1
|
Bhandary S, Poli E, Teobaldi G, O’Regan DD. Dynamical Screening of Local Spin Moments at Metal-Molecule Interfaces. ACS NANO 2023; 17:5974-5983. [PMID: 36881865 PMCID: PMC10062023 DOI: 10.1021/acsnano.3c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Transition-metal phthalocyanine molecules have attracted considerable interest in the context of spintronics device development due to their amenability to diverse bonding regimes and their intrinsic magnetism. The latter is highly influenced by the quantum fluctuations that arise at the inevitable metal-molecule interface in a device architecture. In this study, we have systematically investigated the dynamical screening effects in phthalocyanine molecules hosting a series of transition-metal ions (Ti, V, Cr, Mn, Fe, Co, and Ni) in contact with the Cu(111) surface. Using comprehensive density functional theory plus Anderson's Impurity Model calculations, we show that the orbital-dependent hybridization and electron correlation together result in strong charge and spin fluctuations. While the instantaneous spin moments of the transition-metal ions are near atomic-like, we find that screening gives rise to considerable lowering or even quenching of these. Our results highlight the importance of quantum fluctuations in metal-contacted molecular devices, which may influence the results obtained from theoretical or experimental probes, depending on their possibly material-dependent characteristic sampling time-scales.
Collapse
Affiliation(s)
- Sumanta Bhandary
- School
of Physics and CRANN Institute, Trinity
College Dublin, The University
of Dublin, Dublin 2, Ireland
| | - Emiliano Poli
- Scientific
Computing Department, STFC UKRI, Rutherford
Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Gilberto Teobaldi
- Scientific
Computing Department, STFC UKRI, Rutherford
Appleton Laboratory, Didcot OX11 0QX, United Kingdom
- School
of Chemistry, University of Southampton, Highfield SO17 1BJ, Southampton, United Kingdom
| | - David D. O’Regan
- School
of Physics and CRANN Institute, Trinity
College Dublin, The University
of Dublin, Dublin 2, Ireland
| |
Collapse
|
2
|
Sharangi P, Gargiani P, Valvidares M, Bedanta S. Magnetism at the interface of non-magnetic Cu and C 60. Phys Chem Chem Phys 2021; 23:6490-6495. [PMID: 33690738 DOI: 10.1039/d0cp06326f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The signature of magnetism without a ferromagnet in a non-magnetic heterostructure is novel as well as fascinating from a fundamental research point of view. It has been shown by Al'Mari et al. that magnetism can be induced at the interface of Cu/C60 due to a change in the density of states. However, the quantification of such an interfacial magnetic moment has not been performed yet. In order to quantify the induced magnetic moment in Cu, we have performed X-ray magnetic circular dichroism (XMCD) measurements on Cu/C60 multilayers. We have observed room temperature ferromagnetism in the Cu/C60 stack. Further XMCD measurements show that a ∼0.01 μB per atom magnetic moment has been induced in Cu at the Cu/C60 interface.
Collapse
Affiliation(s)
- Purbasha Sharangi
- Laboratory for Nanomagnetism and Magnetic Materials (LNMM), School of Physical Sciences, National Institute of Science Education and Research (NISER), HBNI, P.O. - Bhimpur Padanpur, Via-Jatni, 752050, India.
| | | | | | | |
Collapse
|
3
|
Alotibi S, Hickey BJ, Teobaldi G, Ali M, Barker J, Poli E, O'Regan DD, Ramasse Q, Burnell G, Patchett J, Ciccarelli C, Alyami M, Moorsom T, Cespedes O. Enhanced Spin-Orbit Coupling in Heavy Metals via Molecular Coupling. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5228-5234. [PMID: 33470108 DOI: 10.1021/acsami.0c19403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
5d metals are used in electronics because of their high spin-orbit coupling (SOC) leading to efficient spin-electric conversion. When C60 is grown on a metal, the electronic structure is altered due to hybridization and charge transfer. In this work, we measure the spin Hall magnetoresistance for Pt/C60 and Ta/C60, finding that they are up to a factor of 6 higher than those for pristine metals, indicating a 20-60% increase in the spin Hall angle. At low fields of 1-30 mT, the presence of C60 increased the anisotropic magnetoresistance by up to 700%. Our measurements are supported by noncollinear density functional theory calculations, which predict a significant SOC enhancement by C60 that penetrates through the Pt layer, concomitant with trends in the magnetic moment of transport electrons acquired via SOC and symmetry breaking. The charge transfer and hybridization between the metal and C60 can be controlled by gating, so our results indicate the possibility of dynamically modifying the SOC of thin metals using molecular layers. This could be exploited in spin-transfer torque memories and pure spin current circuits.
