1
|
Yılmaz E, Mann DG, Gastineau R, Trobajo R, Solak CN, Górecka E, Turmel M, Lemieux C, Ertorun N, Witkowski A. Description of Naviculavanseea sp. nov. (Naviculales, Naviculaceae), a new species of diatom from the highly alkaline Lake Van (Republic of Türkiye) with complete characterisation of its organellar genomes and multigene phylogeny. PHYTOKEYS 2024; 241:27-48. [PMID: 38628637 PMCID: PMC11019260 DOI: 10.3897/phytokeys.241.118903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/19/2024] [Indexed: 04/19/2024]
Abstract
The current article describes Naviculavanseeasp. nov., a new species of diatom from Lake Van, a highly alkaline lake in Eastern Anatolia (Türkiye). The description is based on light and scanning electron microscopy performed on two monoclonal cultures. The complete nuclear rRNA clusters and plastid genomes have been sequenced for these two strains and the complete mitogenome for one of them. The plastome of both strains shows the probable loss of a functional ycf35 gene. They also exhibit two IB4 group I introns in their rrl, each encoding for a putative LAGLIDADG homing endonuclease, with the first L1917 IB4 intron reported amongst diatoms. The Maximum Likelihood phylogeny inferred from a concatenated alignment of 18S, rbcL and psbC distinguishes N.vanseea sp. nov. from the morphologically similar species Naviculacincta and Naviculamicrodigitoradiata.
Collapse
Affiliation(s)
- Elif Yılmaz
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16A, PL70–383 Poland
| | - David G. Mann
- Royal Botanic Garden Edinburgh, Edinburgh EH3 5LR, Scotland, UK
| | - Romain Gastineau
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16A, PL70–383 Poland
| | - Rosa Trobajo
- Marine and Continental Waters, Institute for Food and Agricultural Research and Technology (IRTA), Crta de Poble Nou Km 5.5, E-43540 La Ràpita, Catalunya, Spain
| | - Cüneyt Nadir Solak
- Department of Biology, Faculty of Science & Art, Dumlupınar University, 43000 Kütahya, Türkiye
| | - Ewa Górecka
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16A, PL70–383 Poland
| | - Monique Turmel
- Département de biochimie, de microbiologie et de bio-Informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
| | - Claude Lemieux
- Département de biochimie, de microbiologie et de bio-Informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
| | - Nesil Ertorun
- Department of Biology, Science Faculty, Eskişehir Technical University, 26000 Eskişehir, Türkiye
| | - Andrzej Witkowski
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16A, PL70–383 Poland
- Deceased
| |
Collapse
|
2
|
Ala KG, Zhao Z, Ni L, Wang Z. Comparative analysis of mitochondrial genomes of two alpine medicinal plants of Gentiana (Gentianaceae). PLoS One 2023; 18:e0281134. [PMID: 36701356 PMCID: PMC9879513 DOI: 10.1371/journal.pone.0281134] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
Gentiana crassicaulis and G. straminea are alpine plants of Gentiana with important medicinal value and complex genetic backgrounds. In this study, the mitochondrial genomes (mtDNAs) of these two species were sequenced. The mtDNAs of G. crassicaulis and G. straminea are 368,808 and 410,086 bp long, respectively, 52 and 49 unique genes are annotated in the two species, and the gene arrangement varies widely. Compared to G. crassicaulis, G. straminea loses three effective genes, namely atp6, trnG-GCC and trnV-GAC. As a pseudogene, the atp6 gene of G. straminea is incomplete, which is rare in higher plants. We detected 1696 and 1858 pairs of long repeats and 213 SSRs and 250 SSs in the mtDNAs of G. crassicaulis and G. straminea, respectively. There are 392 SNPs and 18 InDels between the two genomes, and syntenic sequence and structural variation analysis show low collinearity between the two genomes. Chloroplast DNA transferring to mtDNA is observed in both species, and 46,511 and 55,043 bp transferred segments containing three tRNA genes are identified, respectively. Comparative analysis of mtDNAs of G. crassicaulis, G. straminea and four species of Gentianales determined 18 core genes, and there is no specific gene in G. crassicaulis and G. straminea. The phylogenetic tree based on mtDNAs places Gentianaceae in a branch of Gentianales. This study is the first to analyze the mtDNAs of Gentianaceae, which could provide information for analysis of the structure of mtDNAs of higher plants and phylogenetic research of Gentianaceae and Gentianales.
Collapse
Affiliation(s)
- Kelsang Gyab Ala
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Mentseekhang, Traditional Tibetan Hospital, Lhasa, Tibet, China
| | - Zhili Zhao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- * E-mail: (ZZ); (LN)
| | - Lianghong Ni
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- * E-mail: (ZZ); (LN)
| | - Zhengtao Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Ding H, Han S, Ye Y, Bi D, Zhang S, Yi R, Gao J, Yang J, Wu L, Kan X. Ten Plastomes of Crassula (Crassulaceae) and Phylogenetic Implications. BIOLOGY 2022; 11:1779. [PMID: 36552287 PMCID: PMC9775174 DOI: 10.3390/biology11121779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
The genus Crassula is the second-largest genus in the family Crassulaceae, with about 200 species. As an acknowledged super-barcode, plastomes have been extensively utilized for plant evolutionary studies. Here, we first report 10 new plastomes of Crassula. We further focused on the structural characterizations, codon usage, aversion patterns, and evolutionary rates of plastomes. The IR junction patterns-IRb had 110 bp expansion to rps19-were conservative among Crassula species. Interestingly, we found the codon usage patterns of matK gene in Crassula species are unique among Crassulaceae species with elevated ENC values. Furthermore, subgenus Crassula species have specific GC-biases in the matK gene. In addition, the codon aversion motifs from matK, pafI, and rpl22 contained phylogenetic implications within Crassula. The evolutionary rates analyses indicated all plastid genes of Crassulaceae were under the purifying selection. Among plastid genes, ycf1 and ycf2 were the most rapidly evolving genes, whereas psaC was the most conserved gene. Additionally, our phylogenetic analyses strongly supported that Crassula is sister to all other Crassulaceae species. Our findings will be useful for further evolutionary studies within the Crassula and Crassulaceae.
Collapse
Affiliation(s)
- Hengwu Ding
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Shiyun Han
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Yuanxin Ye
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - De Bi
- College of Landscape Engineering, Suzhou Polytechnic Institute of Agriculture, Suzhou 215000, China
| | - Sijia Zhang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Ran Yi
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Jinming Gao
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Jianke Yang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Longhua Wu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xianzhao Kan
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
4
|
Yu J, Ran Z, Zhang J, Wei L, Ma W. Genome-Wide Insights Into the Organelle Translocation of Photosynthetic NDH-1 Genes During Evolution. Front Microbiol 2022; 13:956578. [PMID: 35910652 PMCID: PMC9326235 DOI: 10.3389/fmicb.2022.956578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Translocation of chloroplast-located genes to mitochondria or nucleus is considered to be a safety strategy that impedes mutation of photosynthetic genes and maintains their household function during evolution. The organelle translocation strategy is also developed in photosynthetic NDH-1 (pNDH-1) genes but its understanding is still far from complete. Here, we found that the mutation rate of the conserved pNDH-1 genes was gradually reduced but their selection pressure was maintained at a high level during evolution from cyanobacteria to angiosperm. By contrast, oxygenic photosynthesis-specific (OPS) pNDH-1 genes had an opposite trend, explaining the reason why they were transferred from the reactive oxygen species (ROS)-enriched chloroplast to the ROS-barren nucleus. Further, genome-wide sequence analysis supported the possibility that all conserved pNDH-1 genes lost in chloroplast genomes of Chlorophyceae and Pinaceae were transferred to the ROS-less mitochondrial genome as deduced from their truncated pNDH-1 gene fragments. Collectively, we propose that the organelle translocation strategy of pNDH-1 genes during evolution is necessary to maintain the function of the pNDH-1 complex as an important antioxidant mechanism for efficient photosynthesis.
Collapse
|
5
|
Kim D, Lee J, Cho CH, Kim EJ, Bhattacharya D, Yoon HS. Group II intron and repeat-rich red algal mitochondrial genomes demonstrate the dynamic recent history of autocatalytic RNAs. BMC Biol 2022; 20:2. [PMID: 34996446 PMCID: PMC8742464 DOI: 10.1186/s12915-021-01200-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/29/2021] [Indexed: 11/10/2022] Open
Abstract
Background Group II introns are mobile genetic elements that can insert at specific target sequences, however, their origins are often challenging to reconstruct because of rapid sequence decay following invasion and spread into different sites. To advance understanding of group II intron spread, we studied the intron-rich mitochondrial genome (mitogenome) in the unicellular red alga, Porphyridium. Results Analysis of mitogenomes in three closely related species in this genus revealed they were 3–6-fold larger in size (56–132 kbp) than in other red algae, that have genomes of size 21–43 kbp. This discrepancy is explained by two factors, group II intron invasion and expansion of repeated sequences in large intergenic regions. Phylogenetic analysis demonstrates that many mitogenome group II intron families are specific to Porphyridium, whereas others are closely related to sequences in fungi and in the red alga-derived plastids of stramenopiles. Network analysis of intron-encoded proteins (IEPs) shows a clear link between plastid and mitochondrial IEPs in distantly related species, with both groups associated with prokaryotic sequences. Conclusion Our analysis of group II introns in Porphyridium mitogenomes demonstrates the dynamic nature of group II intron evolution, strongly supports the lateral movement of group II introns among diverse eukaryotes, and reveals their ability to proliferate, once integrated in mitochondrial DNA. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01200-3.
Collapse
Affiliation(s)
- Dongseok Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, South Korea
| | - JunMo Lee
- Department of Oceanography, Kyungpook National University, Daegu, 41566, South Korea
| | - Chung Hyun Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Eun Jeung Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, South Korea.
| |
Collapse
|
6
|
Wang X, Wang J, Li S, Lu C, Sui N. An overview of RNA splicing and functioning of splicing factors in land plant chloroplasts. RNA Biol 2022; 19:897-907. [PMID: 35811474 PMCID: PMC9275481 DOI: 10.1080/15476286.2022.2096801] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
RNA splicing refers to a process by which introns of a pre-mRNA are excised and the exons at both ends are joined together. Chloroplast introns are inherently self-splicing ribozymes, but over time, they have lost self-splicing ability due to the degeneration of intronic elements. Thus, the splicing of chloroplast introns relies heavily on nuclear-encoded splicing factors, which belong to diverse protein families. Different splicing factors and their shared intron targets are supposed to form ribonucleoprotein particles (RNPs) to facilitate intron splicing. As characterized in a previous review, around 14 chloroplast intron splicing factors were identified until 2010. However, only a few genetic and biochemical evidence has shown that these splicing factors are required for the splicing of one or several introns. The roles of splicing factors are generally believed to facilitate intron folding; however, the precise role of each protein in RNA splicing remains ambiguous. This may be because the precise binding site of most of these splicing factors remains unexplored. In the last decade, several new splicing factors have been identified. Also, several splicing factors were found to bind to specific sequences within introns, which enhanced the understanding of splicing factors. Here, we summarize recent progress on the splicing factors in land plant chloroplasts and discuss their possible roles in chloroplast RNA splicing based on previous studies.
