1
|
Ortiz-Soto ME, Seibel J. An overview on glycoside hydrolases and glycosyltransferases. Z NATURFORSCH C 2025; 80:1-8. [PMID: 39308024 DOI: 10.1515/znc-2024-2002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Affiliation(s)
| | - Jürgen Seibel
- Institute of Organic Chemistry, University of Würzburg, Wurzburg, Germany
| |
Collapse
|
2
|
Xu H, Feng R, Ye ML, Hu JC, Lu JY, Wang JY, Zuo HT, Zhao Y, Song JY, Jiang JD, Zhou YZ, Wang Y. Multiple Enzymes Expressed by the Gut Microbiota Can Transform Typhaneoside and Are Associated with Improving Hyperlipidemia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2411770. [PMID: 39840606 DOI: 10.1002/advs.202411770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/10/2024] [Indexed: 01/23/2025]
Abstract
The mechanism of multiple enzymes mediated drug metabolism in gut microbiota is still unclear. This study explores multiple enzyme interaction process of typhactyloside (TYP) with gut microbiota and its lipid-lowering pharmacological activity. TYP, with bioavailability of only 2.78%, is an active component of Typha angustifolia L. and Pushen capsules which is clinically treated for hyperlipidemia. The metabolic process of TYP is identified, and key enzymes involved in TYP metabolism are validated through gene knockout and overexpression techniques. Through overexpressing α-rhamnosidase (Rha) in Escherichia coli, TYP is verified to metabolize into isorhamnetin-3-O-neohesperidin (M1) and isorhamnetin-3-O-glucoside (M2) after removing rhamnose through Rha. Besides, knockout of β-glucosidase (Glu) confirms that TYP generates M3 through Glu after removing glucose. Combined with molecular docking, M3 is transformed to generate 3,4-dihydroxyphenylacetic acid (M4), protocatechuic acid (M5), and 3-hydroxyphenylacetic acid (M6) through flavonoid reductase (Flr) and chalcone isomerase (Chi). In conclusion, multiple enzymes involved in TYP metabolism (Rha/Glu→Flr→Chi) are identified. Through in vivo experiments, combined use of M3 and M5 also shows excellent anti-hyperlipidemia efficacy. This is the first study on complex metabolism mechanism and pharmacological activity of natural flavonoids mediated by multiple enzymes, which provide insight to investigate analogous natural products.
Collapse
Affiliation(s)
- Hui Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| | - Ru Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| | - Meng-Liang Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| | - Jia-Chun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| | - Jin-Yue Lu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| | - Jing-Yue Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| | - Heng-Tong Zuo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| | - Yi Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| | - Jian-Ye Song
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| | - Yun-Zhi Zhou
- Emergency General Hospital, National Research Center for Emergency Medicine, Beijing, 100028, China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
3
|
Schnicker NJ, Xu Z, Amir M, Gakhar L, Huang CL. Conformational landscape of soluble α-klotho revealed by cryogenic electron microscopy. Sci Rep 2025; 15:543. [PMID: 39747283 PMCID: PMC11696049 DOI: 10.1038/s41598-024-84246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
α-Klotho (KLA) is a type-1 membranous protein that can associate with fibroblast growth factor receptor (FGFR) to form co-receptor for FGF23. The ectodomain of unassociated KLA is shed as soluble KLA (sKLA) to exert FGFR/FGF23-independent pleiotropic functions. The previously determined X-ray crystal structure of the extracellular region of sKLA in complex with FGF23 and FGFR1c suggests that sKLA functions solely as an on-demand coreceptor for FGF23. To understand the FGFR/FGF23-independent pleiotropic functions of sKLA, we investigated biophysical properties and structure of apo-sKLA. Single particle cryogenic electron microscopy (cryo-EM) revealed a 3.3 Å resolution structure of apo-sKLA that overlays well with its counterpart in the ternary complex with several distinct features. Compared to the ternary complex, the KL2 domain of apo-sKLA is more flexible. Three-dimensional variability analysis revealed that apo-sKLA adopts conformations with different KL1-KL2 interdomain bending and rotational angles. Mass photometry revealed that sKLA can form a stable structure with FGFR and/or FGF23 as well as sKLA dimer in solution. Cryo-EM supported the dimeric structure of sKLA. Recent studies revealed that FGF23 contains two KLA-binding sites. Our computational studies revealed that each site binds separate KLA in the dimer. The potential multiple forms and shapes of sKLA support its role as FGFR-independent hormone with pleiotropic functions. The ability of FGF23 to engage two KLA's simultaneously raises a potential new mechanism of action for FGF23-mediated signaling by the membranous klotho.
Collapse
Affiliation(s)
- Nicholas J Schnicker
- Protein and Crystallography Facility, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
| | - Zhen Xu
- Protein and Crystallography Facility, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Mohammad Amir
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Lokesh Gakhar
- Protein and Crystallography Facility, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Chou-Long Huang
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
| |
Collapse
|
4
|
Chen G, Chen F, Shen J, Liu G, Song X, Xue C, Chang Y. The structure investigation of GH174 endo-1,3-fucanase revealed an unusual glycoside hydrolase fold. Int J Biol Macromol 2024; 280:135715. [PMID: 39293626 DOI: 10.1016/j.ijbiomac.2024.135715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/14/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
Sulfated fucan has attracted increasing research interest due to its various biological activities. Endo-1,3-fucanases are favorable tools for structure investigation and structure-activity relationships establishment of sulfated fucan. However, the three-dimensional structure of enzymes from the GH174 family has not been disclosed, which hinders the understanding of the action mechanism. This study reports the first crystal structure of endo-1,3-fucanase from GH174 family (Fun174A) at a resolution of 1.60 Å. Notably, Fun174A exhibited an unusual distorted β-sandwich fold, which is distinct from other known glycoside hydrolase folds. The conserved amino acid residues D119 and H154 were proposed as the catalytic residues in the family. Molecular docking suggested that Fun174A primarily recognized sulfated fucan through a series of polar amino acid residues around the substrate binding pocket. Furthermore, structural bioinformatics analysis suggested that the structural analogs of Fun174A may be extensively implicated in the bacterial metabolism of polysaccharides, which provided opportunities for the discovery of novel glycoside hydrolases. This study offers new insights into the structural diversity of glycoside hydrolases and will contribute to the establishment of a novel clan of glycoside hydrolases.
Collapse
Affiliation(s)
- Guangning Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Fangyi Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Jingjing Shen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Guanchen Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Xiao Song
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China.
| |
Collapse
|
5
|
Chen G, Wang ZX, Yang Y, Li Y, Zhang T, Ouyang S, Zhang L, Chen Y, Ruan X, Miao M. Elucidation of the mechanism underlying the sequential catalysis of inulin by fructotransferase. Int J Biol Macromol 2024; 277:134446. [PMID: 39098696 DOI: 10.1016/j.ijbiomac.2024.134446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Glycoside hydrolase family 91 (GH91) inulin fructotransferase (IFTases) enables biotransformation of fructans into sugar substitutes for dietary intervention in metabolic syndrome. However, the catalytic mechanism underlying the sequential biodegradation of inulin remains unelusive during the biotranformation of fructans. Herein we present the crystal structures of IFTase from Arthrobacter aurescens SK 8.001 in apo form and in complexes with kestose, nystose, or fructosyl nystose, respectively. Two kinds of conserved noncatalytic binding regions are first identified for IFTase-inulin interactions. The conserved interactions of substrates were revealed in the catalytic center that only contained a catalytic residue E205. A switching scaffold was comprised of D194 and Q217 in the catalytic channel, which served as the catalytic transition stabilizer through side chain displacement in the cycling of substrate sliding in/out the catalytic pocket. Such features in GH91 contribute to the catalytic model for consecutive cutting of substrate chain as well as product release in IFTase, and thus might be extended to other exo-active enzymes with an enclosed bottom of catalytic pocket. The study expands the current general catalytic principle in enzyme-substrate complexes and shed light on the rational design of IFTase for fructan biotransformation.
Collapse
Affiliation(s)
- Gang Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Zhao-Xi Wang
- Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yuqi Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yungao Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Songying Ouyang
- Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Liang Zhang
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230027, China.
| | - Yang Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Xinglin Ruan
- Department of Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road Gulou District, Fuzhou 350001, China.
