1
|
Yang L, Zhu A, Aman JM, Denberg D, Kilwein MD, Marmion RA, Johnson ANT, Veraksa A, Singh M, Wühr M, Shvartsman SY. ERK synchronizes embryonic cleavages in Drosophila. Dev Cell 2024; 59:3061-3071.e6. [PMID: 39208802 DOI: 10.1016/j.devcel.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 06/13/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Extracellular-signal-regulated kinase (ERK) signaling controls development and homeostasis and is genetically deregulated in human diseases, including neurocognitive disorders and cancers. Although the list of ERK functions is vast and steadily growing, the full spectrum of processes controlled by any specific ERK activation event remains unknown. Here, we show how ERK functions can be systematically identified using targeted perturbations and global readouts of ERK activation. Our experimental model is the Drosophila embryo, where ERK signaling at the embryonic poles has thus far only been associated with the transcriptional patterning of the future larva. Through a combination of live imaging and phosphoproteomics, we demonstrated that ERK activation at the poles is also critical for maintaining the speed and synchrony of embryonic cleavages. The presented approach to interrogating phosphorylation networks identifies a hidden function of a well-studied signaling event and sets the stage for similar studies in other organisms.
Collapse
Affiliation(s)
- Liu Yang
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Audrey Zhu
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Javed M Aman
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Computer Science, Princeton University, Princeton, NJ 08544, USA
| | - David Denberg
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Program in Quantitative and Computational Biology, Princeton University, Princeton, NJ 08544, USA
| | - Marcus D Kilwein
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Robert A Marmion
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Alex N T Johnson
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Alexey Veraksa
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Mona Singh
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Computer Science, Princeton University, Princeton, NJ 08544, USA
| | - Martin Wühr
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Stanislav Y Shvartsman
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Program in Quantitative and Computational Biology, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Flatiron Institute, New York, NY 10010, USA.
| |
Collapse
|
2
|
Sun H, Han L, Guo Y, An H, Wang B, Zhang X, Li J, Jiang Y, Wang Y, Sun G, Zhu S, Tang S, Ge J, Chen M, Guo X, Wang Q. The global phosphorylation landscape of mouse oocytes during meiotic maturation. EMBO J 2024; 43:4752-4785. [PMID: 39256562 PMCID: PMC11480333 DOI: 10.1038/s44318-024-00222-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/12/2024] Open
Abstract
Phosphorylation is a key post-translational modification regulating protein function and biological outcomes. However, the phosphorylation dynamics orchestrating mammalian oocyte development remains poorly understood. In the present study, we apply high-resolution mass spectrometry-based phosphoproteomics to obtain the first global in vivo quantification of mouse oocyte phosphorylation. Of more than 8000 phosphosites, 75% significantly oscillate and 64% exhibit marked upregulation during meiotic maturation, indicative of the dominant regulatory role. Moreover, we identify numerous novel phosphosites on oocyte proteins and a few highly conserved phosphosites in oocytes from different species. Through functional perturbations, we demonstrate that phosphorylation status of specific sites participates in modulating critical events including metabolism, translation, and RNA processing during meiosis. Finally, we combine inhibitor screening and enzyme-substrate network prediction to discover previously unexplored kinases and phosphatases that are essential for oocyte maturation. In sum, our data define landscape of the oocyte phosphoproteome, enabling in-depth mechanistic insights into developmental control of germ cells.
Collapse
Affiliation(s)
- Hongzheng Sun
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, 211166, Nanjing, China
| | - Longsen Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, 211166, Nanjing, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, 211166, Nanjing, China
| | - Huiqing An
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, 211166, Nanjing, China
| | - Bing Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, 211166, Nanjing, China
| | - Xiangzheng Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, 211166, Nanjing, China
| | - Jiashuo Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, 211166, Nanjing, China
| | - Yingtong Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, 211166, Nanjing, China
| | - Yue Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, 211166, Nanjing, China
| | - Guangyi Sun
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, 211166, Nanjing, China
| | - Shuai Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, 211166, Nanjing, China
| | - Shoubin Tang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, 211166, Nanjing, China
| | - Juan Ge
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, 211166, Nanjing, China
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, 211166, Nanjing, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, 211166, Nanjing, China.
- Department of Histology and Embryology, Nanjing Medical University, 211166, Nanjing, China.
| | - Qiang Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, 211166, Nanjing, China.
- Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, China.
| |
Collapse
|
3
|
Bradley D, Hogrebe A, Dandage R, Dubé AK, Leutert M, Dionne U, Chang A, Villén J, Landry CR. The fitness cost of spurious phosphorylation. EMBO J 2024; 43:4720-4751. [PMID: 39256561 PMCID: PMC11480408 DOI: 10.1038/s44318-024-00200-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/12/2024] Open
Abstract
The fidelity of signal transduction requires the binding of regulatory molecules to their cognate targets. However, the crowded cell interior risks off-target interactions between proteins that are functionally unrelated. How such off-target interactions impact fitness is not generally known. Here, we use Saccharomyces cerevisiae to inducibly express tyrosine kinases. Because yeast lacks bona fide tyrosine kinases, the resulting tyrosine phosphorylation is biologically spurious. We engineered 44 yeast strains each expressing a tyrosine kinase, and quantitatively analysed their phosphoproteomes. This analysis resulted in ~30,000 phosphosites mapping to ~3500 proteins. The number of spurious pY sites generated correlates strongly with decreased growth, and we predict over 1000 pY events to be deleterious. However, we also find that many of the spurious pY sites have a negligible effect on fitness, possibly because of their low stoichiometry. This result is consistent with our evolutionary analyses demonstrating a lack of phosphotyrosine counter-selection in species with tyrosine kinases. Our results suggest that, alongside the risk for toxicity, the cell can tolerate a large degree of non-functional crosstalk as interaction networks evolve.
Collapse
Affiliation(s)
- David Bradley
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Alexander Hogrebe
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Rohan Dandage
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Alexandre K Dubé
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Mario Leutert
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Ugo Dionne
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Alexis Chang
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada.
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada.
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada.
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada.
- Department of Biology, Université Laval, Québec, QC, Canada.
| |
Collapse
|
4
|
Loseva PA, Gladyshev VN. The beginning of becoming a human. Aging (Albany NY) 2024; 16:8378-8395. [PMID: 38713165 PMCID: PMC11131989 DOI: 10.18632/aging.205824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/27/2024] [Indexed: 05/08/2024]
Abstract
According to birth certificates, the life of a child begins once their body comes out of the mother's womb. But when does their organismal life begin? Science holds a palette of answers-depending on how one defines a human life. In 1984, a commission on the regulatory framework for human embryo experimentation opted not to answer this question, instead setting a boundary, 14 days post-fertilization, beyond which any experiments were forbidden. Recently, as the reproductive technologies developed and the demand for experimentation grew stronger, this boundary may be set aside leaving the ultimate decision to local oversight committees. While science has not come closer to setting a zero point for human life, there has been significant progress in our understanding of early mammalian embryogenesis. It has become clear that the 14-day stage does in fact possess features, which make it a foundational time point for a developing human. Importantly, this stage defines the separation of soma from the germline and marks the boundary between rejuvenation and aging. We explore how different levels of life organization emerge during human development and suggest a new meaning for the 14-day stage in organismal life that is grounded in recent mechanistic advances and insights from aging studies.