Collapse
Affiliation(s)
- Xuemei Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Western Shandong, China
| | - Jingyi Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Western Shandong, China
| | - Simin Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Western Shandong, China
| | - Congming Lu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Western Shandong, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Western Shandong, China
| |
Collapse
|
7
|
Tian X, Shi L, Guo J, Fu L, Du P, Huang B, Wu Y, Zhang X, Wang Z. Chloroplast Phylogenomic Analyses Reveal a Maternal Hybridization Event Leading to the Formation of Cultivated Peanuts. FRONTIERS IN PLANT SCIENCE 2021; 12:804568. [PMID: 34975994 PMCID: PMC8718879 DOI: 10.3389/fpls.2021.804568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Peanuts (Arachis hypogaea L.) offer numerous healthy benefits, and the production of peanuts has a prominent role in global food security. As a result, it is in the interest of society to improve the productivity and quality of peanuts with transgenic means. However, the lack of a robust phylogeny of cultivated and wild peanut species has limited the utilization of genetic resources in peanut molecular breeding. In this study, a total of 33 complete peanut plastomes were sequenced, analyzed and used for phylogenetic analyses. Our results suggest that sect. Arachis can be subdivided into two lineages. All the cultivated species are contained in Lineage I with AABB and AA are the two predominant genome types present, while species in Lineage II possess diverse genome types, including BB, KK, GG, etc. Phylogenetic studies also indicate that all allotetraploid cultivated peanut species have been derived from a possible maternal hybridization event with one of the diploid Arachis duranensis accessions being a potential AA sub-genome ancestor. In addition, Arachis monticola, a tetraploid wild species, is placed in the same group with all the cultivated peanuts, and it may represent a transitional species, which has been through the recent hybridization event. This research could facilitate a better understanding of the taxonomic status of various Arachis species/accessions and the evolutionary relationship among them, and assists in the correct and efficient use of germplasm resources in breeding efforts to improve peanuts for the benefit of human beings.
Collapse
Affiliation(s)
- Xiangyu Tian
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Luye Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jia Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Liuyang Fu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture and Rural Affairs, Henan Provincial Key Laboratory for Oil Crops Improvement, Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Pei Du
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture and Rural Affairs, Henan Provincial Key Laboratory for Oil Crops Improvement, Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Bingyan Huang
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture and Rural Affairs, Henan Provincial Key Laboratory for Oil Crops Improvement, Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yue Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xinyou Zhang
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture and Rural Affairs, Henan Provincial Key Laboratory for Oil Crops Improvement, Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Razeghi J, Pishtab PA, Fathi P, Panahi B, Hejazi MA. The Feasibility of Microalgae Dunaliella Identification Based on Conserved Regions of Mitochondrial Cytochrome b and Cytochrome Oxidase Genes. CYTOL GENET+ 2021. [DOI: 10.3103/s009545272106013x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Sadamitsu A, Inoue Y, Sakakibara K, Tsubota H, Yamaguchi T, Deguchi H, Nishiyama T, Shimamura M. The complete plastid genome sequence of the enigmatic moss, Takakia lepidozioides (Takakiopsida, Bryophyta): evolutionary perspectives on the largest collection of genes in mosses and the intensive RNA editing. PLANT MOLECULAR BIOLOGY 2021; 107:431-449. [PMID: 34817767 DOI: 10.1007/s11103-021-01214-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Complete chloroplast genome sequence of a moss, Takakia lepidozioides (Takakiopsida) is reported. The largest collection of genes in mosses and the intensive RNA editing were discussed from evolutionary perspectives. We assembled the entire plastid genome sequence of Takakia lepidozioides (Takakiopsida), emerging from the first phylogenetic split among extant mosses. The genome sequences were assembled into a circular molecule 149,016 bp in length, with a quadripartite structure comprising a large and a small single-copy region separated by inverted repeats. It contained 88 genes coding for proteins, 32 for tRNA, four for rRNA, two open reading frames, and at least one pseudogene (tufA). This is the largest number of genes of all sequenced plastid genomes in mosses and Takakia is the only moss that retains the seven coding genes ccsA, cysA, cysT, petN rpoA, rps16 and trnPGGG. Parsimonious interpretation of gene loss suggests that the last common ancestor of bryophytes had all seven genes and that mosses lost at least three of them during their diversification. Analyses of the plastid transcriptome identified the extraordinary frequency of RNA editing with more than 1100 sites. We indicated a close correlation between the monoplastidy of vegetative tissue and the intensive RNA editing sites in the plastid genome in land plant lineages. Here, we proposed a hypothesis that the small population size of plastids in each vegetative cell of some early diverging land plants, including Takakia, might cause the frequent fixation of mutations in plastid genome through the intracellular genetic drift and that deleterious mutations might be continuously compensated by RNA editing during or following transcription.
Collapse
Affiliation(s)
- Atsushi Sadamitsu
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima, 739-8526, Japan
| | - Yuya Inoue
- Department of Botany, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki, 305-0005, Japan
- Hattori Botanical Laboratory, 6-1-26 Obi, Nichinan, Miyazaki, 889-2535, Japan
| | - Keiko Sakakibara
- Department of Life Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Hiromi Tsubota
- Miyajima Natural Botanical Garden, Graduate School of Integrated Sciences for Life, Hiroshima University, 1156-2, Mitsumaruko-yama, Miyajima-cho, Hatsukaichi, Hiroshima, 739-0543, Japan
| | - Tomio Yamaguchi
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima, 739-8526, Japan
| | - Hironori Deguchi
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima, 739-8526, Japan
| | - Tomoaki Nishiyama
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, 920-0934, Japan
| | - Masaki Shimamura
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima, 739-8526, Japan.
| |
Collapse
|
10
|
Ye J, Cheng J, Ren Y, Liao W, Li Q. The First Mitochondrial Genome for Geastrales ( Sphaerobolus stellatus) Reveals Intron Dynamics and Large-Scale Gene Rearrangements of Basidiomycota. Front Microbiol 2020; 11:1970. [PMID: 32849488 PMCID: PMC7432440 DOI: 10.3389/fmicb.2020.01970] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/24/2020] [Indexed: 12/19/2022] Open
Abstract
In this study, the mitogenome of artillery fungus, Sphaerobolus stellatus, was assembled and compared with other Basidiomycota mitogenomes. The Sphaerobolus stellatus mitogenome was composed of circular DNA molecules, with a total size of 152,722 bp. Accumulation of intergenic and intronic sequences contributed to the Sphaerobolus stellatus mitogenome becoming the fourth largest mitogenome among Basidiomycota. We detected large-scale gene rearrangements in Basidiomycota mitogenomes, and the Sphaerobolus stellatus mitogenome contains a unique gene order. The quantity and position classes of intron varied between 75 Basidiomycota species we tested, indicating frequent intron loss/gain events occurred in the evolution of Basidiomycota. A novel intron position classes (P1281) was detected in the Sphaerobolus stellatus mitogenome, without any homologous introns from other Basidiomycota species. A pair of fragments with a total length of 9.12 kb in both the nuclear and mitochondrial genomes of Sphaerobolus stellatus was detected, indicating possible gene transferring events. Phylogenetic analysis based on the combined mitochondrial gene set obtained well-supported tree topologies (Bayesian posterior probabilities ≥ 0.99; bootstrap values ≥98). This study served as the first report on the mitogenome from the order Geastrales, which will promote the understanding of the phylogeny, population genetics, and evolution of the artillery fungus, Sphaerobolus stellatus.
Collapse
Affiliation(s)
- Jinghua Ye
- College of Information Science & Technology, Chengdu University, Chengdu, China
| | - Jie Cheng
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yuanhang Ren
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Wenlong Liao
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Qiang Li
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
11
|
Orton LM, Fitzek E, Feng X, Grayburn WS, Mower JP, Liu K, Zhang C, Duvall MR, Yin Y. Zygnema circumcarinatum UTEX 1559 chloroplast and mitochondrial genomes provide insight into land plant evolution. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3361-3373. [PMID: 32206790 DOI: 10.1093/jxb/eraa149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/19/2020] [Indexed: 05/22/2023]
Abstract
The complete chloroplast and mitochondrial genomes of Charophyta have shed new light on land plant terrestrialization. Here, we report the organellar genomes of the Zygnema circumcarinatum strain UTEX 1559, and a comparative genomics investigation of 33 plastomes and 18 mitogenomes of Chlorophyta, Charophyta (including UTEX 1559 and its conspecific relative SAG 698-1a), and Embryophyta. Gene presence/absence was determined across these plastomes and mitogenomes. A comparison between the plastomes of UTEX 1559 (157 548 bp) and SAG 698-1a (165 372 bp) revealed very similar gene contents, but substantial genome rearrangements. Surprisingly, the two plastomes share only 85.69% nucleotide sequence identity. The UTEX 1559 mitogenome size is 215 954 bp, the largest among all sequenced Charophyta. Interestingly, this large mitogenome contains a 50 kb region without homology to any other organellar genomes, which is flanked by two 86 bp direct repeats and contains 15 ORFs. These ORFs have significant homology to proteins from bacteria and plants with functions such as primase, RNA polymerase, and DNA polymerase. We conclude that (i) the previously published SAG 698-1a plastome is probably from a different Zygnema species, and (ii) the 50 kb region in the UTEX 1559 mitogenome might be recently acquired as a mobile element.
Collapse
Affiliation(s)
- Lauren M Orton
- Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| | - Elisabeth Fitzek
- Biology/Computational Biology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology-CeBiTec, Bielefeld, Germany
| | - Xuehuan Feng
- Department of Food Science and Technology, Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - W Scott Grayburn
- Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE USA
| | - Kan Liu
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Chi Zhang
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Melvin R Duvall
- Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| | - Yanbin Yin
- Department of Food Science and Technology, Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
12
|
Lee K, Park SJ, Colas des Francs-Small C, Whitby M, Small I, Kang H. The coordinated action of PPR4 and EMB2654 on each intron half mediates trans-splicing of rps12 transcripts in plant chloroplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:1193-1207. [PMID: 31442349 DOI: 10.1111/tpj.14509] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/24/2019] [Accepted: 08/12/2019] [Indexed: 05/21/2023]
Abstract
The pentatricopeptide repeat proteins PPR4 and EMB2654 have been shown to be required for the trans-splicing of plastid rps12 transcripts in Zea mays (maize) and Arabidopsis, respectively, but their roles in this process are not well understood. We investigated the functions of the Arabidopsis and Oryza sativa (rice) orthologs of PPR4, designated AtPPR4 (At5g04810) and OsPPR4 (Os4g58780). Arabidopsis atppr4 and rice osppr4 mutants are embryo-lethal and seedling-lethal 3 weeks after germination, respectively, showing that PPR4 is essential in the development of both dicot and monocot plants. Artificial microRNA-mediated mutants of AtPPR4 displayed a specific defect in rps12 trans-splicing, with pale-green, yellowish or albino phenotypes, according to the degree of knock-down of AtPPR4 expression. Comparison of RNA footprints in atppr4 and emb2654 mutants showed a similar concordant loss of extensive footprints at the 3' end of intron 1a and at the 5' end of intron 1b in both cases. EMB2654 is known to bind within the footprint region in intron 1a and we show that AtPPR4 binds to the footprint region in intron 1b, via its PPR motifs. Binding of both PPR4 and EMB2654 is essential to juxtapose the two intron halves and to maintain the RNAs in a splicing-competent structure for the efficient trans-splicing of rps12 intron 1, which is crucial for chloroplast biogenesis and plant development. The similarity of EMB2654 and PPR4 orthologs and their respective binding sites across land plant phylogeny indicates that their coordinate function in rps12 trans-splicing has probably been conserved for 500 million years.
