1
|
Ashok S, Ramachandra Rao S. Updates on protein-prenylation and associated inherited retinopathies. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1410874. [PMID: 39026984 PMCID: PMC11254824 DOI: 10.3389/fopht.2024.1410874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024]
Abstract
Membrane-anchored proteins play critical roles in cell signaling, cellular architecture, and membrane biology. Hydrophilic proteins are post-translationally modified by a diverse range of lipid molecules such as phospholipids, glycosylphosphatidylinositol, and isoprenes, which allows their partition and anchorage to the cell membrane. In this review article, we discuss the biochemical basis of isoprenoid synthesis, the mechanisms of isoprene conjugation to proteins, and the functions of prenylated proteins in the neural retina. Recent discovery of novel prenyltransferases, prenylated protein chaperones, non-canonical prenylation-target motifs, and reversible prenylation is expected to increase the number of inherited systemic and blinding diseases with aberrant protein prenylation. Recent important investigations have also demonstrated the role of several unexpected regulators (such as protein charge, sequence/protein-chaperone interaction, light exposure history) in the photoreceptor trafficking of prenylated proteins. Technical advances in the investigation of the prenylated proteome and its application in vision research are discussed. Clinical updates and technical insights into known and putative prenylation-associated retinopathies are provided herein. Characterization of non-canonical prenylation mechanisms in the retina and retina-specific prenylated proteome is fundamental to the understanding of the pathogenesis of protein prenylation-associated inherited blinding disorders.
Collapse
Affiliation(s)
- Sudhat Ashok
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY, United States
| | - Sriganesh Ramachandra Rao
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY, United States
- Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY, United States
- Research Service, VA Western New York Healthcare System, Buffalo, NY, United States
| |
Collapse
|
2
|
Perdigão PRL, Ollington B, Sai H, Leung A, Sacristan-Reviriego A, van der Spuy J. Retinal Organoids from an AIPL1 CRISPR/Cas9 Knockout Cell Line Successfully Recapitulate the Molecular Features of LCA4 Disease. Int J Mol Sci 2023; 24:ijms24065912. [PMID: 36982987 PMCID: PMC10057647 DOI: 10.3390/ijms24065912] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) is expressed in photoreceptors where it facilitates the assembly of phosphodiesterase 6 (PDE6) which hydrolyses cGMP within the phototransduction cascade. Genetic variations in AIPL1 cause type 4 Leber congenital amaurosis (LCA4), which presents as rapid loss of vision in early childhood. Limited in vitro LCA4 models are available, and these rely on patient-derived cells harbouring patient-specific AIPL1 mutations. While valuable, the use and scalability of individual patient-derived LCA4 models may be limited by ethical considerations, access to patient samples and prohibitive costs. To model the functional consequences of patient-independent AIPL1 mutations, CRISPR/Cas9 was implemented to produce an isogenic induced pluripotent stem cell line harbouring a frameshift mutation in the first exon of AIPL1. Retinal organoids were generated using these cells, which retained AIPL1 gene transcription, but AIPL1 protein was undetectable. AIPL1 knockout resulted in a decrease in rod photoreceptor-specific PDE6α and β, and increased cGMP levels, suggesting downstream dysregulation of the phototransduction cascade. The retinal model described here provides a novel platform to assess functional consequences of AIPL1 silencing and measure the rescue of molecular features by potential therapeutic approaches targeting mutation-independent pathogenesis.
