1
|
Li Q, Chen G, Yan J. Transmembrane determinants of voltage-gating differences between BK (Slo1) and Slo3 channels. Biophys J 2024; 123:2154-2166. [PMID: 38637987 PMCID: PMC11309983 DOI: 10.1016/j.bpj.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/01/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
Voltage-gated potassium channels are critical in modulating cellular excitability, with Slo (slowpoke) channels forming a unique family characterized by their large conductance and dual regulation by electrical signals and intracellular messengers. Despite their structural and evolutionary similarities, Slo1 and Slo3 channels exhibit significant differences in their voltage-gating properties. This study investigates the molecular determinants that differentiate the voltage-gating properties of human Slo1 and mouse Slo3 channels. Utilizing Slo1/Slo3 chimeras, we pinpointed the selectivity filter region as a key factor in the Slo3 channel's reduced conductance at negative voltages. The S6 transmembrane (TM) segment was identified as pivotal for the Slo3 channel's biphasic deactivation kinetics at these voltages. Additionally, the S4 and S6 TM segments were found to be responsible for the gradual slope in the Slo3 channel's conductance-voltage relationship, while multiple TM regions appear to be involved in the Slo3 channel's requirement of strong depolarization for activation. Mutations in the Slo1's S5 and S6 TM segments revealed three residues (I233, L302, and M304) that likely play a crucial role in the allosteric coupling between the voltage sensors and the pore gate.
Collapse
Affiliation(s)
- Qin Li
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas; Molecular & Translational Biology and Neuroscience Programs, MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, Texas
| | - Guanxing Chen
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas; Molecular & Translational Biology and Neuroscience Programs, MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, Texas
| | - Jiusheng Yan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas; Molecular & Translational Biology and Neuroscience Programs, MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, Texas.
| |
Collapse
|
2
|
Chen G, Li Q, Webb TI, Hollywood MA, Yan J. BK channel modulation by positively charged peptides and auxiliary γ subunits mediated by the Ca2+-bowl site. J Gen Physiol 2023; 155:e202213237. [PMID: 37130264 PMCID: PMC10163825 DOI: 10.1085/jgp.202213237] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 01/12/2023] [Accepted: 04/13/2023] [Indexed: 05/04/2023] Open
Abstract
The large-conductance, Ca2+-, and voltage-activated K+ (BK) channel consists of the pore-forming α (BKα) subunit and regulatory β and γ subunits. The γ1-3 subunits facilitate BK channel activation by shifting the voltage-dependence of channel activation toward the hyperpolarization direction by about 50-150 mV in the absence of Ca2+. We previously found that the intracellular C-terminal positively charged regions of the γ subunits play important roles in BK channel modulation. In this study, we found that the intracellular C-terminal region of BKα is indispensable in BK channel modulation by the γ1 subunit. Notably, synthetic peptide mimics of the γ1-3 subunits' C-terminal positively charged regions caused 30-50 mV shifts in BKα channel voltage-gating toward the hyperpolarization direction. The cationic cell-penetrating HIV-1 Tat peptide exerted a similar BK channel-activating effect. The BK channel-activating effects of the synthetic peptides were reduced in the presence of Ca2+ and markedly ablated by both charge neutralization of the Ca2+-bowl site and high ionic strength, suggesting the involvement of electrostatic interactions. The efficacy of the γ subunits in BK channel modulation was reduced by charge neutralization of the Ca2+-bowl site. However, BK channel modulation by the γ1 subunit was little affected by high ionic strength and the positively charged peptide remained effective in BK channel modulation in the presence of the γ1 subunit. These findings identify positively charged peptides as BK channel modulators and reveal a role for the Ca2+-bowl site in BK channel modulation by positively charged peptides and the C-terminal positively charged regions of auxiliary γ subunits.
Collapse
Affiliation(s)
- Guanxing Chen
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qin Li
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy I. Webb
- The Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Mark A. Hollywood
- The Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Jiusheng Yan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Neuroscience and Biochemistry and Cell Biology Graduate Programs, MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
3
|
Delcroix V, Mauduit O, Lee HS, Ivanova A, Umazume T, Knox SM, de Paiva CS, Dartt DA, Makarenkova HP. The First Transcriptomic Atlas of the Adult Lacrimal Gland Reveals Epithelial Complexity and Identifies Novel Progenitor Cells in Mice. Cells 2023; 12:1435. [PMID: 37408269 PMCID: PMC10216974 DOI: 10.3390/cells12101435] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 07/07/2023] Open
Abstract
The lacrimal gland (LG) secretes aqueous tears. Previous studies have provided insights into the cell lineage relationships during tissue morphogenesis. However, little is known about the cell types composing the adult LG and their progenitors. Using scRNAseq, we established the first comprehensive cell atlas of the adult mouse LG to investigate the cell hierarchy, its secretory repertoire, and the sex differences. Our analysis uncovered the complexity of the stromal landscape. Epithelium subclustering revealed myoepithelial cells, acinar subsets, and two novel acinar subpopulations: Tfrchi and Car6hi cells. The ductal compartment contained Wfdc2+ multilayered ducts and an Ltf+ cluster formed by luminal and intercalated duct cells. Kit+ progenitors were identified as: Krt14+ basal ductal cells, Aldh1a1+ cells of Ltf+ ducts, and Sox10+ cells of the Car6hi acinar and Ltf+ epithelial clusters. Lineage tracing experiments revealed that the Sox10+ adult populations contribute to the myoepithelial, acinar, and ductal lineages. Using scRNAseq data, we found that the postnatally developing LG epithelium harbored key features of putative adult progenitors. Finally, we showed that acinar cells produce most of the sex-biased lipocalins and secretoglobins detected in mouse tears. Our study provides a wealth of new data on LG maintenance and identifies the cellular origin of sex-biased tear components.
Collapse
Affiliation(s)
- Vanessa Delcroix
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037, USA; (V.D.); (H.S.L.); (A.I.); (T.U.)
| | - Olivier Mauduit
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037, USA; (V.D.); (H.S.L.); (A.I.); (T.U.)
| | - Hyun Soo Lee
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037, USA; (V.D.); (H.S.L.); (A.I.); (T.U.)
