1
|
Moro-López M, Farré R, Otero J, Sunyer R. Trusting the forces of our cell lines. Cells Dev 2024; 179:203931. [PMID: 38852676 DOI: 10.1016/j.cdev.2024.203931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/03/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Cells isolated from their native tissues and cultured in vitro face different selection pressures than those cultured in vivo. These pressures induce a profound transformation that reshapes the cell, alters its genome, and transforms the way it senses and generates forces. In this perspective, we focus on the evidence that cells cultured on conventional polystyrene substrates display a fundamentally different mechanobiology than their in vivo counterparts. We explore the role of adhesion reinforcement in this transformation and to what extent it is reversible. We argue that this mechanoadaptation is often understood as a mechanical memory. We propose some strategies to mitigate the effects of on-plastic culture on mechanobiology, such as organoid-inspired protocols or mechanical priming. While isolating cells from their native tissues and culturing them on artificial substrates has revolutionized biomedical research, it has also transformed cellular forces. Only by understanding and controlling them, we can improve their truthfulness and validity.
Collapse
Affiliation(s)
- Marina Moro-López
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Ramon Farré
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-RES), Barcelona, Spain; Institut Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Jorge Otero
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-RES), Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Raimon Sunyer
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería (CIBER-BBN), Barcelona, Spain.
| |
Collapse
|
2
|
Umeyama T, Matsuda T, Nakashima K. Lineage Reprogramming: Genetic, Chemical, and Physical Cues for Cell Fate Conversion with a Focus on Neuronal Direct Reprogramming and Pluripotency Reprogramming. Cells 2024; 13:707. [PMID: 38667322 PMCID: PMC11049106 DOI: 10.3390/cells13080707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Although lineage reprogramming from one cell type to another is becoming a breakthrough technology for cell-based therapy, several limitations remain to be overcome, including the low conversion efficiency and subtype specificity. To address these, many studies have been conducted using genetics, chemistry, physics, and cell biology to control transcriptional networks, signaling cascades, and epigenetic modifications during reprogramming. Here, we summarize recent advances in cellular reprogramming and discuss future directions.
Collapse
Affiliation(s)
- Taichi Umeyama
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Taito Matsuda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | | |
Collapse
|
3
|
Kim HS, Taghizadeh A, Taghizadeh M, Kim HW. Advanced materials technologies to unravel mechanobiological phenomena. Trends Biotechnol 2024; 42:179-196. [PMID: 37666712 DOI: 10.1016/j.tibtech.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 09/06/2023]
Abstract
Advancements in materials-driven mechanobiology have yielded significant progress. Mechanobiology explores how cellular and tissue mechanics impact development, physiology, and disease, where extracellular matrix (ECM) dynamically interacts with cells. Biomaterial-based platforms emulate synthetic ECMs, offering precise control over cellular behaviors by adjusting mechanical properties. Recent technological advances enable in vitro models replicating active mechanical stimuli in vivo. These models manipulate cellular mechanics even at a subcellular level. In this review we discuss recent material-based mechanomodulatory studies in mechanobiology. We highlight the endeavors to mimic the dynamic properties of native ECM during pathophysiological processes like cellular homeostasis, lineage specification, development, aging, and disease progression. These insights may inform the design of accurate in vitro mechanomodulatory platforms that replicate ECM mechanics.
Collapse
Affiliation(s)
- Hye Sung Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Ali Taghizadeh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Mohsen Taghizadeh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea.
