1
|
Obermayr E, Mohr T, Schuster E, Braicu EI, Taube E, Sehouli J, Vergote I, Pujade-Lauraine E, Ray-Coquard I, Harter P, Wimberger P, Joly-Lobbedez F, Mahner S, Moll UM, Concin N, Zeillinger R. Gene expression markers in peripheral blood and outcome in patients with platinum-resistant ovarian cancer: A study of the European GANNET53 consortium. Int J Cancer 2024; 155:1128-1138. [PMID: 38676430 DOI: 10.1002/ijc.34978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024]
Abstract
Disease progression is a major problem in ovarian cancer. There are very few treatment options for patients with platinum-resistant ovarian cancer (PROC), and therefore, these patients have a particularly poor prognosis. The aim of the present study was to identify markers for monitoring the response of 123 PROC patients enrolled in the Phase I/II GANNET53 clinical trial, which evaluated the efficacy of Ganetespib in combination with standard chemotherapy versus standard chemotherapy alone. In total, 474 blood samples were collected, comprising baseline samples taken before the first administration of the study drugs and serial samples taken during treatment until further disease progression (PD). After microfluidic enrichment, 27 gene transcripts were analyzed using quantitative polymerase chain reaction and their utility for disease monitoring was evaluated. At baseline, ERCC1 was associated with an increased risk of PD (hazard ratio [HR] 1.75, 95% confidence interval [CI]: 1.20-2.55; p = 0.005), while baseline CDH1 and ESR1 may have a risk-reducing effect (CDH1 HR 0.66, 95% CI: 0.46-0.96; p = 0.024; ESR1 HR 0.58, 95% CI: 0.39-0.86; p = 0.002). ERCC1 was observed significantly more often (72.7% vs. 53.9%; p = 0.032) and ESR1 significantly less frequently (59.1% vs. 78.3%; p = 0.018) in blood samples taken at radiologically confirmed PD than at controlled disease. At any time during treatment, ERCC1-presence and ESR1-absence were associated with short PFS and with higher odds of PD within 6 months (odds ratio 12.77, 95% CI: 4.08-39.97; p < 0.001). Our study demonstrates the clinical relevance of ESR1 and ERCC1 and may encourage the analysis of liquid biopsy samples for the management of PROC patients.
Collapse
Affiliation(s)
- Eva Obermayr
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Thomas Mohr
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Eva Schuster
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Elena Ioana Braicu
- Department of Gynecology, European Competence Center for Ovarian Cancer, Campus 3 Virchow Klinikum, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Eliane Taube
- Institute of Pathology, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jalid Sehouli
- Department of Gynecology, European Competence Center for Ovarian Cancer, Campus 3 Virchow Klinikum, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Ignace Vergote
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, Leuven Cancer Institute, University Hospitals Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | - Isabelle Ray-Coquard
- Centre Anticancereux Léon Bérard, University Claude Bernard Lyon, GINECO Group, Lyon, France
| | - Philipp Harter
- Department of Gyneacologic Oncology, Kliniken Essen Mitte, Evang. Huyssens-Stiftung/Knappschaft GmbH, Essen, Germany
| | - Pauline Wimberger
- Department of Gynecology and Obstetrics, Technische Universität Dresden, Dresden, Germany and National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
| | | | - Sven Mahner
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, AGO, Hamburg, Germany
| | - Ute Martha Moll
- Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Nicole Concin
- Department of Obstetrics and Gynecology, Innsbruck Medical University, Innsbruck, Austria
| | - Robert Zeillinger
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Mishra A, Huang SB, Dubash T, Burr R, Edd JF, Wittner BS, Cunneely QE, Putaturo VR, Deshpande A, Antmen E, Gopinathan KA, Otani K, Miyazawa Y, Kwak JE, Guay SY, Kelly J, Walsh J, Nieman L, Galler I, Chan P, Lawrence MS, Sullivan RJ, Bardia A, Micalizzi DS, Sequist LV, Lee RJ, Franses JW, Ting DT, Brunker PAR, Maheswaran S, Miyamoto DT, Haber DA, Toner M. Tumor cell-based liquid biopsy using high-throughput microfluidic enrichment of entire leukapheresis product. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.583573. [PMID: 38559183 PMCID: PMC10980012 DOI: 10.1101/2024.03.13.583573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Circulating Tumor Cells (CTCs), interrogated by sampling blood from patients with cancer, contain multiple analytes, including intact RNA, high molecular weight DNA, proteins, and metabolic markers. However, the clinical utility of tumor cell-based liquid biopsy has been limited since CTCs are very rare, and current technologies cannot process the blood volumes required to isolate a sufficient number of tumor cells for in-depth assays. We previously described a high-throughput microfluidic prototype utilizing high-flow channels and amplification of cell sorting forces through magnetic lenses. Here, we apply this technology to analyze patient-derived leukapheresis products, interrogating a mean blood volume of 5.83 liters from patients with metastatic cancer, with a median of 2,799 CTCs purified per patient. Isolation of many CTCs from individual patients enables characterization of their morphological and molecular heterogeneity, including cell and nuclear size and RNA expression. It also allows robust detection of gene copy number variation, a definitive cancer marker with potential diagnostic applications. High-volume microfluidic enrichment of CTCs constitutes a new dimension in liquid biopsies.
Collapse
|
3
|
Qiu J, Kuang M, He S, Yu C, Wang C, Huang X, Sheng G, Zou Y. Gender perspective on the association between liver enzyme markers and non-alcoholic fatty liver disease: insights from the general population. Front Endocrinol (Lausanne) 2023; 14:1302322. [PMID: 38125795 PMCID: PMC10731038 DOI: 10.3389/fendo.2023.1302322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Objective Every distinct liver enzyme biomarker exhibits a strong correlation with non-alcoholic fatty liver disease (NAFLD). This study aims to comprehensively analyze and compare the associations of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma-glutamyl transferase (GGT) with NAFLD from a gender perspective. Methods This study was conducted on 6,840 females and 7,411 males from the NAGALA cohort. Multivariable logistic regression analysis was used to compare the associations between liver enzyme markers and NAFLD in both genders, recording the corresponding adjusted odds ratios (ORs) and 95% confidence intervals (CIs). Receiver operating characteristic (ROC) curves were used to evaluate the accuracy of individual liver enzyme markers and different combinations of them in identifying NAFLD. Results Liver enzyme markers ALT, AST, and GGT were all independently associated with NAFLD and exhibited significant gender differences (All P-interaction<0.05). In both genders, ALT exhibited the most significant association with NAFLD, with adjusted standardized ORs of 2.19 (95% CI: 2.01-2.39) in males and 1.60 (95% CI: 1.35-1.89) in females. Additionally, ROC analysis showed that ALT had significantly higher accuracy in identifying NAFLD than AST and GGT in both genders (Delong P-value < 0.05), and the accuracy of ALT in identifying NAFLD in males was higher than that in females [Area under the ROC curve (AUC): male 0.79, female 0.77]. Furthermore, out of the various combinations of liver enzymes, ALT+GGT showed the highest accuracy in identifying NAFLD in both genders, with AUCs of 0.77 (95% CI: 0.75-0.79) in females and 0.79 (95% CI: 0.78-0.81) in males. Conclusion Our study revealed significant gender differences in the associations of the three commonly used liver enzyme markers with NAFLD. In both genders, the use of ALT alone may be the simplest and most effective tool for screening NAFLD, especially in males.
Collapse
Affiliation(s)
- Jiajun Qiu
- Department of Internal Medicine, Medical College of Nanchang University, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- Jiangxi Provincial Geriatric Hospital, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Maobin Kuang
- Department of Internal Medicine, Medical College of Nanchang University, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- Jiangxi Provincial Geriatric Hospital, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Shiming He
- Department of Internal Medicine, Medical College of Nanchang University, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- Jiangxi Provincial Geriatric Hospital, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Changhui Yu
- Department of Internal Medicine, Medical College of Nanchang University, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- Jiangxi Provincial Geriatric Hospital, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Chao Wang
- Department of Internal Medicine, Medical College of Nanchang University, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- Jiangxi Provincial Geriatric Hospital, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Xin Huang
- Department of Internal Medicine, Medical College of Nanchang University, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- Jiangxi Provincial Geriatric Hospital, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Guotai Sheng
- Jiangxi Provincial Geriatric Hospital, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Yang Zou
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Salehi M, Lavasani ZM, Keshavarz Alikhani H, Shokouhian B, Hassan M, Najimi M, Vosough M. Circulating Tumor Cells as a Promising Tool for Early Detection of Hepatocellular Carcinoma. Cells 2023; 12:2260. [PMID: 37759483 PMCID: PMC10527869 DOI: 10.3390/cells12182260] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/27/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Liver cancer is a significant contributor to the cancer burden, and its incidence rates have recently increased in almost all countries. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and is the second leading cause of cancer-related deaths worldwide. Because of the late diagnosis and lack of efficient therapeutic modality for advanced stages of HCC, the death rate continues to increase by ~2-3% per year. Circulating tumor cells (CTCs) are promising tools for early diagnosis, precise prognosis, and follow-up of therapeutic responses. They can be considered to be an innovative biomarker for the early detection of tumors and targeted molecular therapy. In this review, we briefly discuss the novel materials and technologies applied for the practical isolation and detection of CTCs in HCC. Also, the clinical value of CTC detection in HCC is highlighted.
Collapse
Affiliation(s)
- Mahsa Salehi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran 1665666311, Iran; (M.S.); (B.S.)
| | - Zohre Miri Lavasani
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran;
| | - Hani Keshavarz Alikhani
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran 1665666311, Iran; (M.S.); (B.S.)
| | - Bahare Shokouhian
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran 1665666311, Iran; (M.S.); (B.S.)
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, 171 77 Stockholm, Sweden;
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, B-1200 Brussels, Belgium
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran 1665666311, Iran; (M.S.); (B.S.)
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, 171 77 Stockholm, Sweden;
| |
Collapse
|
5
|
Chen Z, Li C, Zhou Y, Yao Y, Liu J, Wu M, Su J. Liquid biopsies for cancer: From bench to clinic. MedComm (Beijing) 2023; 4:e329. [PMID: 37492785 PMCID: PMC10363811 DOI: 10.1002/mco2.329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/27/2023] Open
Abstract
Over the past two decades, liquid biopsy has been increasingly used as a supplement, or even, a replacement to the traditional biopsy in clinical oncological practice, due to its noninvasive and early detectable properties. The detections can be based on a variety of features extracted from tumor‑derived entities, such as quantitative alterations, genetic changes, and epigenetic aberrations, and so on. So far, the clinical applications of cancer liquid biopsy mainly aimed at two aspects, prediction (early diagnosis, prognosis and recurrent evaluation, therapeutic response monitoring, etc.) and intervention. In spite of the rapid development and great contributions achieved, cancer liquid biopsy is still a field under investigation and deserves more clinical practice. To better open up future work, here we systematically reviewed and compared the latest progress of the most widely recognized circulating components, including circulating tumor cells, cell-free circulating DNA, noncoding RNA, and nucleosomes, from their discovery histories to clinical values. According to the features applied, we particularly divided the contents into two parts, beyond epigenetics and epigenetic-based. The latter was considered as the highlight along with a brief overview of the advances in both experimental and bioinformatic approaches, due to its unique advantages and relatively lack of documentation.
Collapse
Affiliation(s)
- Zhenhui Chen
- School of Biomedical EngineeringSchool of Ophthalmology & Optometry and Eye HospitalWenzhou Medical UniversityWenzhouZhejiangChina
- Oujiang LaboratoryZhejiang Lab for Regenerative MedicineVision and Brain HealthWenzhouZhejiangChina
| | - Chenghao Li
- School of Biomedical EngineeringSchool of Ophthalmology & Optometry and Eye HospitalWenzhou Medical UniversityWenzhouZhejiangChina
| | - Yue Zhou
- School of Biomedical EngineeringSchool of Ophthalmology & Optometry and Eye HospitalWenzhou Medical UniversityWenzhouZhejiangChina
- Oujiang LaboratoryZhejiang Lab for Regenerative MedicineVision and Brain HealthWenzhouZhejiangChina
| | - Yinghao Yao
- Oujiang LaboratoryZhejiang Lab for Regenerative MedicineVision and Brain HealthWenzhouZhejiangChina
| | - Jiaqi Liu
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Min Wu
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| | - Jianzhong Su
- School of Biomedical EngineeringSchool of Ophthalmology & Optometry and Eye HospitalWenzhou Medical UniversityWenzhouZhejiangChina
- Oujiang LaboratoryZhejiang Lab for Regenerative MedicineVision and Brain HealthWenzhouZhejiangChina
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| |
Collapse
|
6
|
Lee YT, Fujiwara N, Yang JD, Hoshida Y. Risk stratification and early detection biomarkers for precision HCC screening. Hepatology 2023; 78:319-362. [PMID: 36082510 PMCID: PMC9995677 DOI: 10.1002/hep.32779] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 12/08/2022]
Abstract
Hepatocellular carcinoma (HCC) mortality remains high primarily due to late diagnosis as a consequence of failed early detection. Professional societies recommend semi-annual HCC screening in at-risk patients with chronic liver disease to increase the likelihood of curative treatment receipt and improve survival. However, recent dynamic shift of HCC etiologies from viral to metabolic liver diseases has significantly increased the potential target population for the screening, whereas annual incidence rate has become substantially lower. Thus, with the contemporary HCC etiologies, the traditional screening approach might not be practical and cost-effective. HCC screening consists of (i) definition of rational at-risk population, and subsequent (ii) repeated application of early detection tests to the population at regular intervals. The suboptimal performance of the currently available HCC screening tests highlights an urgent need for new modalities and strategies to improve early HCC detection. In this review, we overview recent developments of clinical, molecular, and imaging-based tools to address the current challenge, and discuss conceptual framework and approaches of their clinical translation and implementation. These encouraging progresses are expected to transform the current "one-size-fits-all" HCC screening into individualized precision approaches to early HCC detection and ultimately improve the poor HCC prognosis in the foreseeable future.
