions, occurring during the various steps of the maturation process, make their structural characterization in solution particularly difficult. Paramagnetic nuclear magnetic resonance (NMR) has been used for decades to characterize chemical composition, magnetic coupling, and the electronic structure of Fe–S clusters in proteins; it represents, therefore, a powerful tool to study the protein–protein interaction networks of proteins involving into iron–sulfur cluster biogenesis. The optimization of the various NMR experiments with respect to the hyperfine interaction will be summarized here in the form of a protocol; recently developed experiments for measuring longitudinal and transverse nuclear relaxation rates in highly paramagnetic systems will be also reviewed. Finally, we will address the use of extrinsic paramagnetic centers covalently bound to diamagnetic proteins, which contributed over the last twenty years to promote the applications of paramagnetic NMR well beyond the structural biology of metalloproteins.
Collapse
|
21
|
Redox Partners: Function Modulators of Bacterial P450 Enzymes. Trends Microbiol 2020; 28:445-454. [DOI: 10.1016/j.tim.2020.02.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/24/2020] [Indexed: 01/25/2023]
|
22
|
van Son M, Schilder JT, Di Savino A, Blok A, Ubbink M, Huber M. The Transient Complex of Cytochrome c and Cytochrome c Peroxidase: Insights into the Encounter Complex from Multifrequency EPR and NMR Spectroscopy. Chemphyschem 2020; 21:1060-1069. [PMID: 32301564 PMCID: PMC7317791 DOI: 10.1002/cphc.201901160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/03/2020] [Indexed: 12/31/2022]
Abstract
We present a novel approach to study transient protein-protein complexes with standard, 9 GHz, and high-field, 95 GHz, electron paramagnetic resonance (EPR) and paramagnetic NMR at ambient temperatures and in solution. We apply it to the complex of yeast mitochondrial iso-1-cytochrome c (Cc) with cytochrome c peroxidase (CcP) with the spin label [1-oxyl-2,2,5,5-tetramethyl-Δ3-pyrroline-3-methyl)-methanethiosulfonate] attached at position 81 of Cc (SL-Cc). A dissociation constant KD of 20±4×10-6 M (EPR and NMR) and an equal amount of stereo-specific and encounter complex (NMR) are found. The EPR spectrum of the fully bound complex reveals that the encounter complex has a significant population (60 %) that shares important features, such as the Cc-interaction surface, with the stereo-specific complex.
Collapse
Affiliation(s)
- Martin van Son
- Leiden Institute of Physics, Huygens-Kamerlingh Onnes LaboratoryLeiden UniversityNiels Bohrweg 22333 CALeiden (TheNetherlands
| | - Jesika T. Schilder
- Leiden Institute of ChemistryLeiden University, Gorlaeus LaboratoriesEinsteinweg 552333 CCLeiden (TheNetherlands
| | - Antonella Di Savino
- Leiden Institute of ChemistryLeiden University, Gorlaeus LaboratoriesEinsteinweg 552333 CCLeiden (TheNetherlands
| | - Anneloes Blok
- Leiden Institute of ChemistryLeiden University, Gorlaeus LaboratoriesEinsteinweg 552333 CCLeiden (TheNetherlands
| | - Marcellus Ubbink
- Leiden Institute of ChemistryLeiden University, Gorlaeus LaboratoriesEinsteinweg 552333 CCLeiden (TheNetherlands
| | - Martina Huber
- Leiden Institute of Physics, Huygens-Kamerlingh Onnes LaboratoryLeiden UniversityNiels Bohrweg 22333 CALeiden (TheNetherlands
| |
Collapse
|
23
|
Denis M, Softley C, Giuntini S, Gentili M, Ravera E, Parigi G, Fragai M, Popowicz G, Sattler M, Luchinat C, Cerofolini L, Nativi C. The Photocatalyzed Thiol-ene reaction: A New Tag to Yield Fast, Selective and reversible Paramagnetic Tagging of Proteins. Chemphyschem 2020; 21:863-869. [PMID: 32092218 PMCID: PMC7384118 DOI: 10.1002/cphc.202000071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/21/2020] [Indexed: 11/18/2022]
Abstract
Paramagnetic restraints have been used in biomolecular NMR for the last three decades to elucidate and refine biomolecular structures, but also to characterize protein-ligand interactions. A common technique to generate such restraints in proteins, which do not naturally contain a (paramagnetic) metal, consists in the attachment to the protein of a lanthanide-binding-tag (LBT). In order to design such LBTs, it is important to consider the efficiency and stability of the conjugation, the geometry of the complex (conformational exchanges and coordination) and the chemical inertness of the ligand. Here we describe a photo-catalyzed thiol-ene reaction for the cysteine-selective paramagnetic tagging of proteins. As a model, we designed an LBT with a vinyl-pyridine moiety which was used to attach our tag to the protein GB1 in fast and irreversible fashion. Our tag T1 yields magnetic susceptibility tensors of significant size with different lanthanides and has been characterized using NMR and relaxometry measurements.