Collapse
Affiliation(s)
- Kwanuk Lee
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea
| | - Su Jung Park
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea
| | - Catherine Colas des Francs-Small
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Michael Whitby
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Ian Small
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Hunseung Kang
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea
- AgriBio Institute of Climate Change Management, Chonnam National University, Gwangju, 61186, Korea
| |
Collapse
|
13
|
Turmel M, Otis C, Lemieux C. Complete mitogenome of the streptophyte green alga Coleochaete scutata (Coleochaetophyceae). MITOCHONDRIAL DNA PART B-RESOURCES 2019; 4:4209-4210. [PMID: 33366386 PMCID: PMC7707659 DOI: 10.1080/23802359.2019.1693300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
We have sequenced the mitogenome of Coleochaete scutata strain SAG 110.80M. This mitogenome is the largest among the streptophyte green algae examined to date. At 242,024 bp, it is 4.3-fold larger than the mitogenome of Chaetosphaeridium globosum, the only other mitogenome available for the Coleochaetophyceae. This size difference is mainly explained by differences in the abundance of introns and in the length of intergenic regions containing vestiges of coding sequences thought to be of foreign origin. With 31 group I and 26 group II introns, the C. scutata mitogenome is the most intron-rich organelle genome known among streptophyte algae.
Collapse
Affiliation(s)
- Monique Turmel
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Christian Otis
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Claude Lemieux
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| |
Collapse
|
14
|
Evolution of chloroplast retrograde signaling facilitates green plant adaptation to land. Proc Natl Acad Sci U S A 2019; 116:5015-5020. [PMID: 30804180 PMCID: PMC6421419 DOI: 10.1073/pnas.1812092116] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The projected increase in drought severity and duration worldwide poses a significant threat to the health of terrestrial ecosystems. We reveal that unique genetic features of desiccation sensing and protection in streptophyte algae not only distinguish them from chlorophyte algae, but also represent a crucial evolutionary step that may have facilitated colonization and subsequent diversification of terrestrial habitats. We demonstrate the evolutionary significance of a molecular mechanism underlying how plants sense drought stress via the coordination of chloroplast retrograde signaling to trigger the closure of stomata, protecting vital photosynthetic tissue. Our findings constitute a significant step forward in understanding the evolution of plant drought tolerance, contributing to the diversification of terrestrial plant communities through past global climate transitions. Chloroplast retrograde signaling networks are vital for chloroplast biogenesis, operation, and signaling, including excess light and drought stress signaling. To date, retrograde signaling has been considered in the context of land plant adaptation, but not regarding the origin and evolution of signaling cascades linking chloroplast function to stomatal regulation. We show that key elements of the chloroplast retrograde signaling process, the nucleotide phosphatase (SAL1) and 3′-phosphoadenosine-5′-phosphate (PAP) metabolism, evolved in streptophyte algae—the algal ancestors of land plants. We discover an early evolution of SAL1-PAP chloroplast retrograde signaling in stomatal regulation based on conserved gene and protein structure, function, and enzyme activity and transit peptides of SAL1s in species including flowering plants, the fern Ceratopteris richardii, and the moss Physcomitrella patens. Moreover, we demonstrate that PAP regulates stomatal closure via secondary messengers and ion transport in guard cells of these diverse lineages. The origin of stomata facilitated gas exchange in the earliest land plants. Our findings suggest that the conquest of land by plants was enabled by rapid response to drought stress through the deployment of an ancestral SAL1-PAP signaling pathway, intersecting with the core abscisic acid signaling in stomatal guard cells.
Collapse
|
15
|
Usual alga from unusual habitats: Biodiversity of Klebsormidium (Klebsormidiophyceae, Streptophyta) from the phylogenetic superclade G isolated from biological soil crusts. Mol Phylogenet Evol 2018; 133:236-255. [PMID: 30576758 DOI: 10.1016/j.ympev.2018.12.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 01/13/2023]
Abstract
Seven new species and two varieties of Klebsormidium were described using an integrative approach on the base of 28 strains from the poorly studied phylogenetic superclade G. These strains originated from the unusual and exotic habitats (semi-deserts, semi-arid shrublands, Mediterranean shrub and deciduous vegetation, temperate Araucaria forests, peat bogs, dumps after coal mining, maritime sand dunes etc.) of four continents (Africa, South and North America, and Europe). Molecular phylogenies based on ITS-1,2, rbcL gene and concatenated dataset of ITS-1,2-rbcL, secondary structure of ITS-2, morphology, ecology and biogeography, micrographs and drawings of the investigated strains were assessed. Additionally, phylogeny and morphology of 18 Klebsormidium strains from other lineages isolated from the same localities (different vegetation types of Chile and maritime sand dunes of Germany) were investigated for the comparison with representatives of clade G. Clade G Klebsormidium is characterized by distant phylogenetic position from the other Klebsormidium lineages and prominent morphology: four-lobed chloroplasts and mostly short swollen cells in young culture, compact small pyrenoids, curved or disintegrated filaments, unusual elongation of cells in old culture, formation of specific cluster- and knot-like colonies on agar surface, especially prominent in strains isolated from desert regions, from which the group probably originated. Comparison of Klebsormidium diversity from different biogeographic regions showed that the representatives of clade G are common algae in regions of the southern hemisphere (South Africa and Chile) and rare representatives in terrestrial ecosystems of the northern hemisphere. Further investigation of mostly unstudied territories of the southern hemisphere could bring many surprises and discoveries, leading to a change of the present concept that Klebsormidium is cosmopolitan in distribution.
Collapse
|
16
|
Zheng F, Liu H, Jiang M, Xu Z, Wang Z, Wang C, Du F, Shen Z, Wang B. The complete mitochondrial genome of the Caulerpa lentillifera (Ulvophyceae, Chlorophyta): Sequence, genome content, organization structure and phylogenetic consideration. Gene 2018; 673:225-238. [PMID: 29933020 DOI: 10.1016/j.gene.2018.06.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 04/21/2018] [Accepted: 06/15/2018] [Indexed: 11/19/2022]
Abstract
The complete mitochondrial genome is greatly important for studies on genetic structure and phylogenetic relationship at various taxonomic levels. To obtain information about the evolutionary trends of mtDNA in the Ulvophyceae and also to gain insights into the phylogenetic relationships between ulvophytes and other chlorophytes, we determined the mtDNA sequence of Caulerpa lentillifera (sea grape) using de novo mitochondrial genome sequencing. The complete genomic DNA of C. lentillifera was circular and 209,034 bp in length, and it was the largest green-algal mitochondrial genome sequenced to date, with a low gene density of 65.2%, which is reminiscent of the "expanded" pattern of evolution exhibited by embryophyte mtDNAs. The C. lentillifera mtDNA consisted of a typical set of 17 protein-coding genes (PCGs), 20 transfer RNA (tRNA) genes, three ribosomal RNA (rRNA) genes, 42 putative open reading frames (ORFs) and 29 introns, which had homologs in green-algal mtDNAs displaying an "ancestral" or a "reduced-derived" pattern of evolution. The overall base composition of its mitochondrial genome was 24.19% for A, 24.94% for T, 25.80% for G, 25.07% for C and 50.87% for GC. The mitochondrial genome of C. lentillifera was characterized by numerous small intergenic regions and introns, which was clearly different from other green algae. With the exception of the NADH dehydrogenase subunit 6 (ND6), ND1, ATP and three tRNA genes (tRNA-His, tRNA-Thr and tRNA-Ala), all other mitochondrial genes were encoded on the heavy strand. All of the PCGs had ATG as their start codon and employed TAA, TGA or TAG as their termination codon. To gain insights into the evolutionary trends of mtDNA in the Ulvophyceae, we inferred the complete mtDNA sequence of C. lentillifera, an ulvophyte belonging to a distinct, early-diverging lineage. Taken together, our data offered useful information for the studies on phylogenetic hypotheses and phylogenetic relationships of C. lentillifera within the Chlorophyta.
Collapse
Affiliation(s)
- Fengrong Zheng
- First Institute of Oceanography SOA, Qingdao 266061, China; Key laboratory of Marine Bioactive substance SOA, Qingdao 266061, China
| | - Hongzhan Liu
- Marine College of Shandong University, Weihai 264209, China.
| | - Meijing Jiang
- First Institute of Oceanography SOA, Qingdao 266061, China
| | - Zongjun Xu
- First Institute of Oceanography SOA, Qingdao 266061, China
| | - Zongxing Wang
- First Institute of Oceanography SOA, Qingdao 266061, China
| | - Claire Wang
- Qingdao Haiputao Organic Green Algae Research and Development Breed CO., LTD, Qingdao 266000, China
| | - Fei Du
- Qingdao Haiputao Organic Green Algae Research and Development Breed CO., LTD, Qingdao 266000, China
| | - Zhen Shen
- First Institute of Oceanography SOA, Qingdao 266061, China; Key laboratory of Marine Bioactive substance SOA, Qingdao 266061, China
| | - Bo Wang
- First Institute of Oceanography SOA, Qingdao 266061, China.
| |
Collapse
|
17
|
de Vries J, Archibald JM, Gould SB. The Carboxy Terminus of YCF1 Contains a Motif Conserved throughout >500 Myr of Streptophyte Evolution. Genome Biol Evol 2018; 9:473-479. [PMID: 28164224 PMCID: PMC5381667 DOI: 10.1093/gbe/evx013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2017] [Indexed: 11/30/2022] Open
Abstract
Plastids evolved from cyanobacteria by endosymbiosis. During the course of evolution, the coding capacity of plastid genomes shrinks due to gene loss or transfer to the nucleus. In the green lineage, however, there were apparent gene gains including that of ycf1. Although its function is still debated, YCF1 has proven to be a useful marker for plastid evolution. YCF1 sequence and predicted structural features unite the plastid genomes of land plants with those of their closest algal relatives, the higher streptophyte algae; YCF1 appears to have undergone pronounced changes during the course of streptophyte algal evolution. Using new data, we show that YCF1 underwent divergent evolution in the common ancestor of higher streptophyte algae and Klebsormidiophycae. This divergence resulted in the origin of an extreme, klebsormidiophycean-specific YCF1 and the higher streptophyte Ste-YCF1. Most importantly, our analysis uncovers a conserved carboxy-terminal sequence stretch within YCF1 that is unique to higher streptophytes and hints at an important, yet unexplored function.