Collapse
Affiliation(s)
- Yi-Te Lee
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California
| | - Naoto Fujiwara
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ju Dong Yang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, California; Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, Los Angeles, California; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Yujin Hoshida
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
7
|
Shaik MR, Sagar PR, Shaik NA, Randhawa N. Liquid Biopsy in Hepatocellular Carcinoma: The Significance of Circulating Tumor Cells in Diagnosis, Prognosis, and Treatment Monitoring. Int J Mol Sci 2023; 24:10644. [PMID: 37445822 DOI: 10.3390/ijms241310644] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is an aggressive malignancy with poor outcomes when diagnosed at an advanced stage. Current curative treatments are most effective in early-stage HCC, highlighting the importance of early diagnosis and intervention. However, existing diagnostic methods, such as radiological imaging, alpha-fetoprotein (AFP) testing, and biopsy, have limitations that hinder early diagnosis. AFP elevation is absent in a significant portion of tumors, and imaging may have low sensitivity for smaller tumors or in the presence of cirrhosis. Additionally, as our understanding of the molecular pathogenesis of HCC grows, there is an increasing need for molecular information about the tumors. Biopsy, although informative, is invasive and may not always be feasible depending on tumor location. In this context, liquid biopsy technology has emerged as a promising approach for early diagnosis, enabling molecular characterization and genetic profiling of tumors. This technique involves analyzing circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), or tumor-derived exosomes. CTCs are cancer cells shed from the primary tumor or metastatic sites and circulate in the bloodstream. Their presence not only allows for early detection but also provides insights into tumor metastasis and recurrence. By detecting CTCs in peripheral blood, real-time tumor-related information at the DNA, RNA, and protein levels can be obtained. This article provides an overview of CTCs and explores their clinical significance for early detection, prognosis, treatment selection, and monitoring treatment response in HCC, citing relevant literature.
Collapse
Affiliation(s)
- Mohammed Rifat Shaik
- Department of Medicine, University of Maryland Medical Center Midtown Campus, Baltimore, MD 21201, USA
| | - Prem Raj Sagar
- Department of Medicine, University of Maryland Medical Center Midtown Campus, Baltimore, MD 21201, USA
| | - Nishat Anjum Shaik
- Department of Medicine, University of Maryland Medical Center Midtown Campus, Baltimore, MD 21201, USA
| | | |
Collapse
|
8
|
Chen C, Hernandez JC, Uthaya Kumar DB, Machida T, Tahara SM, El‐Khoueiry A, Li M, Punj V, Swaminathan SK, Kirtane A, Chen Y, Panyam J, Machida K. Profiling of Circulating Tumor Cells for Screening of Selective Inhibitors of Tumor-Initiating Stem-Like Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206812. [PMID: 36949364 PMCID: PMC10190641 DOI: 10.1002/advs.202206812] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/20/2023] [Indexed: 05/18/2023]
Abstract
A critical barrier to effective cancer therapy is the improvement of drug selectivity, toxicity, and reduced recurrence of tumors expanded from tumor-initiating stem-like cells (TICs). The aim is to identify circulating tumor cell (CTC)-biomarkers and to identify an effective combination of TIC-specific, repurposed federal drug administration (FDA)-approved drugs. Three different types of high-throughput screens targeting the TIC population are employed: these include a CD133 (+) cell viability screen, a NANOG expression screen, and a drug combination screen. When combined in a refined secondary screening approach that targets Nanog expression with the same FDA-approved drug library, histone deacetylase (HDAC) inhibitor(s) combined with all-trans retinoic acid (ATRA) demonstrate the highest efficacy for inhibition of TIC growth in vitro and in vivo. Addition of immune checkpoint inhibitor further decreases recurrence and extends PDX mouse survival. RNA-seq analysis of TICs reveals that combined drug treatment reduces many Toll-like receptors (TLR) and stemness genes through repression of the lncRNA MIR22HG. This downregulation induces PTEN and TET2, leading to loss of the self-renewal property of TICs. Thus, CTC biomarker analysis would predict the prognosis and therapy response to this drug combination. In general, biomarker-guided stratification of HCC patients and TIC-targeted therapy should eradicate TICs to extend HCC patient survival.
Collapse
Affiliation(s)
- Chia‐Lin Chen
- Departments of Molecular Microbiology and ImmunologyUniversity of Southern CaliforniaLos AngelesCA90033USA
- Present address:
Department of Life Sciences & Institute of Genome SciencesNational Yang Ming Chiao Tung University110TaipeiTaiwan
| | - Juan Carlos Hernandez
- Departments of Molecular Microbiology and ImmunologyUniversity of Southern CaliforniaLos AngelesCA90033USA
- California State UniversityChannel IslandsCamarilloCAUSA
| | - Dinesh Babu Uthaya Kumar
- Departments of Molecular Microbiology and ImmunologyUniversity of Southern CaliforniaLos AngelesCA90033USA
| | - Tatsuya Machida
- Departments of Molecular Microbiology and ImmunologyUniversity of Southern CaliforniaLos AngelesCA90033USA
| | - Stanley M. Tahara
- Departments of Molecular Microbiology and ImmunologyUniversity of Southern CaliforniaLos AngelesCA90033USA
| | - Anthony El‐Khoueiry
- Norris Comprehensive Cancer CenterUniversity of Southern CaliforniaKeck School of MedicineLos AngelesCA90033USA
| | - Meng Li
- Norris Medical Library2003 Zonal AveLos AngelesCA90089USA
| | - Vasu Punj
- Department of MedicineUniversity of Southern California Keck School of Medicine and Norris Comprehensive Cancer CenterLos AngelesCA90089USA
| | | | - Ameya Kirtane
- Department of PharmaceuticsUniversity of MinnesotaMinneapolisMN55455USA
| | - Yibu Chen
- Norris Medical Library2003 Zonal AveLos AngelesCA90089USA
| | - Jayanth Panyam
- Department of PharmaceuticsUniversity of MinnesotaMinneapolisMN55455USA
| | - Keigo Machida
- Departments of Molecular Microbiology and ImmunologyUniversity of Southern CaliforniaLos AngelesCA90033USA
- Southern California Research Center for ALPD and CirrhosisLos AngelesCA90033USA
| |
Collapse
|
9
|
Xiao J, Sharma U, Arab A, Miglani S, Bhalla S, Suguru S, Suter R, Mukherji R, Lippman ME, Pohlmann PR, Zeck JC, Marshall JL, Weinberg BA, He AR, Noel MS, Schlegel R, Goodarzi H, Agarwal S. Propagated Circulating Tumor Cells Uncover the Potential Role of NFκB, EMT, and TGFβ Signaling Pathways and COP1 in Metastasis. Cancers (Basel) 2023; 15:1831. [PMID: 36980717 PMCID: PMC10046547 DOI: 10.3390/cancers15061831] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Circulating tumor cells (CTCs), a population of cancer cells that represent the seeds of metastatic nodules, are a promising model system for studying metastasis. However, the expansion of patient-derived CTCs ex vivo is challenging and dependent on the collection of high numbers of CTCs, which are ultra-rare. Here we report the development of a combined CTC and cultured CTC-derived xenograft (CDX) platform for expanding and studying patient-derived CTCs from metastatic colon, lung, and pancreatic cancers. The propagated CTCs yielded a highly aggressive population of cells that could be used to routinely and robustly establish primary tumors and metastatic lesions in CDXs. Differential gene analysis of the resultant CTC models emphasized a role for NF-κB, EMT, and TGFβ signaling as pan-cancer signaling pathways involved in metastasis. Furthermore, metastatic CTCs were identified through a prospective five-gene signature (BCAR1, COL1A1, IGSF3, RRAD, and TFPI2). Whole-exome sequencing of CDX models and metastases further identified mutations in constitutive photomorphogenesis protein 1 (COP1) as a potential driver of metastasis. These findings illustrate the utility of the combined patient-derived CTC model and provide a glimpse of the promise of CTCs in identifying drivers of cancer metastasis.
Collapse
Affiliation(s)
- Jerry Xiao
- School of Medicine, Georgetown University, Washington, DC 20057, USA
- Department of Pathology, Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, USA
| | - Utsav Sharma
- Lombardi Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Abolfazl Arab
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Sohit Miglani
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Sonakshi Bhalla
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Shravanthy Suguru
- Department of Pathology, Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, USA
| | - Robert Suter
- Lombardi Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Reetu Mukherji
- Department of Medicine, The Ruesch Center for the Cure of Gastrointestinal Cancers, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Marc E. Lippman
- Lombardi Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Paula R. Pohlmann
- Lombardi Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Jay C. Zeck
- Department of Pathology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - John L. Marshall
- Department of Medicine, The Ruesch Center for the Cure of Gastrointestinal Cancers, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Benjamin A. Weinberg
- Department of Medicine, The Ruesch Center for the Cure of Gastrointestinal Cancers, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Aiwu Ruth He
- Department of Medicine, The Ruesch Center for the Cure of Gastrointestinal Cancers, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Marcus S. Noel
- Department of Medicine, The Ruesch Center for the Cure of Gastrointestinal Cancers, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Richard Schlegel
- Department of Pathology, Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Seema Agarwal
- Department of Pathology, Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
10
|
Teng PC, Huang DQ, Lin TY, Noureddin M, Yang JD. Diabetes and Risk of Hepatocellular Carcinoma in Cirrhosis Patients with Nonalcoholic Fatty Liver Disease. Gut Liver 2023; 17:24-33. [PMID: 36530125 PMCID: PMC9840929 DOI: 10.5009/gnl220357] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 12/23/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the world. NAFLD is a hepatic manifestation of insulin resistance, the core pathophysiology of diabetes. Multiple clinical studies show that diabetes increases the risk of liver disease progression and cirrhosis development in patients with NAFLD. Diabetes has causal associations with many different cancers, including hepatocellular carcinoma (HCC). More recent studies demonstrate that diabetes increases the risk of HCC in patients with underlying NAFLD cirrhosis, confirming the direct hepatocarcinogenic effect of diabetes among cirrhosis patients. Diabetes promotes hepatocarcinogenesis via the activation of inflammatory cascades producing reactive oxygen species and proinflammatory cytokines, leading to genomic instability, cellular proliferation, and inhibition of apoptosis. Given the global increase in the burden of NAFLD and HCC, high-risk patients such as older diabetic individuals should be carefully monitored for HCC development. Future larger studies should explore whether the effect of diabetes on HCC risk in NAFLD cirrhosis is modifiable by the type of antidiabetic medication and the effectiveness of diabetes control.
Collapse
Affiliation(s)
- Pai-Chi Teng
- Division of Urology, Department of Surgery, Cardinal Tien Hospital, New Taipei, Taiwan,Department of Urology, National Taiwan University Hospital, Taipei, Taiwan,Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Daniel Q. Huang
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore,Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore
| | - Ting-Yi Lin
- Doctoral Degree Program of Translational Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Mazen Noureddin
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ju Dong Yang
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA,Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA,Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA,Corresponding AuthorJu Dong Yang, ORCIDhttps://orcid.org/0000-0001-7834-9825, E-mail
| |
Collapse
|
11
|
Chen H, Li Q, Hu Q, Jiao X, Ren W, Wang S, Peng G. Double spiral chip-embedded micro-trapezoid filters (SMT filters) for the sensitive isolation of CTCs of prostate cancer by spectral detection. NANOSCALE ADVANCES 2022; 4:5392-5403. [PMID: 36540122 PMCID: PMC9724689 DOI: 10.1039/d2na00503d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
Circulating tumor cells (CTCs) are cancer cells that are released from the original tumor and circulate in the blood vessels, carrying greatly similar constituents as the original tumor. Therefore, CTCs have a significant value in cancer prognosis, early diagnosis, and anti-cancer therapy. However, their rarity and heterogeneity make the isolation of CTCs an arduous task. In the present research, we propose a double spiral chip-embedded micro-trapezoid filter (SMT filter) for the sensitive isolation of the CTCs of prostate cancer by spectral detection. SMT filters were elongated to effectively capture CTCs and this distinctive design was conducive to their isolation and enrichment. The SMT filters were verified with tumor cells and artificial patient blood with a capture efficiency as high as 94% at a flow rate of 1.5 mL h-1. As a further validation, the SMT filters were validated in isolating CTCs from 10 prostate cancers and other cancers in 4 mL blood samples. Also, the CTCs tested positive for each patient blood sample, ranging from 83-114 CTCs. Significantly, we advanced hyperspectral imaging to detect the characteristic spectrum of CTCs both captured in situ on SMT filters and enriched after isolation. The CTCs could be positively identified by hyperspectral imaging with complete integrity of the cell morphology and an improved characteristic spectrum. This represents a breakthrough in the conventional surface-enhanced Raman scattering (SERS) spectroscopy of nanoparticles. Also, the characteristic spectrum of the CTCs would be highly beneficial for distinguishing the cancer type and accurate for enumerating tumor cells with varied intensities. Furthermore, a novel integrated flower-shaped microfilter was presented with all these aforementioned merits. The success of both the SMT filters and characteristic spectral detection indicated their feasibility for further clinical analysis, the evaluation of cancer therapy, and for potential application.