Collapse
Affiliation(s)
- Polina A. Loseva
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Bradley D, Hogrebe A, Dandage R, Dubé AK, Leutert M, Dionne U, Chang A, Villén J, Landry CR. The fitness cost of spurious phosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.08.561337. [PMID: 37873463 PMCID: PMC10592693 DOI: 10.1101/2023.10.08.561337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The fidelity of signal transduction requires the binding of regulatory molecules to their cognate targets. However, the crowded cell interior risks off-target interactions between proteins that are functionally unrelated. How such off-target interactions impact fitness is not generally known, but quantifying this is required to understand the constraints faced by cell systems as they evolve. Here, we use the model organism S. cerevisiae to inducibly express tyrosine kinases. Because yeast lacks bona fide tyrosine kinases, most of the resulting tyrosine phosphorylation is spurious. This provides a suitable system to measure the impact of artificial protein interactions on fitness. We engineered 44 yeast strains each expressing a tyrosine kinase, and quantitatively analysed their phosphoproteomes. This analysis resulted in ~30,000 phosphosites mapping to ~3,500 proteins. Examination of the fitness costs in each strain revealed a strong correlation between the number of spurious pY sites and decreased growth. Moreover, the analysis of pY effects on protein structure and on protein function revealed over 1000 pY events that we predict to be deleterious. However, we also find that a large number of the spurious pY sites have a negligible effect on fitness, possibly because of their low stoichiometry. This result is consistent with our evolutionary analyses demonstrating a lack of phosphotyrosine counter-selection in species with bona fide tyrosine kinases. Taken together, our results suggest that, alongside the risk for toxicity, the cell can tolerate a large degree of non-functional crosstalk as interaction networks evolve.
Collapse
Affiliation(s)
- David Bradley
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Alexander Hogrebe
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Rohan Dandage
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Alexandre K Dubé
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Mario Leutert
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Ugo Dionne
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Alexis Chang
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| |
Collapse
|
6
|
Valverde JM, Dubra G, Phillips M, Haider A, Elena-Real C, Fournet A, Alghoul E, Chahar D, Andrés-Sanchez N, Paloni M, Bernadó P, van Mierlo G, Vermeulen M, van den Toorn H, Heck AJR, Constantinou A, Barducci A, Ghosh K, Sibille N, Knipscheer P, Krasinska L, Fisher D, Altelaar M. A cyclin-dependent kinase-mediated phosphorylation switch of disordered protein condensation. Nat Commun 2023; 14:6316. [PMID: 37813838 PMCID: PMC10562473 DOI: 10.1038/s41467-023-42049-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023] Open
Abstract
Cell cycle transitions result from global changes in protein phosphorylation states triggered by cyclin-dependent kinases (CDKs). To understand how this complexity produces an ordered and rapid cellular reorganisation, we generated a high-resolution map of changing phosphosites throughout unperturbed early cell cycles in single Xenopus embryos, derived the emergent principles through systems biology analysis, and tested them by biophysical modelling and biochemical experiments. We found that most dynamic phosphosites share two key characteristics: they occur on highly disordered proteins that localise to membraneless organelles, and are CDK targets. Furthermore, CDK-mediated multisite phosphorylation can switch homotypic interactions of such proteins between favourable and inhibitory modes for biomolecular condensate formation. These results provide insight into the molecular mechanisms and kinetics of mitotic cellular reorganisation.
Collapse
Affiliation(s)
- Juan Manuel Valverde
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, 3584 CH, Utrecht, Netherlands
- Netherlands Proteomics Center, Padualaan 8, 3584 CH, Utrecht, Netherlands
| | - Geronimo Dubra
- IGMM, CNRS, University of Montpellier, INSERM, Montpellier, France
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le Cancer, Paris, France
| | - Michael Phillips
- Department of Physics and Astronomy, University of Denver, Denver, Co, 80208, USA
| | - Austin Haider
- Department of Molecular and Cellular Biophysics, University of Denver, 80208, Denver, Co, USA
| | | | - Aurélie Fournet
- CBS, CNRS, University of Montpellier, INSERM, Montpellier, France
| | - Emile Alghoul
- IGH, CNRS, University of Montpellier, Montpellier, France
| | - Dhanvantri Chahar
- IGMM, CNRS, University of Montpellier, INSERM, Montpellier, France
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le Cancer, Paris, France
| | - Nuria Andrés-Sanchez
- IGMM, CNRS, University of Montpellier, INSERM, Montpellier, France
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le Cancer, Paris, France
| | - Matteo Paloni
- Department of Physics and Astronomy, University of Denver, Denver, Co, 80208, USA
| | - Pau Bernadó
- CBS, CNRS, University of Montpellier, INSERM, Montpellier, France
| | - Guido van Mierlo
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, 6525 GA, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, 6525 GA, The Netherlands
| | - Henk van den Toorn
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, 3584 CH, Utrecht, Netherlands
- Netherlands Proteomics Center, Padualaan 8, 3584 CH, Utrecht, Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, 3584 CH, Utrecht, Netherlands
- Netherlands Proteomics Center, Padualaan 8, 3584 CH, Utrecht, Netherlands
| | | | | | - Kingshuk Ghosh
- Department of Physics and Astronomy, University of Denver, Denver, Co, 80208, USA
- Department of Molecular and Cellular Biophysics, University of Denver, 80208, Denver, Co, USA
| | - Nathalie Sibille
- CBS, CNRS, University of Montpellier, INSERM, Montpellier, France
| | - Puck Knipscheer
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center, Utrecht, 3584 CT, Netherlands
| | - Liliana Krasinska
- IGMM, CNRS, University of Montpellier, INSERM, Montpellier, France
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le Cancer, Paris, France
| | - Daniel Fisher
- IGMM, CNRS, University of Montpellier, INSERM, Montpellier, France.
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le Cancer, Paris, France.
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, 3584 CH, Utrecht, Netherlands.
- Netherlands Proteomics Center, Padualaan 8, 3584 CH, Utrecht, Netherlands.
| |
Collapse
|
7
|
The Role of Protein Kinase CK2 in Development and Disease Progression: A Critical Review. J Dev Biol 2022; 10:jdb10030031. [PMID: 35997395 PMCID: PMC9397010 DOI: 10.3390/jdb10030031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Protein kinase CK2 (CK2) is a ubiquitous holoenzyme involved in a wide array of developmental processes. The involvement of CK2 in events such as neurogenesis, cardiogenesis, skeletogenesis, and spermatogenesis is essential for the viability of almost all organisms, and its role has been conserved throughout evolution. Further into adulthood, CK2 continues to function as a key regulator of pathways affecting crucial processes such as osteogenesis, adipogenesis, chondrogenesis, neuron differentiation, and the immune response. Due to its vast role in a multitude of pathways, aberrant functioning of this kinase leads to embryonic lethality and numerous diseases and disorders, including cancer and neurological disorders. As a result, CK2 is a popular target for interventions aiming to treat the aforementioned diseases. Specifically, two CK2 inhibitors, namely CX-4945 and CIBG-300, are in the early stages of clinical testing and exhibit promise for treating cancer and other disorders. Further, other researchers around the world are focusing on CK2 to treat bone disorders. This review summarizes the current understanding of CK2 in development, the structure of CK2, the targets and signaling pathways of CK2, the implication of CK2 in disease progression, and the recent therapeutics developed to inhibit the dysregulation of CK2 function in various diseases.
