1
|
Deng D, Meng H, Ma Y, Guo Y, Wang Z, He H, Xie W, Liu JE, Zhang L. The cumulative impact of temperature and nitrogen availability on the potential nitrogen fixation and extracellular polymeric substances secretion by Dolichospermum. HARMFUL ALGAE 2024; 135:102633. [PMID: 38830715 DOI: 10.1016/j.hal.2024.102633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/02/2024] [Accepted: 04/24/2024] [Indexed: 06/05/2024]
Abstract
Nitrogen-fixing cyanobacteria not only cause severe blooms but also play an important role in the nitrogen input processes of lakes. The production of extracellular polymeric substances (EPS) and the ability to fix nitrogen from the atmosphere provide nitrogen-fixing cyanobacteria with a competitive advantage over other organisms. Temperature and nitrogen availability are key environmental factors in regulating the growth of cyanobacteria. In this study, Dolichospermum (formerly known as Anabaena) was cultivated at three different temperatures (10 °C, 20 °C, and 30 °C) to examine the impact of temperature and nitrogen availability on nitrogen fixation capacity and the release of EPS. Initially, confocal laser scanning microscopy (CLSM) and the quantification of heterocysts at different temperatures revealed that lower temperatures (10 °C) hindered the differentiation of heterocysts under nitrogen-deprived conditions. Additionally, while heterocysts inhibited the photosynthetic activity of Dolichospermum, the secretion of EPS was notably affected by nitrogen limitation, particularly at 30 °C. Finally, real-time quantitative polymerase chain reaction (qPCR) was used to measure the expression of nitrogen-utilizing genes (ntcA and nifH) and EPS synthesis-related genes (wzb and wzc). The results indicated that under nitrogen-deprived conditions, the expression of each gene was upregulated, and there was a significant correlation between the upregulation of nitrogen-utilizing and EPS synthesis genes (P < 0.05). Our findings suggested that Dolichospermum responded to temperature variation by affecting the formation of heterocysts, impacting its potential nitrogen fixation capacity. Furthermore, the quantity of EPS released was more influenced by nitrogen availability than temperature. This research enhances our comprehension of interconnections between nitrogen deprivation and EPS production under the different temperatures.
Collapse
Affiliation(s)
- Dailan Deng
- School of Environment, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, PR China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing 210023, China
| | - Han Meng
- School of Environment, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, PR China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing 210023, China
| | - You Ma
- School of Environment, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, PR China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing 210023, China
| | - Yongqi Guo
- School of Environment, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, PR China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing 210023, China
| | - Zixuan Wang
- School of Environment, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, PR China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing 210023, China
| | - Huan He
- School of Environment, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, PR China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing 210023, China
| | - Wenming Xie
- School of Environment, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, PR China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing 210023, China
| | - Jin-E Liu
- School of Environment, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, PR China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing 210023, China.
| | - Limin Zhang
- School of Environment, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, PR China; Green Economy Development Institute, Nanjing University of Finance and Economics, Nanjing 210023, PR China
| |
Collapse
|
2
|
Sarasa-Buisan C, Nieves-Morión M, Arévalo S, Helm RF, Sevilla E, Luque I, Fillat MF. FurC (PerR) contributes to the regulation of peptidoglycan remodeling and intercellular molecular transfer in the cyanobacterium Anabaena sp. strain PCC 7120. mBio 2024; 15:e0323123. [PMID: 38334377 PMCID: PMC10936207 DOI: 10.1128/mbio.03231-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/09/2024] [Indexed: 02/10/2024] Open
Abstract
Microbial extracellular proteins and metabolites provide valuable information concerning how microbes adapt to changing environments. In cyanobacteria, dynamic acclimation strategies involve a variety of regulatory mechanisms, being ferric uptake regulator proteins as key players in this process. In the nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120, FurC (PerR) is a global regulator that modulates the peroxide response and several genes involved in photosynthesis and nitrogen metabolism. To investigate the possible role of FurC in shaping the extracellular environment of Anabaena, the analysis of the extracellular metabolites and proteins of a furC-overexpressing variant was compared to that of the wild-type strain. There were 96 differentially abundant proteins, 78 of which were found for the first time in the extracellular fraction of Anabaena. While these proteins belong to different functional categories, most of them are predicted to be secreted or have a peripheral location. Several stress-related proteins, including PrxA, flavodoxin, and the Dps homolog All1173, accumulated in the exoproteome of furC-overexpressing cells, while decreased levels of FurA and a subset of membrane proteins, including several export proteins and amiC gene products, responsible for nanopore formation, were detected. Direct repression by FurC of some of those genes, including amiC1 and amiC2, could account for odd septal nanopore formation and impaired intercellular molecular transfer observed in the furC-overexpressing variant. Assessment of the exometabolome from both strains revealed the release of two peptidoglycan fragments in furC-overexpressing cells, namely 1,6-anhydro-N-acetyl-β-D-muramic acid (anhydroMurNAc) and its associated disaccharide (β-D-GlcNAc-(1-4)-anhydroMurNAc), suggesting alterations in peptidoglycan breakdown and recycling.IMPORTANCECyanobacteria are ubiquitous photosynthetic prokaryotes that can adapt to environmental stresses by modulating their extracellular contents. Measurements of the organization and composition of the extracellular milieu provide useful information about cyanobacterial adaptive processes, which can potentially lead to biomimetic approaches to stabilizing biological systems to adverse conditions. Anabaena sp. strain PCC 7120 is a multicellular, nitrogen-fixing cyanobacterium whose intercellular molecular exchange is mediated by septal junctions that traverse the septal peptidoglycan through nanopores. FurC (PerR) is an essential transcriptional regulator in Anabaena, which modulates the response to several stresses. Here, we show that furC-overexpressing cells result in a modified exoproteome and the release of peptidoglycan fragments. Phenotypically, important alterations in nanopore formation and cell-to-cell communication were observed. Our results expand the roles of FurC to the modulation of cell-wall biogenesis and recycling, as well as in intercellular molecular transfer.