- Department of Ophthalmology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Anastasiia Ivanova
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037, USA; (V.D.); (H.S.L.); (A.I.); (T.U.)
| | - Takeshi Umazume
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037, USA; (V.D.); (H.S.L.); (A.I.); (T.U.)
| | - Sarah M. Knox
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA;
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Cintia S. de Paiva
- The Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Darlene A. Dartt
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA;
| | - Helen P. Makarenkova
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037, USA; (V.D.); (H.S.L.); (A.I.); (T.U.)
| |
Collapse
|
4
|
Gonzalez-Perez V, Zhou Y, Ciorba MA, Lingle CJ. The LRRC family of BK channel regulatory subunits: potential roles in health and disease. J Physiol 2022; 600:1357-1371. [PMID: 35014034 PMCID: PMC8930516 DOI: 10.1113/jp281952] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/04/2022] [Indexed: 11/08/2022] Open
Abstract
Large conductance K+ channels, termed BK channels, regulate a variety of cellular and physiological functions. Although universally activated by changes in voltage or [Ca2+ ]i , the threshold for BK channel activation varies among loci of expression, often arising from cell-specific regulatory subunits including a family of leucine rich repeat-containing (LRRC) γ subunits (LRRC26, LRRC52, LRRC55 and LRRC38). The 'founding' member of this family, LRRC26, was originally identified as a tumour suppressor in various cancers. An LRRC26 knockout (KO) mouse model recently revealed that LRRC26 is also highly expressed in secretory epithelial cells and partners with BK channels in the salivary gland and colonic goblet cells to promote sustained K+ fluxes likely essential for normal secretory function. To accomplish this, LRRC26 negatively shifts the range of BK channel activation such that channels contribute to K+ flux near typical epithelial cell resting conditions. In colon, the absence of LRRC26 increases vulnerability to colitis. LRRC26-containing BK channels are also likely important regulators of epithelial function in other loci, including airways, female reproductive tract and mammary gland. Based on an LRRC52 KO mouse model, LRRC52 regulation of large conductance K+ channels plays a role both in sperm function and in cochlear inner hair cells. Although our understanding of LRRC-containing BK channels remains rudimentary, KO mouse models may help define other organs in which LRRC-containing channels support normal function. A key topic for future work concerns identification of endogenous mechanisms, whether post-translational or via gene regulation, that may impact LRRC-dependent pathologies.
Collapse
Affiliation(s)
- Vivian Gonzalez-Perez
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
| | - Yu Zhou
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
| | - Matthew A Ciorba
- Department of Internal Medicine, Division of Gastroenterology, Washington University School of Medicine, St Louis, MO, USA
| | - Christopher J Lingle
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
5
|
Chen G, Li Q, Yan J. The leucine-rich repeat domains of BK channel auxiliary γ subunits regulate their expression, trafficking, and channel-modulation functions. J Biol Chem 2022; 298:101664. [PMID: 35104503 PMCID: PMC8892010 DOI: 10.1016/j.jbc.2022.101664] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/16/2022] [Accepted: 01/26/2022] [Indexed: 11/25/2022] Open
Abstract
As high-conductance calcium- and voltage-dependent potassium channels, BK channels consist of pore-forming, voltage-, and Ca2+-sensing α and auxiliary subunits. The leucine-rich repeat (LRR) domain-containing auxiliary γ subunits potently modulate the voltage dependence of BK channel activation. Despite their dominant size in whole protein masses, the function of the LRR domain in BK channel γ subunits is unknown. We here investigated the function of these LRR domains in BK channel modulation by the auxiliary γ1-3 (LRRC26, LRRC52, and LRRC55) subunits. Using cell surface protein immunoprecipitation, we validated the predicted extracellular localization of the LRR domains. We then refined the structural models of mature proteins on the membrane via molecular dynamic simulations. By replacement of the LRR domain with extracellular regions or domains of non-LRR proteins, we found that the LRR domain is nonessential for the maximal channel-gating modulatory effect but is necessary for the all-or-none phenomenon of BK channel modulation by the γ1 subunit. Mutational and enzymatic blockade of N-glycosylation in the γ1-3 subunits resulted in a reduction or loss of BK channel modulation by γ subunits. Finally, by analyzing their expression in whole cells and on the plasma membrane, we found that blockade of N-glycosylation drastically reduced total expression of the γ2 subunit and the cell surface expression of the γ1 and γ3 subunits. We conclude that the LRR domains play key roles in the regulation of the expression, cell surface trafficking, and channel-modulation functions of the BK channel γ subunits.
Collapse
Affiliation(s)
- Guanxing Chen
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Qin Li
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jiusheng Yan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Graduate Programs of Neuroscience and Biochemistry and Cell Biology, The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, Texas, USA.
| |
Collapse
|
6
|
Shah KR, Guan X, Yan J. Structural and Functional Coupling of Calcium-Activated BK Channels and Calcium-Permeable Channels Within Nanodomain Signaling Complexes. Front Physiol 2022; 12:796540. [PMID: 35095560 PMCID: PMC8795833 DOI: 10.3389/fphys.2021.796540] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
Biochemical and functional studies of ion channels have shown that many of these integral membrane proteins form macromolecular signaling complexes by physically associating with many other proteins. These macromolecular signaling complexes ensure specificity and proper rates of signal transduction. The large-conductance, Ca2+-activated K+ (BK) channel is dually activated by membrane depolarization and increases in intracellular free Ca2+ ([Ca2+]i). The activation of BK channels results in a large K+ efflux and, consequently, rapid membrane repolarization and closing of the voltage-dependent Ca2+-permeable channels to limit further increases in [Ca2+]i. Therefore, BK channel-mediated K+ signaling is a negative feedback regulator of both membrane potential and [Ca2+]i and plays important roles in many physiological processes and diseases. However, the BK channel formed by the pore-forming and voltage- and Ca2+-sensing α subunit alone requires high [Ca2+]i levels for channel activation under physiological voltage conditions. Thus, most native BK channels are believed to co-localize with Ca2+-permeable channels within nanodomains (a few tens of nanometers in distance) to detect high levels of [Ca2+]i around the open pores of Ca2+-permeable channels. Over the last two decades, advancement in research on the BK channel’s coupling with Ca2+-permeable channels including recent reports involving NMDA receptors demonstrate exemplary models of nanodomain structural and functional coupling among ion channels for efficient signal transduction and negative feedback regulation. We hereby review our current understanding regarding the structural and functional coupling of BK channels with different Ca2+-permeable channels.