Collapse
|
8
|
Haase J, Chen R, Parker WM, Bonner MK, Jenkins LM, Kelly AE. The TFIIH complex is required to establish and maintain mitotic chromosome structure. eLife 2022; 11:e75475. [PMID: 35293859 PMCID: PMC8956287 DOI: 10.7554/elife.75475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Condensins compact chromosomes to promote their equal segregation during mitosis, but the mechanism of condensin engagement with and action on chromatin is incompletely understood. Here, we show that the general transcription factor TFIIH complex is continuously required to establish and maintain a compacted chromosome structure in transcriptionally silent Xenopus egg extracts. Inhibiting the DNA-dependent ATPase activity of the TFIIH complex subunit XPB rapidly and reversibly induces a complete loss of chromosome structure and prevents the enrichment of condensins I and II, but not topoisomerase II, on chromatin. In addition, inhibiting TFIIH prevents condensation of both mouse and Xenopus nuclei in Xenopus egg extracts, which suggests an evolutionarily conserved mechanism of TFIIH action. Reducing nucleosome density through partial histone depletion restores chromosome structure and condensin enrichment in the absence of TFIIH activity. We propose that the TFIIH complex promotes mitotic chromosome condensation by dynamically altering the chromatin environment to facilitate condensin loading and condensin-dependent loop extrusion.
Collapse
Affiliation(s)
- Julian Haase
- Laboratory of Biochemistry & Molecular Biology, National Cancer Institute, NIHBethesdaUnited States
| | - Richard Chen
- Laboratory of Biochemistry & Molecular Biology, National Cancer Institute, NIHBethesdaUnited States
| | - Wesley M Parker
- Laboratory of Biochemistry & Molecular Biology, National Cancer Institute, NIHBethesdaUnited States
| | - Mary Kate Bonner
- Laboratory of Biochemistry & Molecular Biology, National Cancer Institute, NIHBethesdaUnited States
| | - Lisa M Jenkins
- Laboratory of Cell Biology, National Cancer Institute, NIHBethesdaUnited States
| | - Alexander E Kelly
- Laboratory of Biochemistry & Molecular Biology, National Cancer Institute, NIHBethesdaUnited States
| |
Collapse
|
9
|
Kretov DA. Role of Y-Box Binding Proteins in Ontogenesis. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S71-S74. [PMID: 35501987 DOI: 10.1134/s0006297922140061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 06/14/2023]
Abstract
Y-box binding proteins (YB proteins) are multifunctional DNA/RNA-binding proteins capable of regulating gene expression at multiple levels. At present, the most studied function of these proteins is the regulation of protein synthesis. Special attention in this review has been paid to the role of YB proteins in the control of mRNA translation and stability at the earliest stages of organism formation, from fertilization to gastrulation. Furthermore, the functions of YB proteins in the formation of germ cells, in which they accumulate in large amounts, are summarized. The review then discusses the contribution of YB proteins to the regulation of gene expression during the differentiation of various types of somatic cells. Finally, future directions in the study of YB proteins and their role in ontogenesis are considered.
Collapse
Affiliation(s)
- Dmitry A Kretov
- Department of Biochemistry, School of Medicine, Boston University, Boston, USA, 02218.
| |
Collapse
|
10
|
Swartz SZ, Nguyen HT, McEwan BC, Adamo ME, Cheeseman IM, Kettenbach AN. Selective dephosphorylation by PP2A-B55 directs the meiosis I-meiosis II transition in oocytes. eLife 2021; 10:70588. [PMID: 34342579 PMCID: PMC8370769 DOI: 10.7554/elife.70588] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/02/2021] [Indexed: 12/17/2022] Open
Abstract
Meiosis is a specialized cell cycle that requires sequential changes to the cell division machinery to facilitate changing functions. To define the mechanisms that enable the oocyte-to-embryo transition, we performed time-course proteomics in synchronized sea star oocytes from prophase I through the first embryonic cleavage. Although we found that protein levels were broadly stable, our analysis reveals that dynamic waves of phosphorylation underlie each meiotic stage. We found that the phosphatase PP2A-B55 is reactivated at the meiosis I/meiosis II (MI/MII) transition, resulting in the preferential dephosphorylation of threonine residues. Selective dephosphorylation is critical for directing the MI/MII transition as altering PP2A-B55 substrate preferences disrupts key cell cycle events after MI. In addition, threonine to serine substitution of a conserved phosphorylation site in the substrate INCENP prevents its relocalization at anaphase I. Thus, through its inherent phospho-threonine preference, PP2A-B55 imposes specific phosphoregulated behaviors that distinguish the two meiotic divisions.
Collapse
Affiliation(s)
- S Zachary Swartz
- Whitehead Institute for Biomedical Research, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Hieu T Nguyen
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Brennan C McEwan
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Mark E Adamo
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, United States
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, United States.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, United States
| |
Collapse
|
11
|
Baxi AB, Pade LR, Nemes P. Mass spectrometry based proteomics for developmental neurobiology in the amphibian Xenopus laevis. Curr Top Dev Biol 2021; 145:205-231. [PMID: 34074530 PMCID: PMC8314003 DOI: 10.1016/bs.ctdb.2021.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The South African clawed frog (Xenopus laevis), a prominent vertebrate model in cell and developmental biology, has been instrumental in studying molecular mechanisms of neural development and disease. Recently, high-resolution mass spectrometry (HRMS), a bioanalytical technology, has expanded the molecular toolbox of protein detection and characterization (proteomics). This chapter overviews the characteristics, advantages, and challenges of this biological model and technology. Discussions are offered on their combined use to aid studies on cell differentiation and development of neural tissues. Finally, the emerging integration of proteomics and other 'omic technologies is reflected on to generate new knowledge, drive and test new hypotheses, and ultimately, advance the understanding of neural development during states of health and disease.
Collapse
Affiliation(s)
- Aparna B Baxi
- Department of Chemistry & Biochemistry, University of Maryland, College Park, College Park, MD, United States; Department of Anatomy and Cell Biology, The George Washington University, Washington, DC, United States
| | - Leena R Pade
- Department of Chemistry & Biochemistry, University of Maryland, College Park, College Park, MD, United States
| | - Peter Nemes
- Department of Chemistry & Biochemistry, University of Maryland, College Park, College Park, MD, United States; Department of Anatomy and Cell Biology, The George Washington University, Washington, DC, United States.
| |
Collapse
|
12
|
Zhang T, Gaffrey MJ, Li X, Qian WJ. Characterization of cellular oxidative stress response by stoichiometric redox proteomics. Am J Physiol Cell Physiol 2020; 320:C182-C194. [PMID: 33264075 DOI: 10.1152/ajpcell.00040.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The thiol redox proteome refers to all proteins whose cysteine thiols are subjected to various redox-dependent posttranslational modifications (PTMs) including S-glutathionylation (SSG), S-nitrosylation (SNO), S-sulfenylation (SOH), and S-sulfhydration (SSH). These modifications can impact various aspects of protein function such as activity, binding, conformation, localization, and interactions with other molecules. To identify novel redox proteins in signaling and regulation, it is highly desirable to have robust redox proteomics methods that can provide global, site-specific, and stoichiometric quantification of redox PTMs. Mass spectrometry (MS)-based redox proteomics has emerged as the primary platform for broad characterization of thiol PTMs in cells and tissues. Herein, we review recent advances in MS-based redox proteomics approaches for quantitative profiling of redox PTMs at physiological or oxidative stress conditions and highlight some recent applications. Considering the relative maturity of available methods, emphasis will be on two types of modifications: 1) total oxidation (i.e., all reversible thiol modifications), the level of which represents the overall redox state, and 2) S-glutathionylation, a major form of reversible thiol oxidation. We also discuss the significance of stoichiometric measurements of thiol PTMs as well as future perspectives toward a better understanding of cellular redox regulatory networks in cells and tissues.