Collapse
Affiliation(s)
- Cristina Sarasa-Buisan
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias e Instituto de Biocomputación y Física de Sistemas Complejos. Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Sevilla, Spain
| | - Mercedes Nieves-Morión
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Sevilla, Spain
| | - Sergio Arévalo
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Sevilla, Spain
| | - Richard F. Helm
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - Emma Sevilla
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias e Instituto de Biocomputación y Física de Sistemas Complejos. Universidad de Zaragoza, Zaragoza, Spain
| | - Ignacio Luque
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Sevilla, Spain
| | - María F. Fillat
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias e Instituto de Biocomputación y Física de Sistemas Complejos. Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
3
|
Yin L, Zheng Z, Li Y, Li X, Cheng D, Dong C, Liu Y, Zhao J. PatU3 plays a central role in coordinating cell division and differentiation in pattern formation of filamentous cyanobacterium Nostoc sp. PCC 7120. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2896-2909. [PMID: 37505430 DOI: 10.1007/s11427-023-2380-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/31/2023] [Indexed: 07/29/2023]
Abstract
Spatial periodic signal for cell differentiation in some multicellular organisms is generated according to Turing's principle for pattern formation. How a dividing cell responds to the signal of differentiation is addressed with the filamentous cyanobacterium Nostoc sp. PCC 7120, which forms the patterned distribution of heterocysts. We show that differentiation of a dividing cell was delayed until its division was completed and only one daughter cell became heterocyst. A mutant of patU3, which encodes an inhibitor of heterocyst formation, showed no such delay and formed heterocyst pairs from the daughter cells of cell division or dumbbell-shaped heterocysts from the cells undergoing cytokinesis. The patA mutant, which forms heterocysts only at the filament ends, restored intercalary heterocysts by a single nucleotide mutation of patU3, and double mutants of patU3/patA and patU3/hetF had the phenotypes of the patU3 mutant. We provide evidence that HetF, which can degrade PatU3, is recruited to cell divisome through its C-terminal domain. A HetF mutant with its N-terminal peptidase domain but lacking the C-terminal domain could not prevent the formation of heterocyst pairs, suggesting that the divisome recruitment of HetF is needed to sequester HetF for the delay of differentiation in dividing cells. Our study demonstrates that PatU3 plays a key role in cell-division coupled control of differentiation.
Collapse
Affiliation(s)
- Lei Yin
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Zhenggao Zheng
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yilin Li
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiying Li
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Dan Cheng
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Chunxia Dong
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yixuan Liu
- National Teaching Center for Experimental Biology, School of Life Sciences, Peking University, Beijing, 100871, China.
| | - Jindong Zhao
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China.
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
4
|
Velázquez-Suárez C, Luque I, Herrero A. The Role of MreB, MreC and MreD in the Morphology of the Diazotrophic Filament of Anabaena sp. PCC 7120. Life (Basel) 2022; 12:life12091437. [PMID: 36143472 PMCID: PMC9503725 DOI: 10.3390/life12091437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/27/2022] Open
Abstract
The cyanobacterium Anabaena sp. PCC 7120 forms filaments of communicating cells. Under conditions of nitrogen scarcity, some cells differentiate into heterocysts, allowing the oxygen-sensitive N2-reduction system to be expressed and operated in oxic environments. The key to diazotrophic growth is the exchange of molecules with nutritional and signaling functions between the two types of cells of the filament. During heterocyst differentiation, the peptidoglycan sacculus grows to allow cell enlargement, and the intercellular septa are rebuilt to narrow the contact surface with neighboring cells and to hold specific transport systems, including the septal junction complexes for intercellular molecular transfer, which traverse the periplasm between heterocysts and neighboring vegetative cells through peptidoglycan nanopores. Here we have followed the spatiotemporal pattern of peptidoglycan incorporation during heterocyst differentiation by Van-FL labeling and the localization and role of proteins MreB, MreC and MreD. We observed strong transitory incorporation of peptidoglycan in the periphery and septa of proheterocysts and a maintained focal activity in the center of mature septa. During differentiation, MreB, MreC and MreD localized throughout the cell periphery and at the cell poles. In mreB, mreC or mreD mutants, instances of strongly increased peripheral and septal peptidoglycan incorporation were detected, as were also heterocysts with aberrant polar morphology, even producing filament breakage, frequently lacking the septal protein SepJ. These results suggest a role of Mre proteins in the regulation of peptidoglycan growth and the formation of the heterocyst neck during differentiation, as well as in the maintenance of polar structures for intercellular communication in the mature heterocyst. Finally, as previously observed in filaments growing with combined nitrogen, in the vegetative cells of diazotrophic filaments, the lack of MreB, MreC or MreD led to altered localization of septal peptidoglycan-growth bands reproducing an altered localization of FtsZ and ZipN rings during cell division.