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
Schnicker NJ, Xu Z, Amir M, Gakhar L, Huang CL. Conformational landscape of soluble α-klotho revealed by cryogenic electron microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.02.583144. [PMID: 38496408 PMCID: PMC10942382 DOI: 10.1101/2024.03.02.583144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
α-Klotho (KLA) is a type-1 membranous protein that can associate with fibroblast growth factor receptor (FGFR) to form co-receptor for FGF23. The ectodomain of unassociated KLA is shed as soluble KLA (sKLA) to exert FGFR/FGF23-independent pleiotropic functions. The previously determined X-ray crystal structure of the extracellular region of sKLA in complex with FGF23 and FGFR1c suggests that sKLA functions solely as an on-demand coreceptor for FGF23. To understand the FGFR/FGF23-independent pleiotropic functions of sKLA, we investigated biophysical properties and structure of apo-sKLA. Mass photometry revealed that sKLA can form a stable structure with FGFR and/or FGF23 as well as sKLA dimer in solution. Single particle cryogenic electron microscopy (cryo-EM) supported the dimeric structure of sKLA. Cryo-EM further revealed a 3.3Å resolution structure of apo-sKLA that overlays well with its counterpart in the ternary complex with several distinct features. Compared to the ternary complex, the KL2 domain of apo-sKLA is more flexible. 3D variability analysis revealed that apo-sKLA adopts conformations with different KL1-KL2 interdomain bending and rotational angles. The potential multiple forms and shapes of sKLA support its role as FGFR-independent hormone with pleiotropic functions. A comprehensive understanding of the sKLA conformational landscape will provide the foundation for developing klotho-related therapies for diseases.
Collapse
Affiliation(s)
- Nicholas J. Schnicker
- Protein and Crystallography Facility, University of Iowa Carver College of Medicine, Iowa City, Iowa, 52242, USA
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa, 52242, USA
| | - Zhen Xu
- Protein and Crystallography Facility, University of Iowa Carver College of Medicine, Iowa City, Iowa, 52242, USA
| | - Mohammad Amir
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, 52242, USA
| | - Lokesh Gakhar
- Protein and Crystallography Facility, University of Iowa Carver College of Medicine, Iowa City, Iowa, 52242, USA
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Chou-Long Huang
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, 52242, USA
| |
Collapse
|
7
|
Datta R. Enzymatic degradation of cellulose in soil: A review. Heliyon 2024; 10:e24022. [PMID: 38234915 PMCID: PMC10792583 DOI: 10.1016/j.heliyon.2024.e24022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/13/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
Cellulose degradation is a critical process in soil ecosystems, playing a vital role in nutrient cycling and organic matter decomposition. Enzymatic degradation of cellulosic biomass is the most sustainable and green method of producing liquid biofuel. It has gained intensive research interest with future perspective as the majority of terrestrial lignocellulose biomass has a great potential to be used as a source of bioenergy. However, the recalcitrant nature of lignocellulose limits its use as a source of energy. Noteworthy enough, enzymatic conversion of cellulose biomass could be a leading future technology. Fungal enzymes play a central role in cellulose degradation. Our understanding of fungal cellulases has substantially redirected in the past few years with the discovery of a new class of enzymes and Cellulosome. Efforts have been made from time to time to develop an economically viable method of cellulose degradation. This review provides insights into the current state of knowledge regarding cellulose degradation in soil and identifies areas where further research is needed.
Collapse
Affiliation(s)
- Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology. Mendel University In Brno, Czech Republic
| |
Collapse
|
8
|
Li J, Peng C, Mao A, Zhong M, Hu Z. An overview of microbial enzymatic approaches for pectin degradation. Int J Biol Macromol 2024; 254:127804. [PMID: 37913880 DOI: 10.1016/j.ijbiomac.2023.127804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/21/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
Pectin, a complex natural macromolecule present in primary cell walls, exhibits high structural diversity. Pectin is composed of a main chain, which contains a high amount of partly methyl-esterified galacturonic acid (GalA), and numerous types of side chains that contain almost 17 different monosaccharides and over 20 different linkages. Due to this peculiar structure, pectin exhibits special physicochemical properties and a variety of bioactivities. For example, pectin exhibits strong bioactivity only in a low molecular weight range. Many different degrading enzymes, including hydrolases, lyases and esterases, are needed to depolymerize pectin due to its structural complexity. Pectin degradation involves polygalacturonases/rhamnogalacturonases and pectate/pectin lyases, which attack the linkages in the backbone via hydrolytic and β-elimination modes, respectively. Pectin methyl/acetyl esterases involved in the de-esterification of pectin also play crucial roles. Many α-L-rhamnohydrolases, unsaturated rhamnogalacturonyl hydrolases, arabinanases and galactanases also contribute to heterogeneous pectin degradation. Although numerous microbial pectin-degrading enzymes have been described, the mechanisms involved in the coordinated degradation of pectin through these enzymes remain unclear. In recent years, the degradation of pectin by Bacteroides has received increasing attention, as Bacteroides species contain a unique genetic structure, polysaccharide utilization loci (PULs). The specific PULs of pectin degradation in Bacteroides species are a new field to study pectin metabolism in gut microbiota. This paper reviews the scientific information available on pectin structural characteristics, pectin-degrading enzymes, and PULs for the specific degradation of pectin.
Collapse
Affiliation(s)
- Jin Li
- College of Life Sciences, China West Normal University, Nanchong 637002, China; Department of Biology, College of Science, Shantou University, Shantou 515063, China.
| | - Chao Peng
- College of Life Sciences, China West Normal University, Nanchong 637002, China
| | - Aihua Mao
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Mingqi Zhong
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Zhong Hu
- Department of Biology, College of Science, Shantou University, Shantou 515063, China.
| |
Collapse
|
9
|
Huang G, Zeng Q, Dong L, Zhang R, Zhang M, Huang F, Su D. Divergent metabolism of two lychee (Litchi chinensis Sonn.) pulp flavonols and their modulatory effects on gut microbiota: Discovery of hydroxyethylation in vitro colonic fermentation. Food Chem 2023; 429:136875. [PMID: 37454621 DOI: 10.1016/j.foodchem.2023.136875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Quercetin 3-O-rutinose-7-O-α-l-rhamnoside (QRR), a characteristic lychee pulp flavonoid, has been linked to diverse bioactivities involving microbial metabolism. By integrating colonic fermentation and mass spectrometry, the catabolites including 7-O-hydroxyethyl-isorhamnetin and 3'-amino-4'-O-methyl-7-O-hydroxyethyl-isorhamnetin were unprecedently identified and unique to QRR metabolism, relative to the structural analog quercetin 3-O-rutinoside (QR) metabolism. These above-described metabolites highlighted a special biotransformation hydroxyethylation in QRR catabolism. QRR was partially deglycosylated into quercetin 3-O-glucoside-7-O-α-l-rhamnoside potentially catalyzed by Bacteroides. QR was more directly degradable to aglycone during colonic fermentation than are QRR. Unlike with QR fermentation, equivalent QRR effectively upregulated concentrations of propionic and butyric acids that were highly relevant with Faecalibacterium and Coprococcus. After fermentation, the relative abundances of Bacteroides uniformis (0.03%) and Akkermansia muciniphila (0.13%) were only upregulated by QRR among all fermentation groups, leading to the enrichments of the corresponding genera. These results further reveal the relationship between flavonoid structures and metabolic characteristics.
Collapse
Affiliation(s)
- Guitao Huang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China; Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Qingzhu Zeng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Fei Huang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China.
| |
Collapse
|
10
|
Huang G, Lai M, Xu C, He S, Dong L, Huang F, Zhang R, Young DJ, Liu H, Su D. Novel Catabolic Pathway of Quercetin-3-O-Rutinose-7-O-α-L-Rhamnoside by Lactobacillus plantarum GDMCC 1.140: The Direct Fission of C-Ring. Front Nutr 2022; 9:849439. [PMID: 35369057 PMCID: PMC8966130 DOI: 10.3389/fnut.2022.849439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Lychee pulp phenolics (LPP) is mainly catabolized in the host colon, increasing the abundances of Bacteroides and Lactobacillus. Herein, five selected gut microbial strains (Bacteroides uniformis, B. thetaiotaomicron, Lactobacillus rhamnosus, L. plantarum, and L. acidophilus) were separately incubated with LPP to ascertain the specific strains participating in phenolic metabolism and the corresponding metabolites. The results indicated that B. uniformis, L. rhamnosus, and L. plantarum were involved in LPP utilization, contributing to 52.37, 28.33, and 45.11% of LPP degradation after 48 h fermentation, respectively. Unprecedentedly, the metabolic pathway of the major phenolic compound quercetin-3-O-rutinose-7-O-α-L-rhamnoside by L. plantarum, appeared to be the direct fission of C-ring at C2–O1 and C3–C4 bonds, which was proved from the occurrence of two substances with the deprotonated molecule [M–H]− ion at m/z 299 and 459, respectively. Meanwhile, it was fully confirmed that B. uniformis participated in the catabolism of isorhamnetin glycoside and procyanidin B2. In the B. uniformis culture, kaempferol was synthesized through dehydroxylation of quercetin which could be catabolized into alphitonin by L. rhamnosus. Furthermore, LPP metabolites exerted higher antioxidant activity than their precursors and gave clues to understand the interindividual differences for phenolic metabolism by gut microbiota.