Collapse
Affiliation(s)
- Satam Alotibi
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Bryan J Hickey
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Gilberto Teobaldi
- Scientific Computing Department, Science and Technology Facilities Council, Didcot OX11 0QX, U.K
- Beijing Computational Science Research Center, Beijing 100193, China
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool, Liverpool L69 3BX, U.K
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | - Mannan Ali
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Joseph Barker
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Emiliano Poli
- Scientific Computing Department, Science and Technology Facilities Council, Didcot OX11 0QX, U.K
| | - David D O'Regan
- School of Physics, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and the SFI Advanced Materials and Bio-Engineering Research Centre (AMBER), Dublin 2, Ireland
| | - Quentin Ramasse
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
- SuperSTEM, SciTech Daresbury Science and Innovation Campus, Keckwick Lane, Daresbury WA4 4AD, U.K
| | - Gavin Burnell
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - James Patchett
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Chiara Ciccarelli
- SuperSTEM, SciTech Daresbury Science and Innovation Campus, Keckwick Lane, Daresbury WA4 4AD, U.K
| | - Mohammed Alyami
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Timothy Moorsom
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Oscar Cespedes
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
4
|
Moorsom T, Rogers M, Scivetti I, Bandaru S, Teobaldi G, Valvidares M, Flokstra M, Lee S, Stewart R, Prokscha T, Gargiani P, Alosaimi N, Stefanou G, Ali M, Al Ma’Mari F, Burnell G, Hickey BJ, Cespedes O. Reversible spin storage in metal oxide-fullerene heterojunctions. SCIENCE ADVANCES 2020; 6:eaax1085. [PMID: 32219155 PMCID: PMC7083605 DOI: 10.1126/sciadv.aax1085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
We show that hybrid MnOx/C60 heterojunctions can be used to design a storage device for spin-polarized charge: a spin capacitor. Hybridization at the carbon-metal oxide interface leads to spin-polarized charge trapping after an applied voltage or photocurrent. Strong electronic structure changes, including a 1-eV energy shift and spin polarization in the C60 lowest unoccupied molecular orbital, are then revealed by x-ray absorption spectroscopy, in agreement with density functional theory simulations. Muon spin spectroscopy measurements give further independent evidence of local spin ordering and magnetic moments optically/electronically stored at the heterojunctions. These spin-polarized states dissipate when shorting the electrodes. The spin storage decay time is controlled by magnetic ordering at the interface, leading to coherence times of seconds to hours even at room temperature.
Collapse
Affiliation(s)
- T. Moorsom
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - M. Rogers
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - I. Scivetti
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool, Liverpool L69 3BX, England
| | - S. Bandaru
- Beijing Computational Science Research Centre, 100193 Beijing, China
| | - G. Teobaldi
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool, Liverpool L69 3BX, England
- Beijing Computational Science Research Centre, 100193 Beijing, China
| | - M. Valvidares
- ALBA Synchrotron Light Source, E-08290 Barcelona, Spain
| | - M. Flokstra
- School of Physics and Astronomy, SUPA, University of St Andrews, St Andrews KY16 9SS, UK
| | - S. Lee
- School of Physics and Astronomy, SUPA, University of St Andrews, St Andrews KY16 9SS, UK
| | - R. Stewart
- School of Physics and Astronomy, SUPA, University of St Andrews, St Andrews KY16 9SS, UK
| | - T. Prokscha
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - P. Gargiani
- ALBA Synchrotron Light Source, E-08290 Barcelona, Spain
| | - N. Alosaimi
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - G. Stefanou
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - M. Ali
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - F. Al Ma’Mari
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
- Department of Physics, Sultan Qaboos University, P.O. Box 36, 123 Muscat, Oman
| | - G. Burnell
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - B. J. Hickey
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - O. Cespedes
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
5
|
Mallik S, Mohd AS, Koutsioubas A, Mattauch S, Satpati B, Brückel T, Bedanta S. Tuning spinterface properties in iron/fullerene thin films. NANOTECHNOLOGY 2019; 30:435705. [PMID: 31342941 DOI: 10.1088/1361-6528/ab3554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In ferromagnetic (FM) metal/organic semiconductor (OSC) heterostructures charge transfer can occur which leads to induction of magnetism in the non-magnetic OSC. This phenomenon has been described by the change in the density of states in the OSC which leads to a finite magnetic moment at the OSC interface and it is called the 'spinterface'. One of the main motivations in this field of organic spintronics is how to control the magnetic moment in the spinterface. In this regard, there are several open questions such as (i) which combination of FM and OSC can lead to more moment at the spinterface? (ii) Is the thickness of OSC also important? (iii) How does the spinterface moment vary with the FM thickness? (iv) Does the crystalline quality of the FM matter? (v) What is the effect of spinterface on magnetization reversal, domain structure and anisotropy? In this context, we have tried to answer the last four issues in this paper by studying Fe/C60 bilayers of variable Fe thickness deposited on Si substrates. We find that both the induced moment and thickness of the spinterface vary proportionally with the Fe thickness. Such behavior is explained in terms of the growth quality of the Fe layer on the native oxide of the Si (100) substrate. The magnetization reversal, domain structure and anisotropy of these bilayer samples were studied and compared with their respective reference samples without the C60 layer. It is observed that the formation of spinterface leads to a reduction in uniaxial anisotropy in Fe/C60 on Si (100) in comparison to their reference samples.