Collapse
Affiliation(s)
- Jan de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Sven B Gould
- Molecular Evolution, Heinrich-Heine-University Düsseldorf, Germany
| |
Collapse
|
18
|
Jiang P, Shi FX, Li MR, Liu B, Wen J, Xiao HX, Li LF. Positive Selection Driving Cytoplasmic Genome Evolution of the Medicinally Important Ginseng Plant Genus Panax. FRONTIERS IN PLANT SCIENCE 2018; 9:359. [PMID: 29670636 PMCID: PMC5893753 DOI: 10.3389/fpls.2018.00359] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/05/2018] [Indexed: 05/30/2023]
Abstract
Panax L. (the ginseng genus) is a shade-demanding group within the family Araliaceae and all of its species are of crucial significance in traditional Chinese medicine. Phylogenetic and biogeographic analyses demonstrated that two rounds of whole genome duplications accompanying with geographic and ecological isolations promoted the diversification of Panax species. However, contributions of the cytoplasmic genomes to the adaptive evolution of Panax species remained largely uninvestigated. In this study, we sequenced the chloroplast and mitochondrial genomes of 11 accessions belonging to seven Panax species. Our results show that heterogeneity in nucleotide substitution rate is abundant in both of the two cytoplasmic genomes, with the mitochondrial genome possessing more variants at the total level but the chloroplast showing higher sequence polymorphisms at the genic regions. Genome-wide scanning of positive selection identified five and 12 genes from the chloroplast and mitochondrial genomes, respectively. Functional analyses further revealed that these selected genes play important roles in plant development, cellular metabolism and adaptation. We therefore conclude that positive selection might be one of the potential evolutionary forces that shaped nucleotide variation pattern of these Panax species. In particular, the mitochondrial genes evolved under stronger selective pressure compared to the chloroplast genes.
Collapse
Affiliation(s)
- Peng Jiang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Feng-Xue Shi
- Northeast Normal University Natural History Museum, Changchun, China
| | - Ming-Rui Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Hong-Xing Xiao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Lin-Feng Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Park M, Park H, Lee H, Lee BH, Lee J. The Complete Plastome Sequence of an Antarctic Bryophyte Sanionia uncinata (Hedw.) Loeske. Int J Mol Sci 2018; 19:ijms19030709. [PMID: 29494552 PMCID: PMC5877570 DOI: 10.3390/ijms19030709] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 11/16/2022] Open
Abstract
Organellar genomes of bryophytes are poorly represented with chloroplast genomes of only four mosses, four liverworts and two hornworts having been sequenced and annotated. Moreover, while Antarctic vegetation is dominated by the bryophytes, there are few reports on the plastid genomes for the Antarctic bryophytes. Sanionia uncinata (Hedw.) Loeske is one of the most dominant moss species in the maritime Antarctic. It has been researched as an important marker for ecological studies and as an extremophile plant for studies on stress tolerance. Here, we report the complete plastome sequence of S. uncinata, which can be exploited in comparative studies to identify the lineage-specific divergence across different species. The complete plastome of S. uncinata is 124,374 bp in length with a typical quadripartite structure of 114 unique genes including 82 unique protein-coding genes, 37 tRNA genes and four rRNA genes. However, two genes encoding the α subunit of RNA polymerase (rpoA) and encoding the cytochrome b6/f complex subunit VIII (petN) were absent. We could identify nuclear genes homologous to those genes, which suggests that rpoA and petN might have been relocated from the chloroplast genome to the nuclear genome.
Collapse
Affiliation(s)
- Mira Park
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon 21990, Korea.
- Department of Life Science, Sogang University, Seoul 04107, Korea.
| | - Hyun Park
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon 21990, Korea.
- Polar Science, University of Science & Technology, Daejeon 34113, Korea.
| | - Hyoungseok Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon 21990, Korea.
- Polar Science, University of Science & Technology, Daejeon 34113, Korea.
| | - Byeong-Ha Lee
- Department of Life Science, Sogang University, Seoul 04107, Korea.
| | - Jungeun Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon 21990, Korea.
- Polar Science, University of Science & Technology, Daejeon 34113, Korea.
| |
Collapse
|
20
|
Amado Cattáneo RM, Diambra L, McCarthy AN. Phylogenomics of tomato chloroplasts using assembly and alignment-free method. Mitochondrial DNA A DNA Mapp Seq Anal 2018; 29:1128-1138. [PMID: 29338473 DOI: 10.1080/24701394.2017.1419214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Phylogenetics and population genetics are central disciplines in evolutionary biology. Both are based on the comparison of single DNA sequences, or a concatenation of a number of these. However, with the advent of next-generation DNA sequencing technologies, the approaches that consider large genomic data sets are of growing importance for the elucidation of evolutionary relationships among species. Among these approaches, the assembly and alignment-free methods which allow an efficient distance computation and phylogeny reconstruction are of great importance. However, it is not yet clear under what quality conditions and abundance of genomic data such methods are able to infer phylogenies accurately. In the present study we assess the method originally proposed by Fan et al. for whole genome data, in the elucidation of Tomatoes' chloroplast phylogenetics using short read sequences. We find that this assembly and alignment-free method is capable of reproducing previous results under conditions of high coverage, given that low frequency k-mers (i.e. error prone data) are effectively filtered out. Finally, we present a complete chloroplast phylogeny for the best data quality candidates of the recently published 360 tomato genomes.
Collapse
Affiliation(s)
| | - Luis Diambra
- a Facultad de Ciencias Exactas-UNLP , CREG , La Plata , Argentina.,b CONICET , Buenos Aires , Argentina
| | - Andrés Norman McCarthy
- a Facultad de Ciencias Exactas-UNLP , CREG , La Plata , Argentina.,c CICPBA , La Plata , Argentina
| |
Collapse
|
21
|
Myszczyński K, Bączkiewicz A, Buczkowska K, Ślipiko M, Szczecińska M, Sawicki J. The extraordinary variation of the organellar genomes of the Aneura pinguis revealed advanced cryptic speciation of the early land plants. Sci Rep 2017; 7:9804. [PMID: 28852146 PMCID: PMC5575236 DOI: 10.1038/s41598-017-10434-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 08/09/2017] [Indexed: 11/09/2022] Open
Abstract
Aneura pinguis is known as a species complex with several morphologically indiscernible species, which are often reproductively isolated from each other and show distinguishable genetic differences. Genetic dissimilarity of cryptic species may be detected by genomes comparison. This study presents the first complete sequences of chloroplast and mitochondrial genomes of six cryptic species of A. pinguis complex: A. pinguis A, B, C, E, F, J. These genomes have been compared to each other in order to reconstruct phylogenetic relationships and to gain better understanding of the evolutionary process of cryptic speciation in this complex. The chloroplast genome with the nucleotide diversity 0.05111 and 1537 indels is by far more variable than mitogenome with π value 0.00233 and number of indels 1526. Tests of selection evidenced that on about 36% of chloroplast genes and on 10% of mitochondrial genes of A. pinguis acts positive selection. It suggests an advanced speciation of species. The phylogenetic analyses based on genomes show that A. pinguis is differentiated and forms three distinct clades. Moreover, on the cpDNA trees, Aneura mirabilis is nested among the cryptic species of A. pinguis. This indicates that the A. pinguis cryptic species do not derive directly from one common ancestor.
Collapse
Affiliation(s)
- Kamil Myszczyński
- Department of Botany and Nature Protection, University of Warmia and Mazury, Plac Łódzki 1, 10-727, Olsztyn, Poland.
| | - Alina Bączkiewicz
- Department of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614, Poznań, Poland
| | - Katarzyna Buczkowska
- Department of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614, Poznań, Poland
| | - Monika Ślipiko
- Department of Botany and Nature Protection, University of Warmia and Mazury, Plac Łódzki 1, 10-727, Olsztyn, Poland
| | - Monika Szczecińska
- Department of Botany and Nature Protection, University of Warmia and Mazury, Plac Łódzki 1, 10-727, Olsztyn, Poland
| | - Jakub Sawicki
- Department of Botany and Nature Protection, University of Warmia and Mazury, Plac Łódzki 1, 10-727, Olsztyn, Poland
| |
Collapse
|
22
|
Satjarak A, Burns JA, Kim E, Graham LE. Complete mitochondrial genomes of prasinophyte algae Pyramimonas parkeae and Cymbomonas tetramitiformis. JOURNAL OF PHYCOLOGY 2017; 53:601-615. [PMID: 28191642 DOI: 10.1111/jpy.12521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/09/2017] [Indexed: 06/06/2023]
Abstract
Mitochondria are archetypal eukaryotic organelles that were acquired by endosymbiosis of an ancient species of alpha-proteobacteria by the last eukaryotic common ancestor. The genetic information contained within the mitochondrial genome has been an important source of information for resolving relationships among eukaryotic taxa. In this study, we utilized mitochondrial and chloroplast genomes to explore relationships among prasinophytes. Prasinophytes are represented by diverse early-diverging green algae whose physical structures and genomes have the potential to elucidate the traits of the last common ancestor of the Viridiplantae (or Chloroplastida). We constructed de novo mitochondrial genomes for two prasinophyte algal species, Pyramimonas parkeae and Cymbomonas tetramitiformis, representing the prasinophyte clade. Comparisons of genome structure and gene order between these species and to those of other prasinophytes revealed that the mitochondrial genomes of P. parkeae and C. tetramitiformis are more similar to each other than to other prasinophytes, consistent with other molecular inferences of the close relationship between these two species. Phylogenetic analyses using the inferred amino acid sequences of mitochondrial and chloroplast protein-coding genes resolved a clade consisting of P. parkeae and C. tetramitiformis; and this group (representing the prasinophyte clade I) branched with the clade II, consistent with previous studies based on the use of nuclear gene markers.
Collapse
Affiliation(s)
- Anchittha Satjarak
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln drive, Madison, Wisconsin, USA
| | - John A Burns
- Division of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York, New York, USA
| | - Eunsoo Kim
- Division of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York, New York, USA
| | - Linda E Graham
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln drive, Madison, Wisconsin, USA
| |
Collapse
|
23
|
Yurina NP, Odintsova MS. Mitochondrial Genome Structure of Photosynthetic Eukaryotes. BIOCHEMISTRY (MOSCOW) 2017; 81:101-13. [PMID: 27260390 DOI: 10.1134/s0006297916020048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Current ideas of plant mitochondrial genome organization are presented. Data on the size and structural organization of mtDNA, gene content, and peculiarities are summarized. Special emphasis is given to characteristic features of the mitochondrial genomes of land plants and photosynthetic algae that distinguish them from the mitochondrial genomes of other eukaryotes. The data published before the end of 2014 are reviewed.