Collapse
Affiliation(s)
- Kunal R. Shah
- Department of Anesthesiology & Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Xin Guan
- Department of Anesthesiology & Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jiusheng Yan
- Department of Anesthesiology & Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Neuroscience Program, Graduate School of Biomedical Sciences, UT Health, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Biochemistry and Cell Biology Program, Graduate School of Biomedical Sciences, UT Health, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- *Correspondence: Jiusheng Yan,
| |
Collapse
|
7
|
Sancho M, Kyle BD. The Large-Conductance, Calcium-Activated Potassium Channel: A Big Key Regulator of Cell Physiology. Front Physiol 2021; 12:750615. [PMID: 34744788 PMCID: PMC8567177 DOI: 10.3389/fphys.2021.750615] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/29/2021] [Indexed: 12/01/2022] Open
Abstract
Large-conductance Ca2+-activated K+ channels facilitate the efflux of K+ ions from a variety of cells and tissues following channel activation. It is now recognized that BK channels undergo a wide range of pre- and post-translational modifications that can dramatically alter their properties and function. This has downstream consequences in affecting cell and tissue excitability, and therefore, function. While finding the “silver bullet” in terms of clinical therapy has remained elusive, ongoing research is providing an impressive range of viable candidate proteins and mechanisms that associate with and modulate BK channel activity, respectively. Here, we provide the hallmarks of BK channel structure and function generally, and discuss important milestones in the efforts to further elucidate the diverse properties of BK channels in its many forms.
Collapse
Affiliation(s)
- Maria Sancho
- Department of Pharmacology, University of Vermont, Burlington, VT, United States
| | - Barry D Kyle
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
8
|
Vouga AG, Rockman ME, Yan J, Jacobson MA, Rothberg BS. State-dependent inhibition of BK channels by the opioid agonist loperamide. J Gen Physiol 2021; 153:212539. [PMID: 34357374 PMCID: PMC8352719 DOI: 10.1085/jgp.202012834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/19/2021] [Accepted: 07/08/2021] [Indexed: 12/20/2022] Open
Abstract
Large-conductance Ca2+-activated K+ (BK) channels control a range of physiological functions, and their dysfunction is linked to human disease. We have found that the widely used drug loperamide (LOP) can inhibit activity of BK channels composed of either α-subunits (BKα channels) or α-subunits plus the auxiliary γ1-subunit (BKα/γ1 channels), and here we analyze the molecular mechanism of LOP action. LOP applied at the cytosolic side of the membrane rapidly and reversibly inhibited BK current, an effect that appeared as a decay in voltage-activated BK currents. The apparent affinity for LOP decreased with hyperpolarization in a manner consistent with LOP behaving as an inhibitor of open, activated channels. Increasing LOP concentration reduced the half-maximal activation voltage, consistent with relative stabilization of the LOP-inhibited open state. Single-channel recordings revealed that LOP did not reduce unitary BK channel current, but instead decreased BK channel open probability and mean open times. LOP elicited use-dependent inhibition, in which trains of brief depolarizing steps lead to accumulated reduction of BK current, whereas single brief depolarizing steps do not. The principal effects of LOP on BK channel gating are described by a mechanism in which LOP acts as a state-dependent pore blocker. Our results suggest that therapeutic doses of LOP may act in part by inhibiting K+ efflux through intestinal BK channels.
Collapse
Affiliation(s)
- Alexandre G Vouga
- Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA
| | - Michael E Rockman
- Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA
| | - Jiusheng Yan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Marlene A Jacobson
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia PA
| | - Brad S Rothberg
- Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA
| |
Collapse
|
9
|
Goblet cell LRRC26 regulates BK channel activation and protects against colitis in mice. Proc Natl Acad Sci U S A 2021; 118:2019149118. [PMID: 33431687 DOI: 10.1073/pnas.2019149118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Goblet cells (GCs) are specialized cells of the intestinal epithelium contributing critically to mucosal homeostasis. One of the functions of GCs is to produce and secrete MUC2, the mucin that forms the scaffold of the intestinal mucus layer coating the epithelium and separates the luminal pathogens and commensal microbiota from the host tissues. Although a variety of ion channels and transporters are thought to impact on MUC2 secretion, the specific cellular mechanisms that regulate GC function remain incompletely understood. Previously, we demonstrated that leucine-rich repeat-containing protein 26 (LRRC26), a known regulatory subunit of the Ca2+-and voltage-activated K+ channel (BK channel), localizes specifically to secretory cells within the intestinal tract. Here, utilizing a mouse model in which MUC2 is fluorescently tagged, thereby allowing visualization of single GCs in intact colonic crypts, we show that murine colonic GCs have functional LRRC26-associated BK channels. In the absence of LRRC26, BK channels are present in GCs, but are not activated at physiological conditions. In contrast, all tested MUC2- cells completely lacked BK channels. Moreover, LRRC26-associated BK channels underlie the BK channel contribution to the resting transepithelial current across mouse distal colonic mucosa. Genetic ablation of either LRRC26 or BK pore-forming α-subunit in mice results in a dramatically enhanced susceptibility to colitis induced by dextran sodium sulfate. These results demonstrate that normal potassium flux through LRRC26-associated BK channels in GCs has protective effects against colitis in mice.
Collapse
|
10
|
Qi XL, Jo H, Wang XY, Ji TT, Lin HX, Park CS, Cui YM. Synthesis and BK channel-opening activity of 2-amino-1,3-thiazole derivatives. Bioorg Med Chem Lett 2021; 43:128083. [PMID: 33964448 DOI: 10.1016/j.bmcl.2021.128083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/23/2021] [Accepted: 05/01/2021] [Indexed: 11/28/2022]
Abstract
A series of 2-amino-5-arylmethyl- or 5-heteroarylmethyl-1,3-thiazole derivatives were synthesized and evaluated for BK channel-opening activities in cell-based fluorescence assay and electrophysiological recording. The assay results indicated that the activities of the investigated compounds were influenced by the physicochemical properties of the substituent at benzene ring.