Collapse
Affiliation(s)
- Guitao Huang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Mingwen Lai
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Canhua Xu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Shan He
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Fei Huang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - David James Young
- College of Engineering, Information Technology & Environment, Charles Darwin University, Darwin, NT, Australia
| | - Hesheng Liu
- Zhejiang Provincial Top Discipline of Biological Engineering (Level A), Zhejiang Wanli University, Ningbo, China
- *Correspondence: Hesheng Liu
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
- Dongxiao Su
| |
Collapse
|
11
|
Li S, Hu J, Yao H, Geng F, Nie S. Interaction between four galactans with different structural characteristics and gut microbiota. Crit Rev Food Sci Nutr 2021:1-11. [PMID: 34669541 DOI: 10.1080/10408398.2021.1992605] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Human gut microbiota played a key role in maintaining and regulating host health. Gut microbiota composition could be altered by daily diet and related nutrients. Diet polysaccharide, an important dietary nutrient, was one kind of biological macromolecules linked by the glycosidic bonds. Galactans were widely used in foods due to their gelling, thickening and stabilizing properties. Recently, effects of different galactans on gut microbiota have attracted much attention. This review described the structural characteristics of 4 kinds of galactans, including porphyran, agarose, carrageenan, and arabinogalactan, along with the effects of different galactans on gut microbiota and production of short-chain fatty acids. The ability of gut microbiota to utilize galactans with different structural characteristics and related degradation mechanism were also summarized. All these four galactans could be used by gut Bacteroides. Besides, the porphyran could be utilized by Lactobacillus and Bifidobacterium, while the arabinogalactan could be utilized by Lactobacillus, Bifidobacterium and Roseburia. Four galactans with significant difference in molecular weight/degree of polymerization, glycosidic linkage, esterification, branching and monosaccharide composition required gut microbes which could utilize them have corresponding genes encoding the corresponding enzymes for decomposition. This review could help to understand the relationship between galactans with different structural characteristics and gut microbiota, and provide information for potential use of galactans as functional foods.
Collapse
Affiliation(s)
- Song Li
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang China
| | - Jielun Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang China
| | - Haoyingye Yao
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang China
| |
Collapse
|
12
|
Abstract
The human gut microbiota (HGM) contributes to the physiology and health of its host. The health benefits provided by dietary manipulation of the HGM require knowledge of how glycans, the major nutrients available to this ecosystem, are metabolized. Arabinogalactan proteins (AGPs) are a ubiquitous feature of plant polysaccharides available to the HGM. Although the galactan backbone and galactooligosaccharide side chains of AGPs are conserved, the decorations of these structures are highly variable. Here, we tested the hypothesis that these variations in arabinogalactan decoration provide a selection mechanism for specific Bacteroides species within the HGM. The data showed that only a single bacterium, B. plebeius, grew on red wine AGP (Wi-AGP) and seaweed AGP (SW-AGP) in mono- or mixed culture. Wi-AGP thus acts as a privileged nutrient for a Bacteroides species within the HGM that utilizes marine and terrestrial plant glycans. The B. plebeius polysaccharide utilization loci (PULs) upregulated by AGPs encoded a polysaccharide lyase, located in the enzyme family GH145, which hydrolyzed Rha-Glc linkages in Wi-AGP. Further analysis of GH145 identified an enzyme with two active sites that displayed glycoside hydrolase and lyase activities, respectively, which conferred substrate flexibility for different AGPs. The AGP-degrading apparatus of B. plebeius also contained a sulfatase, BpS1_8, active on SW-AGP and Wi-AGP, which played a pivotal role in the utilization of these glycans by the bacterium. BpS1_8 enabled other Bacteroides species to access the sulfated AGPs, providing a route to introducing privileged nutrient utilization into probiotic and commensal organisms that could improve human health. IMPORTANCE Dietary manipulation of the HGM requires knowledge of how glycans available to this ecosystem are metabolized. The variable structures that decorate the core component of plant AGPs may influence their utilization by specific organisms within the HGM. Here, we evaluated the ability of Bacteroides species to utilize a marine and terrestrial AGP. The data showed that a single bacterium, B. plebeius, grew on Wi-AGP and SW-AGP in mono- or mixed culture. Wi-AGP is thus a privileged nutrient for a Bacteroides species that utilizes marine and terrestrial plant glycans. A key component of the AGP-degrading apparatus of B. plebeius is a sulfatase that conferred the ability of the bacterium to utilize these glycans. The enzyme enabled other Bacteroides species to access the sulfated AGPs, providing a route to introducing privileged nutrient utilization into probiotic and commensal organisms that could improve human health.
Collapse
|
13
|
Kondo T, Kichijo M, Maruta A, Nakaya M, Takenaka S, Arakawa T, Fushinobu S, Sakamoto T. Structural and functional analysis of gum arabic l-rhamnose-α-1,4-d-glucuronate lyase establishes a novel polysaccharide lyase family. J Biol Chem 2021; 297:101001. [PMID: 34303708 PMCID: PMC8377490 DOI: 10.1016/j.jbc.2021.101001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/24/2022] Open
Abstract
Gum arabic (GA) is widely used as an emulsion stabilizer and coating in several industrial applications, such as foods and pharmaceuticals. GA contains a complex carbohydrate moiety, and the nonreducing ends of the side chains are often capped with l-rhamnose; thus, enzymes that can remove these caps are promising tools for the structural analysis of the carbohydrates comprising GA. In this study, GA-specific l-rhamnose-α-1,4-d-glucuronate lyase from the fungus Fusarium oxysporum 12S (FoRham1) was cloned and characterized. FoRham1 showed the highest amino acid sequence similarity with enzymes belonging to the glycoside hydrolase family 145; however, the catalytic residue on the posterior pocket of the β-propeller fold protein was not conserved. The catalytic residues of FoRham1 were instead conserved with ulvan lyases belonging to polysaccharide lyase family 24. Kinetic analysis showed that FoRham1 has the highest catalytic efficiency for the substrate α-l-rhamnose-(1→4)-d-glucuronic acid. The crystal structures of ligand-free and α-l-rhamnose-(1→4)-d-glucuronic acid –bound FoRham1 were determined, and the active site was identified on the anterior side of the β-propeller. The three-dimensional structure of the active site and mutagenesis analysis revealed the detailed catalytic mechanism of FoRham1. Our findings offer a new enzymatic tool for the further analysis of the GA carbohydrate structure and for elucidating its physiological functions in plants. Based on these results, we renamed glycoside hydrolase family 145 as a new polysaccharide lyase family 42, in which FoRham1 is included.
Collapse
Affiliation(s)
- Tatsuya Kondo
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Miyu Kichijo
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Akiho Maruta
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Makoto Nakaya
- Center for Research and Development of Bioresources, Organization for Research Promotion, Osaka Prefecture University, Osaka, Japan
- Department of Nutrition, Otemae College of Nutrition and Confectionery, Osaka, Japan
| | - Shigeo Takenaka
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Osaka, Japan
| | - Takatoshi Arakawa
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Shinya Fushinobu
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Tatsuji Sakamoto
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
- For correspondence: Tatsuji Sakamoto
| |
Collapse
|
14
|
Biotransformation of the total flavonoid extract of epimedium into icaritin by two thermostable glycosidases from Dictyoglomus thermophilum DSM3960. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
15
|
Tamura K, Brumer H. Glycan utilization systems in the human gut microbiota: a gold mine for structural discoveries. Curr Opin Struct Biol 2020; 68:26-40. [PMID: 33285501 DOI: 10.1016/j.sbi.2020.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/20/2020] [Accepted: 11/01/2020] [Indexed: 12/17/2022]
Abstract
The complex glycans comprising 'dietary fiber' evade the limited repertoire of human digestive enzymes and hence feed the vast community of microbes in the lower gastrointestinal tract. As such, complex glycans drive the composition of the human gut microbiota and, in turn, influence diverse facets of our nutrition and health. To access these otherwise recalcitrant carbohydrates, gut bacteria produce coordinated, substrate-specific arsenals of carbohydrate-active enzymes, glycan-binding proteins, oligosaccharide transporters, and transcriptional regulators. A recent explosion of biochemical and enzymological studies of these systems has led to the discovery of manifold new carbohydrate-active enzyme (CAZyme) families. Crucially underpinned by structural biology, these studies have also provided unprecedented molecular insight into the exquisite specificity of glycan recognition in the diverse CAZymes and non-catalytic proteins from the HGM. The revelation of a multitude of new three-dimensional structures and substrate complexes constitutes a 'gold rush' in the structural biology of the human gut microbiota.