Collapse
|
5
|
The Role of Mre Factors and Cell Division in Peptidoglycan Growth in the Multicellular Cyanobacterium Anabaena. mBio 2022; 13:e0116522. [PMID: 35876506 PMCID: PMC9426583 DOI: 10.1128/mbio.01165-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bacteria in general serve two main tasks: cell growth and division. Both processes include peptidoglycan extension to allow cell expansion and to form the poles of the daughter cells, respectively. The cyanobacterium Anabaena forms filaments of communicated cells in which the outer membrane and the peptidoglycan sacculus, which is engrossed in the intercellular regions between contiguous cells, are continuous along the filament. During the growth of Anabaena, peptidoglycan incorporation was weak at the cell periphery. During cell division, midcell peptidoglycan incorporation matched the localization of the divisome, and incorporation persisted in the intercellular septa, even after the division was completed. MreB, MreC, and MreD were located throughout the cell periphery and, in contrast to other bacteria, also to the divisome all along midcell peptidoglycan growth. In Anabaena mutants bearing inactivated mreB, mreC, or mreD genes, which showed conspicuous alterations in the filament morphology, consecutive septal bands of peptidoglycan growth were frequently not parallel to each other and were irregularly spaced along the filament, reproducing the disposition of the Z-ring. Both lateral and septal growth was impaired in strains down-expressing Z-ring components, and MreB and MreD appeared to directly interact with some divisome components. We propose that, in Anabaena, association with the divisome is a way for localization of MreB, MreC, and MreD at the cell poles, where they regulate lateral, midcell, and septal peptidoglycan growth with the latter being involved in localization and maintenance of the intercellular septal-junction protein structures that mediate cell-cell communication along the filament.
Collapse
|
6
|
Abstract
Heterocyst differentiation that occurs in some filamentous cyanobacteria, such as Anabaena sp. PCC 7120, provides a unique model for prokaryotic developmental biology. Heterocyst cells are formed in response to combined-nitrogen deprivation and possess a microoxic environment suitable for nitrogen fixation following extensive morphological and physiological reorganization. A filament of Anabaena is a true multicellular organism, as nitrogen and carbon sources are exchanged among different cells and cell types through septal junctions to ensure filament growth. Because heterocysts are terminally differentiated cells and unable to divide, their activity is an altruistic behavior dedicated to providing fixed nitrogen for neighboring vegetative cells. Heterocyst development is also a process of one-dimensional pattern formation, as heterocysts are semiregularly intercalated among vegetative cells. Morphogens form gradients along the filament and interact with each other in a fashion that fits well into the Turing model, a mathematical framework to explain biological pattern formation. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Xiaoli Zeng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China; ,
| | - Cheng-Cai Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China; , .,Institut WUT-AMU, Aix-Marseille Université and Wuhan University of Technology, Wuhan, Hubei, China.,Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Jung P, D’Agostino PM, Brust K, Büdel B, Lakatos M. Final Destination? Pinpointing Hyella disjuncta sp. nov. PCC 6712 (Cyanobacteria) Based on Taxonomic Aspects, Multicellularity, Nitrogen Fixation and Biosynthetic Gene Clusters. Life (Basel) 2021; 11:916. [PMID: 34575065 PMCID: PMC8472315 DOI: 10.3390/life11090916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
Unicellular cyanobacteria inhabit a wide range of ecosytems and can be found throughout the phylum offering space for taxonomic confusion. One example is strain PCC 6712 that was described as Chlorogloea sp. (Nostocales) and later assigned to the genus Chroococcidiopsis (Chroococcidiopsidales). We now show that this strain belongs to the order Pleurocapsales and term it Hyella disjuncta based on morphology, genome analyses and 16S-23S ITS rRNA phylogeny. Genomic analysis indicated that H. disjuncta PCC 6712 shared about 44.7% orthologue genes with its closest relative H. patelloides. Furthermore, 12 cryptic biosynthetic gene clusters (BGCs) with potential bioactivity, such as a mycosporine-like amino acid BGC, were detected. Interestingly, the full set of nitrogen fixation genes was found in H. disjuncta PCC 6712 despite its inability to grow on nitrogen-free medium. A comparison of genes responsible for multicellularity was performed, indicating that most of these genes were present and related to those found in other cyanobacterial orders. This is in contrast to the formation of pseudofilaments-a main feature of the genus Hyella-which is weakly expressed in H. disjuncta PCC 6712 but prominent in Hyella patelloides LEGE 07179. Thus, our study pinpoints crucial but hidden aspects of polyphasic cyanobacterial taxonomy.