Collapse
Affiliation(s)
- Xiao-Lei Qi
- Department of Chemistry, Innovative Drug Research Center, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Heeji Jo
- School of Life Sciences and National Leading Research Laboratory, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Xue-Ying Wang
- Department of Chemistry, Innovative Drug Research Center, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Tong-Tong Ji
- Department of Chemistry, Innovative Drug Research Center, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Hai-Xia Lin
- Department of Chemistry, Innovative Drug Research Center, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Chul-Seung Park
- School of Life Sciences and National Leading Research Laboratory, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| | - Yong-Mei Cui
- Department of Chemistry, Innovative Drug Research Center, College of Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
11
|
Noda S, Suzuki Y, Yamamura H, Imaizumi Y. Single Molecule Fluorescence Imaging Reveals the Stoichiometry of BKγ1 Subunit in Living HEK293 Cell Expression System. Biol Pharm Bull 2020; 43:1118-1122. [PMID: 32612074 DOI: 10.1248/bpb.b20-00125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Large conductance Ca2+-activated K+ (BKCa) channels are ubiquitously expressed in plasma membrane of both excitable and non-excitable cells and possess significant physiological functions. A tetrameric complex of α subunit (BKα) forms a functional pore of BKCa channel. The properties of BKCa channel, such as voltage-dependence, Ca2+ sensitivity and pharmacological responses, are extensively modulated by co-expressing accessory β subunits (BKβ), which can associate with BKα in one to one manner. Although the functional significance of newly identified γ subunits (BKγ) has been revealed, the stoichiometry between BKα and BKγ1 remains unclear. In the present study, we utilized a single molecule fluorescence imaging with a total internal reflection fluorescence (TIRF) microscope to directly count the number of green fluorescent protein (GFP)-tagged BKγ1 (BKγ1-GFP) within a single BKCa channel complex in HEK293 cell expression system. BKγ1-GFP significantly enhanced the BK channel activity even when the intracellular Ca2+ concentration was kept lower, i.e., 10 nM, than the physiological resting level. BKγ1-GFP stably formed molecular complexes with BKα-mCherry in the plasma membrane. Counting of GFP bleaching steps revealed that a BKCa channel can contain up to four BKγ1 per channel at the maximum. These results suggest that BKγ1 forms a BKCa channel complex with BKα in a 1 : 1 stoichiometry in a human cell line.
Collapse
Affiliation(s)
- Sayuri Noda
- Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Yoshiaki Suzuki
- Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Hisao Yamamura
- Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Yuji Imaizumi
- Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
12
|
Xu X, Gong C, Wang Y, Hu Y, Liu H, Fang Z. Multi-omics analysis to identify driving factors in colorectal cancer. Epigenomics 2020; 12:1633-1650. [PMID: 32573269 DOI: 10.2217/epi-2020-0073] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aim: We aim to identify driving genes of colorectal cancer (CRC) through multi-omics analysis. Materials & methods: We downloaded multi-omics data of CRC from The Cancer Genome Atlas dataset. Integrative analysis of single-nucleotide variants, copy number variations, DNA methylation and differentially expressed genes identified candidate genes that carry CRC risk. Kernal genes were extracted from the weighted gene co-expression network analysis. A competing endogenous RNA network composed of CRC-related genes was constructed. Biological roles of genes were further investigated in vitro. Results: We identified LRRC26 and REP15 as novel prognosis-related driving genes for CRC. LRRC26 hindered tumorigenesis of CRC in vitro. Conclusion: Our study identified novel driving genes and may provide new insights into the molecular mechanisms of CRC.
Collapse
Affiliation(s)
- Xi Xu
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Chaoju Gong
- Central Laboratory, The Municipal Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221106, PR China
| | - Yunfeng Wang
- Institute for Integrative Biology of the Cell, UMR 9198, CNRS, Commissariat à l'Energie Atomique et aux Énergies Alternatives (CEA), Université Paris-Sud, 91198 Gif-sur-Yvette, Palaiseau, 91120, France
| | - Yanyan Hu
- Central Laboratory, Sanmen People's Hospital of Zhejiang Province, Sanmen, 317100, PR China
| | - Hong Liu
- Zhejiang Normal University - Jinhua People's Hospital Joint Center for Biomedical Research, Jinhua, 321004, PR China.,The Affiliated Hospital of Jinhua Polytechnic College, Jinhua, 321000, PR China
| | - Zejun Fang
- Central Laboratory, Sanmen People's Hospital of Zhejiang Province, Sanmen, 317100, PR China.,Central Laboratory, Sanmenwan Branch, The First Affiliated Hospital, College of Medicine, Zhejiang University, Sanmen, 317100, PR China
| |
Collapse
|
13
|
Mohr CJ, Schroth W, Mürdter TE, Gross D, Maier S, Stegen B, Dragoi A, Steudel FA, Stehling S, Hoppe R, Madden S, Ruth P, Huber SM, Brauch H, Lukowski R. Subunits of BK channels promote breast cancer development and modulate responses to endocrine treatment in preclinical models. Br J Pharmacol 2020; 179:2906-2924. [PMID: 32468618 DOI: 10.1111/bph.15147] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 03/20/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Pore-forming α subunits of the voltage- and Ca2+ -activated K+ channel with large conductance (BKα) promote malignant phenotypes of breast tumour cells. Auxiliary subunits such as the leucine-rich repeat containing 26 (LRRC26) protein, also termed BKγ1, may be required to permit activation of BK currents at a depolarized resting membrane potential that frequently occur in non-excitable tumour cells. EXPERIMENTAL APPROACH Anti-tumour effects of BKα loss were investigated in breast tumour-bearing MMTV-PyMT transgenic BKα knockout (KO) mice, primary MMTV-PyMT cell cultures, and in a syngeneic transplantation model of breast cancer derived from these cells. The therapeutic relevance of BK channels in the context of endocrine treatment was assessed in human breast cancer cell lines expressing either low (MCF-7) or high (MDA-MB-453) levels of BKα and BKγ1, as well as in BKα-negative MDA-MB-157. KEY RESULTS BKα promoted breast cancer onset and overall survival in preclinical models. Conversely, lack of BKα and/or knockdown of BKγ1 attenuated proliferation of murine and human breast cancer cells in vitro. At low concentrations, tamoxifen and its major active metabolites stimulated proliferation of BKα/γ1-positive breast cancer cells, independent of the genomic signalling controlled by the oestrogen receptor. Finally, tamoxifen increased the relative survival time of BKα KO but not of wild-type tumour cell recipient mice. CONCLUSION AND IMPLICATIONS Breast cancer initiation, progression, and tamoxifen sensitivity depend on functional BK channels thereby providing a rationale for the future exploration of the oncogenic actions of BK channels in clinical outcomes with anti-oestrogen therapy.