Collapse
Affiliation(s)
- Kazune Tamura
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada; Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| |
Collapse
|
16
|
Munoz J, James K, Bottacini F, Van Sinderen D. Biochemical analysis of cross-feeding behaviour between two common gut commensals when cultivated on plant-derived arabinogalactan. Microb Biotechnol 2020; 13:1733-1747. [PMID: 32385941 PMCID: PMC7533333 DOI: 10.1111/1751-7915.13577] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
In this paper, we reveal and characterize cross-feeding behaviour between the common gut commensal Bacteroides cellulosilyticus (Baccell) and certain bifidobacterial strains, including Bifidobacterium breve UCC2003, when grown on a medium containing Larch Wood Arabinogalactan (LW-AG). We furthermore show that cross-feeding is dependent on the release of β-1,3-galacto-di/trisaccharides (β-1,3-GOS), and identified that the bga gene cluster of B. breve UCC2003 allows β-1,3-GOS metabolism. The product of bgaB is presumed to be responsible for the import of β-1,3-GOS, while the bgaA gene product, a glycoside hydrolase family 2 member, was shown to hydrolyse both β-1,3-galactobiose and β-1,3-galactotriose into galactose monomers. This study advances our understanding of strain-specific syntrophic interactions between two glycan degraders in the human gut in the presence of AG-type dietary polysaccharides.
Collapse
Affiliation(s)
- Jose Munoz
- Microbial Enzymology GroupDepartment of Applied SciencesNorthumbria UniversityNewcastle Upon TyneNE1 8STUK
| | - Kieran James
- School of Microbiology & APC Microbiome IrelandUniversity College CorkIreland University College CorkCorkIreland
| | - Francesca Bottacini
- School of Microbiology & APC Microbiome IrelandUniversity College CorkIreland University College CorkCorkIreland
| | - Douwe Van Sinderen
- School of Microbiology & APC Microbiome IrelandUniversity College CorkIreland University College CorkCorkIreland
| |
Collapse
|
17
|
Nazzaro F, Fratianni F, De Feo V, Battistelli A, Da Cruz AG, Coppola R. Polyphenols, the new frontiers of prebiotics. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020; 94:35-89. [PMID: 32892838 DOI: 10.1016/bs.afnr.2020.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is a growing interest in the identification of molecules capable to promote health and with a concurrent potential for technological applications. Prebiotics are functional ingredients naturally occurring in some plant and animal foods that since many decades stimulated considerable attention from the pharmaceutical and food industries due to their positive health effects. Together the well-known biomolecules with ascertained prebiotic effect, in last year new molecules were finally recognized as prebiotics, so capable to improve the health of an organism, also through the positive effect exerted on host microbiota. Among the so-called prebiotics, a special mention should be given to polyphenols, probably the most important, or at least among the most important secondary metabolites produced by the vegetal kingdom. This short chapter wants to emphasize polyphenols and, after briefly describing the individual microbiome, to illustrate how polyphenols can, through their influence on the microbiome, have a positive effect on the health of the individual in general, and on some pathologies in particular, for which the role of a bad status of the individual microbiome has been definitively established.
Collapse
Affiliation(s)
| | | | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | | | - Adriano Gomes Da Cruz
- Food Department, Federal Institute of Education, Science and Technology of Rio de Janeiro, Brazil
| | - Raffaele Coppola
- Department of Agricultural, Environmental and Food Sciences, DiAAA-University of Molise, Campobasso, Italy
| |
Collapse
|
18
|
Sobala L, Speciale G, Zhu S, Raich L, Sannikova N, Thompson AJ, Hakki Z, Lu D, Shamsi Kazem Abadi S, Lewis AR, Rojas-Cervellera V, Bernardo-Seisdedos G, Zhang Y, Millet O, Jiménez-Barbero J, Bennet AJ, Sollogoub M, Rovira C, Davies GJ, Williams SJ. An Epoxide Intermediate in Glycosidase Catalysis. ACS CENTRAL SCIENCE 2020; 6:760-770. [PMID: 32490192 PMCID: PMC7256955 DOI: 10.1021/acscentsci.0c00111] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Indexed: 05/18/2023]
Abstract
Retaining glycoside hydrolases cleave their substrates through stereochemical retention at the anomeric position. Typically, this involves two-step mechanisms using either an enzymatic nucleophile via a covalent glycosyl enzyme intermediate or neighboring-group participation by a substrate-borne 2-acetamido neighboring group via an oxazoline intermediate; no enzymatic mechanism with participation of the sugar 2-hydroxyl has been reported. Here, we detail structural, computational, and kinetic evidence for neighboring-group participation by a mannose 2-hydroxyl in glycoside hydrolase family 99 endo-α-1,2-mannanases. We present a series of crystallographic snapshots of key species along the reaction coordinate: a Michaelis complex with a tetrasaccharide substrate; complexes with intermediate mimics, a sugar-shaped cyclitol β-1,2-aziridine and β-1,2-epoxide; and a product complex. The 1,2-epoxide intermediate mimic displayed hydrolytic and transfer reactivity analogous to that expected for the 1,2-anhydro sugar intermediate supporting its catalytic equivalence. Quantum mechanics/molecular mechanics modeling of the reaction coordinate predicted a reaction pathway through a 1,2-anhydro sugar via a transition state in an unusual flattened, envelope (E 3) conformation. Kinetic isotope effects (k cat/K M) for anomeric-2H and anomeric-13C support an oxocarbenium ion-like transition state, and that for C2-18O (1.052 ± 0.006) directly implicates nucleophilic participation by the C2-hydroxyl. Collectively, these data substantiate this unprecedented and long-imagined enzymatic mechanism.
Collapse
Affiliation(s)
- Lukasz
F. Sobala
- York
Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Gaetano Speciale
- School
of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Sha Zhu
- Sorbonne
Université, CNRS, Institut Parisien de Chimie Moléculaire,
UMR 8232, 4 place Jussieu, 75005 Paris, France
| | - Lluís Raich
- Departament
de Química Inorgànica
i Orgànica (Secció de Química Orgànica) &
Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí
i Franquès 1, 08028 Barcelona, Spain
| | - Natalia Sannikova
- Department
of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Andrew J. Thompson
- York
Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Zalihe Hakki
- School
of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Dan Lu
- Sorbonne
Université, CNRS, Institut Parisien de Chimie Moléculaire,
UMR 8232, 4 place Jussieu, 75005 Paris, France
| | - Saeideh Shamsi Kazem Abadi
- Department
of Biochemistry and Molecular Biology, Simon
Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Andrew R. Lewis
- Department
of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Víctor Rojas-Cervellera
- Departament
de Química Inorgànica
i Orgànica (Secció de Química Orgànica) &
Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí
i Franquès 1, 08028 Barcelona, Spain
| | - Ganeko Bernardo-Seisdedos
- Molecular
Recognition and Host−Pathogen Interactions, CIC bioGUNE, Basque Research Technology Alliance (BRTA), Bizkaia Technology Park, Building
800, 48160 Derio, Spain
| | - Yongmin Zhang
- Sorbonne
Université, CNRS, Institut Parisien de Chimie Moléculaire,
UMR 8232, 4 place Jussieu, 75005 Paris, France
| | - Oscar Millet
- Molecular
Recognition and Host−Pathogen Interactions, CIC bioGUNE, Basque Research Technology Alliance (BRTA), Bizkaia Technology Park, Building
800, 48160 Derio, Spain
| | - Jesús Jiménez-Barbero
- Ikerbasque,
Basque Foundation for Science, Marıá Dıáz de Haro 3, 48013 Bilbao, Spain
- Molecular
Recognition and Host−Pathogen Interactions, CIC bioGUNE, Basque Research Technology Alliance (BRTA), Bizkaia Technology Park, Building
800, 48160 Derio, Spain
| | - Andrew J. Bennet
- Department
of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
- Department
of Biochemistry and Molecular Biology, Simon
Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
- E-mail:
| | - Matthieu Sollogoub
- Sorbonne
Université, CNRS, Institut Parisien de Chimie Moléculaire,
UMR 8232, 4 place Jussieu, 75005 Paris, France
- E-mail:
| | - Carme Rovira
- Departament
de Química Inorgànica
i Orgànica (Secció de Química Orgànica) &
Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí
i Franquès 1, 08028 Barcelona, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys
23, 08010 Barcelona, Spain
- E-mail:
| | - Gideon J. Davies
- York
Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
- E-mail:
| | - Spencer J. Williams
- School
of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
- E-mail:
| |
Collapse
|
19
|
Vocadlo DJ. A Shut-and-Open Case: An Epoxide Intermediate Spotted in the Reaction Coordinate of a Family of Glycoside Hydrolases. ACS CENTRAL SCIENCE 2020; 6:619-621. [PMID: 32490180 PMCID: PMC7256941 DOI: 10.1021/acscentsci.0c00482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- David J. Vocadlo
- Department of
Chemistry and Department of Molecular
Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
20
|
Lopez-Santamarina A, Miranda JM, Mondragon ADC, Lamas A, Cardelle-Cobas A, Franco CM, Cepeda A. Potential Use of Marine Seaweeds as Prebiotics: A Review. Molecules 2020; 25:E1004. [PMID: 32102343 PMCID: PMC7070434 DOI: 10.3390/molecules25041004] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/28/2020] [Accepted: 02/21/2020] [Indexed: 02/06/2023] Open
Abstract
Human gut microbiota plays an important role in several metabolic processes and human diseases. Various dietary factors, including complex carbohydrates, such as polysaccharides, provide abundant nutrients and substrates for microbial metabolism in the gut, affecting the members and their functionality. Nowadays, the main sources of complex carbohydrates destined for human consumption are terrestrial plants. However, fresh water is an increasingly scarce commodity and world agricultural productivity is in a persistent decline, thus demanding the exploration of other sources of complex carbohydrates. As an interesting option, marine seaweeds show rapid growth and do not require arable land, fresh water or fertilizers. The present review offers an objective perspective of the current knowledge surrounding the impacts of seaweeds and their derived polysaccharides on the human microbiome and the profound need for more in-depth investigations into this topic. Animal experiments and in vitro colonic-simulating trials investigating the effects of seaweed ingestion on human gut microbiota are discussed.