Collapse
Affiliation(s)
- N P Yurina
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia.
| | | |
Collapse
|
24
|
de Vries J, Stanton A, Archibald JM, Gould SB. Streptophyte Terrestrialization in Light of Plastid Evolution. TRENDS IN PLANT SCIENCE 2016; 21:467-476. [PMID: 26895731 DOI: 10.1016/j.tplants.2016.01.021] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/19/2016] [Accepted: 01/28/2016] [Indexed: 05/21/2023]
Abstract
Key steps in evolution are often singularities. The emergence of land plants is one such case and it is not immediately apparent why. A recent analysis found that the zygnematophycean algae represent the closest relative to embryophytes. Intriguingly, many exaptations thought essential to conquer land are common among various streptophytes, but zygnematophycean algae share with land plants the transfer of a few plastid genes to the nucleus. Considering the contribution of the chloroplast to terrestrialization highlights potentially novel exaptations that currently remain unexplored. We discuss how the streptophyte chloroplast evolved into what we refer to as the embryoplast, and argue this was as important for terrestrialization by freshwater algae as the host cell-associated exaptations that are usually focused upon.
Collapse
Affiliation(s)
- Jan de Vries
- Institute for Molecular Evolution, Heinrich-Heine-University (HHU) Düsseldorf, 40225 Düsseldorf, Germany
| | - Amanda Stanton
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich-Heine-University (HHU) Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
25
|
Lemieux C, Otis C, Turmel M. Comparative Chloroplast Genome Analyses of Streptophyte Green Algae Uncover Major Structural Alterations in the Klebsormidiophyceae, Coleochaetophyceae and Zygnematophyceae. FRONTIERS IN PLANT SCIENCE 2016; 7:697. [PMID: 27252715 PMCID: PMC4877394 DOI: 10.3389/fpls.2016.00697] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/06/2016] [Indexed: 05/18/2023]
Abstract
The Streptophyta comprises all land plants and six main lineages of freshwater green algae: Mesostigmatophyceae, Chlorokybophyceae, Klebsormidiophyceae, Charophyceae, Coleochaetophyceae and Zygnematophyceae. Previous comparisons of the chloroplast genome from nine streptophyte algae (including four zygnematophyceans) revealed that, although land plant chloroplast DNAs (cpDNAs) inherited most of their highly conserved structural features from green algal ancestors, considerable cpDNA changes took place during the evolution of the Zygnematophyceae, the sister group of land plants. To gain deeper insights into the evolutionary dynamics of the chloroplast genome in streptophyte algae, we sequenced the cpDNAs of nine additional taxa: two klebsormidiophyceans (Entransia fimbriata and Klebsormidium sp. SAG 51.86), one coleocheatophycean (Coleochaete scutata) and six zygnematophyceans (Cylindrocystis brebissonii, Netrium digitus, Roya obtusa, Spirogyra maxima, Cosmarium botrytis and Closterium baillyanum). Our comparative analyses of these genomes with their streptophyte algal counterparts indicate that the large inverted repeat (IR) encoding the rDNA operon experienced loss or expansion/contraction in all three sampled classes and that genes were extensively shuffled in both the Klebsormidiophyceae and Zygnematophyceae. The klebsormidiophycean genomes boast greatly expanded IRs, with the Entransia 60,590-bp IR being the largest known among green algae. The 206,025-bp Entransia cpDNA, which is one of the largest genome among streptophytes, encodes 118 standard genes, i.e., four additional genes compared to its Klebsormidium flaccidum homolog. We inferred that seven of the 21 group II introns usually found in land plants were already present in the common ancestor of the Klebsormidiophyceae and its sister lineages. At 107,236 bp and with 117 standard genes, the Coleochaete IR-less genome is both the smallest and most compact among the streptophyte algal cpDNAs analyzed thus far; it lacks eight genes relative to its Chaetosphaeridium globosum homolog, four of which represent unique events in the evolutionary scenario of gene losses we reconstructed for streptophyte algae. The 10 compared zygnematophycean cpDNAs display tremendous variations at all levels, except gene content. During zygnematophycean evolution, the IR disappeared a minimum of five times, the rDNA operon was broken at four distinct sites, group II introns were lost on at least 43 occasions, and putative foreign genes, mainly of phage/viral origin, were gained.
Collapse
Affiliation(s)
- Claude Lemieux
- Institut de Biologie Intégrative et des Systèmes, Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, QuébecQC, Canada
| | | | | |
Collapse
|
26
|
Zou S, Fei C, Song J, Bao Y, He M, Wang C. Combining and Comparing Coalescent, Distance and Character-Based Approaches for Barcoding Microalgaes: A Test with Chlorella-Like Species (Chlorophyta). PLoS One 2016; 11:e0153833. [PMID: 27092945 PMCID: PMC4841637 DOI: 10.1371/journal.pone.0153833] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/13/2016] [Indexed: 01/19/2023] Open
Abstract
Several different barcoding methods of distinguishing species have been advanced, but which method is the best is still controversial. Chlorella is becoming particularly promising in the development of second-generation biofuels. However, the taxonomy of Chlorella-like organisms is easily confused. Here we report a comprehensive barcoding analysis of Chlorella-like species from Chlorella, Chloroidium, Dictyosphaerium and Actinastrum based on rbcL, ITS, tufA and 16S sequences to test the efficiency of traditional barcoding, GMYC, ABGD, PTP, P ID and character-based barcoding methods. First of all, the barcoding results gave new insights into the taxonomic assessment of Chlorella-like organisms studied, including the clear species discrimination and resolution of potentially cryptic species complexes in C. sorokiniana, D. ehrenbergianum and C. Vulgaris. The tufA proved to be the most efficient barcoding locus, which thus could be as potential "specific barcode" for Chlorella-like species. The 16S failed in discriminating most closely related species. The resolution of GMYC, PTP, P ID, ABGD and character-based barcoding methods were variable among rbcL, ITS and tufA genes. The best resolution for species differentiation appeared in tufA analysis where GMYC, PTP, ABGD and character-based approaches produced consistent groups while the PTP method over-split the taxa. The character analysis of rbcL, ITS and tufA sequences could clearly distinguish all taxonomic groups respectively, including the potentially cryptic lineages, with many character attributes. Thus, the character-based barcoding provides an attractive complement to coalescent and distance-based barcoding. Our study represents the test that proves the efficiency of multiple DNA barcoding in species discrimination of microalgaes.
Collapse
Affiliation(s)
- Shanmei Zou
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Cong Fei
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiameng Song
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yachao Bao
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Meilin He
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Changhai Wang
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
27
|
Farwagi AA, Fučíková K, McManus HA. Phylogenetic patterns of gene rearrangements in four mitochondrial genomes from the green algal family Hydrodictyaceae (Sphaeropleales, Chlorophyceae). BMC Genomics 2015; 16:826. [PMID: 26486870 PMCID: PMC4618342 DOI: 10.1186/s12864-015-2056-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/10/2015] [Indexed: 11/16/2022] Open
Abstract
Background The variability in gene organization and architecture of green algal mitochondrial genomes is only recently being studied on a finer taxonomic scale. Sequenced mt genomes from the chlorophycean orders Volvocales and Sphaeropleales exhibit considerable variation in size, content, and structure, even among closely related genera. However, sampling of mt genomes on a within-family scale is still poor and the sparsity of information precludes a thorough understanding of genome evolution in the green algae. Methods Genomic DNA of representative taxa were sequenced on an Illumina HiSeq2500 to produce 2x100 bp paired reads, and mitochondrial genomes were assembled and annotated using Geneious v.6.1.5. Phylogenetic analysis of 13 protein-coding mitochondrial genes spanning the Sphaeropleales was performed. Results This study presents one of the first within-family comparisons of mt genome diversity, and is the first to report complete mt genomes for the family Hydrodictyaceae (order Sphaeropleales). Four complete mt genomes representing three taxa and four phylogenetic groups, Stauridium tetras, Pseudopediastrum boryanum, and Pediastrum duplex, range in size from 37,723 to 53,560 bp. The size variability is primarily due to intergenic region expansion, and intron content is generally low compared with other mt genomes of Sphaeropleales. Conclusions Certain gene rearrangements appear to follow a phylogenetic pattern, and with a more thorough taxon sampling genome-level sequence may be useful in resolving systematic conundrums that plague this morphologically diverse family. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2056-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Audrey A Farwagi
- Department of Biological Sciences, Le Moyne College, Syracuse, NY, USA.
| | - Karolina Fučíková
- Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA.
| | - Hilary A McManus
- Department of Biological Sciences, Le Moyne College, Syracuse, NY, USA.
| |
Collapse
|
28
|
|
29
|
Yang EC, Kim KM, Kim SY, Lee J, Boo GH, Lee JH, Nelson WA, Yi G, Schmidt WE, Fredericq S, Boo SM, Bhattacharya D, Yoon HS. Highly Conserved Mitochondrial Genomes among Multicellular Red Algae of the Florideophyceae. Genome Biol Evol 2015; 7:2394-406. [PMID: 26245677 PMCID: PMC4558864 DOI: 10.1093/gbe/evv147] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2015] [Indexed: 11/12/2022] Open
Abstract
Two red algal classes, the Florideophyceae (approximately 7,100 spp.) and Bangiophyceae (approximately 193 spp.), comprise 98% of red algal diversity in marine and freshwater habitats. These two classes form well-supported monophyletic groups in most phylogenetic analyses. Nonetheless, the interordinal relationships remain largely unresolved, in particular in the largest subclass Rhodymeniophycidae that includes 70% of all species. To elucidate red algal phylogenetic relationships and study organelle evolution, we determined the sequence of 11 mitochondrial genomes (mtDNA) from 5 florideophycean subclasses. These mtDNAs were combined with existing data, resulting in a database of 25 florideophytes and 12 bangiophytes (including cyanidiophycean species). A concatenated alignment of mt proteins was used to resolve ordinal relationships in the Rhodymeniophycidae. Red algal mtDNA genome comparisons showed 47 instances of gene rearrangement including 12 that distinguish Bangiophyceae from Hildenbrandiophycidae, and 5 that distinguish Hildenbrandiophycidae from Nemaliophycidae. These organelle data support a rapid radiation and surprisingly high conservation of mtDNA gene syntheny among the morphologically divergent multicellular lineages of Rhodymeniophycidae. In contrast, we find extensive mitochondrial gene rearrangements when comparing Bangiophyceae and Florideophyceae and multiple examples of gene loss among the different red algal lineages.