Collapse
Affiliation(s)
- Hongmei Chen
- School of Microelectronics and Data Science, Anhui University of Technology Maanshan 243002 P. R. China
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University Shanghai 200241 China
| | - Qingli Li
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University Shanghai 200241 China
| | - Qinghai Hu
- School of Chemistry and Chemical Engineering, Anhui University of Technology Maanshan 243002 P. R. China
| | - Xiaodong Jiao
- Department of Medical Oncology, Changzheng Hospital Shanghai 200070 P.R. China
| | - Wenjie Ren
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University Shanghai 200241 China
| | - Shuangshou Wang
- School of Chemistry and Chemical Engineering, Anhui University of Technology Maanshan 243002 P. R. China
| | - Guosheng Peng
- School of Microelectronics and Data Science, Anhui University of Technology Maanshan 243002 P. R. China
| |
Collapse
|
12
|
Zare Harofte S, Soltani M, Siavashy S, Raahemifar K. Recent Advances of Utilizing Artificial Intelligence in Lab on a Chip for Diagnosis and Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203169. [PMID: 36026569 DOI: 10.1002/smll.202203169] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/16/2022] [Indexed: 05/14/2023]
Abstract
Nowadays, artificial intelligence (AI) creates numerous promising opportunities in the life sciences. AI methods can be significantly advantageous for analyzing the massive datasets provided by biotechnology systems for biological and biomedical applications. Microfluidics, with the developments in controlled reaction chambers, high-throughput arrays, and positioning systems, generate big data that is not necessarily analyzed successfully. Integrating AI and microfluidics can pave the way for both experimental and analytical throughputs in biotechnology research. Microfluidics enhances the experimental methods and reduces the cost and scale, while AI methods significantly improve the analysis of huge datasets obtained from high-throughput and multiplexed microfluidics. This review briefly presents a survey of the role of AI and microfluidics in biotechnology. Also, the incorporation of AI with microfluidics is comprehensively investigated. Specifically, recent studies that perform flow cytometry cell classification, cell isolation, and a combination of them by gaining from both AI methods and microfluidic techniques are covered. Despite all current challenges, various fields of biotechnology can be remarkably affected by the combination of AI and microfluidic technologies. Some of these fields include point-of-care systems, precision, personalized medicine, regenerative medicine, prognostics, diagnostics, and treatment of oncology and non-oncology-related diseases.
Collapse
Affiliation(s)
- Samaneh Zare Harofte
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, 19967-15433, Iran
| | - Madjid Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, 19967-15433, Iran
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Advanced Bioengineering Initiative Center, Multidisciplinary International Complex, K. N. Toosi University of Technology, Tehran, 14176-14411, Iran
- Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, 14197-33141, Iran
| | - Saeed Siavashy
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, 19967-15433, Iran
| | - Kaamran Raahemifar
- Data Science and Artificial Intelligence Program, College of Information Sciences and Technology (IST), Penn State University, State College, PA, 16801, USA
- School of Optometry and Vision Science, Faculty of Science, University of Waterloo, 200 University Ave. W, Waterloo, ON, N2L 3G1, Canada
- Department of Chemical Engineering, Faculty of Engineering, University of Waterloo, 200 University Ave. W, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
13
|
Emerging digital PCR technology in precision medicine. Biosens Bioelectron 2022; 211:114344. [DOI: 10.1016/j.bios.2022.114344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/23/2022] [Accepted: 05/03/2022] [Indexed: 12/20/2022]
|
14
|
Iyer V, Yang Z, Ko J, Weissleder R, Issadore D. Advancing microfluidic diagnostic chips into clinical use: a review of current challenges and opportunities. LAB ON A CHIP 2022; 22:3110-3121. [PMID: 35674283 PMCID: PMC9798730 DOI: 10.1039/d2lc00024e] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Microfluidic diagnostic (μDX) technologies miniaturize sensors and actuators to the length-scales that are relevant to biology: the micrometer scale to interact with cells and the nanometer scale to interrogate biology's molecular machinery. This miniaturization allows measurements of biomarkers of disease (cells, nanoscale vesicles, molecules) in clinical samples that are not detectable using conventional technologies. There has been steady progress in the field over the last three decades, and a recent burst of activity catalyzed by the COVID-19 pandemic. In this time, an impressive and ever-growing set of technologies have been successfully validated in their ability to measure biomarkers in clinical samples, such as blood and urine, with sensitivity and specificity not possible using conventional tests. Despite our field's many accomplishments to date, very few of these technologies have been successfully commercialized and brought to clinical use where they can fulfill their promise to improve medical care. In this paper, we identify three major technological trends in our field that we believe will allow the next generation of μDx to have a major impact on the practice of medicine, and which present major opportunities for those entering the field from outside disciplines: 1. the combination of next generation, highly multiplexed μDx technologies with machine learning to allow complex patterns of multiple biomarkers to be decoded to inform clinical decision points, for which conventional biomarkers do not necessarily exist. 2. The use of micro/nano devices to overcome the limits of binding affinity in complex backgrounds in both the detection of sparse soluble proteins and nucleic acids in blood and rare circulating extracellular vesicles. 3. A suite of recent technologies that obviate the manual pre-processing and post-processing of samples before they are measured on a μDX chip. Additionally, we discuss economic and regulatory challenges that have stymied μDx translation to the clinic, and highlight strategies for successfully navigating this challenging space.
Collapse
Affiliation(s)
- Vasant Iyer
- Electrical and Systems Engineering Department, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Zijian Yang
- Mechanical Engineering Department, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jina Ko
- Bioengineering Department, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital/Harvard Medical School, 185 Cambridge Street, Boston, Massachusetts, USA
| | - David Issadore
- Electrical and Systems Engineering Department, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Bioengineering Department, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Teng PC, Agopian VG, Lin TY, You S, Zhu Y, Tseng HR, Yang JD. Circulating tumor cells: A step toward precision medicine in hepatocellular carcinoma. J Gastroenterol Hepatol 2022; 37:1179-1190. [PMID: 35543075 PMCID: PMC9271591 DOI: 10.1111/jgh.15886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/02/2022] [Indexed: 12/09/2022]
Abstract
Serum alpha-fetoprotein and radiologic imaging are the most commonly used tests for early diagnosis and dynamic monitoring of treatment response in hepatocellular carcinoma (HCC). However, the accuracy of these tests is limited, and they may not reflect the underlying biology of the tumor. Thus, developing highly accurate novel HCC biomarkers reflecting tumor biology is a clinically unmet need. Circulating tumor cells (CTCs) have long been proposed as a noninvasive biomarker in clinical oncology. Most CTC assays utilize immunoaffinity-based, size-based, and/or enrichment-free mechanisms followed by immunocytochemical staining to characterize CTCs. The prognostic value of HCC CTC enumeration has been extensively validated. Subsets of CTCs expressing mesenchymal markers are also reported to have clinical significance. In addition, researchers have been devoting their efforts to molecular characterizations of CTCs (e.g. genetics and transcriptomics) as molecular profiling can offer a more accurate readout and provide biological insights. As new molecular profiling techniques, such as digital polymerase chain reaction, are developed to detect minimal amounts of DNA/RNA, several research groups have established HCC CTC digital scoring systems to quantify clinically relevant gene panels. Given the versatility of CTCs to provide intact molecular and functional data that reflects the underlying tumor, CTCs have great potential as a noninvasive biomarker in HCC. Large-scale, prospective studies for HCC CTCs with a standardized protocol are necessary for successful clinical translation.
Collapse
Affiliation(s)
- Pai-Chi Teng
- Department of Education and Research, Taipei City Hospital Renai Branch, Taipei, Taiwan,Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA,California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
| | - Vatche G. Agopian
- Department of Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Ting-Yi Lin
- Doctoral Degree Program of Translational Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taiwan,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Sungyong You
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yazhen Zhu
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
| | - Hsian-Rong Tseng
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Ju Dong Yang
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA,Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA,Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA,corresponding author (Dr. Ju Dong Yang):
| |
Collapse
|
16
|
Edd JF, Mishra A, Smith KC, Kapur R, Maheswaran S, Haber DA, Toner M. Isolation of Circulating Tumor Cells. iScience 2022; 25:104696. [PMID: 35880043 PMCID: PMC9307519 DOI: 10.1016/j.isci.2022.104696] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Circulating tumor cells (CTCs) enter the vasculature from solid tumors and disseminate widely to initiate metastases. Mining the metastatic-enriched molecular signatures of CTCs before, during, and after treatment holds unique potential in personalized oncology. Their extreme rarity, however, requires isolation from large blood volumes at high yield and purity, yet they overlap leukocytes in size and other biophysical properties. Additionally, many CTCs lack EpCAM that underlies much of affinity-based capture, complicating their separation from blood. Here, we provide a comprehensive introduction of CTC isolation technology, by analyzing key separation modes and integrated isolation strategies. Attention is focused on recent progress in microfluidics, where an accelerating evolution is occurring in high-throughput sorting of cells along multiple dimensions. Circulating tumor cells (CTCs) spread cancer through the bloodstream (metastasis) CTC-based liquid biopsy enables minimally invasive sampling of cancer cells in blood Their extreme rarity requires all CTC types to be enriched from large blood volumes CTC isolation technology is analyzed, with a focus on high-throughput microfluidics
Collapse
Affiliation(s)
- Jon F. Edd
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Avanish Mishra
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | | | - Ravi Kapur
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- BendBio, Inc., Sharon, MA 02067, USA
| | - Shyamala Maheswaran
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Daniel A. Haber
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Bethesda, MD 20815, USA
| | - Mehmet Toner
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
- Shriners Hospitals for Children, Boston, MA 02114, USA
- Corresponding author
| |
Collapse
|
17
|
Temraz S, Nasr R, Mukherji D, Kreidieh F, Shamseddine A. Liquid Biopsy Derived Circulating Tumor Cells and Circulating Tumor DNA as Novel Biomarkers in Hepatocellular Carcinoma. Expert Rev Mol Diagn 2022; 22:507-518. [PMID: 35758097 DOI: 10.1080/14737159.2022.2094706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The diagnosis of hepatocellular carcinoma (HCC) is made at a relatively advanced stage resulting in poor prognosis. Alpha-fetoprotein and liver ultrasound have limited accuracy as biomarkers in HCC. Liver biopsy provides information on tumor biology; however, it is invasive and holds high threat of tumor seeding. Thus, more accurate and less invasive approaches are needed. AREAS COVERED Highly sensitive liquid biopsy assays have made possible the detection and analysis of cells or organelles such as circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and tumor-derived exosomes. Here, we focus on CTCs and ctDNA components of liquid biopsy and their clinical application as diagnostic, prognostic and predictive biomarkers in HCC. Unlike tissue biopsy, liquid biopsy involves attaining a sample at several time frames in an easy and a non-invasive manner. They have been efficacious in detecting and classifying cancer, in predicting treatment response, in monitoring disease relapse and in identifying mechanisms of resistance to targeted therapies. EXPERT OPINION Although interesting and highly promising, liquid biopsy techniques still have many obstacles to overcome before their wide spread clinical application sees the light. It is expected that these techniques will be incorporated into traditional methodologies for better diagnostic, predictive and prognostic results.
Collapse
Affiliation(s)
- Sally Temraz
- Department of internal medicine, Hematology/Oncology division, American University of Beirut Medical Center, Riad El Solh, Beirut, Lebanon
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiology, American University of Beirut Medical Center, Riad El Solh, Beirut, Lebanon
| | - Deborah Mukherji
- Department of internal medicine, Hematology/Oncology division, American University of Beirut Medical Center, Riad El Solh, Beirut, Lebanon
| | - Firas Kreidieh
- Department of internal medicine, Hematology/Oncology division, American University of Beirut Medical Center, Riad El Solh, Beirut, Lebanon
| | - Ali Shamseddine
- Department of internal medicine, Hematology/Oncology division, American University of Beirut Medical Center, Riad El Solh, Beirut, Lebanon
| |
Collapse
|
18
|
Shang L, Ye F, Li M, Zhao Y. Spatial confinement toward creating artificial living systems. Chem Soc Rev 2022; 51:4075-4093. [PMID: 35502858 DOI: 10.1039/d1cs01025e] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lifeforms are regulated by many physicochemical factors, and these factors could be controlled to play a role in the construction of artificial living systems. Among these factors, spatial confinement is an important one, which mediates biological behaviors at multiscale levels and participates in the biomanufacturing processes accordingly. This review describes how spatial confinement, as a fundamental biological phenomenon, provides cues for the construction of artificial living systems. Current knowledge about the role of spatial confinement in mediating individual cell behavior, collective cellular behavior, and tissue-level behavior are categorized. Endeavors on the synthesis of biomacromolecules, artificial cells, engineered tissues, and organoids in spatially confined bioreactors are then emphasized. After that, we discuss the cutting-edge applications of spatially confined artificial living systems in biomedical fields. Finally, we conclude by assessing the remaining challenges and future trends in the context of fundamental science, technical improvement, and practical applications.