Collapse
Affiliation(s)
| | - Jose Manuel Miranda
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.L.-S.); (A.d.C.M.); (A.L.); (A.C.-C.); (C.M.F.); (A.C.)
| | | | | | | | | | | |
Collapse
|
21
|
Rovira C, Males A, Davies GJ, Williams SJ. Mannosidase mechanism: at the intersection of conformation and catalysis. Curr Opin Struct Biol 2019; 62:79-92. [PMID: 31891872 DOI: 10.1016/j.sbi.2019.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/06/2019] [Accepted: 11/15/2019] [Indexed: 12/17/2022]
Abstract
Mannosidases are a diverse group of enzymes that are important in the biological processing of mannose-containing polysaccharides and complex glycoconjugates. They are found in 12 of the >160 sequence-based glycosidase families. We discuss evidence that nature has evolved a small set of common mechanisms that unite almost all of these mannosidase families. Broadly, mannosidases (and the closely related rhamnosidases) perform catalysis through just two conformations of the oxocarbenium ion-like transition state: a B2,5 (or enantiomeric 2,5B) boat and a 3H4 half-chair. This extends to a new family (GT108) of GDPMan-dependent β-1,2-mannosyltransferases/phosphorylases that perform mannosyl transfer through a boat conformation as well as some mannosidases that are metalloenzymes and require divalent cations for catalysis. Yet, among this commonality lies diversity. New evidence shows that one unique family (GH99) of mannosidases use an unusual mechanism involving anchimeric assistance via a 1,2-anhydro sugar (epoxide) intermediate.
Collapse
Affiliation(s)
- Carme Rovira
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| | - Alexandra Males
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Gideon J Davies
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Spencer J Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
22
|
Garron ML, Henrissat B. The continuing expansion of CAZymes and their families. Curr Opin Chem Biol 2019; 53:82-87. [PMID: 31550558 DOI: 10.1016/j.cbpa.2019.08.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/17/2019] [Accepted: 08/14/2019] [Indexed: 12/15/2022]
Abstract
Carbohydrate-active enzymes (CAZymes) catalyze the assembly and breakdown of glycans and glycoconjugates. Some have been discovered, studied and exploited for numerous applications long ago. For instance, amylase and invertase were isolated in the second half of the 19th century and lysozyme was the first enzyme whose 3-D structure was determined. In spite of this early start, the number of families of carbohydrate-active enzymes continues to grow steadily in the early 21st century. This review examines the CAZyme families reported during the last two years and posits that the current expansion will continue in the future, progressively uncovering the massive diversity of glycans whose breakdown requires a large diversity of bespoke enzymes.
Collapse
Affiliation(s)
- Marie-Line Garron
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Université Aix-Marseille, 163 Avenue de Luminy, 13288, Marseille, France; INRA, USC 1408 AFMB, 13288, Marseille, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Université Aix-Marseille, 163 Avenue de Luminy, 13288, Marseille, France; INRA, USC 1408 AFMB, 13288, Marseille, France.
| |
Collapse
|
23
|
Chao L, Jongkees S. High-Throughput Approaches in Carbohydrate-Active Enzymology: Glycosidase and Glycosyl Transferase Inhibitors, Evolution, and Discovery. Angew Chem Int Ed Engl 2019; 58:12750-12760. [PMID: 30913359 PMCID: PMC6771893 DOI: 10.1002/anie.201900055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/05/2019] [Indexed: 01/13/2023]
Abstract
Carbohydrates are attached and removed in living systems through the action of carbohydrate-active enzymes such as glycosyl transferases and glycoside hydrolases. The molecules resulting from these enzymes have many important roles in organisms, such as cellular communication, structural support, and energy metabolism. In general, each carbohydrate transformation requires a separate catalyst, and so these enzyme families are extremely diverse. To make this diversity manageable, high-throughput approaches look at many enzymes at once. Similarly, high-throughput approaches can be a powerful way of finding inhibitors that can be used to tune the reactivity of these enzymes, either in an industrial, a laboratory, or a medicinal setting. In this review, we provide an overview of how these enzymes and inhibitors can be sought using techniques such as high-throughput natural product and combinatorial library screening, phage and mRNA display of (glyco)peptides, fluorescence-activated cell sorting, and metagenomics.
Collapse
Affiliation(s)
- Lemeng Chao
- Department of Chemical Biology and Drug DiscoveryUtrecht Institute for Pharmaceutical SciencesUtrecht UniversityUniversiteitsweg 993581AGUtrechtThe Netherlands
| | - Seino Jongkees
- Department of Chemical Biology and Drug DiscoveryUtrecht Institute for Pharmaceutical SciencesUtrecht UniversityUniversiteitsweg 993581AGUtrechtThe Netherlands
| |
Collapse
|
24
|
Kaus K, Biester A, Chupp E, Lu J, Visudharomn C, Olson R. The 1.9 Å crystal structure of the extracellular matrix protein Bap1 from Vibrio cholerae provides insights into bacterial biofilm adhesion. J Biol Chem 2019; 294:14499-14511. [PMID: 31439670 DOI: 10.1074/jbc.ra119.008335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/16/2019] [Indexed: 01/09/2023] Open
Abstract
Growth of the cholera bacterium Vibrio cholerae in a biofilm community contributes to both its pathogenicity and survival in aquatic environmental niches. The major components of V. cholerae biofilms include Vibrio polysaccharide (VPS) and the extracellular matrix proteins RbmA, RbmC, and Bap1. To further elucidate the previously observed overlapping roles of Bap1 and RbmC in biofilm architecture and surface attachment, here we investigated the structural and functional properties of Bap1. Soluble expression of Bap1 was possible only after the removal of an internal 57-amino-acid-long hydrophobic insertion sequence. The crystal structure of Bap1 at 1.9 Å resolution revealed a two-domain assembly made up of an eight-bladed β-propeller interrupted by a β-prism domain. The structure also revealed metal-binding sites within canonical calcium blade motifs, which appear to have structural rather than functional roles. Contrary to results previously observed with RbmC, the Bap1 β-prism domain did not exhibit affinity for complex N-glycans, suggesting an altered role of this domain in biofilm-surface adhesion. Native polyacrylamide gel shift analysis did suggest that Bap1 exhibits lectin activity with a preference for anionic or linear polysaccharides. Our results suggest a model for V. cholerae biofilms in which Bap1 and RbmC play dominant but differing adhesive roles in biofilms, allowing bacterial attachment to diverse environmental or host surfaces.