Collapse
Affiliation(s)
- Patrick Jung
- Department of Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Carl-Schurz-Str. 10–16, 66953 Pirmasens, Germany;
| | - Paul M. D’Agostino
- Department of Technical Biochemistry, Technical University of Dresden, Bergstr. 66, 01069 Dresden, Germany;
| | - Katharina Brust
- Department of Ecology, University of Kaiserslautern, Erwin Schrödinger Str. 14, 67663 Kaiserslautern, Germany;
| | - Burkhard Büdel
- Department of Plant Ecology and Systematics, University of Kaiserslautern, Erwin-Schrödinger Str. 52, 67663 Kaiserslautern, Germany;
| | - Michael Lakatos
- Department of Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Carl-Schurz-Str. 10–16, 66953 Pirmasens, Germany;
| |
Collapse
|
8
|
Heterocyst Septa Contain Large Nanopores That Are Influenced by the Fra Proteins in the Filamentous Cyanobacterium Anabaena sp. Strain PCC 7120. J Bacteriol 2021; 203:e0008121. [PMID: 33846119 DOI: 10.1128/jb.00081-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Multicellular heterocyst-forming cyanobacteria, such as Anabaena, grow as chains of cells forming filaments that, under diazotrophic conditions, contain two cell types: vegetative cells that perform oxygenic photosynthesis and N2-fixing heterocysts. Along the filament, the intercellular septa contain a thick peptidoglycan layer that forms septal disks. Proteinaceous septal junctions connect the cells in the filament traversing the septal disks through nanopores. The fraCDE operon encodes proteins needed to make long filaments in Anabaena. FraC and FraD, located at the intercellular septa, are involved in the formation of septal junctions. Using a superfolder-green fluorescent protein (GFP) fusion, we found in this study that FraE is mainly localized to the poles of the heterocysts, consistent with the requirement of FraE for constriction of the heterocyst poles to form the "heterocyst neck." A fraE insertional mutant was impaired by 22% to 38% in transfer of fluorescent calcein from vegetative cells to heterocysts. Septal disks were inspected in murein sacculi from heterocyst-enriched preparations. Unexpectedly, the diameter of the nanopores in heterocyst septa was about 1.5- to 2-fold larger than in vegetative cell septa. The number of these nanopores was 76% and 6% of the wild-type number in fraE and fraC fraD mutants, respectively. Our results show that FraE is mainly involved in heterocyst maturation, whereas FraC and FraD are needed for the formation of the large nanopores of heterocyst septa, as they are for vegetative cell nanopores. Additionally, arrays of small pores conceivably involved in polysaccharide export were observed close to the septal disks in the heterocyst murein sacculus preparations. IMPORTANCE Intercellular communication, an essential attribute of multicellularity, is required for diazotrophic growth in heterocyst-forming cyanobacteria such as Anabaena, in which the cells are connected by proteinaceous septal junctions that are structural analogs of metazoan connexons. The septal junctions allow molecular intercellular diffusion traversing the septal peptidoglycan through nanopores. In Anabaena the fraCDE operon encodes septal proteins involved in intercellular communication. FraC and FraD are components of the septal junctions along the filament, whereas here we show that FraE is mainly present at the heterocyst poles. We found that the intercellular septa in murein sacculi from heterocysts contain nanopores that are larger than those in vegetative cells, establishing a previously unknown difference between heterocyst and vegetative cell septa in Anabaena.
Collapse
|
9
|
He H, Miao R, Huang L, Jiang H, Cheng Y. Vegetative cells may perform nitrogen fixation function under nitrogen deprivation in Anabaena sp. strain PCC 7120 based on genome-wide differential expression analysis. PLoS One 2021; 16:e0248155. [PMID: 33662009 PMCID: PMC7932525 DOI: 10.1371/journal.pone.0248155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/20/2021] [Indexed: 11/25/2022] Open
Abstract
Nitrogen assimilation is strictly regulated in cyanobacteria. In an inorganic nitrogen-deficient environment, some vegetative cells of the cyanobacterium Anabaena differentiate into heterocysts. We assessed the photosynthesis and nitrogen-fixing capacities of heterocysts and vegetative cells, respectively, at the transcriptome level. RNA extracted from nitrogen-replete vegetative cells (NVs), nitrogen-deprived vegetative cells (NDVs), and nitrogen-deprived heterocysts (NDHs) in Anabaena sp. strain PCC 7120 was evaluated by transcriptome sequencing. Paired comparisons of NVs vs. NDHs, NVs vs. NDVs, and NDVs vs. NDHs revealed 2,044 differentially expressed genes (DEGs). Kyoto Encyclopedia of Genes and Genomes enrichment analysis of the DEGs showed that carbon fixation in photosynthetic organisms and several nitrogen metabolism-related pathways were significantly enriched. Synthesis of Gvp (Gas vesicle synthesis protein gene) in NVs was blocked by nitrogen deprivation, which may cause Anabaena cells to sink and promote nitrogen fixation under anaerobic conditions; in contrast, heterocysts may perform photosynthesis under nitrogen deprivation conditions, whereas the nitrogen fixation capability of vegetative cells was promoted by nitrogen deprivation. Immunofluorescence analysis of nitrogenase iron protein suggested that the nitrogen fixation capability of vegetative cells was promoted by nitrogen deprivation. Our findings provide insight into the molecular mechanisms underlying nitrogen fixation and photosynthesis in vegetative cells and heterocysts at the transcriptome level. This study provides a foundation for further functional verification of heterocyst growth, differentiation, and water bloom control.