Collapse
Affiliation(s)
- Tong Zhang
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Matthew J Gaffrey
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Xiaolu Li
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington.,Bioproducts Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, Washington
| | - Wei-Jun Qian
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| |
Collapse
|
13
|
Holder J, Mohammed S, Barr FA. Ordered dephosphorylation initiated by the selective proteolysis of cyclin B drives mitotic exit. eLife 2020; 9:e59885. [PMID: 32869743 PMCID: PMC7529458 DOI: 10.7554/elife.59885] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
APC/C-mediated proteolysis of cyclin B and securin promotes anaphase entry, inactivating CDK1 and permitting chromosome segregation, respectively. Reduction of CDK1 activity relieves inhibition of the CDK1-counteracting phosphatases PP1 and PP2A-B55, allowing wide-spread dephosphorylation of substrates. Meanwhile, continued APC/C activity promotes proteolysis of other mitotic regulators. Together, these activities orchestrate a complex series of events during mitotic exit. However, the relative importance of regulated proteolysis and dephosphorylation in dictating the order and timing of these events remains unclear. Using high temporal-resolution proteomics, we compare the relative extent of proteolysis and protein dephosphorylation. This reveals highly-selective rapid proteolysis of cyclin B, securin and geminin at the metaphase-anaphase transition, followed by slow proteolysis of other substrates. Dephosphorylation requires APC/C-dependent destruction of cyclin B and was resolved into PP1-dependent categories with unique sequence motifs. We conclude that dephosphorylation initiated by selective proteolysis of cyclin B drives the bulk of changes observed during mitotic exit.
Collapse
Affiliation(s)
- James Holder
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| | - Shabaz Mohammed
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| | - Francis A Barr
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
14
|
Bonner MK, Haase J, Saunders H, Gupta H, Li BI, Kelly AE. The Borealin dimerization domain interacts with Sgo1 to drive Aurora B-mediated spindle assembly. Mol Biol Cell 2020; 31:2207-2218. [PMID: 32697622 PMCID: PMC7550704 DOI: 10.1091/mbc.e20-05-0341] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The chromosomal passenger complex (CPC), which includes the kinase Aurora B, is a master regulator of meiotic and mitotic processes that ensure the equal segregation of chromosomes. Sgo1 is thought to play a major role in the recruitment of the CPC to chromosomes, but the molecular mechanism and contribution of Sgo1-dependent CPC recruitment is currently unclear. Using Xenopus egg extracts and biochemical reconstitution, we found that Sgo1 interacts directly with the dimerization domain of the CPC subunit Borealin. Borealin and the PP2A phosphatase complex can bind simultaneously to the coiled-coil domain of Sgo1, suggesting that Sgo1 can integrate Aurora B and PP2A activities to modulate Aurora B substrate phosphorylation. A Borealin mutant that specifically disrupts the Sgo1–Borealin interaction results in defects in CPC chromosomal recruitment and Aurora B–dependent spindle assembly, but not in spindle assembly checkpoint signaling at unattached kinetochores. These findings establish a direct molecular connection between Sgo1 and the CPC and have major implications for the different functions of Aurora B, which promote the proper interaction between spindle microtubules and chromosomes.
Collapse
Affiliation(s)
- Mary Kate Bonner
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Julian Haase
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Hayden Saunders
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Hindol Gupta
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Biyun Iris Li
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Alexander E Kelly
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892
| |
Collapse
|
15
|
Bekker-Jensen DB, Bernhardt OM, Hogrebe A, Martinez-Val A, Verbeke L, Gandhi T, Kelstrup CD, Reiter L, Olsen JV. Rapid and site-specific deep phosphoproteome profiling by data-independent acquisition without the need for spectral libraries. Nat Commun 2020; 11:787. [PMID: 32034161 PMCID: PMC7005859 DOI: 10.1038/s41467-020-14609-1] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 01/23/2020] [Indexed: 12/13/2022] Open
Abstract
Quantitative phosphoproteomics has transformed investigations of cell signaling, but it remains challenging to scale the technology for high-throughput analyses. Here we report a rapid and reproducible approach to analyze hundreds of phosphoproteomes using data-independent acquisition (DIA) with an accurate site localization score incorporated into Spectronaut. DIA-based phosphoproteomics achieves an order of magnitude broader dynamic range, higher reproducibility of identification, and improved sensitivity and accuracy of quantification compared to state-of-the-art data-dependent acquisition (DDA)-based phosphoproteomics. Notably, direct DIA without the need of spectral libraries performs close to analyses using project-specific libraries, quantifying > 20,000 phosphopeptides in 15 min single-shot LC-MS analysis per condition. Adaptation of a 3D multiple regression model-based algorithm enables global determination of phosphorylation site stoichiometry in DIA. Scalability of the DIA approach is demonstrated by systematically analyzing the effects of thirty kinase inhibitors in context of epidermal growth factor (EGF) signaling showing that specific protein kinases mediate EGF-dependent phospho-regulation. Localizing phosphorylation sites by data-independent acquisition (DIA)-based proteomics is still challenging. Here, the authors develop algorithms for phosphosite localization and stoichiometry determination, and incorporate them into single-shot DIA-phosphoproteomics workflows.
Collapse
Affiliation(s)
- Dorte B Bekker-Jensen
- Novo Nordisk Foundation Center for Protein Research, Proteomics Program, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 2200, Copenhagen, Denmark
| | | | - Alexander Hogrebe
- Novo Nordisk Foundation Center for Protein Research, Proteomics Program, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 2200, Copenhagen, Denmark
| | - Ana Martinez-Val
- Novo Nordisk Foundation Center for Protein Research, Proteomics Program, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 2200, Copenhagen, Denmark
| | - Lynn Verbeke
- Biognosys AG, Wagistrasse 21, 8952, Schlieren, Switzerland
| | - Tejas Gandhi
- Biognosys AG, Wagistrasse 21, 8952, Schlieren, Switzerland
| | - Christian D Kelstrup
- Novo Nordisk Foundation Center for Protein Research, Proteomics Program, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 2200, Copenhagen, Denmark
| | - Lukas Reiter
- Biognosys AG, Wagistrasse 21, 8952, Schlieren, Switzerland
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, Proteomics Program, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 2200, Copenhagen, Denmark.
| |
Collapse
|
16
|
Gilchrist MJ, Veenstra GJC, Cho KWY. Transcriptomics and Proteomics Methods for Xenopus Embryos and Tissues. Cold Spring Harb Protoc 2020; 2020:098350. [PMID: 31772075 DOI: 10.1101/pdb.top098350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The general field of quantitative biology has advanced significantly on the back of recent improvements in both sequencing technology and proteomics methods. The development of high-throughput, short-read sequencing has revolutionized RNA-based expression studies, while improvements in proteomics methods have enabled quantitative studies to attain better resolution. Here we introduce methods to undertake global analyses of gene expression through RNA and protein quantification in Xenopus embryos and tissues.