Collapse
Affiliation(s)
- Luoran Shang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China. .,Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. .,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| | - Ming Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China. .,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| |
Collapse
|
19
|
Liu Y, Li R, Zhang L, Guo S. Nanomaterial-Based Immunocapture Platforms for the Recognition, Isolation, and Detection of Circulating Tumor Cells. Front Bioeng Biotechnol 2022; 10:850241. [PMID: 35360401 PMCID: PMC8964261 DOI: 10.3389/fbioe.2022.850241] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/18/2022] [Indexed: 01/10/2023] Open
Abstract
Circulating tumor cells (CTCs) are a type of cancer cells that circulate in the peripheral blood after breaking away from solid tumors and are essential for the establishment of distant metastasis. Up to 90% of cancer-related deaths are caused by metastatic cancer. As a new type of liquid biopsy, detecting and analyzing CTCs will provide insightful information for cancer diagnosis, especially the in-time disease status, which would avoid some flaws and limitations of invasive tissue biopsy. However, due to the extremely low levels of CTCs among a large number of hematologic cells, choosing immunocapture platforms for CTC detection and isolation will achieve good performance with high purity, selectivity, and viability. These properties are directly associated with precise downstream analysis of CTC profiling. Recently, inspired by the nanoscale interactions of cells in the tissue microenvironment, platforms based on nanomaterials have been widely explored to efficiently enrich and sensitively detect CTCs. In this review, various immunocapture platforms based on different nanomaterials for efficient isolation and sensitive detection of CTCs are outlined and discussed. First, the design principles of immunoaffinity nanomaterials are introduced in detail. Second, the immunocapture and release of platforms based on nanomaterials ranging from nanoparticles, nanostructured substrates, and immunoaffinity microfluidic chips are summarized. Third, recent advances in single-cell release and analysis of CTCs are introduced. Finally, some perspectives and challenges are provided in future trends of CTC studies.
Collapse
Affiliation(s)
- Yichao Liu
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Rui Li
- Xinjiang Key Laboratory of Solid State Physics and Devices, Xinjiang University, Urumqi, China
| | - Lingling Zhang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Lingling Zhang, ; Shishang Guo,
| | - Shishang Guo
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
- *Correspondence: Lingling Zhang, ; Shishang Guo,
| |
Collapse
|
20
|
Lee YT, Sun N, Kim M, Wang JJ, Tran BV, Zhang RY, Qi D, Zhang C, Chen PJ, Sadeghi S, Finn RS, Saab S, Han SHB, Busuttil RW, Pei R, Zhu Y, Tseng HR, You S, Yang JD, Agopian VG. Circulating Tumor Cell-Based Messenger RNA Scoring System for Prognostication of Hepatocellular Carcinoma: Translating Tissue-Based Messenger RNA Profiling Into a Noninvasive Setting. Liver Transpl 2022; 28:200-214. [PMID: 34664394 PMCID: PMC8820407 DOI: 10.1002/lt.26337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/15/2021] [Accepted: 10/08/2021] [Indexed: 02/03/2023]
Abstract
Numerous studies in hepatocellular carcinoma (HCC) have proposed tissue-based gene signatures for individualized prognostic assessments. Here, we develop a novel circulating tumor cell (CTC)-based transcriptomic profiling assay to translate tissue-based messenger RNA (mRNA) signatures into a liquid biopsy setting for noninvasive HCC prognostication. The HCC-CTC mRNA scoring system combines the NanoVelcro CTC Assay for enriching HCC CTCs and the NanoString nCounter platform for quantifying the HCC-CTC Risk Score (RS) panel in enriched HCC CTCs. The prognostic role of the HCC-CTC RS was assessed in The Cancer Genome Atlas (TCGA) HCC cohort (n = 362) and validated in an independent clinical CTC cohort (n = 40). The HCC-CTC RS panel was developed through our integrated data analysis framework of 8 HCC tissue-based gene signatures and identified the top 10 prognostic genes (discoidin domain receptor tyrosine kinase 1 [DDR1], enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase [EHHADH], androgen receptor [AR], lumican [LUM], hydroxysteroid 17-beta dehydrogenase 6[HSD17B6], prostate transmembrane protein, androgen induced 1 [PMEPA1], tsukushi, small leucine rich proteoglycan [TSKU], N-terminal EF-hand calcium binding protein 2 [NECAB2], ladinin 1 [LAD1], solute carrier family 27 member 5 [SLC27A5]) highly expressed in HCC with low expressions in white blood cells. The panel accurately discriminated overall survival in TCGA HCC cohort (hazard ratio [HR], 2.0; 95% confidence interval [CI], 1.4-2.9). The combined use of the scoring system and HCC-CTC RS panel successfully distinguished artificial blood samples spiked with an aggressive HCC cell type, SNU-387, from those spiked with PLC/PRF/5 cells (P = 0.02). In the CTC validation cohort (n = 40), HCC-CTC RS remained an independent predictor of survival (HR, 5.7; 95% CI, 1.5-21.3; P = 0.009) after controlling for Model for End-Stage Liver Disease score, Barcelona Clinic Liver Cancer stage, and CTC enumeration count. Our study demonstrates a novel interdisciplinary approach to translate tissue-based gene signatures into a liquid biopsy setting. This noninvasive approach will allow real-time disease profiling and dynamic prognostication of HCC.
Collapse
Affiliation(s)
- Yi-Te Lee
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA
| | - Na Sun
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA,Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Suzhou, P.R. China
| | - Minhyung Kim
- Division of Cancer Biology and Therapeutics, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Jasmine J. Wang
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Benjamin V. Tran
- Department of Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA
| | - Ryan Y. Zhang
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA
| | - Dongping Qi
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA
| | - Ceng Zhang
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA
| | - Pin-Jung Chen
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA
| | - Saeed Sadeghi
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA,Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Richard S. Finn
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA,Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Sammy Saab
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Steven-Huy B. Han
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Ronald W. Busuttil
- Department of Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA
| | - Renjun Pei
- Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Suzhou, P.R. China
| | - Yazhen Zhu
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA
| | - Hsian-Rong Tseng
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA
| | - Sungyong You
- Division of Cancer Biology and Therapeutics, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA,Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Ju Dong Yang
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA,Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA,Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Vatche G. Agopian
- Department of Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
21
|
Negishi R, Yamakawa H, Kobayashi T, Horikawa M, Shimoyama T, Koizumi F, Sawada T, Oboki K, Omuro Y, Funasaka C, Kageyama A, Kanemasa Y, Tanaka T, Matsunaga T, Yoshino T. Transcriptomic profiling of single circulating tumor cells provides insight into human metastatic gastric cancer. Commun Biol 2022; 5:20. [PMID: 35017627 PMCID: PMC8752828 DOI: 10.1038/s42003-021-02937-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/01/2021] [Indexed: 12/24/2022] Open
Abstract
Transcriptome analysis of circulating tumor cells (CTCs), which migrate into blood vessels from primary tumor tissues, at the single-cell level offers critical insights into the biology of metastasis and contributes to drug discovery. However, transcriptome analysis of single CTCs has only been reported for a limited number of cancer types, such as multiple myeloma, breast, hepatocellular, and prostate cancer. Herein, we report the transcriptome analysis of gastric cancer single-CTCs. We utilized an antigen-independent strategy for CTC isolation from metastatic gastric cancer patients involving a size-dependent recovery of CTCs and a single cell isolation technique. The transcriptomic profile of single-CTCs revealed that a majority of gastric CTCs had undergone epithelial-mesenchymal transition (EMT), and indicated the contribution of platelet adhesion toward EMT progression and acquisition of chemoresistance. Taken together, this study serves to employ CTC characterization to elucidate the mechanisms of chemoresistance and metastasis in gastric cancer.
Collapse
Affiliation(s)
- Ryo Negishi
- Division of Biotechnology and Life science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Hitomi Yamakawa
- Division of Biotechnology and Life science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Takeru Kobayashi
- Division of Biotechnology and Life science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Mayuko Horikawa
- Division of Biotechnology and Life science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Tatsu Shimoyama
- Department of Medical Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Fumiaki Koizumi
- Department of Laboratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Takeshi Sawada
- Department of Medical Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Keisuke Oboki
- Center for Medical Research Cooperation, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Japan
| | - Yasushi Omuro
- Department of Medical Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Chikako Funasaka
- Department of Medical Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Akihiko Kageyama
- Department of Medical Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Yusuke Kanemasa
- Department of Medical Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Tsuyoshi Tanaka
- Division of Biotechnology and Life science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Tadashi Matsunaga
- Division of Biotechnology and Life science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Tomoko Yoshino
- Division of Biotechnology and Life science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
22
|
Burr R, Edd JF, Chirn B, Mishra A, Haber DA, Toner M, Maheswaran S. Negative-Selection Enrichment of Circulating Tumor Cells from Peripheral Blood Using the Microfluidic CTC-iChip. Methods Mol Biol 2022; 2471:309-321. [PMID: 35175606 DOI: 10.1007/978-1-0716-2193-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The ability to isolate and analyze rare circulating tumor cells (CTCs) holds the potential to increase our understanding of cancer evolution and allows monitoring of disease and therapeutic responses through a relatively non-invasive blood-based biopsy. While many methods have been described to isolate CTCs from the blood, the vast majority rely on size-based sorting or positive selection of CTCs based on surface markers, which introduces bias into the downstream product by making assumptions about these heterogenous cells. Here we describe a negative-selection protocol for enrichment of CTCs through removal of blood components including red blood cells, platelets, and white blood cells. This procedure results in a product that is amenable to downstream single-cell analytics including RNA-Seq, ATAC-Seq and DNA methylation, droplet digital PCR (ddPCR) for tumor specific transcripts, staining and extensive image analysis, and ex vivo culture of patient-derived CTCs.
Collapse
Affiliation(s)
- Risa Burr
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA, USA
| | - Jon F Edd
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian Chirn
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA, USA
| | - Avanish Mishra
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel A Haber
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA, USA
- Howard Hughes Medical Institute, Bethesda, MD, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mehmet Toner
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Hospital for Children, Boston, MA, USA
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shyamala Maheswaran
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA, USA.
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Antibody-engineered red blood cell interface for high-performance capture and release of circulating tumor cells. Bioact Mater 2021; 11:32-40. [PMID: 34938910 DOI: 10.1016/j.bioactmat.2021.09.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023] Open
Abstract
Circulating tumor cells (CTCs), as important liquid biopsy target, can provide valuable information for cancer progress monitoring and individualized treatment. However, current isolation platforms incapable of balancing capture efficiency, specificity, cell viability, and gentle release have restricted the clinical applications of CTCs. Herein, inspired by the structure and functional merits of natural membrane interfaces, we established an antibody-engineered red blood cell (RBC-Ab) affinity interface on microfluidic chip for high-performance isolation and release of CTCs. The lateral fluidity, pliability, and anti-adhesion property of the RBC microfluidic interface enabled efficient CTCs capture (96.5%), high CTCs viability (96.1%), and high CTCs purity (average 4.2-log depletion of leukocytes). More importantly, selective lysis of RBCs by simply changing the salt concentration was utilized to destroy the affinity interface for efficient and gentle release of CTCs without nucleic acid contamination. Using this chip, CTCs were successfully detected in colon cancer samples with 90% sensitivity and 100% specificity (20 patients and 10 healthy individuals). After the release process, KRAS gene mutations of CTCs were identified from all the 5 cancer samples, which was consistent with the results of tissue biopsy. We expect this RBC interface strategy will inspire further biomimetic interface construction for rare cell analysis.
Collapse
|
24
|
Liu J, Lian J, Chen Y, Zhao X, Du C, Xu Y, Hu H, Rao H, Hong X. Circulating Tumor Cells (CTCs): A Unique Model of Cancer Metastases and Non-invasive Biomarkers of Therapeutic Response. Front Genet 2021; 12:734595. [PMID: 34512735 PMCID: PMC8424190 DOI: 10.3389/fgene.2021.734595] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/02/2021] [Indexed: 01/01/2023] Open
Abstract
Late-stage cancer metastasis remains incurable in the clinic and is the major cause death in patients. Circulating tumor cells (CTCs) are thought to be metastatic precursors shed from the primary tumor or metastatic deposits and circulate in the blood. The molecular network regulating CTC survival, extravasation, and colonization in distant metastatic sites is poorly defined, largely due to challenges in isolating rare CTCs. Recent advances in CTC isolation and ex vivo culture techniques facilitates single-cell omics and the development of related animal models to study CTC-mediated metastatic progression. With these powerful tools, CTCs can potentially be used as non-invasive biomarkers predicting therapeutic response. These studies may open a new avenue for CTC-specific drug discoveries. In this short review, we aim to summarize recent progress in the characterization of CTCs and their clinical relevance in various cancers, setting the stage for realizing personalized therapies against metastases.
Collapse
Affiliation(s)
- Jialing Liu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jingru Lian
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yafei Chen
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xin Zhao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - ChangZheng Du
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yang Xu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Hailiang Hu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Hai Rao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xin Hong
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
25
|
Identification of Three Key Genes Associated with Hepatocellular Carcinoma Progression Based on Co-expression Analysis. Cell Biochem Biophys 2021; 80:301-309. [PMID: 34406599 DOI: 10.1007/s12013-021-01028-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 10/20/2022]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer and one of the leading causes of cancer-related death in the world. Due to the recurrence of HCC, its survival rate is still low. Therefore, it is vital to seek prognostic biomarkers for HCC. In this study, differential analysis was conducted on gene expression data in The Cancer Genome Atlas -LIHC, and 4482 differentially expressed genes in tumor tissue were selected. Then, weighted gene co-expression network analysis was used to analyze the co-expression of the gained differential genes. By module-trait correlation analysis, the turquoise gene module that was significantly related to tumor grade, pathologic_T stage, and clinical stage was identified. Thereafter, enrichment analysis of genes in this module uncovered that the genes were mainly enriched in the signaling pathways involved in spliceosome and cell cycle. After that, through correlation analysis, 18 hub genes highly correlated with tumor grade, clinical stage, pathologic_T stage, and the turquoise module were selected. Meanwhile, protein-protein interaction (PPI) network was constructed by using genes in the module. Finally, three key genes, heterogeneous nuclear ribonucleoprotein L, serrate RNA effector molecule, and cyclin B2, were identified by intersecting the top 30 genes with the highest connectivity in PPI network and the previously obtained 18 hub genes in the turquoise module. Further survival analysis revealed that high expression of the three key genes predicted poor prognosis of HCC. These results indicated the direction for further research on clinical diagnosis and prognostic biomarkers of HCC.