Collapse
Affiliation(s)
- Hongli He
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, China
| | - Runyu Miao
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, China
| | - Lilong Huang
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, China
| | - Hongshan Jiang
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, China
| | - Yunqing Cheng
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, China
| |
Collapse
|
10
|
Springstein BL, Nürnberg DJ, Weiss GL, Pilhofer M, Stucken K. Structural Determinants and Their Role in Cyanobacterial Morphogenesis. Life (Basel) 2020; 10:E355. [PMID: 33348886 PMCID: PMC7766704 DOI: 10.3390/life10120355] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022] Open
Abstract
Cells have to erect and sustain an organized and dynamically adaptable structure for an efficient mode of operation that allows drastic morphological changes during cell growth and cell division. These manifold tasks are complied by the so-called cytoskeleton and its associated proteins. In bacteria, FtsZ and MreB, the bacterial homologs to tubulin and actin, respectively, as well as coiled-coil-rich proteins of intermediate filament (IF)-like function to fulfil these tasks. Despite generally being characterized as Gram-negative, cyanobacteria have a remarkably thick peptidoglycan layer and possess Gram-positive-specific cell division proteins such as SepF and DivIVA-like proteins, besides Gram-negative and cyanobacterial-specific cell division proteins like MinE, SepI, ZipN (Ftn2) and ZipS (Ftn6). The diversity of cellular morphologies and cell growth strategies in cyanobacteria could therefore be the result of additional unidentified structural determinants such as cytoskeletal proteins. In this article, we review the current advances in the understanding of the cyanobacterial cell shape, cell division and cell growth.
Collapse
Affiliation(s)
- Benjamin L. Springstein
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Dennis J. Nürnberg
- Department of Physics, Biophysics and Biochemistry of Photosynthetic Organisms, Freie Universität Berlin, 14195 Berlin, Germany;
| | - Gregor L. Weiss
- Department of Biology, Institute of Molecular Biology & Biophysics, ETH Zürich, 8092 Zürich, Switzerland; (G.L.W.); (M.P.)
| | - Martin Pilhofer
- Department of Biology, Institute of Molecular Biology & Biophysics, ETH Zürich, 8092 Zürich, Switzerland; (G.L.W.); (M.P.)
| | - Karina Stucken
- Department of Food Engineering, Universidad de La Serena, La Serena 1720010, Chile;
| |
Collapse
|
11
|
The Inorganic Nutrient Regime and the mre Genes Regulate Cell and Filament Size and Morphology in the Phototrophic Multicellular Bacterium Anabaena. mSphere 2020; 5:5/5/e00747-20. [PMID: 33115834 PMCID: PMC7593598 DOI: 10.1128/msphere.00747-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Most studies on the determination of bacterial cell morphology have been conducted in heterotrophic organisms. Here, we present a study of how the availability of inorganic nitrogen and carbon sources influence cell size and morphology in the context of a phototrophic metabolism, as found in the multicellular cyanobacterium Anabaena. In Anabaena, the expression of the MreB, MreC, and MreD proteins, which influence cell size and length, are regulated by NtcA, a transcription factor that globally coordinates cellular responses to the C-to-N balance of the cells. Moreover, MreB, MreC, and MreD also influence septal peptidoglycan construction, thus affecting filament length and, possibly, intercellular molecular exchange that is required for diazotrophic growth. Thus, here we identified new roles for Mre proteins in relation to the phototrophic and multicellular character of a cyanobacterium, Anabaena. The model cyanobacterium Anabaena sp. PCC 7120 exhibits a phototrophic metabolism relying on oxygenic photosynthesis and a complex morphology. The organismic unit is a filament of communicated cells that may include cells specialized in different nutritional tasks, thus representing a paradigm of multicellular bacteria. In Anabaena, the inorganic carbon and nitrogen regime influenced not only growth, but also cell size, cell shape, and filament length, which also varied through the growth cycle. When using combined nitrogen, especially with abundant carbon, cells enlarged and elongated during active growth. When fixing N2, which imposed lower growth rates, shorter and smaller cells were maintained. In Anabaena, gene homologs to mreB, mreC, and mreD form an operon that was expressed at higher levels during the phase of fastest growth. In an ntcA mutant, mre transcript levels were higher than in the wild type and, consistently, cells were longer. Negative regulation by NtcA can explain that Anabaena cells were longer in the presence of combined nitrogen than in diazotrophic cultures, in which the levels of NtcA are higher. mreB, mreC, and mreD mutants could grow with combined nitrogen, but only the latter mutant could grow diazotrophically. Cells were always larger and shorter than wild-type cells, and their orientation in the filament was inverted. Consistent with increased peptidoglycan width and incorporation in the intercellular septa, filaments were longer in the mutants, suggesting a role for MreB, MreC, and MreD in the construction of septal peptidoglycan that could affect intercellular communication required for diazotrophic growth. IMPORTANCE Most studies on the determination of bacterial cell morphology have been conducted in heterotrophic organisms. Here, we present a study of how the availability of inorganic nitrogen and carbon sources influence cell size and morphology in the context of a phototrophic metabolism, as found in the multicellular cyanobacterium Anabaena. In Anabaena, the expression of the MreB, MreC, and MreD proteins, which influence cell size and length, are regulated by NtcA, a transcription factor that globally coordinates cellular responses to the C-to-N balance of the cells. Moreover, MreB, MreC, and MreD also influence septal peptidoglycan construction, thus affecting filament length and, possibly, intercellular molecular exchange that is required for diazotrophic growth. Thus, here we identified new roles for Mre proteins in relation to the phototrophic and multicellular character of a cyanobacterium, Anabaena.