| |
Collapse
|
4
|
Roy B, Pekec T, Yuan L, Shivashankar GV. Implanting mechanically reprogrammed fibroblasts for aged tissue regeneration and wound healing. Aging Cell 2024; 23:e14032. [PMID: 38010905 PMCID: PMC10861198 DOI: 10.1111/acel.14032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/22/2023] [Accepted: 10/05/2023] [Indexed: 11/29/2023] Open
Abstract
Cell-based therapies are essential for tissue regeneration and wound healing during aging. Autologous transplantation of aging cells is ineffective due to their increased senescence and reduced tissue remodeling capabilities. Alternatively, implanting reprogrammed aged cells provides unique opportunities. In this paper, we demonstrate the implantation of partially reprogrammed aged human dermal fibroblasts into in vitro aged skin models for tissue regeneration and wound healing. The partially reprogrammed cells were obtained using our previously reported, highly efficient mechanical approach. Implanted cells showed enhanced expression of extracellular matrix proteins in the large area of aged tissue. In addition, the implanted cells at wound sites showed increased extracellular matrix protein synthesis and matrix alignment. Transcriptome analysis, combined with chromatin biomarkers, revealed these implanted cells upregulated tissue regeneration and wound healing pathways. Collectively our results provide a novel, nongenetic, partial reprogramming of aged cells for cell-based therapies in regenerative medicine.
Collapse
Affiliation(s)
- Bibhas Roy
- Division of Biology and ChemistryPaul Scherrer InstituteVilligenSwitzerland
| | - Tina Pekec
- Division of Biology and ChemistryPaul Scherrer InstituteVilligenSwitzerland
| | - Luezhen Yuan
- Division of Biology and ChemistryPaul Scherrer InstituteVilligenSwitzerland
- Department of Health Sciences and TechnologyETH ZurichZurichSwitzerland
| | - G. V. Shivashankar
- Division of Biology and ChemistryPaul Scherrer InstituteVilligenSwitzerland
- Department of Health Sciences and TechnologyETH ZurichZurichSwitzerland
| |
Collapse
|
5
|
Kureel SK, Blair B, Sheetz MP. Recent Advancement in Elimination Strategies and Potential Rejuvenation Targets of Senescence. Adv Biol (Weinh) 2024; 8:e2300461. [PMID: 37857532 DOI: 10.1002/adbi.202300461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Indexed: 10/21/2023]
Abstract
Cellular senescence is a state of exiting the cell cycle, resisting apoptosis, and changing phenotype. Senescent cells (SCs) can be identified by large, distorted morphology and irreversible inability to replicate. In early development, senescence has beneficial roles like tissue patterning and wound healing, where SCs are cleared by the immune system. However, there is a steep rise in SC number as organisms age. The issue with SC accumulation stems from the loss of cellular function, alterations of the microenvironment, and secretions of pro-inflammatory molecules, consisting of cytokines, chemokines, matrix metalloproteinases (MMPs), interleukins, and extracellular matrix (ECM)-associated molecules. This secreted cocktail is referred to as the senescence-associated secretory phenotype (SASP), a hallmark of cellular senescence. The SASP promotes inflammation and displays a bystander effect where paracrine signaling turns proliferating cells into senescent states. To alleviate age-associated diseases, researchers have developed novel methods and techniques to selectively eliminate SCs in aged individuals. Although studies demonstrated that selectively killing SCs improves age-related disorders, there are drawbacks to SC removal. Considering favorable aspects of senescence in the body, this paper reviews recent advancements in elimination strategies and potential rejuvenation targets of senescence to bring researchers in the field up to date.
Collapse
Affiliation(s)
- Sanjay Kumar Kureel
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Brandon Blair
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Michael P Sheetz
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| |
Collapse
|
6
|
Zhang J, Wang Y, Guo J, Zhang N, He J, Zhou Z, Wu F. Direct Reprogramming of Mouse Fibroblasts to Osteoblast-like Cells Using Runx2/Dlx5 Factors on Engineered Stiff Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59209-59223. [PMID: 38102996 DOI: 10.1021/acsami.3c14777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Direct reprogramming of somatic cells into functional cells still faces major limitations in terms of efficiency and achieving functional maturity of the reprogramed cells. While different approaches have been developed commonly based on exploiting biochemical signals, introducing appropriate mechanical cues that stimulate the reprogramming process is rarely reported. In this study, collagen-coated polyacrylamide (PAM) hydrogels with stiffness close to that of collagenous bone (40 kPa) were adopted to augment the direct reprogramming process of mouse fibroblasts to osteoblastic-like cells. The results suggested that culturing cells on a hydrogel substrate enhanced the overexpression of osteogenic transcription factors using nonviral vectors and improved the yield of osteoblast-like cells. Particularly, a synergistic effect on achieving osteogenic functionality has been observed for the mechanical cues and overexpression of transcriptional factors, leading to enhanced osteogenic transformation and production of bone mineral matrix. Animal experiments suggested that reprogramed cells generated on matrix hydrogels accelerated bone regeneration and stimulated ectopic osteogenesis. Mechanism analysis suggested the critical involvement of actomyosin contraction and mechanical signal-mediated pathways like the RhoA-ROCK pathway, leading to a synergistic effect on the key transcriptional processes, including chromatin remodeling, nuclear translocation, and epigenetic transition. This study provides insights into the mechanical cue-enhanced direct reprogramming and cell therapy.