Collapse
Affiliation(s)
- Maxime Denis
- Giotto Biotech, S.R.LVia Madonna del piano 650019Sesto Fiorentino (FI)Italy
- Department of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI), Italy
| | - Charlotte Softley
- Biomolecular NMR, Department ChemieTechnical University of MunichLichtenbergstrasse 485747GarchingGermany
- Institute of Structural BiologyHelmholtz Center MunichNeuherbergGermany
| | - Stefano Giuntini
- Department of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI), Italy
- Magnetic Resonance Center (CERM)University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P)Via L. Sacconi 650019Sesto FIorentino (FI)Italy
| | - Matteo Gentili
- Giotto Biotech, S.R.LVia Madonna del piano 650019Sesto Fiorentino (FI)Italy
| | - Enrico Ravera
- Magnetic Resonance Center (CERM)University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P)Via L. Sacconi 650019Sesto FIorentino (FI)Italy
| | - Giacomo Parigi
- Department of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI), Italy
- Magnetic Resonance Center (CERM)University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P)Via L. Sacconi 650019Sesto FIorentino (FI)Italy
| | - Marco Fragai
- Department of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI), Italy
- Magnetic Resonance Center (CERM)University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P)Via L. Sacconi 650019Sesto FIorentino (FI)Italy
| | - Grzegorz Popowicz
- Institute of Structural BiologyHelmholtz Center MunichNeuherbergGermany
| | - Michael Sattler
- Biomolecular NMR, Department ChemieTechnical University of MunichLichtenbergstrasse 485747GarchingGermany
- Institute of Structural BiologyHelmholtz Center MunichNeuherbergGermany
| | - Claudio Luchinat
- Department of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI), Italy
- Magnetic Resonance Center (CERM)University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P)Via L. Sacconi 650019Sesto FIorentino (FI)Italy
| | - Linda Cerofolini
- Magnetic Resonance Center (CERM)University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P)Via L. Sacconi 650019Sesto FIorentino (FI)Italy
| | - Cristina Nativi
- Department of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI), Italy
| |
Collapse
|
24
|
Chen J, Gridnev ID. Size is Important: Artificial Catalyst Mimics Behavior of Natural Enzymes. iScience 2020; 23:100960. [PMID: 32193144 PMCID: PMC7076558 DOI: 10.1016/j.isci.2020.100960] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/18/2019] [Accepted: 02/28/2020] [Indexed: 01/18/2023] Open
Abstract
Heavily substituted (R)-DTBM-SegPHOS is active in the asymmetric Pd(II)-catalyzed hydrogenation or C−O bond cleavage of α-pivaloyloxy-1-(2-furyl)ethanone, whereas (R)-SegPHOS fails to catalyze either of these transformations. An extensive network of C−H ··· H−C interactions provided by the heavily substituted phenyl rings of (R)-DTBM-SegPHOS leads to increased stabilities of all intermediates and transition states in the corresponding catalytic cycles compared with the unsubstituted analogues. Moreover, formation of the encounter complex and its rearrangement into the reactive species proceeds in a fashion similar to that seen in natural enzymatic reactions. Computations demonstrate that this feature is the origin of enantioselection in asymmetric hydrogenation, since the stable precursor is formed only when the catalyst is approached by one prochiral plane of the substrate. Non-covalent interactions substrate-DTBM-SegPHOS Pd are essential for reactivity Stereoselectivity is induced during approach of a substrate to the reactive site This mechanism of enantioselection mimics enzymatic transformations Performance of a catalyst can be improved via increasing the size of its ligand
Collapse
Affiliation(s)
- Jianzhong Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Ilya D Gridnev
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki 3-6. Aoba-ku, Sendai 8578, Japan.
| |
Collapse
|
25
|
Carlon A, Gigli L, Ravera E, Parigi G, Gronenborn AM, Luchinat C. Assessing Structural Preferences of Unstructured Protein Regions by NMR. Biophys J 2019; 117:1948-1953. [PMID: 31676138 PMCID: PMC7018990 DOI: 10.1016/j.bpj.2019.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 11/28/2022] Open
Abstract
Biomacromolecules, such as proteins, often exhibit significant motions intimately associated with their function. Intrinsically disordered proteins and proteins with intrinsically disordered regions, although extremely important for a plethora of cellular functions, are difficult to structurally characterize at the atomic level because the experimental parameters report on ensemble and time averages. Here, we demonstrate for the C-terminal domain of the human immunodeficiency virus type 1 capsid protein that NMR and, in particular, residual dipolar couplings (RDCs) measured for the folded portion of the protein can inform on the structural preferences of the unstructured portion using RDC-prediction tools and the maximum occurrence approach.
Collapse
Affiliation(s)
- Azzurra Carlon
- Magnetic Resonance Center, University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine, Sesto Fiorentino, Florence, Italy; Department of Chemistry "Ugo Schiff," University of Florence, Sesto Fiorentino, Florence, Italy
| | - Lucia Gigli
- Magnetic Resonance Center, University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine, Sesto Fiorentino, Florence, Italy; Department of Chemistry "Ugo Schiff," University of Florence, Sesto Fiorentino, Florence, Italy
| | - Enrico Ravera
- Magnetic Resonance Center, University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine, Sesto Fiorentino, Florence, Italy; Department of Chemistry "Ugo Schiff," University of Florence, Sesto Fiorentino, Florence, Italy
| | - Giacomo Parigi
- Magnetic Resonance Center, University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine, Sesto Fiorentino, Florence, Italy; Department of Chemistry "Ugo Schiff," University of Florence, Sesto Fiorentino, Florence, Italy
| | - Angela M Gronenborn
- Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania.