Collapse
Affiliation(s)
- Michael J Gilchrist
- The Francis Crick Institute, London NW1 1AT, United Kingdom; .,Department of Molecular Developmental Biology, Radboud University, 6525 GA Nijmegen, The Netherlands
| | - Gert Jan C Veenstra
- The Francis Crick Institute, London NW1 1AT, United Kingdom; .,Department of Molecular Developmental Biology, Radboud University, 6525 GA Nijmegen, The Netherlands
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, California 92697
| |
Collapse
|
17
|
York-Andersen AH, Hu Q, Wood BW, Wolfner MF, Weil TT. A calcium-mediated actin redistribution at egg activation in Drosophila. Mol Reprod Dev 2019; 87:293-304. [PMID: 31880382 PMCID: PMC7044060 DOI: 10.1002/mrd.23311] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/12/2019] [Indexed: 12/24/2022]
Abstract
Egg activation is the essential process in which mature oocytes gain the competency to proceed into embryonic development. Many events of egg activation are conserved, including an initial rise of intracellular calcium. In some species, such as echinoderms and mammals, changes in the actin cytoskeleton occur around the time of fertilization and egg activation. However, the interplay between calcium and actin during egg activation remains unclear. Here, we use imaging, genetics, pharmacological treatment, and physical manipulation to elucidate the relationship between calcium and actin in living Drosophila eggs. We show that, before egg activation, actin is smoothly distributed between ridges in the cortex of the dehydrated mature oocytes. At the onset of egg activation, we observe actin spreading out as the egg swells though the intake of fluid. We show that a relaxed actin cytoskeleton is required for the intracellular rise of calcium to initiate and propagate. Once the swelling is complete and the calcium wave is traversing the egg, it leads to a reorganization of actin in a wavelike manner. After the calcium wave, the actin cytoskeleton has an even distribution of foci at the cortex. Together, our data show that calcium resets the actin cytoskeleton at egg activation, a model that we propose to be likely conserved in other species.
Collapse
Affiliation(s)
| | - Qinan Hu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Benjamin W Wood
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Timothy T Weil
- Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
18
|
Cheng A, Zhang P, Wang B, Yang D, Duan X, Jiang Y, Xu T, Jiang Y, Shi J, Ding C, Wu G, Sang Z, Wu Q, Wang H, Wu M, Zhang Z, Pan X, Pan YY, Gao P, Zhang H, Zhou CZ, Guo J, Yang Z. Aurora-A mediated phosphorylation of LDHB promotes glycolysis and tumor progression by relieving the substrate-inhibition effect. Nat Commun 2019; 10:5566. [PMID: 31804482 PMCID: PMC6895051 DOI: 10.1038/s41467-019-13485-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/08/2019] [Indexed: 02/08/2023] Open
Abstract
Overexpressed Aurora-A kinase promotes tumor growth through various pathways, but whether Aurora-A is also involved in metabolic reprogramming-mediated cancer progression remains unknown. Here, we report that Aurora-A directly interacts with and phosphorylates lactate dehydrogenase B (LDHB), a subunit of the tetrameric enzyme LDH that catalyzes the interconversion between pyruvate and lactate. Aurora-A-mediated phosphorylation of LDHB serine 162 significantly increases its activity in reducing pyruvate to lactate, which efficiently promotes NAD+ regeneration, glycolytic flux, lactate production and bio-synthesis with glycolytic intermediates. Mechanistically, LDHB serine 162 phosphorylation relieves its substrate inhibition effect by pyruvate, resulting in remarkable elevation in the conversions of pyruvate and NADH to lactate and NAD+. Blocking S162 phosphorylation by expression of a LDHB-S162A mutant inhibited glycolysis and tumor growth in cancer cells and xenograft models. This study uncovers a function of Aurora-A in glycolytic modulation and a mechanism through which LDHB directly contributes to the Warburg effect. Aurora-A kinase is frequently over-expressed in tumours. Here, the authors show that it modulates the activity of lactate dehydrogenase B, resulting in enhanced glycolysis, bio-synthesis and tumour growth.
Collapse
Affiliation(s)
- Aoxing Cheng
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Peng Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Bo Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Dongdong Yang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaotao Duan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yongliang Jiang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tian Xu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ya Jiang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiahui Shi
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chengtao Ding
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Gao Wu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhihong Sang
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Qiang Wu
- Department of Pathology, Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mian Wu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhiyong Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xin Pan
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Yue-Yin Pan
- Department of Medical Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ping Gao
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Huafeng Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Cong-Zhao Zhou
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jing Guo
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Zhenye Yang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
19
|
Sim HJ, Yun S, Kim HE, Kwon KY, Kim GH, Yun S, Kim BG, Myung K, Park TJ, Kwon T. Simple Method To Characterize the Ciliary Proteome of Multiciliated Cells. J Proteome Res 2019; 19:391-400. [DOI: 10.1021/acs.jproteome.9b00589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | | | - Gun-Hwa Kim
- Drug & Disease Target Group, Korea Basic Science Institute (KSBI), Cheongju-si, Chungcheongbuk-do 28119, Republic of Korea
- Tunneling Nanotube Research Center, Division of Life Science, Korea University, Seoul 02841, Republic of Korea
| | - Sungho Yun
- Drug & Disease Target Group, Korea Basic Science Institute (KSBI), Cheongju-si, Chungcheongbuk-do 28119, Republic of Korea
| | - Byung Gyu Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Tae Joo Park
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Taejoon Kwon
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| |
Collapse
|
20
|
Analysis and Interpretation of Protein Post-Translational Modification Site Stoichiometry. Trends Biochem Sci 2019; 44:943-960. [DOI: 10.1016/j.tibs.2019.06.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/03/2019] [Accepted: 06/07/2019] [Indexed: 12/17/2022]
|
21
|
Hashimoto Y, Greco TM, Cristea IM. Contribution of Mass Spectrometry-Based Proteomics to Discoveries in Developmental Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:143-154. [PMID: 31347046 DOI: 10.1007/978-3-030-15950-4_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Understanding multicellular organism development from a molecular perspective is no small feat, yet this level of comprehension affords clinician-scientists the ability to identify root causes and mechanisms of congenital diseases. Inarguably, the maturation of molecular biology tools has significantly contributed to the identification of genetic loci that underlie normal and aberrant developmental programs. In combination with cell biology approaches, these tools have begun to elucidate the spatiotemporal expression and function of developmentally-regulated proteins. The emergence of quantitative mass spectrometry (MS) for biological applications has accelerated the pace at which these proteins can be functionally characterized, driving the construction of an increasingly detailed systems biology picture of developmental processes. Here, we review the quantitative MS-based proteomic technologies that have contributed significantly to understanding the role of proteome regulation in developmental processes. We provide a brief overview of these methodologies, focusing on their ability to provide precise and accurate proteome measurements. We then highlight the use of discovery-based and targeted mass spectrometry approaches in model systems to study cellular differentiation states, tissue phenotypes, and spatiotemporal subcellular organization. We also discuss the current application and future perspectives of MS proteomics to study PTM coordination and the role of protein complexes during development.