Collapse
|
12
|
Zheng L, Li Y, Li X, Zhong Q, Li N, Zhang K, Zhang Y, Chu H, Ma C, Li G, Zhao J, Gao N. Structural and functional insights into the tetrameric photosystem I from heterocyst-forming cyanobacteria. NATURE PLANTS 2019; 5:1087-1097. [PMID: 31595062 DOI: 10.1038/s41477-019-0525-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 09/05/2019] [Indexed: 05/05/2023]
Abstract
Two large protein-cofactor complexes, photosystem I and photosystem II, are the central components of photosynthesis in the thylakoid membranes. Here, we report the 2.37-Å structure of a tetrameric photosystem I complex from a heterocyst-forming cyanobacterium Anabaena sp. PCC 7120. Four photosystem I monomers, organized in a dimer of dimer, form two distinct interfaces that are largely mediated by specifically orientated polar lipids, such as sulfoquinovosyl diacylglycerol. The structure depicts a more closely connected network of chlorophylls across monomer interfaces than those seen in trimeric PSI from thermophilic cyanobacteria, possibly allowing a more efficient energy transfer between monomers. Our physiological data also revealed a functional link of photosystem I oligomerization to cyclic electron flow and thylakoid membrane organization.
Collapse
Affiliation(s)
- Lvqin Zheng
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Peking University, Beijing, China
| | - Yanbing Li
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, China
| | - Xiying Li
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, China
| | - Qinglu Zhong
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Ningning Li
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Peking University, Beijing, China
| | - Kun Zhang
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, China
| | - Yuebin Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Huiying Chu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Chengying Ma
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Peking University, Beijing, China
| | - Guohui Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Jindong Zhao
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, China.
- Chinese Academy of Sciences Key Laboratory of Phycological Research, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China.
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
13
|
Large-Scale Analyses of Human Microbiomes Reveal Thousands of Small, Novel Genes. Cell 2019; 178:1245-1259.e14. [PMID: 31402174 DOI: 10.1016/j.cell.2019.07.016] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/06/2019] [Accepted: 07/11/2019] [Indexed: 12/12/2022]
Abstract
Small proteins are traditionally overlooked due to computational and experimental difficulties in detecting them. To systematically identify small proteins, we carried out a comparative genomics study on 1,773 human-associated metagenomes from four different body sites. We describe >4,000 conserved protein families, the majority of which are novel; ∼30% of these protein families are predicted to be secreted or transmembrane. Over 90% of the small protein families have no known domain and almost half are not represented in reference genomes. We identify putative housekeeping, mammalian-specific, defense-related, and protein families that are likely to be horizontally transferred. We provide evidence of transcription and translation for a subset of these families. Our study suggests that small proteins are highly abundant and those of the human microbiome, in particular, may perform diverse functions that have not been previously reported.
Collapse
|
14
|
He J, Fu W, Zhao S, Zhang C, Sun T, Jiang T. Lack of MSMEG_6281, a peptidoglycan amidase, affects cell wall integrity and virulence of Mycobacterium smegmatis. Microb Pathog 2019; 128:405-413. [PMID: 30685363 DOI: 10.1016/j.micpath.2019.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 01/29/2023]
Abstract
Mycolyl-arabinogalactan-peptidoglycan (mAGP) is the major content of the mycobacterium cell wall structure and essential for mycobacterial survival. Peptidoglycan (PG) plays an important role in maintenance of cell division, cell wall integrity and pathogenesis. Mycobacterium smegmatis MSMEG_6281, a peptidoglycan amidase, is vital for mycobacterial cell division. However, the effects of MSMEG_6281on cell wall integrity and mycobacterial virulence remain unknown. In the current study, we demonstrate that MSMEG_6281gene knockout in M.smegmatis alters the microbiological characteristics. Our results revealed that MSMEG_6281gene knockout bacteria (M. sm-ΔM_6281) lost their acid-fastness, increased their sensitivity to lipophilic compounds and presented an abnormal morphology. Our results revealed that MSMEG_6281was related to maintaining the cell wall integrity. Furthermore, we investigated the effects of MSMEG_6281 inactivation on mycobacterial virulence using mice models infected by different M.smegmatis strains. MSMEG_6281 inactivation in the M sm-ΔM_6281 infected group caused less mycobacterial colonization, reduced pathological signs, decreased the anti-microbial enzymes production including iNOS and β-defensins in mouse lungs. Moreover, IL-1β and TLR2 expression were significantly down-regulated, while the production of IFN-γ and TNF-α was up-regulated. These findings indicated the diversity of host immune responses induced by different strains of M.smegmatis, suggesting that MSMEG_6281 inactivation impact mycobacterial virulence. In conclusion, the MSMEG_6281 protein plays important roles in maintaining cell wall integrity and mycobacterial virulence.