| | - Claudio Luchinat
- Magnetic Resonance Center, University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine, Sesto Fiorentino, Florence, Italy; Department of Chemistry "Ugo Schiff," University of Florence, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
26
|
Kooshapur H, Ma J, Tjandra N, Bermejo GA. NMR Analysis of Apo Glutamine‐Binding Protein Exposes Challenges in the Study of Interdomain Dynamics. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hamed Kooshapur
- Laboratory of Structural BiophysicsBiochemistry and Biophysics CenterNational Heart, Lung, and Blood InstituteNational Institutes of Health Bethesda MD 20892 USA
| | - Junhe Ma
- Laboratory of Structural BiophysicsBiochemistry and Biophysics CenterNational Heart, Lung, and Blood InstituteNational Institutes of Health Bethesda MD 20892 USA
- Present address: Ashland Specialty Ingredients 500 Hercules Rd. Wilmington DE 19808 USA
| | - Nico Tjandra
- Laboratory of Structural BiophysicsBiochemistry and Biophysics CenterNational Heart, Lung, and Blood InstituteNational Institutes of Health Bethesda MD 20892 USA
| | - Guillermo A. Bermejo
- Office of Intramural ResearchCenter for Information TechnologyNational Institutes of Health Bethesda MD 20892 USA
| |
Collapse
|
27
|
Kooshapur H, Ma J, Tjandra N, Bermejo GA. NMR Analysis of Apo Glutamine-Binding Protein Exposes Challenges in the Study of Interdomain Dynamics. Angew Chem Int Ed Engl 2019; 58:16899-16902. [PMID: 31515908 DOI: 10.1002/anie.201911015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Indexed: 02/06/2023]
Abstract
Glutamine-binding protein (GlnBP) displays an apo, "open" and a holo, "closed" crystal form, mutually related by a rigid-body reorientation of its domains. A fundamental question about such large-scale conformational transitions, whether the closed state exists in the absence of ligand, is controversial in the case of GlnBP. NMR observations have indicated no evidence of the closed form, whereas experimentally validated computations have suggested a remarkable ca. 40 % population. Herein, a paramagnetic NMR strategy designed to detect the putative apo-closed species shows that a major population of the latter is highly improbable. Further, NMR residual dipolar couplings collected under three anisotropic conditions do not reveal differential domain alignment and establish that the average solution conformation is satisfied by the apo-open crystal structure. Our results indicate that the computational prediction of large-scale interdomain motions is not trivial and may lead to erroneous conclusions without proper experimental validation.
Collapse
Affiliation(s)
- Hamed Kooshapur
- Laboratory of Structural Biophysics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Junhe Ma
- Laboratory of Structural Biophysics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.,Present address: Ashland Specialty Ingredients, 500 Hercules Rd., Wilmington, DE, 19808, USA
| | - Nico Tjandra
- Laboratory of Structural Biophysics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Guillermo A Bermejo
- Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
28
|
Parigi G, Ravera E, Luchinat C. Magnetic susceptibility and paramagnetism-based NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 114-115:211-236. [PMID: 31779881 DOI: 10.1016/j.pnmrs.2019.06.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 05/18/2023]
Abstract
The magnetic interactions between the nuclear magnetic moment and the magnetic moment of unpaired electron(s) depend on the structure and dynamics of the molecules where the paramagnetic center is located and of their partners. The long-range nature of the magnetic interactions is thus a reporter of invaluable information for structural biology studies, when other techniques often do not provide enough data for the atomic-level characterization of the system. This precious information explains the flourishing of paramagnetism-assisted NMR studies in recent years. Many paramagnetic effects are related to the magnetic susceptibility of the paramagnetic metal. Although these effects have been known for more than half a century, different theoretical models and new approaches have been proposed in the last decade. In this review, we have summarized the consequences for NMR spectroscopy of magnetic interactions between nuclear and electron magnetic moments, and thus of the presence of a magnetic susceptibility due to metals, and we do so using a unified notation.
Collapse
Affiliation(s)
- Giacomo Parigi
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Enrico Ravera
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
29
|
Ravera E, Parigi G, Luchinat C. What are the methodological and theoretical prospects for paramagnetic NMR in structural biology? A glimpse into the crystal ball. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 306:173-179. [PMID: 31331762 DOI: 10.1016/j.jmr.2019.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/16/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
NMR spectroscopy is very sensitive to the presence of unpaired electrons, which perturb the NMR chemical shifts, J splittings and nuclear relaxation rates. These paramagnetic effects have attracted increasing attention over the last decades, and their use is expected to increase further in the future because they can provide structural information not easily achievable with other techniques. In fact, paramagnetic data provide long range structural restraints that can be used to assess the accuracy of crystal structures in solution and to improve them by simultaneous refinements with the X-ray data. They are also precious for obtaining information on the conformational variability of biomolecular systems, possibly in conjunction with SAXS and/or DEER data. We foresee that new tools will be developed in the next years for the simultaneous analysis of the paramagnetic data with data obtained from different techniques, in order to take advantage synergistically of the information content of all of them. Of course, the use of the paramagnetic data for structural purposes requires the knowledge of the relationship between these data and the molecular coordinates. Recently, the equations commonly used, dating back to half a century ago, have been questioned by first principle quantum chemistry calculations. Our prediction is that further theoretical/computational improvements will essentially confirm the validity of the old semi-empirical equations for the analysis of the experimental paramagnetic data.
Collapse
Affiliation(s)
- Enrico Ravera
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
30
|
Integrative Approaches in Structural Biology: A More Complete Picture from the Combination of Individual Techniques. Biomolecules 2019; 9:biom9080370. [PMID: 31416261 PMCID: PMC6723403 DOI: 10.3390/biom9080370] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/08/2019] [Accepted: 08/11/2019] [Indexed: 11/21/2022] Open
Abstract
With the recent technological and computational advancements, structural biology has begun to tackle more and more difficult questions, including complex biochemical pathways and transient interactions among macromolecules. This has demonstrated that, to approach the complexity of biology, one single technique is largely insufficient and unable to yield thorough answers, whereas integrated approaches have been more and more adopted with successful results. Traditional structural techniques (X-ray crystallography and Nuclear Magnetic Resonance (NMR)) and the emerging ones (cryo-electron microscopy (cryo-EM), Small Angle X-ray Scattering (SAXS)), together with molecular modeling, have pros and cons which very nicely complement one another. In this review, three examples of synergistic approaches chosen from our previous research will be revisited. The first shows how the joint use of both solution and solid-state NMR (SSNMR), X-ray crystallography, and cryo-EM is crucial to elucidate the structure of polyethylene glycol (PEG)ylated asparaginase, which would not be obtainable through any of the techniques taken alone. The second deals with the integrated use of NMR, X-ray crystallography, and SAXS in order to elucidate the catalytic mechanism of an enzyme that is based on the flexibility of the enzyme itself. The third one shows how it is possible to put together experimental data from X-ray crystallography and NMR restraints in order to refine a protein model in order to obtain a structure which simultaneously satisfies both experimental datasets and is therefore closer to the ‘real structure’.