Collapse
Affiliation(s)
- Corinna J Mohr
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany.,Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Germany
| | - Werner Schroth
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Germany
| | - Thomas E Mürdter
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Germany
| | - Dominic Gross
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Selina Maier
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany.,Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Germany
| | - Benjamin Stegen
- Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Alice Dragoi
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Friederike A Steudel
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Severine Stehling
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Germany
| | - Stephen Madden
- RCSI Division of Population Health Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Stephan M Huber
- Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,iFIT-Cluster of Excellence, University of Tuebingen, Tuebingen, Germany
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
14
|
Abstract
Ca2+- and voltage-gated K+ channels of large conductance (BK channels) are expressed in a diverse variety of both excitable and inexcitable cells, with functional properties presumably uniquely calibrated for the cells in which they are found. Although some diversity in BK channel function, localization, and regulation apparently arises from cell-specific alternative splice variants of the single pore-forming α subunit ( KCa1.1, Kcnma1, Slo1) gene, two families of regulatory subunits, β and γ, define BK channels that span a diverse range of functional properties. We are just beginning to unravel the cell-specific, physiological roles served by BK channels of different subunit composition.
Collapse
Affiliation(s)
- Vivian Gonzalez-Perez
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - Christopher J Lingle
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| |
Collapse
|
15
|
Noda S, Chikazawa K, Suzuki Y, Imaizumi Y, Yamamura H. Involvement of the γ1 subunit of the large-conductance Ca 2+-activated K + channel in the proliferation of human somatostatinoma cells. Biochem Biophys Res Commun 2020; 525:1032-1037. [PMID: 32178873 DOI: 10.1016/j.bbrc.2020.02.176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/28/2020] [Indexed: 10/24/2022]
Abstract
Pancreatic neuroendocrine tumors (pNETs) occur due to the abnormal growth of pancreatic islet cells and predominantly develop in the duodenal-pancreatic region. Somatostatinoma is one of the pNETs associated with tumors of pancreatic δ cells, which produce and secrete somatostatin. Limited information is currently available on the pathogenic mechanisms of somatostatinoma. The large-conductance Ca2+-activated K+ (BKCa) channel is expressed in several types of cancer cells and regulates cell proliferation, migration, invasion, and metastasis. In the present study, the functional expression of the BKCa channel was examined in a human somatostatinoma QGP-1 cell line. In QGP-1 cells, outward currents were elicited by membrane depolarization at pCa 6.5 (300 nM) in the pipette solution and inhibited by the specific BKCa channel blocker, paxilline. Paxilline-sensitive currents were detected, even at pCa 8.0 (10 nM) in the pipette solution, in QGP-1 cells. In addition to the α and β2-4 subunits of the BKCa channel, the novel regulatory γ1 subunit (BKCaγ1) was co-localized with the α subunit in QGP-1 cells. Paxilline-sensitive currents at pCa 8.0 in the pipette solution were reduced by the siRNA knockdown of BKCaγ1. Store-operated Ca2+ entry was smaller in BKCaγ1 siRNA-treated QGP-1 cells. The proliferation of QGP-1 cells was attenuated by paxilline or the siRNA knockdown of BKCaγ1. These results strongly suggest that BKCaγ1 facilitates the proliferation of human somatostatinoma cells. Therefore, BKCaγ1 may be a novel therapeutic target for somatostatinoma.
Collapse
Affiliation(s)
- Sayuri Noda
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori Mizuhoku, Nagoya, 467-8603, Japan
| | - Kana Chikazawa
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori Mizuhoku, Nagoya, 467-8603, Japan
| | - Yoshiaki Suzuki
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori Mizuhoku, Nagoya, 467-8603, Japan
| | - Yuji Imaizumi
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori Mizuhoku, Nagoya, 467-8603, Japan
| | - Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori Mizuhoku, Nagoya, 467-8603, Japan.
| |
Collapse
|
16
|
Noda S, Suzuki Y, Yamamura H, Giles WR, Imaizumi Y. Roles of LRRC26 as an auxiliary γ1-subunit of large-conductance Ca 2+-activated K + channels in bronchial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2020; 318:L366-L375. [PMID: 31800260 DOI: 10.1152/ajplung.00331.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In visceral smooth muscle cells (SMCs), the large-conductance Ca2+-activated K+ (BK) channel is one of the key elements underlying a negative feedback mechanism that is essential for the regulation of intracellular Ca2+ concentration. Although leucine-rich repeat-containing (LRRC) proteins have been identified as novel auxiliary γ-subunits of the BK channel (BKγ) in several cell types, its physiological roles in SMCs are unclear. The BKγ expression patterns in selected SM tissues were examined using real-time PCR analyses and Western blotting. The functional contribution of BKγ1 to BK channel activity was examined by whole cell patch-clamp in SMCs and heterologous expression systems. BKγ1 expression in mouse bronchial SMCs (mBSMCs) was higher than in other several SMC types. Coimmunoprecipitation and total internal reflection fluorescence imaging analyses revealed molecular interaction between BKα and BKγ1 in mBSMCs. Under voltage-clamp, steady-state activation of BK channel currents at pCa 8.0 in mBSMCs occurred in a voltage range comparable to that of reconstituted BKα/BKγ1 complex. However, this range was much more negative than in mouse aortic SMCs (mASMCs) or in HEK293 cells expressing BKα alone and β-subunit (BKβ1). Mallotoxin, a selective activator of BK channel that lacks BKγ1, dose-dependently activated BK currents in mASMCs but not in mBSMCs. The abundant expression of BKγ1 in mBSMCs extensively facilitates BK channel activity to keep the resting membrane potential at negative values and prevents contraction under physiological conditions.