Collapse
Affiliation(s)
- Pedro R L Perdigão
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Bethany Ollington
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Hali Sai
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Amy Leung
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | | | | |
Collapse
|
3
|
Srivastava D, Yadav RP, Singh S, Boyd K, Artemyev NO. Unique interface and dynamics of the complex of HSP90 with a specialized cochaperone AIPL1. Structure 2023; 31:309-317.e5. [PMID: 36657440 PMCID: PMC9992320 DOI: 10.1016/j.str.2022.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/06/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023]
Abstract
Photoreceptor phosphodiesterase PDE6 is central for visual signal transduction. Maturation of PDE6 depends on a specialized chaperone complex of HSP90 with aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1). Disruption of PDE6 maturation underlies a severe form of retina degeneration. Here, we report a 3.9 Å cryoelectron microscopy (cryo-EM) structure of the complex of HSP90 with AIPL1. This structure reveals a unique interaction of the FK506-binding protein (FKBP)-like domain of AIPL1 with HSP90 at its dimer interface. Unusually, the N terminus AIPL1 inserts into the HSP90 lumen in a manner that was observed previously for HSP90 clients. Deletion of the 7 N-terminal residues of AIPL1 decreased its ability to cochaperone PDE6. Multi-body refinement of the cryo-EM data indicated large swing-like movements of AIPL1-FKBP. Modeling the complex of HSP90 with AIPL1 using crosslinking constraints indicated proximity of the mobile tetratricopeptide repeat (TPR) domain with the C-terminal domain of HSP90. Our study establishes a framework for future structural studies of PDE6 maturation.
Collapse
Affiliation(s)
- Dhiraj Srivastava
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Ravi P Yadav
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Sneha Singh
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kimberly Boyd
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
4
|
Prodromou C, Aran-Guiu X, Oberoi J, Perna L, Chapple JP, van der Spuy J. HSP70-HSP90 Chaperone Networking in Protein-Misfolding Disease. Subcell Biochem 2023; 101:389-425. [PMID: 36520314 DOI: 10.1007/978-3-031-14740-1_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Molecular chaperones and their associated co-chaperones are essential in health and disease as they are key facilitators of protein-folding, quality control and function. In particular, the heat-shock protein (HSP) 70 and HSP90 molecular chaperone networks have been associated with neurodegenerative diseases caused by aberrant protein-folding. The pathogenesis of these disorders usually includes the formation of deposits of misfolded, aggregated protein. HSP70 and HSP90, plus their co-chaperones, have been recognised as potent modulators of misfolded protein toxicity, inclusion formation and cell survival in cellular and animal models of neurodegenerative disease. Moreover, these chaperone machines function not only in folding but also in proteasome-mediated degradation of neurodegenerative disease proteins. This chapter gives an overview of the HSP70 and HSP90 chaperones, and their respective regulatory co-chaperones, and explores how the HSP70 and HSP90 chaperone systems form a larger functional network and its relevance to counteracting neurodegenerative disease associated with misfolded proteins and disruption of proteostasis.
Collapse
Affiliation(s)
| | - Xavi Aran-Guiu
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Jasmeen Oberoi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Laura Perna
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - J Paul Chapple
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | | |
Collapse
|
5
|
Ziaka K, van der Spuy J. The Role of Hsp90 in Retinal Proteostasis and Disease. Biomolecules 2022; 12:biom12070978. [PMID: 35883534 PMCID: PMC9313453 DOI: 10.3390/biom12070978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
Abstract
Photoreceptors are sensitive neuronal cells with great metabolic demands, as they are responsible for carrying out visual phototransduction, a complex and multistep process that requires the exquisite coordination of a large number of signalling protein components. Therefore, the viability of photoreceptors relies on mechanisms that ensure a well-balanced and functional proteome that maintains the protein homeostasis, or proteostasis, of the cell. This review explores how the different isoforms of Hsp90, including the cytosolic Hsp90α/β, the mitochondrial TRAP1, and the ER-specific GRP94, are involved in the different proteostatic mechanisms of photoreceptors, and elaborates on Hsp90 function when retinal homeostasis is disturbed. In addition, several studies have shown that chemical manipulation of Hsp90 has significant consequences, both in healthy and degenerating retinae, and this can be partially attributed to the fact that Hsp90 interacts with important photoreceptor-associated client proteins. Here, the interaction of Hsp90 with the retina-specific client proteins PDE6 and GRK1 will be further discussed, providing additional insights for the role of Hsp90 in retinal disease.