Collapse
|
31
|
Li ZL, Buck M. Modified Potential Functions Result in Enhanced Predictions of a Protein Complex by All-Atom Molecular Dynamics Simulations, Confirming a Stepwise Association Process for Native Protein-Protein Interactions. J Chem Theory Comput 2019; 15:4318-4331. [PMID: 31241940 DOI: 10.1021/acs.jctc.9b00195] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The relative prevalence of native protein-protein interactions (PPIs) are the cornerstone for understanding the structure, dynamics and mechanisms of function of protein complexes. In this study, we develop a scheme for scaling the protein-water interaction in the CHARMM36 force field, in order to better fit the solvation free energy of amino acids side-chain analogues. We find that the molecular dynamics simulation with the scaled force field, CHARMM36s, as well as a recently released version, CHARMM36m, effectively improve on the overly sticky association of proteins, such as ubiquitin. We investigate the formation of a heterodimer protein complex between the SAM domains of the EphA2 receptor and the SHIP2 enzyme by performing a combined total of 48 μs simulations with the different potential functions. While the native SAM heterodimer is only predicted at a low rate of 6.7% with the original CHARMM36 force field, the yield is increased to 16.7% with CHARMM36s, and to 18.3% with CHARMM36m. By analyzing the 25 native SAM complexes formed in the simulations, we find that their formation involves a preorientation guided by Coulomb interactions, consistent with an electrostatic steering mechanism. In 12 cases, the complex could directly transform to the native protein interaction surfaces with only small adjustments in domain orientation. In the other 13 cases, orientational and/or translational adjustments are needed to reach the native complex. Although the tendency for non-native complexes to dissociate has nearly doubled with the modified potential functions, a dissociation followed by a reassociation to the correct complex structure is still rare. Instead, the remaining non-native complexes undergo configurational changes/surface searching, which, however, rarely leads to native structures on a time scale of 250 ns. These observations provide a rich picture of the mechanisms of protein-protein complex formation and suggest that computational predictions of native complex PPIs could be improved further.
Collapse
Affiliation(s)
- Zhen-Lu Li
- Department of Physiology and Biophysics , Case Western Reserve University, School of Medicine , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Matthias Buck
- Department of Physiology and Biophysics , Case Western Reserve University, School of Medicine , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States.,Departments of Pharmacology and Neurosciences, and Case Comprehensive Cancer Center , Case Western Reserve University, School of Medicine , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| |
Collapse
|
32
|
Carlon A, Ravera E, Parigi G, Murshudov GN, Luchinat C. Joint X-ray/NMR structure refinement of multidomain/multisubunit systems. JOURNAL OF BIOMOLECULAR NMR 2019; 73:265-278. [PMID: 30311122 PMCID: PMC6692505 DOI: 10.1007/s10858-018-0212-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Abstract
Data integration in structural biology has become a paradigm for the characterization of biomolecular systems, and it is now accepted that combining different techniques can fill the gaps in each other's blind spots. In this frame, one of the combinations, which we have implemented in REFMAC-NMR, is residual dipolar couplings from NMR together with experimental data from X-ray diffraction. The first are exquisitely sensitive to the local details but does not give any information about overall shape, whereas the latter encodes more the information about the overall shape but at the same time tends to miss the local details even at the highest resolutions. Once crystals are obtained, it is often rather easy to obtain a complete X-ray dataset, however it is time-consuming to obtain an exhaustive NMR dataset. Here, we discuss the effect of including a-priori knowledge on the properties of the system to reduce the number of experimental data needed to obtain a more complete picture. We thus introduce a set of new features of REFMAC-NMR that allow for improved handling of RDC data for multidomain proteins and multisubunit biomolecular complexes, and encompasses the use of pseudo-contact shifts as an additional source of NMR-based information. The new feature may either help in improving the refinement, or assist in spotting differences between the crystal and the solution data. We show three different examples where NMR and X-ray data can be reconciled to a unique structural model without invoking mobility.