Collapse
Affiliation(s)
- Sayuri Noda
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Yoshiaki Suzuki
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Wayne R Giles
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yuji Imaizumi
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
17
|
Yang NY, Mukaibo T, Kurtz I, Melvin JE. The apical Na + -HCO 3 - cotransporter Slc4a7 (NBCn1) does not contribute to bicarbonate transport by mouse salivary gland ducts. J Cell Physiol 2019; 234:16376-16388. [PMID: 30767201 PMCID: PMC6694005 DOI: 10.1002/jcp.28306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/05/2019] [Accepted: 01/18/2019] [Indexed: 01/25/2023]
Abstract
The HCO3 - secretion mechanism in salivary glands is unclear but is thought to rely on the co-ordinated activity of multiple ion transport proteins including members of the Slc4 family of bicarbonate transporters. Slc4a7 was immunolocalized to the apical membrane of mouse submandibular duct cells. In contrast, Slc4a7 was not detected in acinar cells, and correspondingly, Slc4a7 disruption did not affect fluid secretion in response to cholinergic or β-adrenergic stimulation in the submandibular gland (SMG). Much of the Na + -dependent intracellular pH (pH i ) regulation in SMG duct cells was insensitive to 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid, S0859, and to the removal of extracellular HCO 3 - . Consistent with these latter observations, the Slc4a7 null mutation had no impact on HCO 3 - secretion nor on pH i regulation in duct cells. Taken together, our results revealed that Slc4a7 targets to the apical membrane of mouse SMG duct cells where it contributes little if any to pH i regulation or stimulated HCO 3 - secretion.
Collapse
Affiliation(s)
- Ning-Yan Yang
- Secretory Mechanisms and Dysfunctions Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA,Department of Pediatric Dentistry, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Taro Mukaibo
- Secretory Mechanisms and Dysfunctions Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA,Department of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Ira Kurtz
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, and the Brain Research Institute, University of California, Los Angeles, CA, 90095, USA
| | - James E. Melvin
- Secretory Mechanisms and Dysfunctions Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
18
|
LRRC52 regulates BK channel function and localization in mouse cochlear inner hair cells. Proc Natl Acad Sci U S A 2019; 116:18397-18403. [PMID: 31451634 DOI: 10.1073/pnas.1907065116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The perception of sound relies on sensory hair cells in the cochlea that convert the mechanical energy of sound into release of glutamate onto postsynaptic auditory nerve fibers. The hair cell receptor potential regulates the strength of synaptic transmission and is shaped by a variety of voltage-dependent conductances. Among these conductances, the Ca2+- and voltage-activated large conductance Ca2+-activated K+ channel (BK) current is prominent, and in mammalian inner hair cells (IHCs) displays unusual properties. First, BK currents activate at unprecedentedly negative membrane potentials (-60 mV) even in the absence of intracellular Ca2+ elevations. Second, BK channels are positioned in clusters away from the voltage-dependent Ca2+ channels that mediate glutamate release from IHCs. Here, we test the contributions of two recently identified leucine-rich-repeat-containing (LRRC) regulatory γ subunits, LRRC26 and LRRC52, to BK channel function and localization in mouse IHCs. Whereas BK currents and channel localization were unaltered in IHCs from Lrrc26 knockout (KO) mice, BK current activation was shifted more than +200 mV in IHCs from Lrrc52 KO mice. Furthermore, the absence of LRRC52 disrupted BK channel localization in the IHCs. Given that heterologous coexpression of LRRC52 with BK α subunits shifts BK current gating about -90 mV, to account for the profound change in BK activation range caused by removal of LRRC52, we suggest that additional factors may help define the IHC BK gating range. LRRC52, through stabilization of a macromolecular complex, may help retain some other components essential both for activation of BK currents at negative membrane potentials and for appropriate BK channel positioning.
Collapse
|
19
|
Lang I, Jung M, Niemeyer BA, Ruth P, Engel J. Expression of the LRRC52 γ subunit (γ2) may provide Ca 2+-independent activation of BK currents in mouse inner hair cells. FASEB J 2019; 33:11721-11734. [PMID: 31348683 DOI: 10.1096/fj.201900701rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mammalian inner hair cells (IHCs) transduce sound into depolarization and transmitter release. Big conductance and voltage- and Ca2+-activated K+ (BK) channels are responsible for fast membrane repolarization and small time constants of mature IHCs. For unknown reasons, they activate at around -75 mV with a voltage of half-maximum activation (Vhalf) of -50 mV although being largely insensitive to Ca2+ influx. Ca2+-independent activation of BK channels was observed by others in heterologous expression systems if γ subunits leucine-rich repeat-containing protein (LRRC)26 (γ1) and LRRC52 (γ2) were coexpressed with the pore-forming BKα subunit, which shifted Vhalf by -140 and -100 mV, respectively. Using nested PCR, we consistently detected transcripts for LRRC52 but not for LRRC26 in IHCs of 3-wk-old mice. Confocal immunohistochemistry showed synchronous up-regulation of LRRC52 protein with BKα at the onset of hearing. Colocalization of LRRC52 protein and BKα at the IHC neck within ≤40 nm was specified using an in situ proximity ligation assay. Mice deficient for the voltage-gated Cav1.3 Ca2+ channel encoded by Cacna1d do not express BKα protein. LRRC52 protein was neither expressed in IHCs of BKα nor in IHCs of Cav1.3 knockout mice. Together, LRRC52 is a γ2 subunit of BK channel complexes and is a strong candidate for causing the Ca2+-independent activation of BK currents at negative membrane potentials in mouse IHCs.-Lang, I., Jung, M., Niemeyer, B. A., Ruth, P., Engel, J. Expression of the LRRC52 γ subunit (γ2) may provide Ca2+-independent activation of BK currents in mouse inner hair cells.
Collapse
Affiliation(s)
- Isabelle Lang
- Hearing Research, Department of Biophysics and Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Martin Jung
- Department of Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Barbara A Niemeyer
- Molecular Biophysics, Department of Biophysics and Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Peter Ruth
- Institute of Pharmacy, Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Tübingen, Tübingen, Germany
| | - Jutta Engel
- Hearing Research, Department of Biophysics and Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| |
Collapse
|
20
|
Abstract
Ca2+- and voltage-gated K+ channels of large conductance (BK channels) are expressed in a diverse variety of both excitable and inexcitable cells, with functional properties presumably uniquely calibrated for the cells in which they are found. Although some diversity in BK channel function, localization, and regulation apparently arises from cell-specific alternative splice variants of the single pore-forming α subunit ( KCa1.1, Kcnma1, Slo1) gene, two families of regulatory subunits, β and γ, define BK channels that span a diverse range of functional properties. We are just beginning to unravel the cell-specific, physiological roles served by BK channels of different subunit composition.