Collapse
Affiliation(s)
- Jiajia He
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Weizhe Fu
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Shijia Zhao
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Cuili Zhang
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Tieying Sun
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Tao Jiang
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
15
|
Flores E, Nieves-Morión M, Mullineaux CW. Cyanobacterial Septal Junctions: Properties and Regulation. Life (Basel) 2018; 9:E1. [PMID: 30577420 PMCID: PMC6463045 DOI: 10.3390/life9010001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/12/2018] [Accepted: 12/16/2018] [Indexed: 02/05/2023] Open
Abstract
Heterocyst-forming cyanobacteria are multicellular organisms that grow as chains of cells (filaments or trichomes) in which the cells exchange regulators and nutrients. In this article, we review the morphological, physiological and genetic data that have led to our current understanding of intercellular communication in these organisms. Intercellular molecular exchange appears to take place by simple diffusion through proteinaceous structures, known as septal junctions, which connect the adjacent cells in the filament and traverse the septal peptidoglycan through perforations known as nanopores. Proteins that are necessary to produce, and that may be components of, the septal junctions-SepJ, FraC and FraD-have been identified in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 model. Additionally, several proteins that are necessary to produce a normal number of nanopores and functional septal junctions have been identified, including AmiC-type amidases, peptidoglycan-binding proteins and some membrane transporters. Available reports and reevaluation of intercellular molecular transfer data for some mutants of Anabaena suggest that the septal junctions can be regulated, likely by a mechanism of gating.
Collapse
Affiliation(s)
- Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Seville, Spain.
| | - Mercedes Nieves-Morión
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Seville, Spain.
| | - Conrad W Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
16
|
Santamarï A-Gï Mez J, Mariscal V, Luque I. Mechanisms for Protein Redistribution in Thylakoids of Anabaena During Cell Differentiation. PLANT & CELL PHYSIOLOGY 2018; 59:1860-1873. [PMID: 29878163 DOI: 10.1093/pcp/pcy103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/25/2018] [Indexed: 06/08/2023]
Abstract
Thylakoid membranes are far from being homogeneous in composition. On the contrary, compositional heterogeneity of lipid and protein content is well known to exist in these membranes. The mechanisms for the confinement of proteins at a particular membrane domain have started to be unveiled, but we are far from a thorough understanding, and many issues remain to be elucidated. During the differentiation of heterocysts in filamentous cyanobacteria of the Anabaena and Nostoc genera, thylakoids undergo a complete reorganization, separating into two membrane domains of different appearance and subcellular localization. Evidence also indicates different functionality and protein composition for these two membrane domains. In this work, we have addressed the mechanisms that govern the specific localization of proteins at a particular membrane domain. Two classes of proteins were distinguished according to their distribution in the thylakoids. Our results indicate that the specific accumulation of proteins of the CURVATURE THYLAKOID 1 (CURT1) family and proteins containing the homologous CAAD domain at subpolar honeycomb thylakoids is mediated by multiple mechanisms including a previously unnoticed phenomenon of thylakoid membrane migration.
Collapse
Affiliation(s)
- Javier Santamarï A-Gï Mez
- Instituto de Bioqu�mica Vegetal y Fotos�ntesis, CSIC and Universidad de Sevilla, Avda Am�rico Vespucio 49, Seville E-41092, Spain
| | - Vicente Mariscal
- Instituto de Bioqu�mica Vegetal y Fotos�ntesis, CSIC and Universidad de Sevilla, Avda Am�rico Vespucio 49, Seville E-41092, Spain
| | - Ignacio Luque
- Instituto de Bioqu�mica Vegetal y Fotos�ntesis, CSIC and Universidad de Sevilla, Avda Am�rico Vespucio 49, Seville E-41092, Spain
| |
Collapse
|
17
|
Zhang JY, Lin GM, Xing WY, Zhang CC. Diversity of Growth Patterns Probed in Live Cyanobacterial Cells Using a Fluorescent Analog of a Peptidoglycan Precursor. Front Microbiol 2018; 9:791. [PMID: 29740419 PMCID: PMC5928242 DOI: 10.3389/fmicb.2018.00791] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/09/2018] [Indexed: 01/07/2023] Open
Abstract
Cyanobacteria were the first oxygenic photosynthetic organisms during evolution and were ancestors of plastids. Cyanobacterial cells exhibit an extraordinary diversity in their size and shape, and bacterial cell morphology largely depends on the synthesis and the dynamics of the peptidoglycan (PG) layer. Here, we used a fluorescence analog of the PG synthesis precursor D-Ala, 7-Hydroxycoumarin-amino-D-alanine (HADA), to probe the PG synthesis pattern in live cells of cyanobacteria with different morphology. They displayed diverse synthesis patterns, with some strains showing an intensive HADA incorporation at the septal region, whereas others gave an HADA signal distributed around the cells. Growth zones covering several cells at the tips of the filament were present in some filamentous strains such as in Arthrospira. In Anabaena PCC 7120, which is capable of differentiating heterocysts for N2 fixation, PG synthesis followed the cell division cycle. In addition, an HADA incorporation was strongly activated from 12 to 15 h following the initiation of heterocyst development, indicating a thickening of the PG layer in heterocysts. The PG synthesis pattern is diverse in cyanobacteria and responds to developmental regulation. The use of fluorescent analogs may serve as a useful tool for understanding the mechanisms of cell growth and morphogenesis operating in these organisms.