Collapse
|
26
|
Recent Development of Nanomaterials-Based Cytosensors for the Detection of Circulating Tumor Cells. BIOSENSORS-BASEL 2021; 11:bios11080281. [PMID: 34436082 PMCID: PMC8391755 DOI: 10.3390/bios11080281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022]
Abstract
The accurate analysis of circulating tumor cells (CTCs) holds great promise in early diagnosis and prognosis of cancers. However, the extremely low abundance of CTCs in peripheral blood samples limits the practical utility of the traditional methods for CTCs detection. Thus, novel and powerful strategies have been proposed for sensitive detection of CTCs. In particular, nanomaterials with exceptional physical and chemical properties have been used to fabricate cytosensors for amplifying the signal and enhancing the sensitivity. In this review, we summarize the recent development of nanomaterials-based optical and electrochemical analytical techniques for CTCs detection, including fluorescence, colorimetry, surface-enhanced Raman scattering, chemiluminescence, electrochemistry, electrochemiluminescence, photoelectrochemistry and so on.
Collapse
|
27
|
Pang S, Li H, Xu S, Feng L, Ma X, Chu Y, Zou B, Wang S, Zhou G. Circulating tumour cells at baseline and late phase of treatment provide prognostic value in breast cancer. Sci Rep 2021; 11:13441. [PMID: 34188122 PMCID: PMC8241989 DOI: 10.1038/s41598-021-92876-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 06/16/2021] [Indexed: 12/25/2022] Open
Abstract
To determine the prognostic value of the timing of circulating breast tumour cell measurement during treatment, peripheral blood from 164 patients with breast disease was collected. Circulating tumour cells (CTCs) were enriched by using immunomagnetic nanospheres (IMNs) and were identified by using immunofluorescent staining. The CTC shows nuclear-positive, EpCAM-positive, CK19-positive, and CD45-negative. Patients with CTC positivity (> 19/7.5 mL blood) had shorter progression-free survival (PFS) and overall survival (OS) than those with negative results (≤ 19/7.5 mL blood) at baseline. Surgery caused an increase in the number and prevalence of CTCs, and the effect disappeared on day 14 after surgery. During adjuvant chemotherapy, CTCs detected before therapy was only correlated with PFS; however, CTCs at the end of adjuvant chemotherapy were correlated with both PFS and OS. The PFS and OS of the CTC-positive group were significantly shorter than those of the CTC-negative group at the end-point follow-up visit. The prognostic value of CTCs at different measurement time points was demonstrated during breast cancer treatment. Surgery and chemotherapy affected the prevalence of CTCs, leading to different prognostic relevance of CTCs at different treatment stages. CTCs detected at baseline or in the late phase of treatment are preferable for prognosis.
Collapse
Affiliation(s)
- Shuyun Pang
- Department of Clinical Pharmacy, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Hanjun Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Shu Xu
- Department of Clinical Pharmacy, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China.,School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210000, China
| | - Liying Feng
- Department of Clinical Pharmacy, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Xueping Ma
- Department of Clinical Pharmacy, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Yanan Chu
- Department of Clinical Pharmacy, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Bingjie Zou
- Department of Clinical Pharmacy, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China. .,School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, China.
| | - Shaohua Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China.
| | - Guohua Zhou
- Department of Clinical Pharmacy, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China. .,School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
28
|
Prostate Cancer Biomarkers: From diagnosis to prognosis and precision-guided therapeutics. Pharmacol Ther 2021; 228:107932. [PMID: 34174272 DOI: 10.1016/j.pharmthera.2021.107932] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/23/2022]
Abstract
Prostate cancer (PCa) is one of the most commonly diagnosed malignancies and among the leading causes of cancer-related death worldwide. It is a highly heterogeneous disease, ranging from remarkably slow progression or inertia to highly aggressive and fatal disease. As therapeutic decision-making, clinical trial design and outcome highly depend on the appropriate stratification of patients to risk groups, it is imperative to differentiate between benign versus more aggressive states. The incorporation of clinically valuable prognostic and predictive biomarkers is also potentially amenable in this process, in the timely prevention of metastatic disease and in the decision for therapy selection. This review summarizes the progress that has so far been made in the identification of the genomic events that can be used for the classification, prediction and prognostication of PCa, and as major targets for clinical intervention. We include an extensive list of emerging biomarkers for which there is enough preclinical evidence to suggest that they may constitute crucial targets for achieving significant advances in the management of the disease. Finally, we highlight the main challenges that are associated with the identification of clinically significant PCa biomarkers and recommend possible ways to overcome such limitations.
Collapse
|
29
|
Lee YT, Tran BV, Wang JJ, Liang IY, You S, Zhu Y, Agopian VG, Tseng HR, Yang JD. The Role of Extracellular Vesicles in Disease Progression and Detection of Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:3076. [PMID: 34203086 PMCID: PMC8233859 DOI: 10.3390/cancers13123076] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and one of the leading causes of cancer-related death worldwide. Despite the improvements in surveillance and treatment, the prognosis of HCC remains poor. Extracellular vesicles (EVs) are a heterogeneous group of phospholipid bilayer-enclosed particles circulating in the bloodstream and mediating intercellular communication. Emerging studies have shown that EVs play a crucial role in regulating the proliferation, immune escape, and metastasis of HCC. In addition, because EVs are present in the circulation at relatively early stages of disease, they are getting attention as an attractive biomarker for HCC detection. Over the past decade, dedicated efforts have been made to isolate EVs more efficiently and make them useful tools in different clinical settings. In this review article, we provide an overview of the EVs isolation methods and highlight the role of EVs as mediators in the pathogenesis and progression of HCC. Lastly, we summarize the potential applications of EVs in early-stage HCC detection.
Collapse
Affiliation(s)
- Yi-Te Lee
- California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, CA 90095, USA; (Y.-T.L.); (I.Y.L.); (Y.Z.); (H.-R.T.)
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA;
| | - Benjamin V. Tran
- Department of Surgery, University of California, Los Angeles, CA 90095, USA; (B.V.T.); (V.G.A.)
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90048, USA
| | - Jasmine J. Wang
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA;
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Icy Y. Liang
- California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, CA 90095, USA; (Y.-T.L.); (I.Y.L.); (Y.Z.); (H.-R.T.)
| | - Sungyong You
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yazhen Zhu
- California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, CA 90095, USA; (Y.-T.L.); (I.Y.L.); (Y.Z.); (H.-R.T.)
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA;
| | - Vatche G. Agopian
- Department of Surgery, University of California, Los Angeles, CA 90095, USA; (B.V.T.); (V.G.A.)
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90048, USA
| | - Hsian-Rong Tseng
- California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, CA 90095, USA; (Y.-T.L.); (I.Y.L.); (Y.Z.); (H.-R.T.)
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA;
| | - Ju Dong Yang
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Comprehensive Transplant Center Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
30
|
Labib M, Kelley SO. Circulating tumor cell profiling for precision oncology. Mol Oncol 2021; 15:1622-1646. [PMID: 33448107 PMCID: PMC8169448 DOI: 10.1002/1878-0261.12901] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/19/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Analysis of circulating tumor cells (CTCs) collected from patient's blood offers a broad range of opportunities in the field of precision oncology. With new advances in profiling technology, it is now possible to demonstrate an association between the molecular profiles of CTCs and tumor response to therapy. In this Review, we discuss mechanisms of tumor resistance to therapy and their link to phenotypic and genotypic properties of CTCs. We summarize key technologies used to isolate and analyze CTCs and discuss recent clinical studies that examined CTCs for genomic and proteomic predictors of responsiveness to therapy. We also point out current limitations that still hamper the implementation of CTCs into clinical practice. We finally reflect on how these shortcomings can be addressed with the likely contribution of multiparametric approaches and advanced data analytics.
Collapse
Affiliation(s)
- Mahmoud Labib
- Department of Pharmaceutical SciencesUniversity of TorontoCanada
| | - Shana O. Kelley
- Department of Pharmaceutical SciencesUniversity of TorontoCanada
- Institute for Biomaterials and Biomedical EngineeringUniversity of TorontoCanada
- Department of BiochemistryUniversity of TorontoCanada
- Department of ChemistryUniversity of TorontoCanada
| |
Collapse
|
31
|
Pelizzaro F, Cardin R, Penzo B, Pinto E, Vitale A, Cillo U, Russo FP, Farinati F. Liquid Biopsy in Hepatocellular Carcinoma: Where Are We Now? Cancers (Basel) 2021; 13:2274. [PMID: 34068786 PMCID: PMC8126224 DOI: 10.3390/cancers13092274] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer related death worldwide. Diagnostic, prognostic, and predictive biomarkers are urgently needed in order to improve patient survival. Indeed, the most widely used biomarkers, such as alpha-fetoprotein (AFP), have limited accuracy as both diagnostic and prognostic tests. Liver biopsy provides an insight on the biology of the tumor, but it is an invasive procedure, not routinely used, and not representative of the whole neoplasia due to the demonstrated intra-tumoral heterogeneity. In recent years, liquid biopsy, defined as the molecular analysis of cancer by-products, released by the tumor in the bloodstream, emerged as an appealing source of new biomarkers. Several studies focused on evaluating extracellular vesicles, circulating tumor cells, cell-free DNA and non-coding RNA as novel reliable biomarkers. In this review, we aimed to provide a comprehensive overview on the most relevant available evidence on novel circulating biomarkers for early diagnosis, prognostic stratification, and therapeutic monitoring. Liquid biopsy seems to be a very promising instrument and, in the near future, some of these new non-invasive tools will probably change the clinical management of HCC patients.
Collapse
Affiliation(s)
- Filippo Pelizzaro
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (F.P.); (R.C.); (B.P.); (E.P.); (F.P.R.)
| | - Romilda Cardin
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (F.P.); (R.C.); (B.P.); (E.P.); (F.P.R.)
| | - Barbara Penzo
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (F.P.); (R.C.); (B.P.); (E.P.); (F.P.R.)
| | - Elisa Pinto
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (F.P.); (R.C.); (B.P.); (E.P.); (F.P.R.)
| | - Alessandro Vitale
- Hepatobiliary Surgery and Liver Transplantation Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (A.V.); (U.C.)
| | - Umberto Cillo
- Hepatobiliary Surgery and Liver Transplantation Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (A.V.); (U.C.)
| | - Francesco Paolo Russo
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (F.P.); (R.C.); (B.P.); (E.P.); (F.P.R.)
| | - Fabio Farinati
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (F.P.); (R.C.); (B.P.); (E.P.); (F.P.R.)
| |
Collapse
|
32
|
Sun N, Lee YT, Kim M, Wang JJ, Zhang C, Teng PC, Qi D, Zhang RY, Tran BV, Lee YT, Ye J, Palomique J, Nissen NN, Han SHB, Sadeghi S, Finn RS, Saab S, Busuttil RW, Posadas EM, Liang L, Pei R, Yang JD, You S, Agopian VG, Tseng HR, Zhu Y. Covalent Chemistry-Mediated Multimarker Purification of Circulating Tumor Cells Enables Noninvasive Detection of Molecular Signatures of Hepatocellular Carcinoma. ADVANCED MATERIALS TECHNOLOGIES 2021; 6:2001056. [PMID: 34212072 PMCID: PMC8240468 DOI: 10.1002/admt.202001056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Indexed: 05/02/2023]
Abstract
Transcriptomic profiling of tumor tissues introduces a large database, which has led to improvements in the ability of cancer diagnosis, treatment, and prevention. However, performing tumor transcriptomic profiling in the clinical setting is very challenging since the procurement of tumor tissues is inherently limited by invasive sampling procedures. Here, we demonstrated the feasibility of purifying hepatocellular carcinoma (HCC) circulating tumor cells (CTCs) from clinical patient samples with improved molecular integrity using Click Chips in conjunction with a multimarker antibody cocktail. The purified CTCs were then subjected to mRNA profiling by NanoString nCounter platform, targeting 64 HCC-specific genes, which were generated from an integrated data analysis framework with 8 tissue-based prognostic gene signatures from 7 publicly available HCC transcriptomic studies. After bioinformatics analysis and comparison, the HCC CTC-derived gene signatures showed high concordance with HCC tissue-derived gene signatures from TCGA database, suggesting that HCC CTCs purified by Click Chips could enable the translation of HCC tissue molecular profiling into a noninvasive setting.
Collapse
Affiliation(s)
- Na Sun
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Yi-Te Lee
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Minhyung Kim
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jasmine J Wang
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ceng Zhang
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Pai-Chi Teng
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dongping Qi
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Ryan Y Zhang
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Benjamin V Tran
- Department of Surgery, UCLA, 200 Medical Plaza, Los Angeles, CA, 90024, USA
| | - Yue Tung Lee
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Jinglei Ye
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Juvelyn Palomique
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Nicholas N Nissen
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Steven-Huy B Han
- Department of Surgery, UCLA, 200 Medical Plaza, Los Angeles, CA, 90024, USA
| | - Saeed Sadeghi
- Department of Surgery, UCLA, 200 Medical Plaza, Los Angeles, CA, 90024, USA
| | - Richard S Finn
- Department of Surgery, UCLA, 200 Medical Plaza, Los Angeles, CA, 90024, USA
| | - Sammy Saab
- Department of Surgery, UCLA, 200 Medical Plaza, Los Angeles, CA, 90024, USA
| | - Ronald W Busuttil
- Department of Surgery, UCLA, 200 Medical Plaza, Los Angeles, CA, 90024, USA
| | - Edwin M Posadas
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Li Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, P.R. China
| | - Renjun Pei
- Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Suzhou 215123, P.R. China
| | - Ju Dong Yang
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sungyong You
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Vatche G Agopian
- Department of Surgery, UCLA, 200 Medical Plaza, Los Angeles, CA, 90024, USA
| | - Hsian-Rong Tseng
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Yazhen Zhu
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), 570 Westwood Plaza, Los Angeles, CA 90095, USA
| |
Collapse
|
33
|
Ge Z, Helmijr JCA, Jansen MPHM, Boor PPC, Noordam L, Peppelenbosch M, Kwekkeboom J, Kraan J, Sprengers D. Detection of oncogenic mutations in paired circulating tumor DNA and circulating tumor cells in patients with hepatocellular carcinoma. Transl Oncol 2021; 14:101073. [PMID: 33915518 PMCID: PMC8100622 DOI: 10.1016/j.tranon.2021.101073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/17/2021] [Accepted: 03/08/2021] [Indexed: 12/24/2022] Open
Abstract
In paired analysis CTCs were detected in 27% and ctDNA in 77% of HCC patients. The TERT promoter mutation C228T was present in all patients with one or more ctDNA mutations, or detectable CTCs. CtDNA (or TERT C228T) positivity was associated with macrovascular invasion and poor survival of advanced HCC patients.