Collapse
Affiliation(s)
- Junwei Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Yao Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Jing Guo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Nihui Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Jing He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Zongke Zhou
- Orthopedic Research Institute & Department of Orthopedics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Fang Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
| |
Collapse
|
7
|
Cammarata LV, Uhler C, Shivashankar GV. Adhesome Receptor Clustering is Accompanied by the Colocalization of the Associated Genes in the Cell Nucleus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570697. [PMID: 38106037 PMCID: PMC10723460 DOI: 10.1101/2023.12.07.570697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Proteins on the cell membrane cluster to respond to extracellular signals; for example, adhesion proteins cluster to enhance extracellular matrix sensing; or T-cell receptors cluster to enhance antigen sensing. Importantly, the maturation of such receptor clusters requires transcriptional control to adapt and reinforce the extracellular signal sensing. However, it has been unclear how such efficient clustering mechanisms are encoded at the level of the genes that code for these receptor proteins. Using the adhesome as an example, we show that genes that code for adhesome receptor proteins are spatially co-localized and co-regulated within the cell nucleus. Towards this, we use Hi-C maps combined with RNA-seq data of adherent cells to map the correspondence between adhesome receptor proteins and their associated genes. Interestingly, we find that the transcription factors that regulate these genes are also co-localized with the adhesome gene loci, thereby potentially facilitating a transcriptional reinforcement of the extracellular matrix sensing machinery. Collectively, our results highlight an important layer of transcriptional control of cellular signal sensing.
Collapse
Affiliation(s)
- Louis V. Cammarata
- Department of Statistics, Harvard University, Cambridge, MA 02138, USA
- Eric and Wendy Schmidt Center, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Caroline Uhler
- Eric and Wendy Schmidt Center, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - G. V. Shivashankar
- Department of Health Science and Technology, ETH Zurich; Zurich, Switzerland
- Paul Scherrer Institute; Villigen, Switzerland
| |
Collapse
|
8
|
Li Q, Chen Z, Zhang Y, Ding S, Ding H, Wang L, Xie Z, Fu Y, Wei M, Liu S, Chen J, Wang X, Gu Z. Imaging cellular forces with photonic crystals. Nat Commun 2023; 14:7369. [PMID: 37963911 PMCID: PMC10646022 DOI: 10.1038/s41467-023-43090-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 10/31/2023] [Indexed: 11/16/2023] Open
Abstract
Current techniques for visualizing and quantifying cellular forces have limitations in live cell imaging, throughput, and multi-scale analysis, which impede progress in cell force research and its practical applications. We developed a photonic crystal cellular force microscopy (PCCFM) to image vertical cell forces over a wide field of view (1.3 mm ⨯ 1.0 mm, a 10 ⨯ objective image) at high speed (about 20 frames per second) without references. The photonic crystal hydrogel substrate (PCS) converts micro-nano deformations into perceivable color changes, enabling in situ visualization and quantification of tiny vertical cell forces with high throughput. It enabled long-term, cross-scale monitoring from subcellular focal adhesions to tissue-level cell sheets and aggregates.