Collapse
Affiliation(s)
- Katherine Kaus
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459
| | - Alison Biester
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459
| | - Ethan Chupp
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459
| | - Jianyi Lu
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459
| | - Charlie Visudharomn
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459
| | - Rich Olson
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459
| |
Collapse
|
25
|
Terrapon N, Lombard V, Drula É, Lapébie P, Al-Masaudi S, Gilbert HJ, Henrissat B. PULDB: the expanded database of Polysaccharide Utilization Loci. Nucleic Acids Res 2019; 46:D677-D683. [PMID: 29088389 PMCID: PMC5753385 DOI: 10.1093/nar/gkx1022] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 10/25/2017] [Indexed: 12/12/2022] Open
Abstract
The Polysaccharide Utilization Loci (PUL) database was launched in 2015 to present PUL predictions in ∼70 Bacteroidetes species isolated from the human gastrointestinal tract, as well as PULs derived from the experimental data reported in the literature. In 2018 PULDB offers access to 820 genomes, sampled from various environments and covering a much wider taxonomical range. A Krona dynamic chart was set up to facilitate browsing through taxonomy. Literature surveys now allows the presentation of the most recent (i) PUL repertoires deduced from RNAseq large-scale experiments, (ii) PULs that have been subjected to in-depth biochemical analysis and (iii) new Carbohydrate-Active enzyme (CAZyme) families that contributed to the refinement of PUL predictions. To improve PUL visualization and genome browsing, the previous annotation of genes encoding CAZymes, regulators, integrases and SusCD has now been expanded to include functionally relevant protein families whose genes are significantly found in the vicinity of PULs: sulfatases, proteases, ROK repressors, epimerases and ATP-Binding Cassette and Major Facilitator Superfamily transporters. To cope with cases where susCD may be absent due to incomplete assemblies/split PULs, we present ‘CAZyme cluster’ predictions. Finally, a PUL alignment tool, operating on the tagged families instead of amino-acid sequences, was integrated to retrieve PULs similar to a query of interest. The updated PULDB website is accessible at www.cazy.org/PULDB_new/
Collapse
Affiliation(s)
- Nicolas Terrapon
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, F-13288 Marseille, France.,USC1408 Architecture et Fonction des Macromolécules Biologiques, Institut National de la Recherche Agronomique, F-13288 Marseille, France
| | - Vincent Lombard
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, F-13288 Marseille, France.,USC1408 Architecture et Fonction des Macromolécules Biologiques, Institut National de la Recherche Agronomique, F-13288 Marseille, France
| | - Élodie Drula
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, F-13288 Marseille, France.,USC1408 Architecture et Fonction des Macromolécules Biologiques, Institut National de la Recherche Agronomique, F-13288 Marseille, France
| | - Pascal Lapébie
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, F-13288 Marseille, France.,USC1408 Architecture et Fonction des Macromolécules Biologiques, Institut National de la Recherche Agronomique, F-13288 Marseille, France
| | - Saad Al-Masaudi
- Department of Biological Sciences, King Abdulaziz University, 23218 Jeddah, Saudi Arabia
| | - Harry J Gilbert
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, F-13288 Marseille, France.,USC1408 Architecture et Fonction des Macromolécules Biologiques, Institut National de la Recherche Agronomique, F-13288 Marseille, France.,Department of Biological Sciences, King Abdulaziz University, 23218 Jeddah, Saudi Arabia
| |
Collapse
|
26
|
Fujita K, Sasaki Y, Kitahara K. Degradation of plant arabinogalactan proteins by intestinal bacteria: characteristics and functions of the enzymes involved. Appl Microbiol Biotechnol 2019; 103:7451-7457. [PMID: 31384991 DOI: 10.1007/s00253-019-10049-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/18/2019] [Accepted: 07/23/2019] [Indexed: 10/26/2022]
Abstract
Arabinogalactan proteins (AGPs) are complex plant proteoglycans that function as dietary fiber utilized by human intestinal bacteria such as Bifidobacterium and Bacteroides species. However, the degradative mechanism is unknown because of the complexity of sugar chains of AGPs as well as variation among plant species and organs. Recently, AGP degradative enzymes have been characterized in Bifidobacterium and Bacteroides species. In this review, we summarize the characteristics and functions of AGP degradative enzymes in human intestinal bacteria.
Collapse
Affiliation(s)
- Kiyotaka Fujita
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan. .,The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan.
| | - Yuki Sasaki
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan
| | - Kanefumi Kitahara
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan.,The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan
| |
Collapse
|
27
|
Chao L, Jongkees S. High‐Throughput Approaches in Carbohydrate‐Active Enzymology: Glycosidase and Glycosyl Transferase Inhibitors, Evolution, and Discovery. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Lemeng Chao
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical Sciences Utrecht University Universiteitsweg 99 3581AG Utrecht The Netherlands
| | - Seino Jongkees
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical Sciences Utrecht University Universiteitsweg 99 3581AG Utrecht The Netherlands
| |
Collapse
|
28
|
Cherry P, Yadav S, Strain CR, Allsopp PJ, McSorley EM, Ross RP, Stanton C. Prebiotics from Seaweeds: An Ocean of Opportunity? Mar Drugs 2019; 17:E327. [PMID: 31159359 PMCID: PMC6627129 DOI: 10.3390/md17060327] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 02/07/2023] Open
Abstract
Seaweeds are an underexploited and potentially sustainable crop which offer a rich source of bioactive compounds, including novel complex polysaccharides, polyphenols, fatty acids, and carotenoids. The purported efficacies of these phytochemicals have led to potential functional food and nutraceutical applications which aim to protect against cardiometabolic and inflammatory risk factors associated with non-communicable diseases, such as obesity, type 2 diabetes, metabolic syndrome, cardiovascular disease, inflammatory bowel disease, and some cancers. Concurrent understanding that perturbations of gut microbial composition and metabolic function manifest throughout health and disease has led to dietary strategies, such as prebiotics, which exploit the diet-host-microbe paradigm to modulate the gut microbiota, such that host health is maintained or improved. The prebiotic definition was recently updated to "a substrate that is selectively utilised by host microorganisms conferring a health benefit", which, given that previous discussion regarding seaweed prebiotics has focused upon saccharolytic fermentation, an opportunity is presented to explore how non-complex polysaccharide components from seaweeds may be metabolised by host microbial populations to benefit host health. Thus, this review provides an innovative approach to consider how the gut microbiota may utilise seaweed phytochemicals, such as polyphenols, polyunsaturated fatty acids, and carotenoids, and provides an updated discussion regarding the catabolism of seaweed-derived complex polysaccharides with potential prebiotic activity. Additional in vitro screening studies and in vivo animal studies are needed to identify potential prebiotics from seaweeds, alongside untargeted metabolomics to decipher microbial-derived metabolites from seaweeds. Furthermore, controlled human intervention studies with health-related end points to elucidate prebiotic efficacy are required.
Collapse
Affiliation(s)
- Paul Cherry
- Nutrition Innovation Centre for Food and Health, Ulster University, Cromore Road, Coleraine, Co. Londonderry BT52 1SA, UK.
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland.
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
| | - Supriya Yadav
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland.
| | - Conall R Strain
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland.
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
| | - Philip J Allsopp
- Nutrition Innovation Centre for Food and Health, Ulster University, Cromore Road, Coleraine, Co. Londonderry BT52 1SA, UK.
| | - Emeir M McSorley
- Nutrition Innovation Centre for Food and Health, Ulster University, Cromore Road, Coleraine, Co. Londonderry BT52 1SA, UK.
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- College of Science, Engineering and Food Science, University College Cork, Cork T12 K8AF, Ireland.
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland.
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
| |
Collapse
|
29
|
Tanaka N, Nakajima M, Narukawa-Nara M, Matsunaga H, Kamisuki S, Aramasa H, Takahashi Y, Sugimoto N, Abe K, Terada T, Miyanaga A, Yamashita T, Sugawara F, Kamakura T, Komba S, Nakai H, Taguchi H. Identification, characterization, and structural analyses of a fungal endo-β-1,2-glucanase reveal a new glycoside hydrolase family. J Biol Chem 2019; 294:7942-7965. [PMID: 30926603 DOI: 10.1074/jbc.ra118.007087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/20/2019] [Indexed: 11/06/2022] Open
Abstract
endo-β-1,2-Glucanase (SGL) is an enzyme that hydrolyzes β-1,2-glucans, which play important physiological roles in some bacteria as a cyclic form. To date, no eukaryotic SGL has been identified. We purified an SGL from Talaromyces funiculosus (TfSGL), a soil fungus, to homogeneity and then cloned the complementary DNA encoding the enzyme. TfSGL shows no significant sequence similarity to any known glycoside hydrolase (GH) families, but shows significant similarity to certain eukaryotic proteins with unknown functions. The recombinant TfSGL (TfSGLr) specifically hydrolyzed linear and cyclic β-1,2-glucans to sophorose (Glc-β-1,2-Glc) as a main product. TfSGLr hydrolyzed reducing-end-modified β-1,2-gluco-oligosaccharides to release a sophoroside with the modified moiety. These results indicate that TfSGL is an endo-type enzyme that preferably releases sophorose from the reducing end of substrates. Stereochemical analysis demonstrated that TfSGL is an inverting enzyme. The overall structure of TfSGLr includes an (α/α)6 toroid fold. The substrate-binding mode was revealed by the structure of a Michaelis complex of an inactive TfSGLr mutant with a β-1,2-glucoheptasaccharide. Mutational analysis and action pattern analysis of β-1,2-gluco-oligosaccharide derivatives revealed an unprecedented catalytic mechanism for substrate hydrolysis. Glu-262 (general acid) indirectly protonates the anomeric oxygen at subsite -1 via the 3-hydroxy group of the Glc moiety at subsite +2, and Asp-446 (general base) activates the nucleophilic water via another water. TfSGLr is apparently different from a GH144 SGL in the reaction and substrate recognition mechanism based on structural comparison. Overall, we propose that TfSGL and closely-related enzymes can be classified into a new family, GH162.