Background and aims Circulating tumor cells (CTCs) or circulating tumor DNA (ctDNA) may be used for diagnostic or prognostic purposes in patients with hepatocellular carcinoma (HCC). We aim to determine whether CTCs or ctDNA are suitable to determine oncogenic mutations in HCC patients. Methods Twenty-six mostly advanced HCC patients were enrolled. 30 mL peripheral blood from each patient was obtained. CellSearch system was used for CTC detection. A sequencing panel covering 14 cancer-relevant genes was used to identify oncogenic mutations. TERT promoter C228T and C250T mutations were determined by droplet digital PCR. Results CTCs were detected in 27% (7/26) of subjects but at low numbers (median: 2 cells, range: 1–15 cells) and ctDNA in 77% (20/26) of patients. Mutations in ctDNA were identified in several genes: TERT promoter C228T (77%, 20/26), TP53 (23%, 6/26), CTNNB1 (12%, 3/26), PIK3CA (12%, 3/26) and NRAS (4%, 1/26). The TERT C228T mutation was present in all patients with one or more ctDNA mutations, or detectable CTCs. The TERT C228T and TP53 mutations detected in ctDNA were present at higher levels in matched primary HCC tumor tissue. The maximal variant allele frequency (VAF) of ctDNA was linearly correlated with largest tumor size and AFP level (Log10). CtDNA (or TERT C228T) positivity was associated with macrovascular invasion, and positivity of ctDNA (or TERT C228T) or CTCs (≥ 2) correlated with poor patient survival. Conclusions Oncogenic mutations could be detected in ctDNA from advanced HCC patients. CtDNA analysis may serve as a promising liquid biopsy to identify druggable mutations.
Collapse
Affiliation(s)
- Zhouhong Ge
- Departments of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Jean C A Helmijr
- Departments of Medical Oncology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Maurice P H M Jansen
- Departments of Medical Oncology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Patrick P C Boor
- Departments of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Lisanne Noordam
- Departments of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Maikel Peppelenbosch
- Departments of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Jaap Kwekkeboom
- Departments of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Jaco Kraan
- Departments of Medical Oncology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Dave Sprengers
- Departments of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands.
| |
Collapse
|
34
|
Takahashi K, Ofuji K, Hiramatsu K, Nosaka T, Naito T, Matsuda H, Endo K, Higuchi M, Ohtani M, Nemoto T, Nakamoto Y. Circulating tumor cells detected with a microcavity array predict clinical outcome in hepatocellular carcinoma. Cancer Med 2021; 10:2300-2309. [PMID: 33675149 PMCID: PMC7982624 DOI: 10.1002/cam4.3790] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/23/2020] [Accepted: 02/07/2021] [Indexed: 12/19/2022] Open
Abstract
The present study aimed to establish a novel isolation strategy for circulating tumor cells (CTCs) using a microcavity array (MCA) system and to evaluate the clinical significance of CTCs in hepatocellular carcinoma (HCC). We examined recovery rates of HCC cell lines spiked into whole blood in MCA assay. Circulating tumor cells were isolated from peripheral blood samples (3 mL) of 7 healthy donors (HD), 14 patients with liver cirrhosis (LC), and 31 patients with HCC using the MCA system. Additionally, we investigated the mRNA expression of liver‐specific genes in isolated CTCs using qPCR. The recovery rates were 65.1% (HepG2), 76.7% (HuH7), and 99.0% (PLC/PRF/5). In HD and patients with LC and HCC, the CTC positivity rate (CTCs ≥10) and average CTC number were as follows: HD 0% and 0.1, LC 14.3% and 5.3, HCC 54.8% and 47.6, respectively. The CTC positivity rate in HCC was significantly higher than that in LC (p < 0.05). The number of CTCs was significantly higher in metastatic HCC (102.2 ± 160.6) than in localized HCC (8.2 ± 7.7) (p < 0.05). The expression of AFP, glypican‐3, EpCAM, and albumin (ALB) genes was detected in isolated CTCs. The positive CTCs (CTCs ≥10) significantly reduced the cumulative survival in patients with HCC (p = 0.025), especially in localized patients with HCC (p = 0.046). The newly developed MCA system has the potential to isolate CTCs from HCC with high sensitivity, and mRNA expression could be measured from CTCs. Identification of positive CTCs can help predict clinical outcome of patients with HCC. Thus, analysis of CTCs in patients with HCC may provide important information as a novel biomarker in disease progression.
Collapse
Affiliation(s)
- Kazuto Takahashi
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Kazuya Ofuji
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Katsushi Hiramatsu
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Takuto Nosaka
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Tatsushi Naito
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hidetaka Matsuda
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | | | | | - Masahiro Ohtani
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Tomoyuki Nemoto
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Yasunari Nakamoto
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
35
|
Kalyan S, Torabi C, Khoo H, Sung HW, Choi SE, Wang W, Treutler B, Kim D, Hur SC. Inertial Microfluidics Enabling Clinical Research. MICROMACHINES 2021; 12:257. [PMID: 33802356 PMCID: PMC7999476 DOI: 10.3390/mi12030257] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/20/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023]
Abstract
Fast and accurate interrogation of complex samples containing diseased cells or pathogens is important to make informed decisions on clinical and public health issues. Inertial microfluidics has been increasingly employed for such investigations to isolate target bioparticles from liquid samples with size and/or deformability-based manipulation. This phenomenon is especially useful for the clinic, owing to its rapid, label-free nature of target enrichment that enables further downstream assays. Inertial microfluidics leverages the principle of inertial focusing, which relies on the balance of inertial and viscous forces on particles to align them into size-dependent laminar streamlines. Several distinct microfluidic channel geometries (e.g., straight, curved, spiral, contraction-expansion array) have been optimized to achieve inertial focusing for a variety of purposes, including particle purification and enrichment, solution exchange, and particle alignment for on-chip assays. In this review, we will discuss how inertial microfluidics technology has contributed to improving accuracy of various assays to provide clinically relevant information. This comprehensive review expands upon studies examining both endogenous and exogenous targets from real-world samples, highlights notable hybrid devices with dual functions, and comments on the evolving outlook of the field.
Collapse
Affiliation(s)
- Srivathsan Kalyan
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; (S.K.); (C.T.); (H.K.); (S.-E.C.)
| | - Corinna Torabi
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; (S.K.); (C.T.); (H.K.); (S.-E.C.)
| | - Harrison Khoo
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; (S.K.); (C.T.); (H.K.); (S.-E.C.)
| | - Hyun Woo Sung
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA;
| | - Sung-Eun Choi
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; (S.K.); (C.T.); (H.K.); (S.-E.C.)
| | - Wenzhao Wang
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; (W.W.); (B.T.)
| | - Benjamin Treutler
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; (W.W.); (B.T.)
| | - Dohyun Kim
- Department of Mechanical Engineering, Myongji University, Yongin-si 17508, Korea
| | - Soojung Claire Hur
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; (S.K.); (C.T.); (H.K.); (S.-E.C.)
- Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
- Department of Oncology, Johns Hopkins University, 600 N Wolfe St, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 401 N Broadway, Baltimore, MD 21231, USA
| |
Collapse
|
36
|
Zhao L, Wu X, Li T, Luo J, Dong D. ctcRbase: the gene expression database of circulating tumor cells and microemboli. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2020:5819651. [PMID: 32294193 DOI: 10.1093/database/baaa020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 01/04/2023]
Abstract
Circulating tumor cells/microemboli (CTCs/CTMs) are malignant cells that depart from cancerous lesions and shed into the bloodstream. Analysis of CTCs can allow the investigation of tumor cell biomarker expression from a non-invasive liquid biopsy. To date, high-throughput technologies have become a powerful tool to provide a genome-wide view of transcriptomic changes associated with CTCs/CTMs. These data provided us much information to understand the tumor heterogeneity, and the underlying molecular mechanism of tumor metastases. Unfortunately, these data have been deposited into various repositories, and a uniform resource for the cancer metastasis is still unavailable. To this end, we integrated previously published transcriptome datasets of CTCs/CTMs and constructed a web-accessible database. The first release of ctcRbase contains 526 CTCs/CTM samples across seven cancer types. The expression of 14 631 mRNAs and 3642 long non-coding RNAs of CTCs/CTMs were included. Experimental validations from the published literature are also included. Since CTCs/CTMs are considered to be precursors of metastases, ctcRbase also collected the expression data of primary tumors and metastases, which allows user to discover a unique 'circulating tumor cell gene signature' that is distinct from primary tumor and metastases. An easy-to-use database was constructed to query and browse CTCs/CTMs genes. ctcRbase can be freely accessible at http://www.origin-gene.cn/database/ctcRbase/.
Collapse
Affiliation(s)
- Lei Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, No.500 Dongchuan Road, Shanghai, 200241 China
| | - Xiaohong Wu
- Department of General Surgery, the Affiliated Yixing Hospital of Jiangsu University, No. 75 Zhenguan Road, Yixing, Jiangsu 214200, China
| | - Tong Li
- Thyroid and breast surgery, the Fourth Hospital of Jinan City, No. 50 Shifan Road, Jinan, Shandong 250021, China
| | - Jian Luo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, No.500 Dongchuan Road, Shanghai, 200241 China
| | - Dong Dong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, No.500 Dongchuan Road, Shanghai, 200241 China.,Cancer Institute, Xuzhou Medical University, No. 84 West huaihai Road, Xuzhou, Jiangsu 221006, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, No.315 West huaihai Road, Xuzhou, Jiangsu 221006, China
| |
Collapse
|
37
|
Parisi A, Porzio G, Pulcini F, Cannita K, Ficorella C, Mattei V, Delle Monache S. What Is Known about Theragnostic Strategies in Colorectal Cancer. Biomedicines 2021; 9:biomedicines9020140. [PMID: 33535557 PMCID: PMC7912746 DOI: 10.3390/biomedicines9020140] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 02/08/2023] Open
Abstract
Despite the paradigmatic shift occurred in recent years for defined molecular subtypes in the metastatic setting treatment, colorectal cancer (CRC) still remains an incurable disease in most of the cases. Therefore, there is an urgent need for new tools and biomarkers for both early tumor diagnosis and to improve personalized treatment. Thus, liquid biopsy has emerged as a minimally invasive tool that is capable of detecting genomic alterations from primary or metastatic tumors, allowing the prognostic stratification of patients, the detection of the minimal residual disease after surgical or systemic treatments, the monitoring of therapeutic response, and the development of resistance, establishing an opportunity for early intervention before imaging detection or worsening of clinical symptoms. On the other hand, preclinical and clinical evidence demonstrated the role of gut microbiota dysbiosis in promoting inflammatory responses and cancer initiation. Altered gut microbiota is associated with resistance to chemo drugs and immune checkpoint inhibitors, whereas the use of microbe-targeted therapies including antibiotics, pre-probiotics, and fecal microbiota transplantation can restore response to anticancer drugs, promote immune response, and therefore support current treatment strategies in CRC. In this review, we aim to summarize preclinical and clinical evidence for the utilization of liquid biopsy and gut microbiota in CRC.
Collapse
Affiliation(s)
- Alessandro Parisi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
- Medical Oncology Unit, St. Salvatore Hospital, 67100 L’Aquila, Italy; (G.P.); (K.C.); (C.F.)
| | - Giampiero Porzio
- Medical Oncology Unit, St. Salvatore Hospital, 67100 L’Aquila, Italy; (G.P.); (K.C.); (C.F.)
- Department of Biotechnology and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Fanny Pulcini
- Department of Biotechnology and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Katia Cannita
- Medical Oncology Unit, St. Salvatore Hospital, 67100 L’Aquila, Italy; (G.P.); (K.C.); (C.F.)
- Department of Biotechnology and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Corrado Ficorella
- Medical Oncology Unit, St. Salvatore Hospital, 67100 L’Aquila, Italy; (G.P.); (K.C.); (C.F.)