Collapse
Affiliation(s)
- Eun Chan Yang
- Marine Ecosystem Research Division, Korea Institute of Ocean Science & Technology, Ansan, Korea Department of Marine Biology, Korea University of Science and Technology, Daejeon, Korea
| | - Kyeong Mi Kim
- Bioresource Systematics Department, National Marine Biodiversity Institute of Korea, Seocheon, Chungnam, Korea
| | - Su Yeon Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - JunMo Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Ga Hun Boo
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Jung-Hyun Lee
- Marine Biotechnology Research Division, Korea Institute of Ocean Science & Technology, Ansan, Korea
| | - Wendy A Nelson
- National Institute for Water and Atmospheric Research, Wellington, New Zealand School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Gangman Yi
- Department of Computer Science and Engineering, Gangneung-Wonju National University, Wonju, Korea
| | | | | | - Sung Min Boo
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Debashish Bhattacharya
- Department of Ecology, Evolution and Natural Resources and Department of Marine and Coastal Sciences, Rutgers University
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
30
|
Turmel M, Otis C, Lemieux C. Dynamic Evolution of the Chloroplast Genome in the Green Algal Classes Pedinophyceae and Trebouxiophyceae. Genome Biol Evol 2015; 7:2062-82. [PMID: 26139832 PMCID: PMC4524492 DOI: 10.1093/gbe/evv130] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2015] [Indexed: 01/21/2023] Open
Abstract
Previous studies of trebouxiophycean chloroplast genomes revealed little information regarding the evolutionary dynamics of this genome because taxon sampling was too sparse and the relationships between the sampled taxa were unknown. We recently sequenced the chloroplast genomes of 27 trebouxiophycean and 2 pedinophycean green algae to resolve the relationships among the main lineages recognized for the Trebouxiophyceae. These taxa and the previously sampled members of the Pedinophyceae and Trebouxiophyceae are included in the comparative chloroplast genome analysis we report here. The 38 genomes examined display considerable variability at all levels, except gene content. Our results highlight the high propensity of the rDNA-containing large inverted repeat (IR) to vary in size, gene content and gene order as well as the repeated losses it experienced during trebouxiophycean evolution. Of the seven predicted IR losses, one event demarcates a superclade of 11 taxa representing 5 late-diverging lineages. IR expansions/contractions account not only for changes in gene content in this region but also for changes in gene order and gene duplications. Inversions also led to gene rearrangements within the IR, including the reversal or disruption of the rDNA operon in some lineages. Most of the 20 IR-less genomes are more rearranged compared with their IR-containing homologs and tend to show an accelerated rate of sequence evolution. In the IR-less superclade, several ancestral operons were disrupted, a few genes were fragmented, and a subgroup of taxa features a G+C-biased nucleotide composition. Our analyses also unveiled putative cases of gene acquisitions through horizontal transfer.
Collapse
Affiliation(s)
- Monique Turmel
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
| | - Christian Otis
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
| | - Claude Lemieux
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
| |
Collapse
|
31
|
Zou J, Bi G. Complete mitochondrial genome of a hydrocarbon-producing green alga Botryococcus braunii strain Showa. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:2619-20. [PMID: 26119114 DOI: 10.3109/19401736.2015.1041122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Complete mitochondrial genome of Botryococcus braunii strain Showa was assembled and annotated. It contains 31 protein-coding genes, 23 tRNA genes and 3 rRNA (23S, 16S, 5S rRNA) genes. The 31 protein-coding genes include 5 atp genes, 3 cox genes, 9 nad genes, 12 ribosomal protein genes, cob and tatC genes. The presence of extra non-coding regions makes it currently the largest mitochondrial genome in Trebouxiophyceae. Phylogenetic analysis showed Botryococcus braunii strain Showa clustered into Trebouxiophyceae clade and had close genetic relationship with algae Coccomyxa sp. C-169.
Collapse
Affiliation(s)
- Jiajun Zou
- a College of Marine Life Sciences, Ocean University of China , Qingdao , China
| | - Guiqi Bi
- a College of Marine Life Sciences, Ocean University of China , Qingdao , China
| |
Collapse
|
32
|
Lemieux C, Otis C, Turmel M. Six newly sequenced chloroplast genomes from prasinophyte green algae provide insights into the relationships among prasinophyte lineages and the diversity of streamlined genome architecture in picoplanktonic species. BMC Genomics 2014; 15:857. [PMID: 25281016 PMCID: PMC4194372 DOI: 10.1186/1471-2164-15-857] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 09/25/2014] [Indexed: 12/01/2022] Open
Abstract
Background Because they represent the earliest divergences of the Chlorophyta, the morphologically diverse unicellular green algae making up the prasinophytes hold the key to understanding the nature of the first viridiplants and the evolutionary patterns that accompanied the radiation of chlorophytes. Nuclear-encoded 18S rDNA phylogenies unveiled nine prasinophyte clades (clades I through IX) but their branching order is still uncertain. We present here the newly sequenced chloroplast genomes of Nephroselmis astigmatica (clade III) and of five picoplanktonic species from clade VI (Prasinococcus sp. CCMP 1194, Prasinophyceae sp. MBIC 106222 and Prasinoderma coloniale) and clade VII (Picocystis salinarum and Prasinophyceae sp. CCMP 1205). These chloroplast DNAs (cpDNAs) were compared with those of the six previously sampled prasinophytes (clades I, II, III and V) in order to gain information both on the relationships among prasinophyte lineages and on chloroplast genome evolution. Results Varying from 64.3 to 85.6 kb in size and encoding 100 to 115 conserved genes, the cpDNAs of the newly investigated picoplanktonic species are substantially smaller than those observed for larger-size prasinophytes, are economically packed and contain a reduced gene content. Although the Nephroselmis and Picocystis cpDNAs feature a large inverted repeat encoding the rRNA operon, gene partitioning among the single copy regions is remarkably different. Unexpectedly, we found that all three species from clade VI (Prasinococcales) harbor chloroplast genes not previously documented for chlorophytes (ndhJ, rbcR, rpl21, rps15, rps16 and ycf66) and that Picocystis contains a trans-spliced group II intron. The phylogenies inferred from cpDNA-encoded proteins are essentially congruent with 18S rDNA trees, resolving with robust support all six examined prasinophyte lineages, with the exception of the Pycnococcaceae. Conclusions Our results underscore the high variability in genome architecture among prasinophyte lineages, highlighting the strong pressure to maintain a small and compact chloroplast genome in picoplanktonic species. The unique set of six chloroplast genes found in the Prasinococcales supports the ancestral status of this lineage within the prasinophytes. The widely diverging traits uncovered for the clade-VII members (Picocystis and Prasinophyceae sp. CCMP 1205) are consistent with their resolution as separate lineages in the chloroplast phylogeny.
Collapse
Affiliation(s)
- Claude Lemieux
- Institut de biologie intégrative et des systèmes, Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, QC G1V 0A6, Canada.
| | | | | |
Collapse
|
33
|
Brembu T, Winge P, Tooming-Klunderud A, Nederbragt AJ, Jakobsen KS, Bones AM. The chloroplast genome of the diatom Seminavis robusta: New features introduced through multiple mechanisms of horizontal gene transfer. Mar Genomics 2014; 16:17-27. [DOI: 10.1016/j.margen.2013.12.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/29/2013] [Accepted: 12/04/2013] [Indexed: 10/25/2022]
|
34
|
The dynamic history of plastid genomes in the Campanulaceae sensu lato is unique among angiosperms. Proc Natl Acad Sci U S A 2014; 111:11097-102. [PMID: 25024223 DOI: 10.1073/pnas.1403363111] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Why have some plants lost the organizational stability in plastid genomes (plastomes) that evolved in their algal ancestors? During the endosymbiotic transformation of a cyanobacterium into the eukaryotic plastid, most cyanobacterial genes were transferred to the nucleus or otherwise lost from the plastome, and the resulting plastome architecture in land plants confers organizational stability, as evidenced by the conserved gene order among bryophytes and lycophytes, whereas ferns, gymnosperms, and angiosperms share a single, 30-kb inversion. Although some additional gene losses have occurred, gene additions to angiosperm plastomes were previously unknown. Plastomes in the Campanulaceae sensu lato have incorporated dozens of large ORFs (putative protein-coding genes). These insertions apparently caused many of the 125+ large inversions now known in this small eudicot clade. This phylogenetically restricted phenomenon is not biogeographically localized, which indicates that these ORFs came from the nucleus or (less likely) a cryptic endosymbiont.
Collapse
|
35
|
Kim KM, Park JH, Bhattacharya D, Yoon HS. Applications of next-generation sequencing to unravelling the evolutionary history of algae. Int J Syst Evol Microbiol 2014; 64:333-345. [PMID: 24505071 DOI: 10.1099/ijs.0.054221-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
First-generation Sanger DNA sequencing revolutionized science over the past three decades and the current next-generation sequencing (NGS) technology has opened the doors to the next phase in the sequencing revolution. Using NGS, scientists are able to sequence entire genomes and to generate extensive transcriptome data from diverse photosynthetic eukaryotes in a timely and cost-effective manner. Genome data in particular shed light on the complicated evolutionary history of algae that form the basis of the food chain in many environments. In the Eukaryotic Tree of Life, the fact that photosynthetic lineages are positioned in four supergroups has important evolutionary consequences. We now know that the story of eukaryotic photosynthesis unfolds with a primary endosymbiosis between an ancestral heterotrophic protist and a captured cyanobacterium that gave rise to the glaucophytes, red algae and Viridiplantae (green algae and land plants). These primary plastids were then transferred to other eukaryotic groups through secondary endosymbiosis. A red alga was captured by the ancestor(s) of the stramenopiles, alveolates (dinoflagellates, apicomplexa, chromeridae), cryptophytes and haptophytes, whereas green algae were captured independently by the common ancestors of the euglenophytes and chlorarachniophytes. A separate case of primary endosymbiosis is found in the filose amoeba Paulinella chromatophora, which has at least nine heterotrophic sister species. Paulinella genome data provide detailed insights into the early stages of plastid establishment. Therefore, genome data produced by NGS have provided many novel insights into the taxonomy, phylogeny and evolutionary history of photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Kyeong Mi Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jun-Hyung Park
- Codes Division, Insilicogen Inc., Suwon, 440-746, Republic of Korea
| | - Debashish Bhattacharya
- Department of Ecology, Evolution and Natural Resources and Institute of Marine and Coastal Science, Rutgers University, NJ 08901, USA
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| |
Collapse
|
36
|
Ruck EC, Nakov T, Jansen RK, Theriot EC, Alverson AJ. Serial gene losses and foreign DNA underlie size and sequence variation in the plastid genomes of diatoms. Genome Biol Evol 2014; 6:644-54. [PMID: 24567305 PMCID: PMC3971590 DOI: 10.1093/gbe/evu039] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2014] [Indexed: 11/14/2022] Open
Abstract
Photosynthesis by diatoms accounts for roughly one-fifth of global primary production, but despite this, relatively little is known about their plastid genomes. We report the completely sequenced plastid genomes for eight phylogenetically diverse diatoms and show them to be variable in size, gene and foreign sequence content, and gene order. The genomes contain a core set of 122 protein-coding genes, with 15 additional genes exhibiting complex patterns of 1) gene losses at varying phylogenetic scales, 2) functional transfers to the nucleus, 3) gene duplication, divergence, and differential retention of paralogs, and 4) acquisitions of putatively functional recombinase genes from resident plasmids. The newly sequenced genomes also contain several previously unreported genes, highlighting how poorly characterized diatom plastid genomes are overall. Genome size variation reflects major expansions of the inverted repeat region in some cases but, more commonly, large-scale expansions of intergenic regions, many of which contain unique open reading frames of likely foreign origin. Although many gene clusters are conserved across species, rearrangements appear to be frequent in most lineages.