Collapse
Affiliation(s)
- Qiwei Li
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, Jiangsu, China
| | - Zaozao Chen
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, Jiangsu, China
- Institute of Biomaterials and Medical Devices, Southeast University, 215163, Suzhou, Jiangsu, China
| | - Ying Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, Jiangsu, China
| | - Shuang Ding
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, Jiangsu, China
| | - Haibo Ding
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, Jiangsu, China
| | - Luping Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, Jiangsu, China
- Faculty of Sports Science, Ningbo University, 315211, Ningbo, China
| | - Zhuoying Xie
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, Jiangsu, China
| | - Yifu Fu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, Jiangsu, China
| | - Mengxiao Wei
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, Jiangsu, China
| | - Shengnan Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, Jiangsu, China
| | - Jialun Chen
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, Jiangsu, China
| | - Xuan Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, Jiangsu, China
| | - Zhongze Gu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, Jiangsu, China.
- Institute of Biomaterials and Medical Devices, Southeast University, 215163, Suzhou, Jiangsu, China.
| |
Collapse
|
9
|
Park S, Lee J, Ahn KS, Shim HW, Yoon J, Hyun J, Lee JH, Jang S, Yoo KH, Jang Y, Kim T, Kim HK, Lee MR, Jang J, Shim H, Kim H. Cyclic Stretch Promotes Cellular Reprogramming Process through Cytoskeletal-Nuclear Mechano-Coupling and Epigenetic Modification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303395. [PMID: 37727069 PMCID: PMC10646259 DOI: 10.1002/advs.202303395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/27/2023] [Indexed: 09/21/2023]
Abstract
Advancing the technologies for cellular reprogramming with high efficiency has significant impact on regenerative therapy, disease modeling, and drug discovery. Biophysical cues can tune the cell fate, yet the precise role of external physical forces during reprogramming remains elusive. Here the authors show that temporal cyclic-stretching of fibroblasts significantly enhances the efficiency of induced pluripotent stem cell (iPSC) production. Generated iPSCs are proven to express pluripotency markers and exhibit in vivo functionality. Bulk RNA-sequencing reveales that cyclic-stretching enhances biological characteristics required for pluripotency acquisition, including increased cell division and mesenchymal-epithelial transition. Of note, cyclic-stretching activates key mechanosensitive molecules (integrins, perinuclear actins, nesprin-2, and YAP), across the cytoskeletal-to-nuclear space. Furthermore, stretch-mediated cytoskeletal-nuclear mechano-coupling leads to altered epigenetic modifications, mainly downregulation in H3K9 methylation, and its global gene occupancy change, as revealed by genome-wide ChIP-sequencing and pharmacological inhibition tests. Single cell RNA-sequencing further identifies subcluster of mechano-responsive iPSCs and key epigenetic modifier in stretched cells. Collectively, cyclic-stretching activates iPSC reprogramming through mechanotransduction process and epigenetic changes accompanied by altered occupancy of mechanosensitive genes. This study highlights the strong link between external physical forces with subsequent mechanotransduction process and the epigenetic changes with expression of related genes in cellular reprogramming, holding substantial implications in the field of cell biology, tissue engineering, and regenerative medicine.
Collapse
|
10
|
Chudakova DA, Samoilova EM, Chekhonin VP, Baklaushev VP. Improving Efficiency of Direct Pro-Neural Reprogramming: Much-Needed Aid for Neuroregeneration in Spinal Cord Injury. Cells 2023; 12:2499. [PMID: 37887343 PMCID: PMC10605572 DOI: 10.3390/cells12202499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Spinal cord injury (SCI) is a medical condition affecting ~2.5-4 million people worldwide. The conventional therapy for SCI fails to restore the lost spinal cord functions; thus, novel therapies are needed. Recent breakthroughs in stem cell biology and cell reprogramming revolutionized the field. Of them, the use of neural progenitor cells (NPCs) directly reprogrammed from non-neuronal somatic cells without transitioning through a pluripotent state is a particularly attractive strategy. This allows to "scale up" NPCs in vitro and, via their transplantation to the lesion area, partially compensate for the limited regenerative plasticity of the adult spinal cord in humans. As recently demonstrated in non-human primates, implanted NPCs contribute to the functional improvement of the spinal cord after injury, and works in other animal models of SCI also confirm their therapeutic value. However, direct reprogramming still remains a challenge in many aspects; one of them is low efficiency, which prevents it from finding its place in clinics yet. In this review, we describe new insights that recent works brought to the field, such as novel targets (mitochondria, nucleoli, G-quadruplexes, and others), tools, and approaches (mechanotransduction and electrical stimulation) for direct pro-neural reprogramming, including potential ones yet to be tested.