Collapse
Affiliation(s)
- Azzurra Carlon
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Enrico Ravera
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Garib N. Murshudov
- MRC Laboratory for Molecular Biology, Francis Crick Ave, CB2 0QH Cambridge, UK
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
33
|
Su XC, Chen JL. Site-Specific Tagging of Proteins with Paramagnetic Ions for Determination of Protein Structures in Solution and in Cells. Acc Chem Res 2019; 52:1675-1686. [PMID: 31150202 DOI: 10.1021/acs.accounts.9b00132] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
High-resolution NMR spectroscopy is sensitive to local structural variations and subtle dynamics of biomolecules and is an important technique for studying the structures, dynamics, and interactions of these molecules. Small-molecule probes, including paramagnetic tags, have been developed for this purpose. Paramagnetic effects manifested in magnetic resonance spectra have long been recognized as valuable tools for chemical analysis of small molecules, and these effects were later applied in the fields of chemical biology and structural biology. However, such applications require the installation of a paramagnetic center in the biomolecules of interest. Paramagnetic metal ions and stable free radicals are the most widely used paramagnetic probes for biological magnetic resonance spectroscopy, and therefore mild, high-yielding approaches for chemically attaching paramagnetic tags to biomolecules are in high demand. In this Account, we begin by discussing paramagnetic species, especially transition metal ions and lanthanide ions, that are suitable for NMR and EPR studies, particularly for in-cell applications. Thereafter, we describe approaches for site-specific tagging of proteins with paramagnetic ions and discuss considerations involved in designing high-quality paramagnetic tags, including the strength of the binding between the metal-chelating moiety and the paramagnetic ion, the chemical stability, and the flexibility of the tether between the paramagnetic tag and the target protein. The flexibility of a tag correlates strongly with the averaging of paramagnetic effects observed in NMR spectra, and we describe methods for increasing tag rigidity and applications of such tags in biological systems. We also describe specific applications of established site-specific tagging approaches and newly developed paramagnetic tags for the elucidation of protein structures and dynamics at atomic resolution both in solution and in cells. First, we describe the determination of the 3D structure of a short-lived, low-abundance enzyme intermediate complex in real time by using pseudocontact shifts as structural restraints. Second, we demonstrate the utility of stable paramagnetic tags for determining 3D structures of proteins in live cells, and pseudocontact shifts are shown to be valuable structural restraints for in-cell protein analysis. Third, we show that a NMR optimized paramagnetic tag allows one to determine distance restraints on proteins by double electron-electron resonance (DEER) measurements with high spatial resolution both in vitro and in cells. Finally, we summarize recent advances in site-specific tagging of proteins to achieve atomic-resolution information about structural changes of proteins, and the advantages and challenges of magnetic resonance spectroscopy in biological systems.
Collapse
Affiliation(s)
- Xun-Cheng Su
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jia-Liang Chen
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
34
|
Mahajan M, Ravula T, Prade E, Anantharamaiah GM, Ramamoorthy A. Probing membrane enhanced protein-protein interactions in a minimal redox complex of cytochrome-P450 and P450-reductase. Chem Commun (Camb) 2019; 55:5777-5780. [PMID: 31041432 PMCID: PMC7467500 DOI: 10.1039/c9cc01630a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Investigating the interplay in a minimal redox complex of cytochrome-P450 and its reductase is crucial for understanding cytochrome-P450's enzymatic activity. Probing the hotspots of dynamic structural interactions using NMR revealed the engagement of loop residues from P450-reductase to be responsible for the enhanced affinity of CYP450 towards its obligate redox partner.
Collapse
Affiliation(s)
- Mukesh Mahajan
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | | | | | | | | |
Collapse
|
35
|
Perez A, Gaalswyk K, Jaroniec CP, MacCallum JL. High Accuracy Protein Structures from Minimal Sparse Paramagnetic Solid‐State NMR Restraints. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alberto Perez
- Department of Chemistry University of Florida Gainesville FL USA
| | - Kari Gaalswyk
- Department of Chemistry University of Calgary Calgary Alberta Canada
| | | | | |
Collapse
|
36
|
Perez A, Gaalswyk K, Jaroniec CP, MacCallum JL. High Accuracy Protein Structures from Minimal Sparse Paramagnetic Solid-State NMR Restraints. Angew Chem Int Ed Engl 2019; 58:6564-6568. [PMID: 30913341 DOI: 10.1002/anie.201811895] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/01/2019] [Indexed: 11/08/2022]
Abstract
There is a pressing need for new computational tools to integrate data from diverse experimental approaches in structural biology. We present a strategy that combines sparse paramagnetic solid-state NMR restraints with physics-based atomistic simulations. Our approach explicitly accounts for uncertainty in the interpretation of experimental data through the use of a semi-quantitative mapping between the data and the restraint energy that is calibrated by extensive simulations. We apply our approach to solid-state NMR data for the model protein GB1 labeled with Cu2+ -EDTA at six different sites. We are able to determine the structure to 0.9 Å accuracy within a single day of computation on a GPU cluster. We further show that in some cases, the data from only a single paramagnetic tag are sufficient for accurate folding.
Collapse
Affiliation(s)
- Alberto Perez
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Kari Gaalswyk
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | | | - Justin L MacCallum
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
37
|
Gigli L, Andrałojć W, Dalaloyan A, Parigi G, Ravera E, Goldfarb D, Luchinat C. Assessing protein conformational landscapes: integration of DEER data in Maximum Occurrence analysis. Phys Chem Chem Phys 2018; 20:27429-27438. [PMID: 30357188 DOI: 10.1039/c8cp06195e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The properties of the conformational landscape of a biomolecule are of capital importance to understand its function. It is widely accepted that a statistical ensemble is far more representative than a single structure, especially for proteins with disordered regions. While experimental data provide the most important handle on the conformational variability that the system is experiencing, they usually report on either time or ensemble averages. Since the available conformations largely outnumber the (independent) available experimental data, the latter can be equally well reproduced by a variety of ensembles. We have proposed the Maximum Occurrence (MaxOcc) approach to provide an upper bound of the statistical weight of each conformation. This method is expected to converge towards the true statistical weights by increasing the number of independent experimental datasets. In this paper we explore the ability of DEER (Double Electron Electron Resonance) data, which report on the distance distribution between two spin labels attached to a biomolecule, to restrain the MaxOcc values and its complementarity to previously introduced experimental techniques such as NMR and Small-Angle X-ray Scattering. We here present the case of Ca2+ bound calmodulin (CaM) as a test case and show that DEER data impose a sizeable reduction of the conformational space described by high MaxOcc conformations.