Collapse
Affiliation(s)
| | - Teofil Nakov
- Department of Integrative Biology, University of Texas at Austin
| | - Robert K. Jansen
- Department of Integrative Biology, University of Texas at Austin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | | | | |
Collapse
|
37
|
Odom OW, Herrin DL. Reverse transcription of spliced psbA mRNA in Chlamydomonas spp. and its possible role in evolutionary intron loss. Mol Biol Evol 2013; 30:2666-75. [PMID: 24048586 DOI: 10.1093/molbev/mst163] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Reverse transcription of mRNA is thought to be an important first step in a model that explains certain evolutionary changes within genes, such as the loss of introns or RNA editing sites. In this model, reverse transcription of mRNA produces cDNA molecules that replace part of the parental gene by homologous recombination. In vivo evidence of reverse transcription of physiologically relevant mRNAs is generally lacking, however, except in genetically engineered cells. Here, we provide in vivo evidence for reverse transcription of the chloroplast psbA mRNA in two naturally occurring species of Chlamydomonas (raudensis and subcaudata) that is based on the presence of spliced cDNAs in both organisms. The psbA cDNAs, which lack the group II intron of the genomic gene, are nearly full length, and the majority of them--though not all--are in the form of RNA-cDNA hybrids. Moreover, the presence in these species of psbA cDNAs is correlated with the loss of an early group I intron from the same psbA gene. The group II intron that interrupts psbA in C. raudensis and C. subcaudata potentially encodes a protein with a reverse transcriptase domain, and the C. raudensis protein was shown to have reverse transcriptase activity in vitro. These results provide strong evidence for reverse transcription of a physiologically important mRNA (psbA) in two species of Chlamydomonas that have also lost an intron from the same gene, possibly through recombination with the cDNA.
Collapse
Affiliation(s)
- Obed W Odom
- Section of Molecular Cell and Developmental Biology, Department of Molecular Biosciences and Institute for Cell and Molecular Biology, University of Texas at Austin
| | | |
Collapse
|
38
|
Misra N, Panda PK, Parida BK. Agrigenomics for microalgal biofuel production: an overview of various bioinformatics resources and recent studies to link OMICS to bioenergy and bioeconomy. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:537-49. [PMID: 24044362 DOI: 10.1089/omi.2013.0025] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Microalgal biofuels offer great promise in contributing to the growing global demand for alternative sources of renewable energy. However, to make algae-based fuels cost competitive with petroleum, lipid production capabilities of microalgae need to improve substantially. Recent progress in algal genomics, in conjunction with other "omic" approaches, has accelerated the ability to identify metabolic pathways and genes that are potential targets in the development of genetically engineered microalgal strains with optimum lipid content. In this review, we summarize the current bioeconomic status of global biofuel feedstocks with particular reference to the role of "omics" in optimizing sustainable biofuel production. We also provide an overview of the various databases and bioinformatics resources available to gain a more complete understanding of lipid metabolism across algal species, along with the recent contributions of "omic" approaches in the metabolic pathway studies for microalgal biofuel production.
Collapse
Affiliation(s)
- Namrata Misra
- 1 Academy of Scientific and Innovative Research, CSIR-Institute of Minerals and Materials Technology , Bhubaneswar, Odisha, India
| | | | | |
Collapse
|
39
|
Wei L, Xin Y, Wang D, Jing X, Zhou Q, Su X, Jia J, Ning K, Chen F, Hu Q, Xu J. Nannochloropsis plastid and mitochondrial phylogenomes reveal organelle diversification mechanism and intragenus phylotyping strategy in microalgae. BMC Genomics 2013; 14:534. [PMID: 23915326 PMCID: PMC3750441 DOI: 10.1186/1471-2164-14-534] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 07/31/2013] [Indexed: 12/26/2022] Open
Abstract
Background Microalgae are promising feedstock for production of lipids, sugars, bioactive compounds and in particular biofuels, yet development of sensitive and reliable phylotyping strategies for microalgae has been hindered by the paucity of phylogenetically closely-related finished genomes. Results Using the oleaginous eustigmatophyte Nannochloropsis as a model, we assessed current intragenus phylotyping strategies by producing the complete plastid (pt) and mitochondrial (mt) genomes of seven strains from six Nannochloropsis species. Genes on the pt and mt genomes have been highly conserved in content, size and order, strongly negatively selected and evolving at a rate 33% and 66% of nuclear genomes respectively. Pt genome diversification was driven by asymmetric evolution of two inverted repeats (IRa and IRb): psbV and clpC in IRb are highly conserved whereas their counterparts in IRa exhibit three lineage-associated types of structural polymorphism via duplication or disruption of whole or partial genes. In the mt genomes, however, a single evolution hotspot varies in copy-number of a 3.5 Kb-long, cox1-harboring repeat. The organelle markers (e.g., cox1, cox2, psbA, rbcL and rrn16_mt) and nuclear markers (e.g., ITS2 and 18S) that are widely used for phylogenetic analysis obtained a divergent phylogeny for the seven strains, largely due to low SNP density. A new strategy for intragenus phylotyping of microalgae was thus proposed that includes (i) twelve sequence markers that are of higher sensitivity than ITS2 for interspecies phylogenetic analysis, (ii) multi-locus sequence typing based on rps11_mt-nad4, rps3_mt and cox2-rrn16_mt for intraspecies phylogenetic reconstruction and (iii) several SSR loci for identification of strains within a given species. Conclusion This first comprehensive dataset of organelle genomes for a microalgal genus enabled exhaustive assessment and searches of all candidate phylogenetic markers on the organelle genomes. A new strategy for intragenus phylotyping of microalgae was proposed which might be generally applicable to other microalgal genera and should serve as a valuable tool in the expanding algal biotechnology industry.
Collapse
Affiliation(s)
- Li Wei
- BioEnergy Genome Center and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- María V. Busi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET); Universidad Nacional de Rosario; Suipacha Rosario Argentina
- IIB - Universidad Nacional de General San Martín (UNSAM); San Martín Buenos Aires Argentina
| | - Julieta Barchiesi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET); Universidad Nacional de Rosario; Suipacha Rosario Argentina
| | - Mariana Martín
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET); Universidad Nacional de Rosario; Suipacha Rosario Argentina
| | - Diego F. Gomez-Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET); Universidad Nacional de Rosario; Suipacha Rosario Argentina
- IIB - Universidad Nacional de General San Martín (UNSAM); San Martín Buenos Aires Argentina
| |
Collapse
|
41
|
Stoppel R, Meurer J. Complex RNA metabolism in the chloroplast: an update on the psbB operon. PLANTA 2013; 237:441-9. [PMID: 23065055 PMCID: PMC3555233 DOI: 10.1007/s00425-012-1782-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 09/28/2012] [Indexed: 05/03/2023]
Abstract
Expression of most plastid genes involves multiple post-transcriptional processing events, such as splicing, editing, and intercistronic processing. The latter involves the formation of mono-, di-, and multicistronic transcripts, which can further be regulated by differential stability and expression. The plastid pentacistronic psbB transcription unit has been well characterized in vascular plants. It encodes the subunits CP47 (psbB), T (psbT), and H (psbH) of photosystem II as well as cytochrome b (6) (petB) and subunit IV (petD) of the cytochrome b (6) f complex. Each of the petB and petD genes contains a group II intron, which is spliced during post-transcriptional modification. The small subunit of photosystem II, PsbN, is encoded in the intercistronic region between psbH and psbT but is transcribed in the opposite direction. Expression of the psbB gene cluster necessitates different processing events along with numerous newly evolved specificity factors conferring stability to many of the processed RNA transcripts, and thus exemplarily shows the complexity of RNA metabolism in the chloroplast.
Collapse
Affiliation(s)
- Rhea Stoppel
- Plant Molecular Biology (Botany), Department Biology I, Ludwig Maximilians University, Großhadernerstrasse 2-4, Planegg-Martinsried, Germany.
| | | |
Collapse
|
42
|
Turmel M, Otis C, Lemieux C. Tracing the evolution of streptophyte algae and their mitochondrial genome. Genome Biol Evol 2013; 5:1817-35. [PMID: 24022472 PMCID: PMC3814193 DOI: 10.1093/gbe/evt135] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2013] [Indexed: 11/12/2022] Open
Abstract
Six monophyletic groups of charophycean green algae are recognized within the Streptophyta. Although incongruent with earlier studies based on genes from three cellular compartments, chloroplast and nuclear phylogenomic analyses have resolved identical relationships among these groups, placing the Zygnematales or the Zygnematales + Coleochaetales as sister to land plants. The present investigation aimed at determining whether this consensus view is supported by the mitochondrial genome and at gaining insight into mitochondrial DNA (mtDNA) evolution within and across streptophyte algal lineages and during the transition toward the first land plants. We present here the newly sequenced mtDNAs of representatives of the Klebsormidiales (Entransia fimbriata and Klebsormidium spec.) and Zygnematales (Closterium baillyanum and Roya obtusa) and compare them with their homologs in other charophycean lineages as well as in selected embryophyte and chlorophyte lineages. Our results indicate that important changes occurred at the levels of genome size, gene order, and intron content within the Zygnematales. Although the representatives of the Klebsormidiales display more similarity in genome size and intron content, gene order seems more fluid and gene losses more frequent than in other charophycean lineages. In contrast, the two members of the Charales display an extremely conservative pattern of mtDNA evolution. Collectively, our analyses of gene order and gene content and the phylogenies we inferred from 40 mtDNA-encoded proteins failed to resolve the relationships among the Zygnematales, Coleochaetales, and Charales; however, they are consistent with previous phylogenomic studies in favoring that the morphologically complex Charales are not sister to land plants.