Collapse
|
6
|
Backwell L, Marsh JA. Diverse Molecular Mechanisms Underlying Pathogenic Protein Mutations: Beyond the Loss-of-Function Paradigm. Annu Rev Genomics Hum Genet 2022; 23:475-498. [PMID: 35395171 DOI: 10.1146/annurev-genom-111221-103208] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most known disease-causing mutations occur in protein-coding regions of DNA. While some of these involve a loss of protein function (e.g., through premature stop codons or missense changes that destabilize protein folding), many act via alternative molecular mechanisms and have dominant-negative or gain-of-function effects. In nearly all cases, these non-loss-of-function mutations can be understood by considering interactions of the wild-type and mutant protein with other molecules, such as proteins, nucleic acids, or small ligands and substrates. Here, we review the diverse molecular mechanisms by which pathogenic mutations can have non-loss-of-function effects, including by disrupting interactions, increasing binding affinity, changing binding specificity, causing assembly-mediated dominant-negative and dominant-positive effects, creating novel interactions, and promoting aggregation and phase separation. We believe that increased awareness of these diverse molecular disease mechanisms will lead to improved diagnosis (and ultimately treatment) of human genetic disorders. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Lisa Backwell
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom;
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom;
| |
Collapse
|
7
|
Yadav RP, Boyd K, Artemyev NO. Molecular insights into the maturation of phosphodiesterase 6 by the specialized chaperone complex of HSP90 with AIPL1. J Biol Chem 2022; 298:101620. [PMID: 35065964 PMCID: PMC8857470 DOI: 10.1016/j.jbc.2022.101620] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/18/2022] Open
Abstract
Phosphodiesterase 6 (PDE6) is a key effector enzyme in vertebrate phototransduction, and its maturation and function are known to critically depend on a specialized chaperone, aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1). Defects in PDE6 and AIPL1 underlie several severe retinal diseases, including retinitis pigmentosa and Leber congenital amaurosis. Here, we characterize the complex of AIPL1 with HSP90 and demonstrate its essential role in promoting the functional conformation of nascent PDE6. Our analysis suggests that AIPL1 preferentially binds to HSP90 in the closed state with a stoichiometry of 1:2, with the tetratricopeptide repeat domain and the tetratricopeptide repeat helix 7 extension of AIPL1 being the main contributors to the AIPL1/HSP90 interface. We demonstrate that mutations of these determinants markedly diminished both the affinity of AIPL1 for HSP90 and the ability of AIPL1 to cochaperone the maturation of PDE6 in a heterologous expression system. In addition, the FK506-binding protein (FKBP) domain of AIPL1 encloses a unique prenyl-binding site that anchors AIPL1 to posttranslational lipid modifications of PDE6. A mouse model with rod PDE6 lacking farnesylation of its PDE6A subunit revealed normal expression, trafficking, and signaling of the enzyme. Furthermore, AIPL1 was unexpectedly capable of inducing the maturation of unprenylated cone PDE6C, whereas mutant AIPL1 deficient in prenyl binding competently cochaperoned prenylated PDE6C. Thus, we conclude neither sequestration of the prenyl modifications is required for PDE6 maturation to proceed, nor is the FKBP-lipid interaction involved in the conformational switch of the enzyme into the functional state.
Collapse
Affiliation(s)
- Ravi P Yadav
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Kimberly Boyd
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, Iowa, USA; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
| |
Collapse
|
8
|
Johnson JL. Mutations in Hsp90 Cochaperones Result in a Wide Variety of Human Disorders. Front Mol Biosci 2021; 8:787260. [PMID: 34957217 PMCID: PMC8694271 DOI: 10.3389/fmolb.2021.787260] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/08/2021] [Indexed: 12/19/2022] Open
Abstract
The Hsp90 molecular chaperone, along with a set of approximately 50 cochaperones, mediates the folding and activation of hundreds of cellular proteins in an ATP-dependent cycle. Cochaperones differ in how they interact with Hsp90 and their ability to modulate ATPase activity of Hsp90. Cochaperones often compete for the same binding site on Hsp90, and changes in levels of cochaperone expression that occur during neurodegeneration, cancer, or aging may result in altered Hsp90-cochaperone complexes and client activity. This review summarizes information about loss-of-function mutations of individual cochaperones and discusses the overall association of cochaperone alterations with a broad range of diseases. Cochaperone mutations result in ciliary or muscle defects, neurological development or degeneration disorders, and other disorders. In many cases, diseases were linked to defects in established cochaperone-client interactions. A better understanding of the functional consequences of defective cochaperones will provide new insights into their functions and may lead to specialized approaches to modulate Hsp90 functions and treat some of these human disorders.