Collapse
Affiliation(s)
- Lucia Gigli
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino (FI), Italy.
| | | | | | | | | | | | | |
Collapse
|
38
|
Ravera E, Takis PG, Fragai M, Parigi G, Luchinat C. NMR Spectroscopy and Metal Ions in Life Sciences. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800875] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Enrico Ravera
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino Italy
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| | - Panteleimon G. Takis
- Giotto Biotech S.R.L.; Via Madonna del Piano 6 50019 Sesto Fiorentino (FI) Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino Italy
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino Italy
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino Italy
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| |
Collapse
|
39
|
Andrałojć W, Ravera E. Treating Biomacromolecular Conformational Variability. PARAMAGNETISM IN EXPERIMENTAL BIOMOLECULAR NMR 2018. [DOI: 10.1039/9781788013291-00107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The function of a biomacromolecule is related not only to its structure but also to the different conformations that its structural elements can sample. It is therefore important to determine the extent of the structural fluctuations and to identify the states that are actually populated as a result of the rearrangement. However, this accomplishment is undermined by an intrinsic limitation: the amount of experimental data is by and large inferior to the number of the states that a biomacromolecule can actually sample. This means that additional, a priori information must be applied in order to derive the most from the available experimental data but not to run into overinterpretation. In this chapter we will give a summary of the experimental observables that can be used towards the reconstruction of structural ensembles, how the data can be profitably combined and to what extent the data are affected by error; finally we will give an overview of the computational methods that have been developed to model structural ensembles, highlighting their difference and similarities, advantages and disadvantages.
Collapse
Affiliation(s)
- Witold Andrałojć
- Polish Academy of Sciences, Institute of Bioorganic Chemistry Noskowskiego 12/14 Poznan 61-704 Poland
| | - Enrico Ravera
- University of Florence, Department of Chemistry and Magnetic Resonance Center Via L. Sacconi 6 50019 Sesto Fiorentino (FI) Italy
| |
Collapse
|
40
|
Orton HW, Otting G. Accurate Electron-Nucleus Distances from Paramagnetic Relaxation Enhancements. J Am Chem Soc 2018; 140:7688-7697. [PMID: 29790335 DOI: 10.1021/jacs.8b03858] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Measurements of paramagnetic relaxation enhancements (PREs) in 1H NMR spectra are an important tool to obtain long-range distance information in proteins, but quantitative interpretation is easily compromised by nonspecific intermolecular PREs. Here we show that PREs generated by lanthanides with anisotropic magnetic susceptibilities offer a route to accurate calibration-free distance measurements. As these lanthanides change 1H chemical shifts due to pseudocontact shifts, the relaxation rates in the paramagnetic and diamagnetic state can be measured with a single sample that simultaneously contains the protein labeled with a paramagnetic and a diamagnetic lanthanide ion. Nonspecific intermolecular PREs are thus automatically subtracted when calculating the PREs as the difference in nuclear relaxation rates between paramagnetic and diamagnetic protein. Although PREs from lanthanides with anisotropic magnetic susceptibilities are complicated by additional cross-correlation effects and residual dipolar couplings (RDCs) in the paramagnetic state, these effects can be controlled by the choice of lanthanide ion and experimental conditions. Using calbindin D9k with erbium, we succeeded in measuring intramolecular PREs with unprecedented accuracy, resulting in distance predictions with a root-mean-square-deviation of <0.9 Å in the range 11-24 Å.
Collapse
Affiliation(s)
- Henry W Orton
- Research School of Chemistry , Australian National University , Canberra , Australian Capital Territory 2601 , Australia
| | - Gottfried Otting
- Research School of Chemistry , Australian National University , Canberra , Australian Capital Territory 2601 , Australia
| |
Collapse
|
41
|
An SY, Kim EH, Suh JY. Facilitated Protein Association via Engineered Target Search Pathways Visualized by Paramagnetic NMR Spectroscopy. Structure 2018; 26:887-893.e2. [PMID: 29779788 DOI: 10.1016/j.str.2018.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/28/2018] [Accepted: 04/12/2018] [Indexed: 11/29/2022]
Abstract
Proteins assemble to form functional complexes via the progressive evolution of nonspecific complexes formed by transient encounters. This target search process generally involves multiple routes that lead the initial encounters to the final complex. In this study, we have employed NMR paramagnetic relaxation enhancement to visualize the encounter complexes between histidine-containing phosphocarrier protein and the N-terminal domain of enzyme I and demonstrate that protein association can be significantly enhanced by engineering on-pathways. Specifically, mutations in surface charges away from the binding interface can elicit new on-pathway encounter complexes, increasing their binding affinity by an order of magnitude. The structure of these encounter complexes indicates that such on-pathways extend the built-in target search process of the native protein complex. Furthermore, blocking on-pathways by countering mutations reverts their binding affinity. Our study thus illustrates that protein interactions can be engineered by rewiring the target search process.