Collapse
Affiliation(s)
- Srijani Mallik
- Laboratory for Nanomagnetism and Magnetic Materials (LNMM), School of Physical Sciences, National Institute of Science Education and Research (NISER), HBNI, Jatni-752050, India
| | | | | | | | | | | | | |
Collapse
|
6
|
Elnaggar H, Wang RP, Lafuerza S, Paris E, Tseng Y, McNally D, Komarek A, Haverkort M, Sikora M, Schmitt T, de Groot FMF. Magnetic Contrast at Spin-Flip Excitations: An Advanced X-Ray Spectroscopy Tool to Study Magnetic-Ordering. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36213-36220. [PMID: 31495171 PMCID: PMC6778912 DOI: 10.1021/acsami.9b10196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/09/2019] [Indexed: 06/01/2023]
Abstract
The determination of the local orientation and magnitude of the magnetization in spin textures plays a pivotal role in understanding and harnessing magnetic properties for technological applications. Here, we show that by employing the polarization dependence of resonant inelastic X-ray scattering (RIXS), we can directly probe the spin ordering with chemical and site selectivity. Applied on the prototypical ferrimagnetic mixed-valence system, magnetite ([Fe3+]A[Fe3+,Fe2+]BO4), we can distinguish spin-flip excitations at the A and B antiferromagnetically coupled Fe3+ sublattices and quantify the exchange field. Furthermore, it is possible to determine the orbital contribution to the magnetic moment from detailed angular dependence measurements. RIXS dichroism measurements performed at spin-flip excitations with nanometer spatial resolution will offer a powerful mapping contrast suitable for the characterization of magnetic ordering at interfaces and engineered spin textures.
Collapse
Affiliation(s)
- Hebatalla Elnaggar
- Debye
Institute for Nanomaterials Science, Utrecht
University, Universiteitsweg 99, 3584 CA Utrecht, The Netherlands
| | - Ru-Pan Wang
- Debye
Institute for Nanomaterials Science, Utrecht
University, Universiteitsweg 99, 3584 CA Utrecht, The Netherlands
| | - Sara Lafuerza
- European
Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Eugenio Paris
- Photon
Science Division, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Yi Tseng
- Photon
Science Division, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Daniel McNally
- Photon
Science Division, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Alexander Komarek
- Max-Planck-Institute
for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden, Germany
| | - Maurits Haverkort
- Institut
für Theoritiche Physik, Universität
Heidelberg, Philosophenweg
19, 69120 Heidelberg, Germany
| | - Marcin Sikora
- Academic
Centre for Materials and Nanotechnology, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
| | - Thorsten Schmitt
- Photon
Science Division, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Frank M. F. de Groot
- Debye
Institute for Nanomaterials Science, Utrecht
University, Universiteitsweg 99, 3584 CA Utrecht, The Netherlands
| |
Collapse
|
7
|
Rohlf S, Gruber M, Flöser BM, Grunwald J, Jarausch S, Diekmann F, Kalläne M, Jasper-Toennies T, Buchholz A, Plass W, Berndt R, Tuczek F, Rossnagel K. Light-Induced Spin Crossover in an Fe(II) Low-Spin Complex Enabled by Surface Adsorption. J Phys Chem Lett 2018; 9:1491-1496. [PMID: 29510617 DOI: 10.1021/acs.jpclett.8b00338] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding and controlling the spin-crossover properties of molecular complexes can be of particular interest for potential applications in molecular spintronics. Using near-edge X-ray absorption fine structure spectroscopy, we investigated these properties for a new vacuum-evaporable Fe(II) complex, namely [Fe(pypyr(CF3)2)2(phen)] (pypyr = 2-(2'-pyridyl)pyrrolide, phen = 1,10-phenanthroline). We find that the spin-transition temperature, well above room temperature for the bulk compound, is drastically lowered for molecules arranged in thin films. Furthermore, while within the experimentally accessible temperature range (2 K < T < 410 K) the bulk material shows indication of neither light-induced excited spin-state trapping nor soft X-ray-induced excited spin-state trapping, these effects are observed for molecules within thin films up to temperatures around 100 K. Thus, by arranging the molecules into thin films, a nominal low-spin complex is effectively transformed into a spin-crossover complex.