Collapse
Affiliation(s)
- Yutaka Hashimoto
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Todd M Greco
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
22
|
Velasco L, Dublang L, Moro F, Muga A. The Complex Phosphorylation Patterns that Regulate the Activity of Hsp70 and Its Cochaperones. Int J Mol Sci 2019; 20:ijms20174122. [PMID: 31450862 PMCID: PMC6747476 DOI: 10.3390/ijms20174122] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 12/26/2022] Open
Abstract
Proteins must fold into their native structure and maintain it during their lifespan to display the desired activity. To ensure proper folding and stability, and avoid generation of misfolded conformations that can be potentially cytotoxic, cells synthesize a wide variety of molecular chaperones that assist folding of other proteins and avoid their aggregation, which unfortunately is unavoidable under acute stress conditions. A protein machinery in metazoa, composed of representatives of the Hsp70, Hsp40, and Hsp110 chaperone families, can reactivate protein aggregates. We revised herein the phosphorylation sites found so far in members of these chaperone families and the functional consequences associated with some of them. We also discuss how phosphorylation might regulate the chaperone activity and the interaction of human Hsp70 with its accessory and client proteins. Finally, we present the information that would be necessary to decrypt the effect that post-translational modifications, and especially phosphorylation, could have on the biological activity of the Hsp70 system, known as the “chaperone code”.
Collapse
Affiliation(s)
- Lorea Velasco
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Leire Dublang
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Fernando Moro
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain.
| | - Arturo Muga
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain.
| |
Collapse
|
23
|
Kaur S, Baldi B, Vuong J, O'Donoghue SI. A benchmark dataset for analyzing and visualizing the dynamic epiproteome. Data Brief 2019; 25:104000. [PMID: 31297408 PMCID: PMC6598866 DOI: 10.1016/j.dib.2019.104000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/01/2019] [Accepted: 05/09/2019] [Indexed: 01/25/2023] Open
Abstract
In this paper, we present a benchmark dataset to evaluate the currently available analysis methods and visualizations for epiproteomic data. The benchmark dataset is a subset of a high-throughput time-series study of phosphoevents occurring upon insulin stimulation. Our dataset is provided in multiple formats for use with four currently available tools. We also provide a file containing the kinase assignments for the sites, as well as a simple kappa model on phosphorylation changes in insulin signalling. A detailed description of the tools, their analysis methods, and the visualizations generated using the input files described here, are discussed in detail in the accompanying review titled “Visualization and analysis of epiproteome dynamics" [1].
Collapse
Affiliation(s)
- Sandeep Kaur
- University of New South Wales, Australia
- Garvan Institute of Medical Research, Australia
| | - Benedetta Baldi
- Garvan Institute of Medical Research, Australia
- Commonwealth Scientific and Industrial Research Organisation, Australia
| | - Jenny Vuong
- Garvan Institute of Medical Research, Australia
- Commonwealth Scientific and Industrial Research Organisation, Australia
| | - Seàn I. O'Donoghue
- University of New South Wales, Australia
- Garvan Institute of Medical Research, Australia
- Commonwealth Scientific and Industrial Research Organisation, Australia
- Corresponding author. Garvan Institute of Medical Research, Australia.
| |
Collapse
|
24
|
Ardestani G, West MC, Maresca TJ, Fissore RA, Stratton MM. FRET-based sensor for CaMKII activity (FRESCA): A useful tool for assessing CaMKII activity in response to Ca 2+ oscillations in live cells. J Biol Chem 2019; 294:11876-11891. [PMID: 31201271 DOI: 10.1074/jbc.ra119.009235] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/11/2019] [Indexed: 01/22/2023] Open
Abstract
Ca2+ oscillations and consequent Ca2+/calmodulin-dependent protein kinase II (CaMKII) activation are required for embryogenesis, as well as neuronal, immunological, and cardiac signaling. Fertilization directly results in Ca2+ oscillations, but the resultant pattern of CaMKII activity remains largely unclear. To address this gap, we first employed the one existing biosensor for CaMKII activation. This sensor, Camui, comprises CaMKIIα and therefore solely reports on the activation of this CaMKII variant. Additionally, to detect the activity of all endogenous CaMKII variants simultaneously, we constructed a substrate-based sensor for CaMKII activity, FRESCA (FRET-based sensor for CaMKII activity). To examine the differential responses of the Camui and FRESCA sensors, we used several approaches to stimulate Ca2+ release in mouse eggs, including addition of phospholipase Cζ cRNA, which mimics natural fertilization. We found that the Camui response is delayed or terminates earlier than the FRESCA response. FRESCA enables assessment of endogenous CaMKII activity in real-time by both fertilization and artificial reagents, such as Sr2+, which also leads to CaMKII activation. FRESCA's broad utility will be important for optimizing artificial CaMKII activation for clinical use to manage infertility. Moreover, FRESCA provides a new view on CaMKII activity, and its application in additional biological systems may reveal new signaling paradigms in eggs, as well as in neurons, cardiomyocytes, immune cells, and other CaMKII-expressing cells.
Collapse
Affiliation(s)
- Goli Ardestani
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003.,Veterinary and Animal Sciences Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003
| | - Megan C West
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Thomas J Maresca
- Department of Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Rafael A Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | - Margaret M Stratton
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| |
Collapse
|
25
|
Lopez-Martinez D, Kupculak M, Yang D, Yoshikawa Y, Liang CC, Wu R, Gygi SP, Cohn MA. Phosphorylation of FANCD2 Inhibits the FANCD2/FANCI Complex and Suppresses the Fanconi Anemia Pathway in the Absence of DNA Damage. Cell Rep 2019; 27:2990-3005.e5. [PMID: 31167143 PMCID: PMC6581795 DOI: 10.1016/j.celrep.2019.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/01/2019] [Accepted: 04/29/2019] [Indexed: 12/19/2022] Open
Abstract
Interstrand crosslinks (ICLs) of the DNA helix are a deleterious form of DNA damage. ICLs can be repaired by the Fanconi anemia pathway. At the center of the pathway is the FANCD2/FANCI complex, recruitment of which to DNA is a critical step for repair. After recruitment, monoubiquitination of both FANCD2 and FANCI leads to their retention on chromatin, ensuring subsequent repair. However, regulation of recruitment is poorly understood. Here, we report a cluster of phosphosites on FANCD2 whose phosphorylation by CK2 inhibits both FANCD2 recruitment to ICLs and its monoubiquitination in vitro and in vivo. We have found that phosphorylated FANCD2 possesses reduced DNA binding activity, explaining the previous observations. Thus, we describe a regulatory mechanism operating as a molecular switch, where in the absence of DNA damage, the FANCD2/FANCI complex is prevented from loading onto DNA, effectively suppressing the FA pathway.