- Department of Biotechnology and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, via Angelo Maria Ricci 35A, 02100 Rieti, Italy;
| | - Simona Delle Monache
- Department of Biotechnology and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
- Correspondence: ; Tel.: +39-086-243-3569
| |
Collapse
|
38
|
Shi F, Jia F, Wei Z, Ma Y, Fang Z, Zhang W, Hu Z. A Microfluidic Chip for Efficient Circulating Tumor Cells Enrichment, Screening, and Single-Cell RNA Sequencing. Proteomics 2021; 21:e2000060. [PMID: 33219587 DOI: 10.1002/pmic.202000060] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 10/27/2020] [Indexed: 11/09/2022]
Abstract
Single-cell RNA sequencing on circulating tumor cells (CTCs) proves useful to study mechanisms of tumor heterogeneity, metastasis, and drug resistance. Currently, single-cell RNA sequencing of CTCs usually takes three prerequisite steps: enrichment of CTCs from whole blood, characterization of captured cells by immunostaining and microscopic imaging, and single-cell isolation through micromanipulation. However, multiple pipetting and transferring steps can easily cause the loss of rare CTCs. To address this issue, a novel integrated microfluidic chip for sequential enrichment, isolation, and characterization of CTCs at single-cell level, is developed. And, single CTC lysis is achieved on the same chip. The microfluidic chip includes functions of blood clot filtration, single-cell isolation, identification, and target single-cell lysate collection. By spiking tumor cells into whole blood, it is validated that this microfluidic chip can effectively conduct single-cell CTCs RNA sequencing. The approach lays a solid foundation for the analysis of RNA expression profiling of single-cell CTCs.
Collapse
Affiliation(s)
- Fanghao Shi
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China.,School of Nanoscience and Technology, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Jia
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China.,School of Nanoscience and Technology, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zewen Wei
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Yan Ma
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Zhiguo Fang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China.,School of Nanoscience and Technology, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weikai Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Zhiyuan Hu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China.,School of Nanoscience and Technology, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China.,Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, China
| |
Collapse
|
39
|
Ahn JC, Teng PC, Chen PJ, Posadas E, Tseng HR, Lu SC, Yang JD. Detection of Circulating Tumor Cells and Their Implications as a Biomarker for Diagnosis, Prognostication, and Therapeutic Monitoring in Hepatocellular Carcinoma. Hepatology 2021; 73:422-436. [PMID: 32017145 PMCID: PMC8183673 DOI: 10.1002/hep.31165] [Citation(s) in RCA: 194] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/28/2020] [Indexed: 12/15/2022]
Abstract
Hepatocellular carcinoma (HCC) is among the leading causes of worldwide cancer-related morbidity and mortality. Poor prognosis of HCC is attributed primarily to tumor presentation at an advanced stage when there is no effective treatment to achieve the long term survival of patients. Currently available tests such as alpha-fetoprotein have limited accuracy as a diagnostic or prognostic biomarker for HCC. Liver biopsy provides tissue that can reveal tumor biology but it is not used routinely due to its invasiveness and risk of tumor seeding, especially in early-stage patients. Liver biopsy is also limited in revealing comprehensive tumor biology due to intratumoral heterogeneity. There is a clear need for new biomarkers to improve HCC detection, prognostication, prediction of treatment response, and disease monitoring with treatment. Liquid biopsy could be an effective method of early detection and management of HCC. Circulating tumor cells (CTCs) are cancer cells in circulation derived from the original tumor or metastatic foci, and their measurement by liquid biopsy represents a great potential in facilitating the implementation of precision medicine in patients with HCC. CTCs can be detected by a simple peripheral blood draw and potentially show global features of tumor characteristics. Various CTC detection platforms using immunoaffinity and biophysical properties have been developed to identify and capture CTCs with high efficiency. Quantitative abundance of CTCs, as well as biological characteristics and genomic heterogeneity among the CTCs, can predict disease prognosis and response to therapy in patients with HCC. This review article will discuss the currently available technologies for CTC detection and isolation, their utility in the clinical management of HCC patients, their limitations, and future directions of research.
Collapse
Affiliation(s)
- Joseph C Ahn
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55904, United States
| | - Pai-Chi Teng
- Urologic Oncology Program and Uro-Oncology Research Laboratories, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Pin-Jung Chen
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Edwin Posadas
- Urologic Oncology Program and Uro-Oncology Research Laboratories, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States,Translational Oncology Program, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States,Division of Hematology/Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Hsian-Rong Tseng
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Shelly C. Lu
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA 90048, United States,Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Ju Dong Yang
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA 90048, United States,Comprehensive Transplant Center, Cedars Sinai Medical Center, Los Angeles, CA 90048, United States,Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, United States
| |
Collapse
|
40
|
Guo QR, Zhang LL, Liu JF, Li Z, Li JJ, Zhou WM, Wang H, Li JQ, Liu DY, Yu XY, Zhang JY. Multifunctional microfluidic chip for cancer diagnosis and treatment. Nanotheranostics 2021; 5:73-89. [PMID: 33391976 PMCID: PMC7738943 DOI: 10.7150/ntno.49614] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Microfluidic chip is not a chip in the traditional sense. It is technologies that control fluids at the micro level. As a burgeoning biochip, microfluidic chips integrate multiple disciplines, including physiology, pathology, cell biology, biophysics, engineering mechanics, mechanical design, materials science, and so on. The application of microfluidic chip has shown tremendous promise in the field of cancer therapy in the past three decades. Various types of cell and tissue cultures, including 2D cell culture, 3D cell culture and tissue organoid culture could be performed on microfluidic chips. Patient-derived cancer cells and tissues can be cultured on microfluidic chips in a visible, controllable, and high-throughput manner, which greatly advances the process of personalized medicine. Moreover, the functionality of microfluidic chip is greatly expanding due to the customizable nature. In this review, we introduce its application in developing cancer preclinical models, detecting cancer biomarkers, screening anti-cancer drugs, exploring tumor heterogeneity and producing nano-drugs. We highlight the functions and recent development of microfluidic chip to provide references for advancing cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Qiao-Ru Guo
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R.China
| | - Ling-Ling Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R.China
| | - Ji-Fang Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R.China
| | - Zhen Li
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P.R.China
| | - Jia-Jun Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R.China
| | - Wen-Min Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R.China
| | - Hui Wang
- Guangzhou Institute of Pediatrics/Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, P.R.China
| | - Jing-Quan Li
- The First Affiliated Hospital, Hainan Medical University, Haikou, P.R.China
| | - Da-Yu Liu
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, P.R.China
| | - Xi-Yong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R.China
| | - Jian-Ye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R.China.,The First Affiliated Hospital, Hainan Medical University, Haikou, P.R.China
| |
Collapse
|
41
|
Režen T, Razpotnik R, Ferk P, Juvan P, Rozman D. From Whole Liver to Single Cell Transcriptomics in Sex-Dependent Liver Pathologies. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11646-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
42
|
Ruan H, Zhou Y, Shen J, Zhai Y, Xu Y, Pi L, Huang R, Chen K, Li X, Ma W, Wu Z, Deng X, Wang X, Zhang C, Guan M. Circulating tumor cell characterization of lung cancer brain metastases in the cerebrospinal fluid through single-cell transcriptome analysis. Clin Transl Med 2020; 10:e246. [PMID: 33377642 PMCID: PMC7737787 DOI: 10.1002/ctm2.246] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/17/2020] [Accepted: 11/27/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Brain metastases explain the majority of mortality associated with lung cancer, which is the leading cause of cancer death. Cytology analysis of the cerebrospinal fluid (CSF) remains the diagnostic gold standard, however, the circulating tumor cells (CTCs) in CSF (CSF-CTCs) are not well defined at the molecular and transcriptome levels. METHODS We established an effective CSF-CTCs collection procedure and isolated individual CSF cells from five lung adenocarcinoma leptomeningeal metastases (LUAD-LM) patients and three controls. Three thousand seven hundred ninety-two single-cell transcriptomes were sequenced, and single-cell RNA sequencing (scRNA-seq) gene expression analysis was used to perform a comprehensive characterization of CSF cells. RESULTS Through clustering and expression analysis, we defined CSF-CTCs at the transcriptome level based on epithelial markers, proliferation markers, and genes with lung origin. The metastatic-CTC signature genes are enriched for metabolic pathway and cell adhesion molecule categories, which are crucial for the survival and metastases of tumor cells. We discovered substantial heterogeneity in patient CSF-CTCs. We quantified the degree of heterogeneity and found significantly greater among-patient heterogeneity compared to among-cell heterogeneity within a patient. This observation could be explained by spatial heterogeneity of metastatic sites, cell-cycle gene, and cancer-testis antigen (CTA) expression profiles as well as the proportion of CTCs displaying mesenchymal and cancer stem cell properties. In addition, our CSF-CTCs transcriptome profiling allowed us to determine the biomarkers during the progression of an LM patient with cancer of unknown primary site (CUP). CONCLUSIONS Our results will provide candidate genes for an RNA-based digital detection of CSF-CTCs from LUAD-LM and CUP-LM cases, and shed light on the therapy and mechanism of LUAD-LM.
Collapse
Affiliation(s)
- Haoyu Ruan
- Department of Clinical LaboratoryHuashan HospitalFudan UniversityShanghaiChina
| | - Yihang Zhou
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative MedicineShanghai East HospitalShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
- Department of PathobiologyAuburn UniversityAuburnAlabama
| | - Jie Shen
- 10K Genomics Technology Co., Ltd.ShanghaiChina
| | - Yue Zhai
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative MedicineShanghai East HospitalShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Ying Xu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative MedicineShanghai East HospitalShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Linyu Pi
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative MedicineShanghai East HospitalShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Ruofan Huang
- Department of OncologyHuashan HospitalFudan UniversityShanghaiChina
| | - Kun Chen
- Department of Clinical LaboratoryHuashan Hospital NorthFudan UniversityShanghaiChina
| | - Xiangyu Li
- Department of Clinical LaboratoryHuashan Hospital NorthFudan UniversityShanghaiChina
| | - Weizhe Ma
- Central LaboratoryHuashan HospitalFudan UniversityShanghaiChina
| | - Zhiyuan Wu
- Department of Clinical LaboratoryHuashan Hospital NorthFudan UniversityShanghaiChina
| | - Xuan Deng
- Department of Clinical LaboratoryHuashan HospitalFudan UniversityShanghaiChina
| | - Xu Wang
- Department of PathobiologyAuburn UniversityAuburnAlabama
- HudsonAlpha Institute for BiotechnologyHuntsvilleAlabama
- Alabama Agricultural Experiment StationAuburn UniversityAuburnAlabama
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative MedicineShanghai East HospitalShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Ming Guan
- Department of Clinical LaboratoryHuashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
43
|
Chen VL, Xu D, Wicha MS, Lok AS, Parikh ND. Utility of Liquid Biopsy Analysis in Detection of Hepatocellular Carcinoma, Determination of Prognosis, and Disease Monitoring: A Systematic Review. Clin Gastroenterol Hepatol 2020; 18:2879-2902.e9. [PMID: 32289533 PMCID: PMC7554087 DOI: 10.1016/j.cgh.2020.04.019] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Liquid biopsies, or blood samples, can be analyzed to detect circulating tumor cells (CTCs), cell-free DNA (cfDNA), and extracellular vesicles, which might identify patients with hepatocellular carcinoma (HCC) or help determine their prognoses. We performed a systematic review of studies of analyses of liquid biopsies from patients with HCC and their comparisons with other biomarkers. METHODS We performed a systematic review of original studies published before December 1, 2019. We included studies that compared liquid biopsies alone and in combination with other biomarkers for the detection of HCC, performed multivariate analyses of the accuracy of liquid biopsy analysis in determining patient prognoses, or evaluated the utility of liquid biopsy analysis in monitoring treatment response. RESULTS Our final analysis included 112 studies: 67 on detection, 46 on determining prognosis, and 25 on treatment monitoring or selection. Ten studies evaluated assays that characterized cfDNA for detection of HCC in combination with measurement of α-fetoprotein (AFP)-these studies found that the combined measurement of cfDNA and AFP more accurately identified patients with HCC than measurement of AFP alone. Six studies evaluated assays for extracellular vesicles and 2 studies evaluated assays for CTC in detection of HCC, with and without other biomarkers-most of these studies found that detection of CTCs or extracellular vesicles with AFP more accurately identified patients with HCC than measurement of AFP alone. Detection of CTCs before surgery was associated with HCC recurrence after resection in 13 of 14 studies; cfDNA and extracellular vesicles have been studied less frequently as prognostic factors. Changes in CTC numbers before vs after treatment more accurately identify patients with HCC recurrence than pretreatment counts alone, and measurements of cfDNA can identify patients with disease recurrence or progression before changes can be detected by imaging. We found little evidence that analyses of liquid biopsies can aid in the selection of treatment for HCC. Quality assessment showed risk of bias in studies of HCC detection and determination of prognosis. CONCLUSIONS In a systematic review of 112 studies of the accuracy of liquid biopsy analysis, we found that assays for CTCs and cfDNA might aid in determining patient prognoses and monitoring HCC, and assays for cfDNA might aid in HCC detection, but there is a risk of bias in these studies. Studies must be standardized before we can assess the clinical utility of liquid biopsy analysis in the detection and management of patients with HCC.
Collapse
Affiliation(s)
- Vincent L Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan.
| | - Dabo Xu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan
| | - Max S Wicha
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan
| | - Anna S Lok
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan
| | - Neehar D Parikh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan
| |
Collapse
|
44
|
Effect of surgical margin on recurrence based on preoperative circulating tumor cell status in hepatocellular carcinoma. EBioMedicine 2020; 62:103107. [PMID: 33181461 PMCID: PMC7658489 DOI: 10.1016/j.ebiom.2020.103107] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/05/2020] [Accepted: 10/19/2020] [Indexed: 02/08/2023] Open
Abstract
Background High rates of recurrence after resection severely worsen hepatocellular carcinoma (HCC) prognosis. This study aims to explore whether circulating tumor cell (CTC) is helpful in determine the appropriate liver resection margins for HCC patients. Methods HCC patients who underwent liver resection were enrolled into training (n=117) or validation (n=192) cohorts, then classified as CTC-positive (CTC≥1) or CTC-negative (CTC=0). A standardized pathologic sampling method was used in the training cohort to quantify microvascular invasion (mVI) and the farthest mVI from the tumor (FMT). Findings CTC number positively correlated with mVI counts (r=0.655, P<0.001) and FMT (r=0.495, P<0.001). The CTC-positive group had higher mVI counts (P=0.032) and greater FMT P=0.008) than the CTC-negative group. In the CTC-positive group, surgical margins of >1 cm independently protected against early recurrence (training cohort, P=0.004; validation cohort, P=0.001) with lower early recurrence rates (training cohort, 20.0% vs. 65.1%, P=0.005; validation cohort, 36.4% vs. 65.1%, P=0.003) compared to surgical margins of ≤1 cm. No differences in postoperative liver function were observed between patients with margins >1 cm vs. ≤1 cm. Surgical margin size minimally impacted early postoperative HCC recurrence in CTC-negative patients when using 0.5 cm or 1 cm as the threshold. Interpretations Preoperative CTC status predicts mVI severity in HCC patients and is a potential factor for determining optimal surgical margin size to ensure disease eradication and conserve liver function. A surgical margin of >1 cm should be achieved for patients with positive CTC. Funding A full list of funding bodies that contributed to this study can be found in the Acknowledgement section.