Collapse
Affiliation(s)
- Vivian Gonzalez-Perez
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - Christopher J Lingle
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| |
Collapse
|
21
|
Henriksson J, Chen X, Gomes T, Ullah U, Meyer KB, Miragaia R, Duddy G, Pramanik J, Yusa K, Lahesmaa R, Teichmann SA. Genome-wide CRISPR Screens in T Helper Cells Reveal Pervasive Crosstalk between Activation and Differentiation. Cell 2019; 176:882-896.e18. [PMID: 30639098 PMCID: PMC6370901 DOI: 10.1016/j.cell.2018.11.044] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 09/19/2018] [Accepted: 11/28/2018] [Indexed: 12/24/2022]
Abstract
T helper type 2 (Th2) cells are important regulators of mammalian adaptive immunity and have relevance for infection, autoimmunity, and tumor immunology. Using a newly developed, genome-wide retroviral CRISPR knockout (KO) library, combined with RNA-seq, ATAC-seq, and ChIP-seq, we have dissected the regulatory circuitry governing activation and differentiation of these cells. Our experiments distinguish cell activation versus differentiation in a quantitative framework. We demonstrate that these two processes are tightly coupled and are jointly controlled by many transcription factors, metabolic genes, and cytokine/receptor pairs. There are only a small number of genes regulating differentiation without any role in activation. By combining biochemical and genetic data, we provide an atlas for Th2 differentiation, validating known regulators and identifying factors, such as Pparg and Bhlhe40, as part of the core regulatory network governing Th2 helper cell fates.
Collapse
Affiliation(s)
- Johan Henriksson
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK; Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 7, Novum, SE-141 83, Huddinge, Sweden
| | - Xi Chen
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Tomás Gomes
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Ubaid Ullah
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6 FI-20520, Turku, Finland
| | - Kerstin B Meyer
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Ricardo Miragaia
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Graham Duddy
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Jhuma Pramanik
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Kosuke Yusa
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6 FI-20520, Turku, Finland
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK; EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK; Theory of Condensed Matter, Cavendish Laboratory, 19 JJ Thomson Ave, Cambridge CB3 0HE, UK.
| |
Collapse
|
22
|
Regulatory γ1 subunits defy symmetry in functional modulation of BK channels. Proc Natl Acad Sci U S A 2018; 115:9923-9928. [PMID: 30224470 DOI: 10.1073/pnas.1804560115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Structural symmetry is a hallmark of homomeric ion channels. Nonobligatory regulatory proteins can also critically define the precise functional role of such channels. For instance, the pore-forming subunit of the large conductance voltage and calcium-activated potassium (BK, Slo1, or KCa1.1) channels encoded by a single KCa1.1 gene assembles in a fourfold symmetric fashion. Functional diversity arises from two families of regulatory subunits, β and γ, which help define the range of voltages over which BK channels in a given cell are activated, thereby defining physiological roles. A BK channel can contain zero to four β subunits per channel, with each β subunit incrementally influencing channel gating behavior, consistent with symmetry expectations. In contrast, a γ1 subunit (or single type of γ1 subunit complex) produces a functionally all-or-none effect, but the underlying stoichiometry of γ1 assembly and function remains unknown. Here we utilize two distinct and independent methods, a Forster resonance energy transfer-based optical approach and a functional reporter in single-channel recordings, to reveal that a BK channel can contain up to four γ1 subunits, but a single γ1 subunit suffices to induce the full gating shift. This requires that the asymmetric association of a single regulatory protein can act in a highly concerted fashion to allosterically influence conformational equilibria in an otherwise symmetric K+ channel.
Collapse
|
23
|
Abstract
The large-conductance calcium- and voltage-activated K+ (BK) channel has a requirement of high intracellular free Ca2+ concentrations for its activation in neurons under physiological conditions. The Ca2+ sources for BK channel activation are not well understood. In this study, we showed by coimmunopurification and colocalization analyses that BK channels form complexes with NMDA receptors (NMDARs) in both rodent brains and a heterologous expression system. The BK-NMDAR complexes are broadly present in different brain regions. The complex formation occurs between the obligatory BKα and GluN1 subunits likely via a direct physical interaction of the former's intracellular S0-S1 loop with the latter's cytosolic regions. By patch-clamp recording on mouse brain slices, we observed BK channel activation by NMDAR-mediated Ca2+ influx in dentate gyrus granule cells. BK channels modulate excitatory synaptic transmission via functional coupling with NMDARs at postsynaptic sites of medial perforant path-dentate gyrus granule cell synapses. A synthesized peptide of the BKα S0-S1 loop region, when loaded intracellularly via recording pipette, abolished the NMDAR-mediated BK channel activation and effect on synaptic transmission. These findings reveal the broad expression of the BK-NMDAR complexes in brain, the potential mechanism underlying the complex formation, and the NMDAR-mediated activation and function of postsynaptic BK channels in neurons.