Collapse
Affiliation(s)
- So Young An
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Eun-Hee Kim
- Protein Structure Research Team, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang, Chungbuk 28119, Republic of Korea
| | - Jeong-Yong Suh
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Institute for Biomedical Sciences, Shinshu University, Minamiminowa, Nagano 399-4598, Japan.
| |
Collapse
|
42
|
Abstract
Redox enzymes, which catalyze reactions involving electron transfers in living organisms, are very promising components of biotechnological devices, and can be envisioned for sensing applications as well as for energy conversion. In this context, one of the most significant challenges is to achieve efficient direct electron transfer by tunneling between enzymes and conductive surfaces. Based on various examples of bioelectrochemical studies described in the recent literature, this review discusses the issue of enzyme immobilization at planar electrode interfaces. The fundamental importance of controlling enzyme orientation, how to obtain such orientation, and how it can be verified experimentally or by modeling are the three main directions explored. Since redox enzymes are sizable proteins with anisotropic properties, achieving their functional immobilization requires a specific and controlled orientation on the electrode surface. All the factors influenced by this orientation are described, ranging from electronic conductivity to efficiency of substrate supply. The specificities of the enzymatic molecule, surface properties, and dipole moment, which in turn influence the orientation, are introduced. Various ways of ensuring functional immobilization through tuning of both the enzyme and the electrode surface are then described. Finally, the review deals with analytical techniques that have enabled characterization and quantification of successful achievement of the desired orientation. The rich contributions of electrochemistry, spectroscopy (especially infrared spectroscopy), modeling, and microscopy are featured, along with their limitations.
Collapse
|
43
|
Bowen AM, Johnson EOD, Mercuri F, Hoskins NJ, Qiao R, McCullagh JSO, Lovett JE, Bell SG, Zhou W, Timmel CR, Wong LL, Harmer JR. A Structural Model of a P450-Ferredoxin Complex from Orientation-Selective Double Electron-Electron Resonance Spectroscopy. J Am Chem Soc 2018; 140:2514-2527. [PMID: 29266939 DOI: 10.1021/jacs.7b11056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cytochrome P450 (CYP) monooxygenases catalyze the oxidation of chemically inert carbon-hydrogen bonds in diverse endogenous and exogenous organic compounds by atmospheric oxygen. This C-H bond oxy-functionalization activity has huge potential in biotechnological applications. Class I CYPs receive the two electrons required for oxygen activation from NAD(P)H via a ferredoxin reductase and ferredoxin. The interaction of Class I CYPs with their cognate ferredoxin is specific. In order to reconstitute the activity of diverse CYPs, structural characterization of CYP-ferredoxin complexes is necessary, but little structural information is available. Here we report a structural model of such a complex (CYP199A2-HaPux) in frozen solution derived from distance and orientation restraints gathered by the EPR technique of orientation-selective double electron-electron resonance (os-DEER). The long-lived oscillations in the os-DEER spectra were well modeled by a single orientation of the CYP199A2-HaPux complex. The structure is different from the two known Class I CYP-Fdx structures: CYP11A1-Adx and CYP101A1-Pdx. At the protein interface, HaPux residues in the [Fe2S2] cluster-binding loop and the α3 helix and the C-terminus residue interact with CYP199A2 residues in the proximal loop and the C helix. These residue contacts are consistent with biochemical data on CYP199A2-ferredoxin binding and electron transfer. Electron-tunneling calculations indicate an efficient electron-transfer pathway from the [Fe2S2] cluster to the heme. This new structural model of a CYP-Fdx complex provides the basis for tailoring CYP enzymes for which the cognate ferredoxin is not known, to accept electrons from HaPux and display monooxygenase activity.
Collapse
Affiliation(s)
- Alice M Bowen
- Centre for Applied Electron Spin Resonance, Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford OX1 3QR, U.K
| | - Eachan O D Johnson
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford OX1 3QR, U.K
| | - Francesco Mercuri
- Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN) Via P. Gobetti 101, 40129 Bologna, Italy
| | - Nicola J Hoskins
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford OX1 3QR, U.K
| | - Ruihong Qiao
- College of Life Sciences, Nankai University , Tianjin 300071, China
| | - James S O McCullagh
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford , Mansfield Road, Oxford OX1 3TA, U.K
| | - Janet E Lovett
- Centre for Applied Electron Spin Resonance, Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford OX1 3QR, U.K
| | - Stephen G Bell
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford OX1 3QR, U.K
| | - Weihong Zhou
- College of Life Sciences, Nankai University , Tianjin 300071, China
| | - Christiane R Timmel
- Centre for Applied Electron Spin Resonance, Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford OX1 3QR, U.K
| | - Luet Lok Wong
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford OX1 3QR, U.K
| | - Jeffrey R Harmer
- Centre for Applied Electron Spin Resonance, Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford OX1 3QR, U.K
| |
Collapse
|
44
|
Paramagnetic NMR as a new tool in structural biology. Emerg Top Life Sci 2018; 2:19-28. [DOI: 10.1042/etls20170084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 12/25/2022]
Abstract
NMR (nuclear magnetic resonance) investigation through the exploitation of paramagnetic effects is passing from an approach limited to few specialists in the field to a generally applicable method that must be considered, especially for the characterization of systems hardly affordable with other techniques. This is mostly due to the fact that paramagnetic data are long range in nature, thus providing information for the structural and dynamic characterization of complex biomolecular architectures in their native environment. On the other hand, this information usually needs to be complemented by data from other sources. Integration of paramagnetic NMR with other techniques, and the development of protocols for a joint analysis of all available data, is fundamental for achieving a comprehensive characterization of complex biological systems. We describe here a few examples of the new possibilities offered by paramagnetic data used in integrated structural approaches.