Collapse
Affiliation(s)
- Jill L Johnson
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, ID, United States
| |
Collapse
|
9
|
Sacristan-Reviriego A, Le HM, Georgiou M, Meunier I, Bocquet B, Roux AF, Prodromou C, Bainbridge J, Michaelides M, van der Spuy J. Clinical and functional analyses of AIPL1 variants reveal mechanisms of pathogenicity linked to different forms of retinal degeneration. Sci Rep 2020; 10:17520. [PMID: 33067476 PMCID: PMC7567831 DOI: 10.1038/s41598-020-74516-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022] Open
Abstract
Disease-causing sequence variants in the highly polymorphic AIPL1 gene are associated with a broad spectrum of inherited retinal diseases ranging from severe autosomal recessive Leber congenital amaurosis to later onset retinitis pigmentosa. AIPL1 is a photoreceptor-specific co-chaperone that interacts with HSP90 to facilitate the stable assembly of retinal cGMP phosphodiesterase, PDE6. In this report, we establish unequivocal correlations between patient clinical phenotypes and in vitro functional assays of uncharacterized AIPL1 variants. We confirm that missense and nonsense variants in the FKBP-like and tetratricopeptide repeat domains of AIPL1 lead to the loss of both HSP90 interaction and PDE6 activity, confirming these variants cause LCA. In contrast, we report the association of p.G122R with milder forms of retinal degeneration, and show that while p.G122R had no effect on HSP90 binding, the modulation of PDE6 cGMP levels was impaired. The clinical history of these patients together with our functional assays suggest that the p.G122R variant is a rare hypomorphic allele with a later disease onset, amenable to therapeutic intervention. Finally, we report the primate-specific proline-rich domain to be dispensable for both HSP90 interaction and PDE6 activity. We conclude that variants investigated in this domain do not cause disease, with the exception of p.A352_P355del associated with autosomal dominant cone-rod dystrophy.
Collapse
Affiliation(s)
| | - Hoang Mai Le
- UCL Institute of Ophthalmology, University College London, 11 - 43 Bath Street, London, EC1V 9EL, UK
| | - Michalis Georgiou
- UCL Institute of Ophthalmology, University College London, 11 - 43 Bath Street, London, EC1V 9EL, UK.,Moorfields Eye Hospital, City Road, London, EC1V 2PD, UK
| | - Isabelle Meunier
- Centre National de Référence Maladies Sensorielles Génétiques, Service Ophtalmologie Hôpital Gui de Chauliac - CHRU de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France
| | - Beatrice Bocquet
- Centre National de Référence Maladies Sensorielles Génétiques, Service Ophtalmologie Hôpital Gui de Chauliac - CHRU de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France
| | - Anne-Françoise Roux
- Laboratoire de Génétique Moléculaire, CHU de Montpellier, Université de Montpellier, Montpellier, France
| | | | - James Bainbridge
- UCL Institute of Ophthalmology, University College London, 11 - 43 Bath Street, London, EC1V 9EL, UK.,Moorfields Eye Hospital, City Road, London, EC1V 2PD, UK
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, 11 - 43 Bath Street, London, EC1V 9EL, UK.,Moorfields Eye Hospital, City Road, London, EC1V 2PD, UK
| | - Jacqueline van der Spuy
- UCL Institute of Ophthalmology, University College London, 11 - 43 Bath Street, London, EC1V 9EL, UK.
| |
Collapse
|
10
|
Retinal Organoids derived from hiPSCs of an AIPL1-LCA Patient Maintain Cytoarchitecture despite Reduced levels of Mutant AIPL1. Sci Rep 2020; 10:5426. [PMID: 32214115 PMCID: PMC7096529 DOI: 10.1038/s41598-020-62047-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/02/2020] [Indexed: 12/22/2022] Open
Abstract
Aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) is a photoreceptor-specific chaperone that stabilizes the effector enzyme of phototransduction, cGMP phosphodiesterase 6 (PDE6). Mutations in the AIPL1 gene cause a severe inherited retinal dystrophy, Leber congenital amaurosis type 4 (LCA4), that manifests as the loss of vision during the first year of life. In this study, we generated three-dimensional (3D) retinal organoids (ROs) from human induced pluripotent stem cells (hiPSCs) derived from an LCA4 patient carrying a Cys89Arg mutation in AIPL1. This study aimed to (i) explore whether the patient hiPSC-derived ROs recapitulate LCA4 disease phenotype, and (ii) generate a clinically relevant resource to investigate the molecular mechanism of disease and safely test novel therapies for LCA4 in vitro. We demonstrate reduced levels of the mutant AIPL1 and PDE6 proteins in patient organoids, corroborating the findings in animal models; however, patient-derived organoids maintained retinal cell cytoarchitecture despite significantly reduced levels of AIPL1.