Collapse
|
24
|
Lorca RA, Wakle‐Prabagaran M, Freeman WE, Pillai MK, England SK. The large-conductance voltage- and Ca 2+ -activated K + channel and its γ1-subunit modulate mouse uterine artery function during pregnancy. J Physiol 2018; 596:1019-1033. [PMID: 29319186 PMCID: PMC5851882 DOI: 10.1113/jp274524] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 01/05/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The uterine artery (UA) markedly vasodilates during pregnancy to direct blood flow to the developing fetus. Inadequate UA vasodilatation leads to intrauterine growth restriction and fetal death. The large-conductance voltage- and Ca2+ -activated K+ (BKCa ) channel promotes UA vasodilatation during pregnancy. We report that BKCa channel activation increases the UA diameter at late pregnancy stages in mice. Additionally, a BKCa channel auxiliary subunit, γ1, participates in this process by increasing channel activation and inducing UA vasodilatation at late pregnancy stages. Our results highlight the importance of the BKCa channel and its γ1-subunit for UA functional changes during pregnancy. ABSTRACT Insufficient vasodilatation of the uterine artery (UA) during pregnancy leads to poor utero-placental perfusion, contributing to intrauterine growth restriction and fetal loss. Activity of the large-conductance Ca2+ -activated K+ (BKCa ) channel increases in the UA during pregnancy, and its inhibition reduces uterine blood flow, highlighting a role of this channel in UA adaptation to pregnancy. The auxiliary γ1-subunit increases BKCa activation in vascular smooth muscle, but its role in pregnancy-associated UA remodelling is unknown. We explored whether the BKCa and its γ1-subunit contribute to UA remodelling during pregnancy. Doppler imaging revealed that, compared to UAs from wild-type (WT) mice, UAs from BKCa knockout (BKCa-/- ) mice had lower resistance at pregnancy day 14 (P14) but not at P18. Lumen diameters were twofold larger in pressurized UAs from P18 WT mice than in those from non-pregnant mice, but this difference was not seen in UAs from BKCa-/- mice. UAs from pregnant WT mice constricted 20-50% in response to the BKCa blocker iberiotoxin (IbTX), whereas UAs from non-pregnant WT mice only constricted 15%. Patch-clamp analysis of WT UA smooth muscle cells confirmed that BKCa activity increased over pregnancy, showing three distinct voltage sensitivities. The γ1-subunit transcript increased 7- to 10-fold during pregnancy. Furthermore, γ1-subunit knockdown reduced IbTX sensitivity in UAs from pregnant mice, whereas γ1-subunit overexpression increased IbTX sensitivity in UAs from non-pregnant mice. Finally, at P18, γ1-knockout (γ1-/- ) mice had smaller UA diameters than WT mice, and IbTX-mediated vasoconstriction was prevented in UAs from γ1-/- mice. Our results suggest that the γ1-subunit increases BKCa activation in UAs during pregnancy.
Collapse
Affiliation(s)
- Ramón A. Lorca
- Center for Reproductive Health SciencesDepartment of Obstetrics and GynecologyWashington University in St Louis School of MedicineSt LouisMO63110USA
| | - Monali Wakle‐Prabagaran
- Center for Reproductive Health SciencesDepartment of Obstetrics and GynecologyWashington University in St Louis School of MedicineSt LouisMO63110USA
| | - William E. Freeman
- Center for Reproductive Health SciencesDepartment of Obstetrics and GynecologyWashington University in St Louis School of MedicineSt LouisMO63110USA
| | - Meghan K. Pillai
- Center for Reproductive Health SciencesDepartment of Obstetrics and GynecologyWashington University in St Louis School of MedicineSt LouisMO63110USA
| | - Sarah K. England
- Center for Reproductive Health SciencesDepartment of Obstetrics and GynecologyWashington University in St Louis School of MedicineSt LouisMO63110USA
| |
Collapse
|
25
|
Zhang YY, Han X, Liu Y, Chen J, Hua L, Ma Q, Huang YYX, Tang QY, Zhang Z. +mRNA expression of LRRC55 protein (leucine-rich repeat-containing protein 55) in the adult mouse brain. PLoS One 2018; 13:e0191749. [PMID: 29370300 PMCID: PMC5784982 DOI: 10.1371/journal.pone.0191749] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/10/2018] [Indexed: 01/14/2023] Open
Abstract
LRRC55 (leucine-rich repeat-containing protein 55) protein is an auxiliary γ subunit of BK (Big conductance potassium channel) channels, which leftward shifts GVs of BK channels around 50 mV in the absence of cytosolic Ca2+. LRRC55 protein is also the only γ subunit of BK channels that is expressed in mammalian nervous system. However, the expression pattern of LRRC55 gene in adult mammalian brain remains elusive. In this study, we investigated the distribution of LRRC55 mRNA in the adult mouse brain by using in situ hybridization. We found that LRRC55 mRNA is richly expressed in the adult mouse medial habenula nucleus (MHb), cerebellum and pons. However, the potential role of LRRC55 in MHb and cerebellum could be different based on the function of BK channels in these brain regions.
Collapse
Affiliation(s)
- Ying-Ying Zhang
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Xue Han
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Ye Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jian Chen
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Lei Hua
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Qian Ma
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yang-Yu-Xin Huang
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Qiong-Yao Tang
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Zhe Zhang
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- * E-mail:
| |
Collapse
|
26
|
Molecular determinants of Ca 2+ sensitivity at the intersubunit interface of the BK channel gating ring. Sci Rep 2018; 8:509. [PMID: 29323236 PMCID: PMC5765161 DOI: 10.1038/s41598-017-19029-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/19/2017] [Indexed: 12/31/2022] Open
Abstract
The large-conductance calcium-activated K+ (BK) channel contains two intracellular tandem Ca2+-sensing RCK domains (RCK1 and RCK2), which tetramerize into a Ca2+ gating ring that regulates channel opening by conformational expansion in response to Ca2+ binding. Interestingly, the gating ring’s intersubunit assembly interface harbors the RCK2 Ca2+-binding site, known as the Ca2+ bowl. The gating ring’s assembly interface is made in part by intersubunit coordination of a Ca2+ ion between the Ca2+ bowl and an RCK1 Asn residue, N449, and by apparent intersubunit electrostatic interactions between E955 in RCK2 and R786 and R790 in the RCK2 of the adjacent subunit. To understand the role of the intersubunit assembly interface in Ca2+ gating, we performed mutational analyses of these putative interacting residues in human BK channels. We found that N449, despite its role in Ca2+ coordination, does not set the channel’s Ca2+ sensitivity, whereas E955 is a determinant of Ca2+ sensitivity, likely through intersubunit electrostatic interactions. Our findings provide evidence that the intersubunit assembly interface contains molecular determinants of Ca2+-sensitivity in BK channels.
Collapse
|
27
|
Leipziger J. Exocrine secretion spelled with a capital K + (BK). J Physiol 2017; 595:4585. [PMID: 28574214 DOI: 10.1113/jp274588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jens Leipziger
- Department of Biomedicine, Physiology, Aarhus University, Ole Worms Allé 3, building 1170, 8000, Aarhus C, Denmark
| |
Collapse
|