Collapse
|
45
|
Mak PJ, Denisov IG. Spectroscopic studies of the cytochrome P450 reaction mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2018; 1866:178-204. [PMID: 28668640 PMCID: PMC5709052 DOI: 10.1016/j.bbapap.2017.06.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/22/2017] [Indexed: 10/19/2022]
Abstract
The cytochrome P450 monooxygenases (P450s) are thiolate heme proteins that can, often under physiological conditions, catalyze many distinct oxidative transformations on a wide variety of molecules, including relatively simple alkanes or fatty acids, as well as more complex compounds such as steroids and exogenous pollutants. They perform such impressive chemistry utilizing a sophisticated catalytic cycle that involves a series of consecutive chemical transformations of heme prosthetic group. Each of these steps provides a unique spectral signature that reflects changes in oxidation or spin states, deformation of the porphyrin ring or alteration of dioxygen moieties. For a long time, the focus of cytochrome P450 research was to understand the underlying reaction mechanism of each enzymatic step, with the biggest challenge being identification and characterization of the powerful oxidizing intermediates. Spectroscopic methods, such as electronic absorption (UV-Vis), electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), electron nuclear double resonance (ENDOR), Mössbauer, X-ray absorption (XAS), and resonance Raman (rR), have been useful tools in providing multifaceted and detailed mechanistic insights into the biophysics and biochemistry of these fascinating enzymes. The combination of spectroscopic techniques with novel approaches, such as cryoreduction and Nanodisc technology, allowed for generation, trapping and characterizing long sought transient intermediates, a task that has been difficult to achieve using other methods. Results obtained from the UV-Vis, rR and EPR spectroscopies are the main focus of this review, while the remaining spectroscopic techniques are briefly summarized. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.
Collapse
Affiliation(s)
- Piotr J Mak
- Department of Chemistry, Saint Louis University, St. Louis, MO, United States.
| | - Ilia G Denisov
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
46
|
Cerofolini L, Staderini T, Giuntini S, Ravera E, Fragai M, Parigi G, Pierattelli R, Luchinat C. Long-range paramagnetic NMR data can provide a closer look on metal coordination in metalloproteins. J Biol Inorg Chem 2017; 23:71-80. [PMID: 29218635 DOI: 10.1007/s00775-017-1511-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/06/2017] [Indexed: 11/24/2022]
Abstract
Paramagnetic NMR data can be profitably incorporated in structural refinement protocols of metalloproteins or metal-substituted proteins, mostly as distance or angle restraints. However, they could in principle provide much more information, because the magnetic susceptibility of a paramagnetic metal ion is largely determined by its coordination sphere. This information can in turn be used to evaluate changes occurring in the coordination sphere of the metal when ligands (e.g.: inhibitors) are bound to the protein. This gives an experimental handle on the molecular structure in the vicinity of the metal which falls in the so-called blind sphere. The magnetic susceptibility anisotropy tensors of cobalt(II) and nickel(II) ions bound to human carbonic anhydrase II in free and inhibited forms have been determined. The change of the magnetic susceptibility anisotropy is directly linked to the binding mode of different ligands in the active site of the enzyme. Indication about the metal coordination sphere in the presence of an inhibitor in pharmaceutically relevant proteins could be important in the design of selective drugs with a structure-based approach.
Collapse
Affiliation(s)
- Linda Cerofolini
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Tommaso Staderini
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Stefano Giuntini
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Enrico Ravera
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, Italy
- Giotto Biotech S.R.L., Via Madonna del Piano 6, 50019, Sesto Fiorentino, Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Roberta Pierattelli
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy.
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
47
|
NMR in structure-based drug design. Essays Biochem 2017; 61:485-493. [PMID: 29118095 DOI: 10.1042/ebc20170037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/21/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022]
Abstract
NMR spectroscopy is a powerful technique that can provide valuable structural information for drug discovery endeavors. Here, we discuss the strengths (and limitations) of NMR applications to structure-based drug discovery, highlighting the different levels of resolution and throughput obtainable. Additionally, the emerging field of paramagnetic NMR in drug discovery and recent developments in approaches to speed up and automate protein-observed NMR data collection and analysis are discussed.
Collapse
|
48
|
Ravera E, Parigi G, Luchinat C. Perspectives on paramagnetic NMR from a life sciences infrastructure. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 282:154-169. [PMID: 28844254 DOI: 10.1016/j.jmr.2017.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 05/17/2023]
Abstract
The effects arising in NMR spectroscopy because of the presence of unpaired electrons, collectively referred to as "paramagnetic NMR" have attracted increasing attention over the last decades. From the standpoint of the structural and mechanistic biology, paramagnetic NMR provides long range restraints that can be used to assess the accuracy of crystal structures in solution and to improve them by simultaneous refinements through NMR and X-ray data. These restraints also provide information on structure rearrangements and conformational variability in biomolecular systems. Theoretical improvements in quantum chemistry calculations can nowadays allow for accurate calculations of the paramagnetic data from a molecular structural model, thus providing a tool to refine the metal coordination environment by matching the paramagnetic effects observed far away from the metal. Furthermore, the availability of an improved technology (higher fields and faster magic angle spinning) has promoted paramagnetic NMR applications in the fast-growing area of biomolecular solid-state NMR. Major improvements in dynamic nuclear polarization have been recently achieved, especially through the exploitation of the Overhauser effect occurring through the contact-driven relaxation mechanism: the very large enhancement of the 13C signal observed in a variety of liquid organic compounds at high fields is expected to open up new perspectives for applications of solution NMR.
Collapse
Affiliation(s)
- Enrico Ravera
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, via Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, via Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, via Sacconi 6, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
49
|
Liou SH, Myers WK, Oswald JD, Britt RD, Goodin DB. Putidaredoxin Binds to the Same Site on Cytochrome P450cam in the Open and Closed Conformation. Biochemistry 2017; 56:4371-4378. [DOI: 10.1021/acs.biochem.7b00564] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Shu-Hao Liou
- Department
of Chemistry, University of California, Davis, California 95616, United States
- Research
Group EPR Spectroscopy, Max-Planck-Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - William K. Myers
- Centre
for Advanced Electron Spin Resonance, Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Jason D. Oswald
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - R. David Britt
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - David B. Goodin
- Department
of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|