Collapse
Affiliation(s)
| | - Marian Kupculak
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Di Yang
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | - Chih-Chao Liang
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Ronghu Wu
- Department of Cell Biology, Harvard Medical School, Boston, MA 01125, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 01125, USA
| | - Martin A Cohn
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
26
|
Gibeaux R, Heald R. The Use of Cell-Free Xenopus Extracts to Investigate Cytoplasmic Events. Cold Spring Harb Protoc 2019; 2019:pdb.top097048. [PMID: 29980587 DOI: 10.1101/pdb.top097048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Experiments using cytoplasmic extracts prepared from Xenopus eggs have made important contributions to our understanding of the cell cycle, the cytoskeleton, and cytoplasmic membrane systems. Here we introduce the extract system and describe methods for visualizing and manipulating diverse cytoplasmic processes, and for assaying the functions, dynamics, and stability of individual factors. These in vitro approaches uniquely enable investigation of events at specific cell cycle states, including the assembly of actin- and microtubule-based structures, and the formation of the endoplasmic reticulum. Maternal stockpiles in extracts recapitulate diverse processes in the near absence of gene expression, and this biochemical system combined with microscopy empowers a wide range of mechanistic investigations.
Collapse
Affiliation(s)
- Romain Gibeaux
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720-3200
| | - Rebecca Heald
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720-3200
| |
Collapse
|
27
|
Zhang Z, Ahmed-Braimah YH, Goldberg ML, Wolfner MF. Calcineurin-dependent Protein Phosphorylation Changes During Egg Activation in Drosophila melanogaster. Mol Cell Proteomics 2019; 18:S145-S158. [PMID: 30478224 PMCID: PMC6427240 DOI: 10.1074/mcp.ra118.001076] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/19/2018] [Indexed: 01/26/2023] Open
Abstract
In almost all animals studied to date, the crucial process of egg activation, by which an arrested mature oocyte transitions into an actively developing embryo, initiates with an increase in Ca2+ in the oocyte's cytoplasm. This Ca2+ rise sets off a series of downstream events, including the completion of meiosis and the dynamic remodeling of the oocyte transcriptome and proteome, which prepares the oocyte for embryogenesis. Calcineurin is a highly conserved phosphatase that is activated by Ca2+ upon egg activation and that is required for the resumption of meiosis in Xenopus,, ascidians, and Drosophila. The molecular mechanisms by which calcineurin transduces the calcium signal to regulate meiosis and other downstream events are still unclear. In this study, we investigate the regulatory role of calcineurin during egg activation in Drosophila melanogaster,. Using mass spectrometry, we quantify the phosphoproteomic and proteomic changes that occur during egg activation, and we examine how these events are affected when calcineurin function is perturbed in female germ cells. Our results show that calcineurin regulates hundreds of phosphosites and also influences the abundance of numerous proteins during egg activation. We find calcineurin-dependent changes in cell cycle regulators including Fizzy (Fzy), Greatwall (Gwl) and Endosulfine (Endos); in protein translation modulators including PNG, NAT, eIF4G, and eIF4B; and in important components of signaling pathways including GSK3β and Akt1. Our results help elucidate the events that occur during the transition from oocyte to embryo.
Collapse
Affiliation(s)
- Zijing Zhang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | | | - Michael L Goldberg
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York.
| |
Collapse
|
28
|
Muntel J, Kirkpatrick J, Bruderer R, Huang T, Vitek O, Ori A, Reiter L. Comparison of Protein Quantification in a Complex Background by DIA and TMT Workflows with Fixed Instrument Time. J Proteome Res 2019; 18:1340-1351. [DOI: 10.1021/acs.jproteome.8b00898] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jan Muntel
- Biognosys AG, Wagistrasse 21, 8952 Schlieren, Switzerland
| | - Joanna Kirkpatrick
- Leibniz Institute on Aging, Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | | | - Ting Huang
- Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Olga Vitek
- Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Alessandro Ori
- Leibniz Institute on Aging, Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Lukas Reiter
- Biognosys AG, Wagistrasse 21, 8952 Schlieren, Switzerland
| |
Collapse
|
29
|
Rodenfels J, Neugebauer KM, Howard J. Heat Oscillations Driven by the Embryonic Cell Cycle Reveal the Energetic Costs of Signaling. Dev Cell 2019; 48:646-658.e6. [PMID: 30713074 DOI: 10.1016/j.devcel.2018.12.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 10/31/2018] [Accepted: 12/28/2018] [Indexed: 12/18/2022]
Abstract
All living systems function out of equilibrium and exchange energy in the form of heat with their environment. Thus, heat flow can inform on the energetic costs of cellular processes, which are largely unknown. Here, we have repurposed an isothermal calorimeter to measure heat flow between developing zebrafish embryos and the surrounding medium. Heat flow increased over time with cell number. Unexpectedly, a prominent oscillatory component of the heat flow, with periods matching the synchronous early reductive cleavage divisions, persisted even when DNA synthesis and mitosis were blocked by inhibitors. Instead, the heat flow oscillations were driven by the phosphorylation and dephosphorylation reactions catalyzed by the cell-cycle oscillator, the biochemical network controlling mitotic entry and exit. We propose that the high energetic cost of cell-cycle signaling reflects the significant thermodynamic burden of imposing accurate and robust timing on cell proliferation during development.
Collapse
Affiliation(s)
- Jonathan Rodenfels
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| | - Jonathon Howard
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
30
|
Maternal Proteins That Are Phosphoregulated upon Egg Activation Include Crucial Factors for Oogenesis, Egg Activation and Embryogenesis in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2018; 8:3005-3018. [PMID: 30012668 PMCID: PMC6118307 DOI: 10.1534/g3.118.200578] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Egg activation is essential for the successful transition from a mature oocyte to a developmentally competent egg. It consists of a series of events including the resumption and completion of meiosis, initiation of translation of some maternal mRNAs and destruction of others, and changes to the vitelline envelope. This major change of cell state is accompanied by large scale alteration in the oocyte’s phosphoproteome. We hypothesize that the cohort of proteins that are subject to phosphoregulation during egg activation are functionally important for processes before, during, or soon after this transition, potentially uniquely or as proteins carrying out essential cellular functions like those they do in other (somatic) cells. In this study, we used germline-specific RNAi to examine the function of 189 maternal proteins that are phosphoregulated during egg activation in Drosophila melanogaster. We identified 53 genes whose knockdown reduced or abolished egg production and caused a range of defects in ovarian morphology, as well as 51 genes whose knockdown led to significant impairment or abolishment of the egg hatchability. We observed different stages of developmental arrest in the embryos and various defects in spindle morphology and aberrant centrosome activities in the early arrested embryos. Our results, validated by the detection of multiple genes with previously-documented maternal effect phenotypes among the proteins we tested, revealed 15 genes with newly discovered roles in egg activation and early embryogenesis in Drosophila. Given that protein phosphoregulation is a conserved characteristic of this developmental transition, we suggest that the phosphoregulated proteins may provide a rich pool of candidates for the identification of important players in the egg-to-embryo transition.