Collapse
|
45
|
Pei H, Li L, Han Z, Wang Y, Tang B. Recent advances in microfluidic technologies for circulating tumor cells: enrichment, single-cell analysis, and liquid biopsy for clinical applications. LAB ON A CHIP 2020; 20:3854-3875. [PMID: 33107879 DOI: 10.1039/d0lc00577k] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Circulating tumor cells (CTCs) detach from primary or metastatic lesions and circulate in the peripheral blood, which is considered to be the cause of distant metastases. CTC analysis in the form of liquid biopsy, enumeration and molecular analysis provide significant clinical information for cancer diagnosis, prognosis and therapeutic strategies. Despite the great clinical value, CTC analysis has not yet entered routine clinical practice due to lack of efficient technologies to perform CTC isolation and single-cell analysis. Taking the rarity and inherent heterogeneity of CTCs into account, reliable methods for CTC isolation and detection are in urgent demand for obtaining valuable information on cancer metastasis and progression from CTCs. Microfluidic technology, featuring microfabricated structures, can precisely control fluids and cells at the micrometer scale, thus making itself a particularly suitable method for rare CTC manipulation. Besides the enrichment function, microfluidic chips can also realize the analysis function by integrating multiple detection technologies. In this review, we have summarized the recent progress in CTC isolation and detection using microfluidic technologies, with special attention to emerging direct enrichment and enumeration in vivo. Further, few insights into single CTC molecular analysis are also demonstrated. We have provided a review of potential clinical applications of CTCs, ranging from early screening and diagnosis, tumor progression and prognosis, treatment and resistance monitoring, to therapeutic evaluation. Through this review, we conclude that the clinical utility of CTCs will be expanded as the isolation and analysis techniques are constantly improving.
Collapse
Affiliation(s)
- Haimeng Pei
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | | | | | | | | |
Collapse
|
46
|
Purification of HCC-specific extracellular vesicles on nanosubstrates for early HCC detection by digital scoring. Nat Commun 2020; 11:4489. [PMID: 32895384 PMCID: PMC7477161 DOI: 10.1038/s41467-020-18311-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
We report a covalent chemistry-based hepatocellular carcinoma (HCC)-specific extracellular vesicle (EV) purification system for early detection of HCC by performing digital scoring on the purified EVs. Earlier detection of HCC creates more opportunities for curative therapeutic interventions. EVs are present in circulation at relatively early stages of disease, providing potential opportunities for HCC early detection. We develop an HCC EV purification system (i.e., EV Click Chips) by synergistically integrating covalent chemistry-mediated EV capture/release, multimarker antibody cocktails, nanostructured substrates, and microfluidic chaotic mixers. We then explore the translational potential of EV Click Chips using 158 plasma samples of HCC patients and control cohorts. The purified HCC EVs are subjected to reverse-transcription droplet digital PCR for quantification of 10 HCC-specific mRNA markers and computation of digital scoring. The HCC EV-derived molecular signatures exhibit great potential for noninvasive early detection of HCC from at-risk cirrhotic patients with an area under receiver operator characteristic curve of 0.93 (95% CI, 0.86 to 1.00; sensitivity = 94.4%, specificity = 88.5%). Extracellular vesicles (EVs) are present in circulation at relatively early stages of disease, providing potential opportunities for early cancer diagnosis. Here, the authors report a covalent chemistry-based hepatocellular carcinoma (HCC)-specific EV purification system for early detection of HCC by performing digital scoring on the purified EVs.
Collapse
|
47
|
Labib M, Philpott DN, Wang Z, Nemr C, Chen JB, Sargent EH, Kelley SO. Magnetic Ranking Cytometry: Profiling Rare Cells at the Single-Cell Level. Acc Chem Res 2020; 53:1445-1457. [PMID: 32662263 DOI: 10.1021/acs.accounts.0c00179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cellular heterogeneity in biological systems presents major challenges in the diagnosis and treatment of disease and also complicates the deconvolution of complex cellular phenomena. Single-cell analysis methods provide information that is not masked by the intrinsic heterogeneity of the bulk population and can therefore be applied to gain insights into heterogeneity among different cell subpopulations with fine resolution. Over the last 5 years, an explosion in the number of single-cell measurement methods has occurred. However, most of these methods are applicable to pure populations of cultured cells and are not able to handle high levels of phenotypic heterogeneity or a large background of nontarget cells. Microfluidics is an attractive tool for single cell manipulation as it enables individual encasing of single cells, allowing for high-throughput analysis with precise control of the local environment. Our laboratory has developed a new microfluidics-based analytical strategy to meet this unmet need referred to as magnetic ranking cytometry (MagRC). Cells expressing a biomarker of interest are labeled with receptor-coated magnetic nanoparticles and isolated from nontarget cells using a microfluidic device. The device ranks the cells according to the level of bound magnetic nanoparticles, which corresponds to the expression level of a target biomarker. Over the last several years, two generations of MagRC devices have been developed for different applications. The first-generation MagRC devices are powerful tools for the quantitation and analysis of rare cells present in heterogeneous samples, such as circulating tumor cells, stem cells, and pathogenic bacteria. The second-generation MagRC devices are compatible with the efficient recovery of cells sorted on the basis of protein expression and can be used to analyze large populations of cells and perform phenotypic CRISPR screens. To improve analytical precision, newer iterations of the first-generation and second-generation MagRC devices have been integrated with electrochemical sensors and Hall effect sensors, respectively. Both generations of MagRC devices permit the isolation of viable cells, which sets the stage for a wide range of applications, such as generating cell lines from rare cells and in vitro screening for effective therapeutic interventions in cancer patients to realize the promise of personalized medicine. This Account summarizes the development and application of the MagRC and describes a suite of advances that have enabled single-cell tumor cell analysis and monitoring tumor response to therapy, stem cell analysis, and detection of pathogens.
Collapse
Affiliation(s)
- Mahmoud Labib
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - David N. Philpott
- Department of Electrical & Computer Engineering, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Zongjie Wang
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Carine Nemr
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Jenise B. Chen
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Edward H. Sargent
- Department of Electrical & Computer Engineering, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Shana O. Kelley
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
48
|
Lu D, Bai X, Zou Q, Gan Z, Lv Y. Identification of the association between HMMR expression and progression of hepatocellular carcinoma via construction of a co-expression network. Oncol Lett 2020; 20:2645-2654. [PMID: 32765791 PMCID: PMC7403633 DOI: 10.3892/ol.2020.11844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 01/04/2020] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to identify key genes involved in the progression of hepatocellular carcinoma (HCC). According to the theory of the multistep process of hepatocarcinogenesis and weighted gene co-expression network analysis, hub genes associated with the progression of HCC were identified using the gene expression profiles of patients with normal to chronic hepatitis/cirrhosis and dysplastic nodules to HCC. An independent dataset was used to verify the association between hub gene and clinical phenotype. The diagnostic and prognostic value of hub genes regarding HCC were evaluated. Gene set enrichment analysis (GSEA) was performed to explore the function of hub genes. A co-expression gene module positively associated with HCC progression was identified. Combined with a protein-protein interaction (PPI) network, a total of 10 common hub genes common to both the module of interest and the PPI network were selected as hub genes. Hyaluronan mediated motility receptor (HMMR) was selected as the candidate gene and was significantly upregulated in HCC at the mRNA and protein expression levels. HMMR is a promising diagnostic biomarker for HCC, and is also associated with its progression. The expression of HMMR was positively correlated with HCC tumor grade, pathological stage, tumor stage and Ishak score. The expression of HMMR was an independent prognostic factor compared with clinicopathological features. Patients with high expression levels of HMMR exhibited a less favorable prognosis. GSEA identified 6 representative gene sets that were associated with cancer. Overall, HMMR may serve an important role in HCC and may have potential as a biomarker of HCC diagnosis and progression.
Collapse
Affiliation(s)
- Donglan Lu
- Department of Medical Oncology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541199, P.R. China
| | - Xue Bai
- Department of Medical Oncology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541199, P.R. China
| | - Qiyuan Zou
- Department of Medicine 1, Affiliated Langdong Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zuhuan Gan
- Department of Oncology, Affiliated Langdong Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yufeng Lv
- Department of Oncology, Affiliated Langdong Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
49
|
Ultrahigh-throughput magnetic sorting of large blood volumes for epitope-agnostic isolation of circulating tumor cells. Proc Natl Acad Sci U S A 2020; 117:16839-16847. [PMID: 32641515 PMCID: PMC7382214 DOI: 10.1073/pnas.2006388117] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Isolation of sufficient numbers of circulating tumor cells (CTCs) in cancer patients could provide an alternative to invasive tumor biopsies, providing multianalyte cell-based biomarkers that are not available from current plasma circulating tumor DNA sequencing. Given the average prevalence at one CTC per billion blood cells, very large blood volumes must be screened to provide enough CTCs for reliable clinical applications. By creating an ultrahigh-throughput magnetic sorter, we demonstrate the efficient removal of leukocytes from near whole blood volume equivalents. Combined with leukapheresis to initially concentrate blood mononuclear cells, this LPCTC-iChip platform will enable noninvasive sampling of cancer cells in sufficient numbers for clinical applications, ranging from real-time pharmacokinetic monitoring of drug response to tissue-of-origin determination in early-stage cancer screening. Circulating tumor cell (CTC)-based liquid biopsies provide unique opportunities for cancer diagnostics, treatment selection, and response monitoring, but even with advanced microfluidic technologies for rare cell detection the very low number of CTCs in standard 10-mL peripheral blood samples limits their clinical utility. Clinical leukapheresis can concentrate mononuclear cells from almost the entire blood volume, but such large numbers and concentrations of cells are incompatible with current rare cell enrichment technologies. Here, we describe an ultrahigh-throughput microfluidic chip, LPCTC-iChip, that rapidly sorts through an entire leukapheresis product of over 6 billion nucleated cells, increasing CTC isolation capacity by two orders of magnitude (86% recovery with 105 enrichment). Using soft iron-filled channels to act as magnetic microlenses, we intensify the field gradient within sorting channels. Increasing magnetic fields applied to inertially focused streams of cells effectively deplete massive numbers of magnetically labeled leukocytes within microfluidic channels. The negative depletion of antibody-tagged leukocytes enables isolation of potentially viable CTCs without bias for expression of specific tumor epitopes, making this platform applicable to all solid tumors. Thus, the initial enrichment by routine leukapheresis of mononuclear cells from very large blood volumes, followed by rapid flow, high-gradient magnetic sorting of untagged CTCs, provides a technology for noninvasive isolation of cancer cells in sufficient numbers for multiple clinical and experimental applications.
Collapse
|
50
|
Wang J, Sun N, Lee YT, Ni Y, Koochekpour R, Zhu Y, Tseng HR, Wang S, Jiang L, Zhu H. A circulating tumor cell-based digital assay for the detection of EGFR T790M mutation in advanced non-small cell lung cancer. J Mater Chem B 2020; 8:5636-5644. [PMID: 32525199 PMCID: PMC8136811 DOI: 10.1039/d0tb00589d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Determining the status of epidermal growth factor receptor (EGFR) T790M mutation is crucial for guiding further treatment intervention in advanced non-small cell lung cancer (NSCLC) patients who develop acquired resistance to initial EGFR tyrosine kinase inhibitor (TKI) treatment. Circulating tumor cells (CTCs) which contain plentiful copies of well-preserved RNA offer an ideal source for noninvasive detection of T790M mutation in NSCLC. We developed a CTC-based digital assay which synergistically integrates NanoVelcro Chips for enriching NSCLC CTCs and reverse-transcription droplet digital PCR (RT-ddPCR) for quantifying T790M transcripts in the enriched CTCs. We collected 46 peripheral arterial and venous blood samples from 27 advanced NSCLC patients for testing this CTC-based digital assay. The results showed that the T790M mutational status observed by the CTC-based digital assay matched with those observed by tissue-based diagnostic methods. Furthermore, higher copy numbers of T790M transcripts were observed in peripheral arterial blood than those detected in the matched peripheral venous blood. In short, our results demonstrated the potential of the NanoVelcro CTC-digital assay for noninvasive detection of the T790M mutation in NSCLC, and suggested that peripheral arterial blood sampling may offer a more abundant CTC source than peripheral venous blood in advanced NSCLC patients.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, P. R. China. and California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Na Sun
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA and Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Yi-Te Lee
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Yiqian Ni
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China.
| | - Rose Koochekpour
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Yazhen Zhu
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Hsian-Rong Tseng
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Shuyang Wang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, P. R. China.
| | - Liyan Jiang
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China.
| | - Hongguang Zhu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, P. R. China.
| |
Collapse
|