Collapse
Affiliation(s)
- Sebastian Rohlf
- Institut für Experimentelle und Angewandte Physik , Christian-Albrechts-Universität zu Kiel , 24098 Kiel , Germany
| | - Manuel Gruber
- Institut für Experimentelle und Angewandte Physik , Christian-Albrechts-Universität zu Kiel , 24098 Kiel , Germany
| | - Benedikt M Flöser
- Institut für Anorganische Chemie , Christian-Albrechts-Universität zu Kiel , 24098 Kiel , Germany
| | - Jan Grunwald
- Institut für Anorganische Chemie , Christian-Albrechts-Universität zu Kiel , 24098 Kiel , Germany
| | - Simon Jarausch
- Institut für Experimentelle und Angewandte Physik , Christian-Albrechts-Universität zu Kiel , 24098 Kiel , Germany
| | - Florian Diekmann
- Institut für Experimentelle und Angewandte Physik , Christian-Albrechts-Universität zu Kiel , 24098 Kiel , Germany
| | - Matthias Kalläne
- Institut für Experimentelle und Angewandte Physik , Christian-Albrechts-Universität zu Kiel , 24098 Kiel , Germany
- Ruprecht-Haensel-Labor , Christian-Albrechts-Universität zu Kiel und Deutsches Elektronen-Synchrotron DESY , 24098 Kiel und 22607 Hamburg , Germany
| | - Torben Jasper-Toennies
- Institut für Experimentelle und Angewandte Physik , Christian-Albrechts-Universität zu Kiel , 24098 Kiel , Germany
| | - Axel Buchholz
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität , 07743 Jena , Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität , 07743 Jena , Germany
| | - Richard Berndt
- Institut für Experimentelle und Angewandte Physik , Christian-Albrechts-Universität zu Kiel , 24098 Kiel , Germany
| | - Felix Tuczek
- Institut für Anorganische Chemie , Christian-Albrechts-Universität zu Kiel , 24098 Kiel , Germany
| | - Kai Rossnagel
- Institut für Experimentelle und Angewandte Physik , Christian-Albrechts-Universität zu Kiel , 24098 Kiel , Germany
- Ruprecht-Haensel-Labor , Christian-Albrechts-Universität zu Kiel und Deutsches Elektronen-Synchrotron DESY , 24098 Kiel und 22607 Hamburg , Germany
- Deutsches Elektronen-Synchrotron DESY , 22607 Hamburg , Germany
| |
Collapse
|
8
|
Shao Y, Pang R, Pan H, Shi X. Fullerene/layered antiferromagnetic reconstructed spinterface: Subsurface layer dominates molecular orbitals' spin-split and large induced magnetic moment. J Chem Phys 2018; 148:114704. [PMID: 29566528 DOI: 10.1063/1.5012926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The interfaces between organic molecules and magnetic metals have gained increasing interest for both fundamental reasons and applications. Among them, the C60/layered antiferromagnetic (AFM) interfaces have been studied only for C60 bonded to the outermost ferromagnetic layer [S. L. Kawahara et al., Nano Lett. 12, 4558 (2012) and D. Li et al., Phys. Rev. B 93, 085425 (2016)]. Here, via density functional theory calculations combined with evidence from the literature, we demonstrate that C60 adsorption can reconstruct the layered-AFM Cr(001) surface at elevated annealing temperatures so that C60 bonds to both the outermost and the subsurface Cr layers in opposite spin directions. Surface reconstruction drastically changes the adsorbed molecule spintronic properties: (1) the spin-split p-d hybridization involves multi-orbitals of C60 and top two layers of Cr with opposite spin-polarization, (2) the subsurface Cr atom dominates the C60 electronic properties, and (3) the reconstruction induces a large magnetic moment of 0.58 μB in C60 as a synergistic effect of the top two Cr layers. The induced magnetic moment in C60 can be explained by the magnetic direct-exchange mechanism, which can be generalized to other C60/magnetic metal systems. Understanding these complex hybridization behaviors is a crucial step for molecular spintronic applications.