Collapse
Affiliation(s)
- Ju-Yuan Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Gui-Ming Lin
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Wei-Yue Xing
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Cheng-Cai Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
18
|
Bornikoel J, Staiger J, Madlung J, Forchhammer K, Maldener I. LytM factor Alr3353 affects filament morphology and cell-cell communication in the multicellular cyanobacteriumAnabaenasp. PCC 7120. Mol Microbiol 2018; 108:187-203. [DOI: 10.1111/mmi.13929] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Jan Bornikoel
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions; University of Tübingen, Auf der Morgenstelle 28; 72076 Tübingen Germany
| | - Julia Staiger
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions; University of Tübingen, Auf der Morgenstelle 28; 72076 Tübingen Germany
| | - Johannes Madlung
- Proteome Center Tübingen; University of Tübingen, Auf der Morgenstelle 15; 72076 Tübingen Germany
| | - Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions; University of Tübingen, Auf der Morgenstelle 28; 72076 Tübingen Germany
| | - Iris Maldener
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions; University of Tübingen, Auf der Morgenstelle 28; 72076 Tübingen Germany
| |
Collapse
|
19
|
Bornikoel J, Carrión A, Fan Q, Flores E, Forchhammer K, Mariscal V, Mullineaux CW, Perez R, Silber N, Wolk CP, Maldener I. Role of Two Cell Wall Amidases in Septal Junction and Nanopore Formation in the Multicellular Cyanobacterium Anabaena sp. PCC 7120. Front Cell Infect Microbiol 2017; 7:386. [PMID: 28929086 PMCID: PMC5591844 DOI: 10.3389/fcimb.2017.00386] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/15/2017] [Indexed: 01/11/2023] Open
Abstract
Filamentous cyanobacteria have developed a strategy to perform incompatible processes in one filament by differentiating specialized cell types, N2-fixing heterocysts and CO2-fixing, photosynthetic, vegetative cells. These bacteria can be considered true multicellular organisms with cells exchanging metabolites and signaling molecules via septal junctions, involving the SepJ and FraCD proteins. Previously, it was shown that the cell wall lytic N-acetylmuramyl-L-alanine amidase, AmiC2, is essential for cell-cell communication in Nostoc punctiforme. This enzyme perforates the septal peptidoglycan creating an array of nanopores, which may be the framework for septal junction complexes. In Anabaena sp. PCC 7120, two homologs of AmiC2, encoded by amiC1 and amiC2, were identified and investigated in two different studies. Here, we compare the function of both AmiC proteins by characterizing different Anabaena amiC mutants, which was not possible in N. punctiforme, because there the amiC1 gene could not be inactivated. This study shows the different impact of each protein on nanopore array formation, the process of cell-cell communication, septal protein localization, and heterocyst differentiation. Inactivation of either amidase resulted in significant reduction in nanopore count and in the rate of fluorescent tracer exchange between neighboring cells measured by FRAP analysis. In an amiC1 amiC2 double mutant, filament morphology was affected and heterocyst differentiation was abolished. Furthermore, the inactivation of amiC1 influenced SepJ localization and prevented the filament-fragmentation phenotype that is characteristic of sepJ or fraC fraD mutants. Our findings suggest that both amidases are to some extent redundant in their function, and describe a functional relationship of AmiC1 and septal proteins SepJ and FraCD.
Collapse
Affiliation(s)
- Jan Bornikoel
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of TübingenTübingen, Germany
| | - Alejandro Carrión
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de SevillaSeville, Spain
| | - Qing Fan
- Department of Microbiology-Immunology, Feinberg School of Medicine of Northwestern UniversityChicago, IL, United States
| | - Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de SevillaSeville, Spain
| | - Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of TübingenTübingen, Germany
| | - Vicente Mariscal
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de SevillaSeville, Spain
| | - Conrad W Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of LondonLondon, United Kingdom
| | - Rebeca Perez
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of TübingenTübingen, Germany
| | - Nadine Silber
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of TübingenTübingen, Germany
| | - C Peter Wolk
- MSU-DOE Plant Research Laboratory and Department of Plant Biology, Michigan State UniversityEast Lansing, MI, United States
| | - Iris Maldener
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of TübingenTübingen, Germany
| |
Collapse
|