Collapse
Affiliation(s)
- Nobukiyo Tanaka
- From the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510
| | - Masahiro Nakajima
- From the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510,
| | - Megumi Narukawa-Nara
- From the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510
| | - Hiroki Matsunaga
- From the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510
| | - Shinji Kamisuki
- From the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510.,the School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201
| | - Hiroki Aramasa
- the Faculty of Agriculture, Niigata University, Niigata 950-2181
| | - Yuta Takahashi
- the Faculty of Agriculture, Niigata University, Niigata 950-2181
| | - Naohisa Sugimoto
- the Faculty of Agriculture, Niigata University, Niigata 950-2181
| | - Koichi Abe
- From the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510.,the Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657
| | - Tohru Terada
- the Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657
| | - Akimasa Miyanaga
- the Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551
| | | | - Fumio Sugawara
- From the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510
| | - Takashi Kamakura
- From the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510
| | - Shiro Komba
- the Food Component Analysis Unit, Food Research Institute, National Agriculture and Food Research Organization, 2-1-12, Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Hiroyuki Nakai
- the Faculty of Agriculture, Niigata University, Niigata 950-2181
| | - Hayao Taguchi
- From the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510
| |
Collapse
|
30
|
Tomás-Barberán FA, Espín JC. Effect of Food Structure and Processing on (Poly)phenol-Gut Microbiota Interactions and the Effects on Human Health. Annu Rev Food Sci Technol 2019; 10:221-238. [PMID: 30633563 DOI: 10.1146/annurev-food-032818-121615] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The two-way interaction of food (poly)phenols with the human gut microbiota has been studied throughout the past ten years. Research has shown that this interaction can be relevant to explain the health effects of these phytochemicals. The effect of the food matrix and food processing on this interaction has only been partially studied. In this article, the studies within this field have been critically reviewed, with a special focus on the following groups of phenolic metabolites: citrus flavanones, pomegranate ellagitannins, and cocoa proanthocyanidins. The available research shows that both the food matrix and food processing can be relevant factors for gut microbiota reshaping to reach a healthier microbial ecology and for the conversion of polyphenols to bioactive and bioavailable metabolites. There are, however, some research gaps that indicate a more comprehensive research approach is needed to reach valid conclusions regarding the gut microbiota-mediated effects of polyphenols on human health.
Collapse
Affiliation(s)
| | - Juan C Espín
- Food and Health Laboratory, CEBAS-CSIC, Espinardo, Murcia 30100, Spain;
| |
Collapse
|
31
|
Ndeh D, Gilbert HJ. Biochemistry of complex glycan depolymerisation by the human gut microbiota. FEMS Microbiol Rev 2018; 42:146-164. [PMID: 29325042 DOI: 10.1093/femsre/fuy002] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/06/2018] [Indexed: 12/21/2022] Open
Abstract
The human gut microbiota (HGM) makes an important contribution to health and disease. It is a complex microbial community of trillions of microbes with a majority of its members represented within two phyla, the Bacteroidetes and Firmicutes, although it also contains species of Actinobacteria and Proteobacteria. Reflecting its importance, the HGM is sometimes referred to as an 'organ' as it performs functions analogous to systemic tissues within the human host. The major nutrients available to the HGM are host and dietary complex carbohydrates. To utilise these nutrient sources, the HGM has developed elaborate, variable and sophisticated systems for the sensing, capture and utilisation of these glycans. Understanding nutrient acquisition by the HGM can thus provide mechanistic insights into the dynamics of this ecosystem, and how it impacts human health. Dietary nutrient sources include a wide variety of simple and complex plant and animal-derived glycans most of which are not degraded by enzymes in the digestive tract of the host. Here we review how various adaptive mechanisms that operate across the major phyla of the HGM contribute to glycan utilisation, focusing on the most complex carbohydrates presented to this ecosystem.
Collapse
Affiliation(s)
- Didier Ndeh
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Harry J Gilbert
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
32
|
Bissaro B, Várnai A, Røhr ÅK, Eijsink VGH. Oxidoreductases and Reactive Oxygen Species in Conversion of Lignocellulosic Biomass. Microbiol Mol Biol Rev 2018; 82:e00029-18. [PMID: 30257993 PMCID: PMC6298611 DOI: 10.1128/mmbr.00029-18] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Biomass constitutes an appealing alternative to fossil resources for the production of materials and energy. The abundance and attractiveness of vegetal biomass come along with challenges pertaining to the intricacy of its structure, evolved during billions of years to face and resist abiotic and biotic attacks. To achieve the daunting goal of plant cell wall decomposition, microorganisms have developed many (enzymatic) strategies, from which we seek inspiration to develop biotechnological processes. A major breakthrough in the field has been the discovery of enzymes today known as lytic polysaccharide monooxygenases (LPMOs), which, by catalyzing the oxidative cleavage of recalcitrant polysaccharides, allow canonical hydrolytic enzymes to depolymerize the biomass more efficiently. Very recently, it has been shown that LPMOs are not classical monooxygenases in that they can also use hydrogen peroxide (H2O2) as an oxidant. This discovery calls for a revision of our understanding of how lignocellulolytic enzymes are connected since H2O2 is produced and used by several of them. The first part of this review is dedicated to the LPMO paradigm, describing knowns, unknowns, and uncertainties. We then present different lignocellulolytic redox systems, enzymatic or not, that depend on fluxes of reactive oxygen species (ROS). Based on an assessment of these putatively interconnected systems, we suggest that fine-tuning of H2O2 levels and proximity between sites of H2O2 production and consumption are important for fungal biomass conversion. In the last part of this review, we discuss how our evolving understanding of redox processes involved in biomass depolymerization may translate into industrial applications.
Collapse
Affiliation(s)
- Bastien Bissaro
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Åsmund K Røhr
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| |
Collapse
|
33
|
Cartmell A, Muñoz-Muñoz J, Briggs JA, Ndeh DA, Lowe EC, Baslé A, Terrapon N, Stott K, Heunis T, Gray J, Yu L, Dupree P, Fernandes PZ, Shah S, Williams SJ, Labourel A, Trost M, Henrissat B, Gilbert HJ. A surface endogalactanase in Bacteroides thetaiotaomicron confers keystone status for arabinogalactan degradation. Nat Microbiol 2018; 3:1314-1326. [PMID: 30349080 PMCID: PMC6217937 DOI: 10.1038/s41564-018-0258-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 08/30/2018] [Indexed: 12/24/2022]
Abstract
Glycans are major nutrients for the human gut microbiota (HGM). Arabinogalactan proteins (AGPs) comprise a heterogenous group of plant glycans in which a β1,3-galactan backbone and β1,6-galactan side chains are conserved. Diversity is provided by the variable nature of the sugars that decorate the galactans. The mechanisms by which nutritionally relevant AGPs are degraded in the HGM are poorly understood. Here we explore how the HGM organism Bacteroides thetaiotaomicron metabolizes AGPs. We propose a sequential degradative model in which exo-acting glycoside hydrolase (GH) family 43 β1,3-galactanases release the side chains. These oligosaccharide side chains are depolymerized by the synergistic action of exo-acting enzymes in which catalytic interactions are dependent on whether degradation is initiated by a lyase or GH. We identified two GHs that establish two previously undiscovered GH families. The crystal structures of the exo-β1,3-galactanases identified a key specificity determinant and departure from the canonical catalytic apparatus of GH43 enzymes. Growth studies of Bacteroidetes spp. on complex AGP revealed 3 keystone organisms that facilitated utilization of the glycan by 17 recipient bacteria, which included B. thetaiotaomicron. A surface endo-β1,3-galactanase, when engineered into B. thetaiotaomicron, enabled the bacterium to utilize complex AGPs and act as a keystone organism.
Collapse
Affiliation(s)
- Alan Cartmell
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Jose Muñoz-Muñoz
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Jonathon A Briggs
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Didier A Ndeh
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Elisabeth C Lowe
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Arnaud Baslé
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Nicolas Terrapon
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Aix-Marseille University, Marseille, France
- INRA, USC 1408 AFMB, Marseille, France
| | - Katherine Stott
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Tiaan Heunis
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Joe Gray
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Li Yu
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Pearl Z Fernandes
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Sayali Shah
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Spencer J Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Aurore Labourel
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Matthias Trost
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Aix-Marseille University, Marseille, France
- INRA, USC 1408 AFMB, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Harry J Gilbert
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
34
|
Luis AS, Martens EC. Interrogating gut bacterial genomes for discovery of novel carbohydrate degrading enzymes. Curr Opin Chem Biol 2018; 47:126-133. [PMID: 30326425 DOI: 10.1016/j.cbpa.2018.09.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/16/2018] [Accepted: 09/10/2018] [Indexed: 01/07/2023]
Abstract
Individual human gut bacteria often encode hundreds of enzymes for degrading different polysaccharides. Identification of co-localized and co-regulated genes in these bacteria has been a successful approach to identify enzymes that participate in full or partial saccharification of complex carbohydrates, often unmasking novel catalytic activities. Here, we review recent studies that have led to the discovery of new activities from gut bacteria and summarize a general scheme for identifying gut bacteria with novel catalytic abilities, locating the enzymes involved and investigating their activities in detail. The strength of this approach is amplified by the availability of abundant genomic and metagenomic data for the human gut microbiome, which facilitates comparative approaches to mine existing data for new or orthologous enzymes.