Collapse
Affiliation(s)
- Yangfan Shao
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Rui Pang
- International Laboratory of Quantum Functional Materials of Henan and School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Hui Pan
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, China
| | - Xingqiang Shi
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
9
|
Jasper-Toennies T, Gruber M, Karan S, Jacob H, Tuczek F, Berndt R. Robust and Selective Switching of an Fe III Spin-Crossover Compound on Cu 2N/Cu(100) with Memristance Behavior. NANO LETTERS 2017; 17:6613-6619. [PMID: 29023129 DOI: 10.1021/acs.nanolett.7b02481] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The switching between two spin states makes spin-crossover molecules on surfaces very attractive for potential applications in molecular spintronics. Using scanning tunneling microscopy, the successful deposition of [Fe(pap)2]+ (pap = N-2-pyridylmethylidene-2-hydroxyphenylaminato) molecules on Cu2N/Cu(100) surface is evidenced. The deposited FeIII spin-crossover compound is controllably switched between three different states, each of them exhibiting a characteristic tunneling conductance. The conductance is therefore employed to readily read the state of the molecules. A comparison of the experimental data with the results of density functional theory calculations reveals that all Fe(pap)2 molecules are initially in their high-spin state. The two other states are compatible with the low-spin state of the molecule but differ with respect to their coupling to the substrate. As a proof of concept, the reversible and selective nature of the switching is used to build a two-molecule memory.
Collapse
Affiliation(s)
| | | | - Sujoy Karan
- Institute of Experimental and Applied Physics, University of Regensburg , 93053 Regensburg, Germany
| | | | | | | |
Collapse
|
10
|
Martín-Olivera L, Shchukin DG, Teobaldi G. Role of Metal Lattice Expansion and Molecular π-Conjugation for the Magnetic Hardening at Cu-Organics Interfaces. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2017; 121:23777-23787. [PMID: 29152033 PMCID: PMC5682901 DOI: 10.1021/acs.jpcc.7b08476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 09/25/2017] [Indexed: 06/07/2023]
Abstract
Magnetic hardening and generation of room-temperature ferromagnetism at the interface between originally nonmagnetic transition metals and π-conjugated organics is understood to be promoted by interplay between interfacial charge transfer and relaxation-induced distortion of the metal lattice. The relative importance of the two contributions for magnetic hardening of the metal remains unquantified. Here, we disentangle their role via density functional theory simulation of several models of interfaces between Cu and polymers of different steric hindrance, π-conjugation, and electron-accepting properties: polyethylene, polyacetylene, polyethylene terephthalate, and polyurethane. In the absence of charge transfer, expansion and compression of the Cu face-centered cubic lattice is computed to lead to magnetic hardening and softening, respectively. Contrary to expectations based on the extent of π-conjugation on the organic and resulting charge transfer, the computed magnetic hardening is largest for Cu interfaced with polyethylene and smallest for the Cu-polyacetylene systems as a result of a differently favorable rehybridization leading to different enhancement of exchange interactions and density of states at the Fermi level. It thus transpires that neither the presence of molecular π-conjugation nor substantial charge transfer may be strictly needed for magnetic hardening of Cu-substrates, widening the range of organics of potential interest for enhancement of emergent magnetism at metal-organic interfaces.
Collapse
Affiliation(s)
- Lorena Martín-Olivera
- Stephenson
Institute for Renewable Energy, Department of Chemistry, The University of Liverpool, L69 3BX Liverpool, United Kingdom
| | - Dmitry G. Shchukin
- Stephenson
Institute for Renewable Energy, Department of Chemistry, The University of Liverpool, L69 3BX Liverpool, United Kingdom
| | - Gilberto Teobaldi
- Stephenson
Institute for Renewable Energy, Department of Chemistry, The University of Liverpool, L69 3BX Liverpool, United Kingdom
- Beijing
Computational Science Research Centre, Beijing 100193, China
| |
Collapse
|