Collapse
|
31
|
Baxi AB, Lombard-Banek C, Moody SA, Nemes P. Proteomic Characterization of the Neural Ectoderm Fated Cell Clones in the Xenopus laevis Embryo by High-Resolution Mass Spectrometry. ACS Chem Neurosci 2018; 9:2064-2073. [PMID: 29578674 DOI: 10.1021/acschemneuro.7b00525] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The molecular program by which embryonic ectoderm is induced to form neural tissue is essential to understanding normal and impaired development of the central nervous system. Xenopus has been a powerful vertebrate model in which to elucidate this process. However, abundant vitellogenin (yolk) proteins in cells of the early Xenopus embryo interfere with protein detection by high-resolution mass spectrometry (HRMS), the technology of choice for identifying these gene products. Here, we systematically evaluated strategies of bottom-up proteomics to enhance proteomic detection from the neural ectoderm (NE) of X. laevis using nanoflow high-performance liquid chromatography (nanoLC) HRMS. From whole embryos, high-pH fractionation prior to nanoLC-HRMS yielded 1319 protein groups vs 762 proteins without fractionation (control). Compared to 702 proteins from dorsal halves of embryos (control), 1881 proteins were identified after yolk platelets were depleted via sucrose-gradient centrifugation. We combined these approaches to characterize protein expression in the NE of the early embryo. To guide microdissection of the NE tissues from the gastrula (stage 10), their precursor (midline dorsal-animal, or D111) cells were fate-mapped from the 32-cell embryo using a fluorescent lineage tracer. HRMS of the cell clones identified 2363 proteins, including 147 phosphoproteins (without phosphoprotein enrichment), transcription factors, and members from pathways of cellular signaling. In reference to transcriptomic maps of the developing X. laevis, 76 proteins involved in signaling pathways were gene matched to transcripts with known enrichment in the neural plate. Besides a protocol, this work provides qualitative proteomic data on the early developing NE.
Collapse
Affiliation(s)
- Aparna B. Baxi
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20052, United States
| | - Camille Lombard-Banek
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Sally A. Moody
- Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20052, United States
| | - Peter Nemes
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20052, United States
| |
Collapse
|
32
|
Goyal Y, Schüpbach T, Shvartsman SY. A quantitative model of developmental RTK signaling. Dev Biol 2018; 442:80-86. [PMID: 30026122 DOI: 10.1016/j.ydbio.2018.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/22/2018] [Accepted: 07/13/2018] [Indexed: 01/06/2023]
Abstract
Receptor tyrosine kinases (RTKs) control a wide range of developmental processes, from the first stages of embryogenesis to postnatal growth and neurocognitive development in the adult. A significant share of our knowledge about RTKs comes from genetic screens in model organisms, which provided numerous examples demonstrating how specific cell fates and morphologies are abolished when RTK activation is either abrogated or significantly reduced. Aberrant activation of such pathways has also been recognized in many forms of cancer. More recently, studies of human developmental syndromes established that excessive activation of RTKs and their downstream signaling effectors, most notably the Ras signaling pathway, can also lead to structural and functional defects. Given that both insufficient and excessive pathway activation can lead to abnormalities, mechanistic analysis of developmental RTK signaling must address quantitative questions about its regulation and function. Patterning events controlled by the RTK Torso in the early Drosophila embryo are well-suited for this purpose. This mini review summarizes current state of knowledge about Torso-dependent Ras activation and discusses its potential to serve as a quantitative model for studying the general principles of Ras signaling in development and disease.
Collapse
Affiliation(s)
- Yogesh Goyal
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States; The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, United States
| | - Trudi Schüpbach
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
| | - Stanislav Y Shvartsman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States; The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, United States; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States.
| |
Collapse
|
33
|
Touati SA, Kataria M, Jones AW, Snijders AP, Uhlmann F. Phosphoproteome dynamics during mitotic exit in budding yeast. EMBO J 2018; 37:embj.201798745. [PMID: 29650682 PMCID: PMC5978319 DOI: 10.15252/embj.201798745] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/01/2018] [Accepted: 03/20/2018] [Indexed: 11/09/2022] Open
Abstract
The cell division cycle culminates in mitosis when two daughter cells are born. As cyclin-dependent kinase (Cdk) activity reaches its peak, the anaphase-promoting complex/cyclosome (APC/C) is activated to trigger sister chromatid separation and mitotic spindle elongation, followed by spindle disassembly and cytokinesis. Degradation of mitotic cyclins and activation of Cdk-counteracting phosphatases are thought to cause protein dephosphorylation to control these sequential events. Here, we use budding yeast to analyze phosphorylation dynamics of 3,456 phosphosites on 1,101 proteins with high temporal resolution as cells progress synchronously through mitosis. This reveals that successive inactivation of S and M phase Cdks and of the mitotic kinase Polo contributes to order these dephosphorylation events. Unexpectedly, we detect as many new phosphorylation events as there are dephosphorylation events. These correlate with late mitotic kinase activation and identify numerous candidate targets of these kinases. These findings revise our view of mitotic exit and portray it as a dynamic process in which a range of mitotic kinases contribute to order both protein dephosphorylation and phosphorylation.
Collapse
Affiliation(s)
- Sandra A Touati
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| | - Meghna Kataria
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| | - Andrew W Jones
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Ambrosius P Snijders
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
34
|
Abstract
The oocytes, embryos, and cell-free lysates of the frog Xenopus laevis have emerged as powerful models for quantitative proteomic experiments. In the accompanying paper (Chapter 13) we describe how to prepare samples and acquire multiplexed proteomics spectra from those. As an illustrative example we use a 10-stage developmental time series from the egg to stage 35 (just before hatching). Here, we outline how to convert the ~700,000 acquired mass spectra from this time series into protein expression dynamics for ~9000 proteins. We first outline a preliminary quality-control analysis to discover any errors that occurred during sample preparation. We discuss how peptide and protein identification error rates are controlled, and how peptide and protein species are quantified. Our analysis relies on the freely available MaxQuant proteomics pipeline. Finally, we demonstrate how to start interpreting this large dataset by clustering and gene-set enrichment analysis.
Collapse
Affiliation(s)
- Matthew Sonnett
- Department of Molecular Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Meera Gupta
- Department of Molecular Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Thao Nguyen
- Department of Molecular Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Martin Wühr
- Department of Molecular Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
35
|
Gupta M, Sonnett M, Ryazanova L, Presler M, Wühr M. Quantitative Proteomics of Xenopus Embryos I, Sample Preparation. Methods Mol Biol 2018; 1865:175-194. [PMID: 30151767 DOI: 10.1007/978-1-4939-8784-9_13] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Xenopus oocytes and embryos are model systems optimally suited for quantitative proteomics. This is due to the availability of large amount of protein material and the ease of physical manipulation. Furthermore, facile in vitro fertilization provides superbly synchronized embryos for cell cycle and developmental stages. Here, we detail protocols developed over the last few years for sample preparation of multiplexed proteomics with TMT-tags followed by quantitative mass spectrometry analysis using the MultiNotch MS3 approach. In this approach, each condition is barcoded with an isobaric tag at the peptide level. After barcoding, samples are combined and the relative abundance of ~100,000 peptides is quantified on a mass spectrometer. High reproducibility of the sample preparation process prior to peptides being tagged and combined is of upmost importance for obtaining unbiased data. Otherwise, differences in sample handling can inadvertently appear as biological changes. We detail and exemplify the application of our sample workflow on an embryonic time-series of ten developmental stages of Xenopus laevis embryos ranging from the egg to stage 35 (just before hatching). Our accompanying paper (Chapter 14 ) details a bioinformatics pipeline to analyze the quality of the given sample preparation and strategies to convert spectra of X. laevis peptides into biologically interpretable data.
Collapse
Affiliation(s)
- Meera Gupta
- Department of Molecular Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.,Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Matthew Sonnett
- Department of Molecular Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Lillia Ryazanova
- Department of Molecular Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Marc Presler
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Martin Wühr
- Department of Molecular Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|