Collapse
|
11
|
Yadav RP, Boyd K, Yu L, Artemyev NO. Interaction of the tetratricopeptide repeat domain of aryl hydrocarbon receptor-interacting protein-like 1 with the regulatory Pγ subunit of phosphodiesterase 6. J Biol Chem 2019; 294:15795-15807. [PMID: 31488544 DOI: 10.1074/jbc.ra119.010666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/03/2019] [Indexed: 12/13/2022] Open
Abstract
Phosphodiesterase-6 (PDE6) is key to both phototransduction and health of rods and cones. Proper folding of PDE6 relies on the chaperone activity of aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1), and mutations in both PDE6 and AIPL1 can cause a severe form of blindness. Although AIPL1 and PDE6 are known to interact via the FK506-binding protein domain of AIPL1, the contribution of the tetratricopeptide repeat (TPR) domain of AIPL1 to its chaperone function is poorly understood. Here, we demonstrate that AIPL1-TPR interacts specifically with the regulatory Pγ subunit of PDE6. Use of NMR chemical shift perturbation (CSP) mapping technique revealed the interface between the C-terminal portion of Pγ and AIPL1-TPR. Our solution of the crystal structure of the AIPL1-TPR domain provided additional information, which together with the CSP data enabled us to generate a model of this interface. Biochemical analysis of chimeric AIPL1-AIP proteins supported this model and also revealed a correlation between the affinity of AIPL1-TPR for Pγ and the ability of Pγ to potentiate the chaperone activity of AIPL1. Based on these results, we present a model of the larger AIPL1-PDE6 complex. This supports the importance of simultaneous interactions of AIPL1-FK506-binding protein with the prenyl moieties of PDE6 and AIPL1-TPR with the Pγ subunit during the folding and/or assembly of PDE6. This study sheds new light on the versatility of TPR domains in protein folding by describing a novel TPR-protein binding partner, Pγ, and revealing that this subunit imparts AIPL1 selectivity for its client.
Collapse
Affiliation(s)
- Ravi P Yadav
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | - Kimberly Boyd
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | - Liping Yu
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242.,NMR Core Facility, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242 .,Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| |
Collapse
|
12
|
Yu L, Yadav RP, Artemyev NO. NMR resonance assignments of the TPR domain of human aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1). BIOMOLECULAR NMR ASSIGNMENTS 2019; 13:79-83. [PMID: 30341566 PMCID: PMC6440825 DOI: 10.1007/s12104-018-9856-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/14/2018] [Indexed: 06/08/2023]
Abstract
Aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) is a photoreceptor-specific chaperone of phosphodiesterase-6, a key effector enzyme in the phototransduction cascade. It contains an N-terminal FK506-binding protein (FKBP) domain and a C-terminal tetratricopeptide repeat (TPR) domain. Mutations in AIPL1, including many missense mutations in both FKBP and TPR domains, have been associated with Leber congenital amaurosis, a severe inherited retinopathy that causes blindness. TPR-domain containing proteins are known to interact with HSP90. However, the structure of AIPL1-TPR domain is presently not determined and little is known about the contribution of the TPR domain to the chaperone function of AIPL1. Here, we report the backbone and sidechain assignments of the TPR domain of AIPL1. These assignments reveal that AIPL1-TPR is an α-helical protein containing seven α-helices connected via short loops. Peak broadening or structural disorder is observed for a cluster of hydrophobic residues of W218, W222 and L223. Therefore, these assignments provide a framework for further structural determination of AIPL1-TPR domain and its interactions with various binding partners for elucidation of the mechanism of TPR contribution to the chaperone function of AIPL1.