Collapse
Affiliation(s)
- Ana S Luis
- University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Eric C Martens
- University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
35
|
Vickers C, Liu F, Abe K, Salama-Alber O, Jenkins M, Springate CMK, Burke JE, Withers SG, Boraston AB. Endo-fucoidan hydrolases from glycoside hydrolase family 107 (GH107) display structural and mechanistic similarities to α-l-fucosidases from GH29. J Biol Chem 2018; 293:18296-18308. [PMID: 30282808 DOI: 10.1074/jbc.ra118.005134] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/25/2018] [Indexed: 11/06/2022] Open
Abstract
Fucoidans are chemically complex and highly heterogeneous sulfated marine fucans from brown macro algae. Possessing a variety of physicochemical and biological activities, fucoidans are used as gelling and thickening agents in the food industry and have anticoagulant, antiviral, antitumor, antibacterial, and immune activities. Although fucoidan-depolymerizing enzymes have been identified, the molecular basis of their activity on these chemically complex polysaccharides remains largely uninvestigated. In this study, we focused on three glycoside hydrolase family 107 (GH107) enzymes: MfFcnA and two newly identified members, P5AFcnA and P19DFcnA, from a bacterial species of the genus Psychromonas Using carbohydrate-PAGE, we show that P5AFcnA and P19DFcnA are active on fucoidans that differ from those depolymerized by MfFcnA, revealing differential substrate specificity within the GH107 family. Using a combination of X-ray crystallography and NMR analyses, we further show that GH107 family enzymes share features of their structures and catalytic mechanisms with GH29 α-l-fucosidases. However, we found that GH107 enzymes have the distinction of utilizing a histidine side chain as the proposed acid/base catalyst in its retaining mechanism. Further interpretation of the structural data indicated that the active-site architectures within this family are highly variable, likely reflecting the specificity of GH107 enzymes for different fucoidan substructures. Together, these findings begin to illuminate the molecular details underpinning the biological processing of fucoidans.
Collapse
Affiliation(s)
- Chelsea Vickers
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia 8W 3P6, Canada
| | - Feng Liu
- the Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada, and
| | - Kento Abe
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia 8W 3P6, Canada
| | - Orly Salama-Alber
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia 8W 3P6, Canada
| | - Meredith Jenkins
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia 8W 3P6, Canada
| | | | - John E Burke
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia 8W 3P6, Canada
| | - Stephen G Withers
- the Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada, and
| | - Alisdair B Boraston
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia 8W 3P6, Canada,.
| |
Collapse
|
36
|
Davidi D, Longo LM, Jabłońska J, Milo R, Tawfik DS. A Bird’s-Eye View of Enzyme Evolution: Chemical, Physicochemical, and Physiological Considerations. Chem Rev 2018; 118:8786-8797. [DOI: 10.1021/acs.chemrev.8b00039] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Fernandes PZ, Petricevic M, Sobala L, Davies GJ, Williams SJ. Exploration of Strategies for Mechanism-Based Inhibitor Design for Family GH99 endo-α-1,2-Mannanases. Chemistry 2018; 24:7464-7473. [PMID: 29508463 PMCID: PMC6001782 DOI: 10.1002/chem.201800435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Indexed: 11/06/2022]
Abstract
endo-α-1,2-Mannosidases and -mannanases, members of glycoside hydrolase family 99 (GH99), cleave α-Glc/Man-1,3-α-Man-OR structures within mammalian N-linked glycans and fungal α-mannan, respectively. They are proposed to act through a two-step mechanism involving a 1,2-anhydrosugar "epoxide" intermediate incorporating two conserved catalytic carboxylates. In the first step, one carboxylate acts as a general base to deprotonate the 2-hydroxy group adjacent to the fissile glycosidic bond, and the other provides general acid assistance to the departure of the aglycon. We report herein the synthesis of two inhibitors designed to interact with either the general base (α-mannosyl-1,3-(2-aminodeoxymannojirimycin), Man2NH2 DMJ) or the general acid (α-mannosyl-1,3-mannoimidazole, ManManIm). Modest affinities were observed for an endo-α-1,2-mannanase from Bacteroides thetaiotaomicron. Structural studies revealed that Man2NH2 DMJ binds like other iminosugar inhibitors, which suggests that the poor inhibition shown by this compound is not a result of a failure to achieve the expected interaction with the general base, but rather the reduction in basicity of the endocyclic nitrogen caused by introduction of a vicinal, protonated amine at C2. ManManIm binds with the imidazole headgroup distorted downwards, a result of an unfavourable interaction with a conserved active site tyrosine. This study has identified important limitations associated with mechanism-inspired inhibitor design for GH99 enzymes.
Collapse
Affiliation(s)
- Pearl Z. Fernandes
- School of ChemistryBio21 Molecular Science and Biotechnology InstituteUniversity of MelbourneParkvilleVic3010Australia
| | - Marija Petricevic
- School of ChemistryBio21 Molecular Science and Biotechnology InstituteUniversity of MelbourneParkvilleVic3010Australia
| | - Lukasz Sobala
- York Structural Biology LaboratoryDepartment of ChemistryUniversity of YorkHeslingtonYO10 5DDUK
| | - Gideon J. Davies
- York Structural Biology LaboratoryDepartment of ChemistryUniversity of YorkHeslingtonYO10 5DDUK
| | - Spencer J. Williams
- School of ChemistryBio21 Molecular Science and Biotechnology InstituteUniversity of MelbourneParkvilleVic3010Australia
| |
Collapse
|
38
|
Ten years of CAZypedia: a living encyclopedia of carbohydrate-active enzymes. Glycobiology 2017; 28:3-8. [DOI: 10.1093/glycob/cwx089] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/06/2017] [Indexed: 12/22/2022] Open
|
39
|
Munoz-Munoz J, Cartmell A, Terrapon N, Baslé A, Henrissat B, Gilbert HJ. An evolutionarily distinct family of polysaccharide lyases removes rhamnose capping of complex arabinogalactan proteins. J Biol Chem 2017. [PMID: 28637865 DOI: 10.1074/jbc.m117.794578] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human gut microbiota utilizes complex carbohydrates as major nutrients. The requirement for efficient glycan degrading systems exerts a major selection pressure on this microbial community. Thus, we propose that this microbial ecosystem represents a substantial resource for discovering novel carbohydrate active enzymes. To test this hypothesis we screened the potential enzymatic functions of hypothetical proteins encoded by genes of Bacteroides thetaiotaomicron that were up-regulated by arabinogalactan proteins or AGPs. Although AGPs are ubiquitous in plants, there is a paucity of information on their detailed structure, the function of these glycans in planta, and the mechanisms by which they are depolymerized in microbial ecosystems. Here we have discovered a new polysaccharide lyase family that is specific for the l-rhamnose-α1,4-d-glucuronic acid linkage that caps the side chains of complex AGPs. The reaction product generated by the lyase, Δ4,5-unsaturated uronic acid, is removed from AGP by a glycoside hydrolase located in family GH105, producing the final product 4-deoxy-β-l-threo-hex-4-enepyranosyl-uronic acid. The crystal structure of a member of the novel lyase family revealed a catalytic domain that displays an (α/α)6 barrel-fold. In the center of the barrel is a deep pocket, which, based on mutagenesis data and amino acid conservation, comprises the active site of the lyase. A tyrosine is the proposed catalytic base in the β-elimination reaction. This study illustrates how highly complex glycans can be used as a scaffold to discover new enzyme families within microbial ecosystems where carbohydrate metabolism is a major evolutionary driver.
Collapse
Affiliation(s)
- José Munoz-Munoz
- From the Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Alan Cartmell
- From the Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Nicolas Terrapon
- the Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille University, F-13288 Marseille, France
| | - Arnaud Baslé
- From the Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Bernard Henrissat
- the Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille University, F-13288 Marseille, France.,the USC1408 Architecture et Fonction des Macromolécules Biologiques, Institut National de la Recherche Agronomique, F-13288 Marseille, France, and.,the Department of Biological Sciences, King Abdulaziz University, 23218 Jeddah, Saudi Arabia
| | - Harry J Gilbert
- From the Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom,
| |
Collapse
|
40
|
Czjzek M, Michel G. Innovating glycoside hydrolase activity on a same structural scaffold. Proc Natl Acad Sci U S A 2017; 114:4857-4859. [PMID: 28465442 PMCID: PMC5441738 DOI: 10.1073/pnas.1704802114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Mirjam Czjzek
- Laboratory for Integrative Biology of Marine Models, Station Biologique, Sorbonne University, Université Pierre et Marie Curie, 29688 Roscoff, France;
- Laboratory for Integrative Biology of Marine Models, UMR8227, CNRS, 29688 Roscoff, France
| | - Gurvan Michel
- Laboratory for Integrative Biology of Marine Models, Station Biologique, Sorbonne University, Université Pierre et Marie Curie, 29688 Roscoff, France
- Laboratory for Integrative Biology of Marine Models, UMR8227, CNRS, 29688 Roscoff, France
| |
Collapse
|