Collapse
Affiliation(s)
- Monique Turmel
- Institut de Biologie Intégrative et des Systèmes, Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Québec, Canada
| | | | | |
Collapse
|
43
|
Complete sequences of the mitochondrial DNA of the wild Gracilariopsis lemaneiformis and two mutagenic cultivated breeds (Gracilariaceae, Rhodophyta). PLoS One 2012; 7:e40241. [PMID: 22768261 PMCID: PMC3386957 DOI: 10.1371/journal.pone.0040241] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 06/03/2012] [Indexed: 11/25/2022] Open
Abstract
The complete mitochondrial DNA (mtDNA) of Gracilariopsis lemaneiformis was sequenced (25883 bp) and mapped to a circular model. The A+T composition was 72.5%. Forty six genes and two potentially functional open reading frames were identified. They include 24 protein-coding genes, 2 rRNA genes, 20 tRNA genes and 2 ORFs (orf60, orf142). There is considerable sequence synteny across the five red algal mtDNAs falling into Florideophyceae including Gr. lemaneiformis in this study and previously sequenced species. A long stem-loop and a hairpin structure were identified in intergenic regions of mt genome of Gr. lemaneiformis, which are believed to be involved with transcription and replication. In addition, the mtDNAs of two mutagenic cultivated breeds (“981” and “07-2”) were also sequenced. Compared with the mtDNA of wild Gr. lemaneiformis, the genome size and gene length and order of three strains were completely identical except nine base mutations including eight in the protein-coding genes and one in the tRNA gene. None of the base mutations caused frameshift or a premature stop codon in the mtDNA genes. Phylogenetic analyses based on mitochondrial protein-coding genes and rRNA genes demonstrated Gracilariopsis andersonii had closer phylogenetic relationship with its parasite Gracilariophila oryzoides than Gracilariopsis lemaneiformis which was from the same genus of Gracilariopsis.
Collapse
|
44
|
Luo L, Lee J, Herrin DL. Mapping of the css (chloroplast splicing suppressor) gene(s) to a recombinationally suppressed region of chromosome III in Chlamydomonas reinhardtii. Genome 2012; 55:483-91. [PMID: 22708527 DOI: 10.1139/g2012-035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In previous work, three suppressors of defective group I introns (7151, 71N1, 7120) were isolated from a mutant of Chlamydomonas reinhardtii that had a splicing-deficient chloroplast large subunit (LSU) rRNA intron. Genetic analysis indicated that the 7151 and 71N1 suppressor mutations each involved single nuclear loci, and that the 7151 mutation was dominant. Here we present genetic evidence that the 7120 suppressor also involves a single nuclear locus and that the mutation is dominant in vegetative diploids. Moreover, we have employed crosses with the S1D2 strain and molecular markers to map the 7120 and 71N1 suppressors. Based on an analysis of 800 progeny from 7120 × S1D2, the 7120 suppressor is located in a region of ~400 kb on chromosome III that is devoid of recombination. The ~400-kb region contains at least 72 genes, about one-third of which (i.e., 22) are predicted to be organelle targeted. Similar analysis of 71N1 × S1D2 using 400 progeny also pointed to the recombination-deficient region of chromosome III, raising the possibility that these mutations could affect the same gene. These efforts lay the foundation for identifying the css (chloroplast splicing suppressor) gene(s), which promotes splicing of multiple chloroplast group I introns.
Collapse
Affiliation(s)
- Liming Luo
- Section of Molecular Cell and Developmental Biology, and the Institute for Cellular and Molecular Biology, 1 University Station A6700, University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
45
|
Liu Y, Wang B, Cui P, Li L, Xue JY, Yu J, Qiu YL. The mitochondrial genome of the lycophyte Huperzia squarrosa: the most archaic form in vascular plants. PLoS One 2012; 7:e35168. [PMID: 22511984 PMCID: PMC3325193 DOI: 10.1371/journal.pone.0035168] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Accepted: 03/13/2012] [Indexed: 11/21/2022] Open
Abstract
Mitochondrial genomes have maintained some bacterial features despite their residence within eukaryotic cells for approximately two billion years. One of these features is the frequent presence of polycistronic operons. In land plants, however, it has been shown that all sequenced vascular plant chondromes lack large polycistronic operons while bryophyte chondromes have many of them. In this study, we provide the completely sequenced mitochondrial genome of a lycophyte, from Huperzia squarrosa, which is a member of the sister group to all other vascular plants. The genome, at a size of 413,530 base pairs, contains 66 genes and 32 group II introns. In addition, it has 69 pseudogene fragments for 24 of the 40 protein- and rRNA-coding genes. It represents the most archaic form of mitochondrial genomes of all vascular plants. In particular, it has one large conserved gene cluster containing up to 10 ribosomal protein genes, which likely represents a polycistronic operon but has been disrupted and greatly reduced in the chondromes of other vascular plants. It also has the least rearranged gene order in comparison to the chondromes of other vascular plants. The genome is ancestral in vascular plants in several other aspects: the gene content resembling those of charophytes and most bryophytes, all introns being cis-spliced, a low level of RNA editing, and lack of foreign DNA of chloroplast or nuclear origin.
Collapse
Affiliation(s)
- Yang Liu
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Bin Wang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Peng Cui
- CAS Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Libo Li
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jia-Yu Xue
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- School of Life Sciences, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Jun Yu
- CAS Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yin-Long Qiu
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
46
|
Seed Plant Mitochondrial Genomes: Complexity Evolving. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2012. [DOI: 10.1007/978-94-007-2920-9_8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
47
|
|
48
|
Liu Y, Xue JY, Wang B, Li L, Qiu YL. The mitochondrial genomes of the early land plants Treubia lacunosa and Anomodon rugelii: dynamic and conservative evolution. PLoS One 2011; 6:e25836. [PMID: 21998706 PMCID: PMC3187804 DOI: 10.1371/journal.pone.0025836] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 09/12/2011] [Indexed: 11/19/2022] Open
Abstract
Early land plant mitochondrial genomes captured important changes of mitochondrial genome evolution when plants colonized land. The chondromes of seed plants show several derived characteristics, e.g., large genome size variation, rapid intra-genomic rearrangement, abundant introns, and highly variable levels of RNA editing. On the other hand, the chondromes of charophytic algae are still largely ancestral in these aspects, resembling those of early eukaryotes. When the transition happened has been a long-standing question in studies of mitochondrial genome evolution. Here we report complete mitochondrial genome sequences from an early-diverging liverwort, Treubia lacunosa, and a late-evolving moss, Anomodon rugelii. The two genomes, 151,983 and 104,239 base pairs in size respectively, contain standard sets of protein coding genes for respiration and protein synthesis, as well as nearly full sets of rRNA and tRNA genes found in the chondromes of the liverworts Marchantia polymorpha and Pleurozia purpurea and the moss Physcomitrella patens. The gene orders of these two chondromes are identical to those of the other liverworts and moss. Their intron contents, with all cis-spliced group I or group II introns, are also similar to those in the previously sequenced liverwort and moss chondromes. These five chondromes plus the two from the hornworts Phaeoceros laevis and Megaceros aenigmaticus for the first time allowed comprehensive comparative analyses of structure and organization of mitochondrial genomes both within and across the three major lineages of bryophytes. These analyses led to the conclusion that the mitochondrial genome experienced dynamic evolution in genome size, gene content, intron acquisition, gene order, and RNA editing during the origins of land plants and their major clades. However, evolution of this organellar genome has remained rather conservative since the origin and initial radiation of early land plants, except within vascular plants.
Collapse
Affiliation(s)
- Yang Liu
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jia-Yu Xue
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- School of Life Sciences, Nanjing University, Nanjing, Jiangsu, People’s Republic of China
| | - Bin Wang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Libo Li
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yin-Long Qiu
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
49
|
Wicke S, Schneeweiss GM, dePamphilis CW, Müller KF, Quandt D. The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. PLANT MOLECULAR BIOLOGY 2011; 76:273-97. [PMID: 21424877 PMCID: PMC3104136 DOI: 10.1007/s11103-011-9762-4] [Citation(s) in RCA: 845] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Accepted: 02/19/2011] [Indexed: 05/18/2023]
Abstract
This review bridges functional and evolutionary aspects of plastid chromosome architecture in land plants and their putative ancestors. We provide an overview on the structure and composition of the plastid genome of land plants as well as the functions of its genes in an explicit phylogenetic and evolutionary context. We will discuss the architecture of land plant plastid chromosomes, including gene content and synteny across land plants. Moreover, we will explore the functions and roles of plastid encoded genes in metabolism and their evolutionary importance regarding gene retention and conservation. We suggest that the slow mode at which the plastome typically evolves is likely to be influenced by a combination of different molecular mechanisms. These include the organization of plastid genes in operons, the usually uniparental mode of plastid inheritance, the activity of highly effective repair mechanisms as well as the rarity of plastid fusion. Nevertheless, structurally rearranged plastomes can be found in several unrelated lineages (e.g. ferns, Pinaceae, multiple angiosperm families). Rearrangements and gene losses seem to correlate with an unusual mode of plastid transmission, abundance of repeats, or a heterotrophic lifestyle (parasites or myco-heterotrophs). While only a few functional gene gains and more frequent gene losses have been inferred for land plants, the plastid Ndh complex is one example of multiple independent gene losses and will be discussed in detail. Patterns of ndh-gene loss and functional analyses indicate that these losses are usually found in plant groups with a certain degree of heterotrophy, might rendering plastid encoded Ndh1 subunits dispensable.
Collapse
Affiliation(s)
- Susann Wicke
- Department of Biogeography and Botanical Garden, University of Vienna, Rennweg 14, 1030 Vienna, Austria.
| | | | | | | | | |
Collapse
|
50
|
Finet C, Timme RE, Delwiche CF, Marlétaz F. Multigene phylogeny of the green lineage reveals the origin and diversification of land plants. Curr Biol 2010; 20:2217-22. [PMID: 21145743 DOI: 10.1016/j.cub.2010.11.035] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 09/25/2010] [Accepted: 11/11/2010] [Indexed: 10/18/2022]
Abstract
The Viridiplantae (green plants) include land plants as well as the two distinct lineages of green algae, chlorophytes and charophytes. Despite their critical importance for identifying the closest living relatives of land plants, phylogenetic studies of charophytes have provided equivocal results [1-5]. In addition, many relationships remain unresolved among the land plants, such as the position of mosses, liverworts, and the enigmatic Gnetales. Phylogenomics has proven to be an insightful approach for resolving challenging phylogenetic issues, particularly concerning deep nodes [6-8]. Here we extend this approach to the green lineage by assembling a multilocus data set of 77 nuclear genes (12,149 unambiguously aligned amino acid positions) from 77 taxa of plants. We therefore provide the first multigene phylogenetic evidence that Coleochaetales represent the closest living relatives of land plants. Moreover, our data reinforce the early divergence of liverworts and the close relationship between Gnetales and Pinaceae. These results provide a new phylogenetic framework and represent a key step in the evolutionary interpretation of developmental and genomic characters in green plants.
Collapse
Affiliation(s)
- Cédric Finet
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, 1525 Linden Drive, Madison, WI 53706, USA.
| | | | | | | |
Collapse
|