Collapse
Affiliation(s)
- Liping Yu
- Department of Biochemistry, University of Iowa Carver College of Medicine, B291 CBRB, 285 Newton Road, Iowa City, IA, 52242, USA.
- CCOM NMR Core Facility, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
| | - Ravi P Yadav
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, 5-532 BSB, 51 Newton Road, Iowa City, IA, 52242, USA
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, 5-532 BSB, 51 Newton Road, Iowa City, IA, 52242, USA.
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
| |
Collapse
|
13
|
Kolos JM, Voll AM, Bauder M, Hausch F. FKBP Ligands-Where We Are and Where to Go? Front Pharmacol 2018; 9:1425. [PMID: 30568592 PMCID: PMC6290070 DOI: 10.3389/fphar.2018.01425] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/19/2018] [Indexed: 12/24/2022] Open
Abstract
In recent years, many members of the FK506-binding protein (FKBP) family were increasingly linked to various diseases. The binding domain of FKBPs differs only in a few amino acid residues, but their biological roles are versatile. High-affinity ligands with selectivity between close homologs are scarce. This review will give an overview of the most prominent ligands developed for FKBPs and highlight a perspective for future developments. More precisely, human FKBPs and correlated diseases will be discussed as well as microbial FKBPs in the context of anti-bacterial and anti-fungal therapeutics. The last section gives insights into high-affinity ligands as chemical tools and dimerizers.
Collapse
Affiliation(s)
| | | | | | - Felix Hausch
- Department of Chemistry, Institute of Chemistry and Biochemistry, Darmstadt University of Technology, Darmstadt, Germany
| |
Collapse
|
14
|
Sokolov M, Yadav RP, Brooks C, Artemyev NO. Chaperones and retinal disorders. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 114:85-117. [PMID: 30635087 DOI: 10.1016/bs.apcsb.2018.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Defects in protein folding and trafficking are a common cause of photoreceptor degeneration, causing blindness. Photoreceptor cells present an unusual challenge to the protein folding and transport machinery due to the high rate of protein synthesis, trafficking and the renewal of the outer segment, a primary cilium that has been modified into a specialized light-sensing compartment. Phototransduction components, such as rhodopsin and cGMP-phosphodiesterase, and multimeric ciliary transport complexes, such as the BBSome, are hotspots for mutations that disrupt proteostasis and lead to the death of photoreceptors. In this chapter, we review recent studies that advance our understanding of the chaperone and transport machinery of phototransduction proteins.
Collapse
Affiliation(s)
- Maxim Sokolov
- Department of Ophthalmology, West Virginia University, Morgantown, WV, United States
| | - Ravi P Yadav
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Celine Brooks
- Department of Ophthalmology, West Virginia University, Morgantown, WV, United States
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA, United States.
| |
Collapse
|
15
|
Yadav RP, Artemyev NO. AIPL1: A specialized chaperone for the phototransduction effector. Cell Signal 2017; 40:183-189. [PMID: 28939106 PMCID: PMC6022367 DOI: 10.1016/j.cellsig.2017.09.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/11/2017] [Accepted: 09/18/2017] [Indexed: 12/12/2022]
Abstract
Molecular chaperones play pivotal roles in protein folding, quality control, assembly of multimeric protein complexes, protein trafficking, stress responses, and other essential cellular processes. Retinal photoreceptor rod and cone cells have an unusually high demand for production, quality control, and trafficking of key phototransduction components, and thus, require a robust and specialized chaperone machinery to ensure the fidelity of sensing and transmission of visual signals. Misfolding and/or mistrafficking of photoreceptor proteins are known causes for debilitating blinding diseases. Phosphodiesterase 6, the effector enzyme of the phototransduction cascade, relies on a unique chaperone aryl hydrocarbon receptor (AhR)-interacting protein-like 1 (AIPL1) for its stability and function. The structure of AIPL1 and its relationship with the client remained obscure until recently. This review summarizes important recent advances in understanding the mechanisms underlying normal function of AIPL1 and the protein perturbations caused by pathogenic mutations.
Collapse
Affiliation(s)
- Ravi P Yadav
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States.
| |
Collapse
|