Collapse
Affiliation(s)
- Daria A. Chudakova
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
| | - Ekaterina M. Samoilova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Federal Research and Clinical Center of Specialised Medical Care and Medical Technologies FMBA of Russia, 115682 Moscow, Russia
| | - Vladimir P. Chekhonin
- Department of Medical Nanobiotechnology of Medical and Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, 117997 Moscow, Russia
| | - Vladimir P. Baklaushev
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Federal Research and Clinical Center of Specialised Medical Care and Medical Technologies FMBA of Russia, 115682 Moscow, Russia
- Department of Medical Nanobiotechnology of Medical and Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, 117997 Moscow, Russia
| |
Collapse
|
11
|
Bao M, Xie J. Geometric Confinement-Mediated Mechanical Tension Directs Patterned Differentiation of Mouse ESCs into Organized Germ Layers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:34397-34406. [PMID: 37458389 DOI: 10.1021/acsami.3c03798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The self-organization of embryonic stem cells (ESCs) into organized tissues with three distinct germ layers is critical to morphogenesis and early development. While the regulation of this self-organization by soluble signals is well established, the involvement of mechanical force gradients in this process remains unclear due to the lack of a suitable platform to study this process. In this study, we developed a 3D microenvironment to examine the influence of mechanical tension gradients on ESC-patterned differentiation during morphogenesis by controlling the geometrical signals (shape and size) of ESC colonies. We found that changes in colony geometry impacted the germ layer pattern, with Cdx2-positive cells being more abundant at edges and in areas with high curvatures. The differentiation patterns were determined by geometry-mediated cell tension gradients, with an extraembryonic mesoderm-like layer forming in high-tension regions and ectodermal-like lineages at low-tension regions in the center. Suppression of cytoskeletal tension hindered ESC self-organization. These results indicate that geometric confinement-mediated mechanical tension plays a crucial role in linking multicellular organization to cell differentiation and impacting tissue patterning.
Collapse
Affiliation(s)
- Min Bao
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325001, Zhejiang, China
| | - Jing Xie
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
12
|
Hsia CR, Melters DP, Dalal Y. The Force is Strong with This Epigenome: Chromatin Structure and Mechanobiology. J Mol Biol 2023; 435:168019. [PMID: 37330288 PMCID: PMC10567996 DOI: 10.1016/j.jmb.2023.168019] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 06/19/2023]
Abstract
All life forms sense and respond to mechanical stimuli. Throughout evolution, organisms develop diverse mechanosensing and mechanotransduction pathways, leading to fast and sustained mechanoresponses. Memory and plasticity characteristics of mechanoresponses are thought to be stored in the form of epigenetic modifications, including chromatin structure alterations. These mechanoresponses in the chromatin context share conserved principles across species, such as lateral inhibition during organogenesis and development. However, it remains unclear how mechanotransduction mechanisms alter chromatin structure for specific cellular functions, and if altered chromatin structure can mechanically affect the environment. In this review, we discuss how chromatin structure is altered by environmental forces via an outside-in pathway for cellular functions, and the emerging concept of how chromatin structure alterations can mechanically affect nuclear, cellular, and extracellular environments. This bidirectional mechanical feedback between chromatin of the cell and the environment can potentially have important physiological implications, such as in centromeric chromatin regulation of mechanobiology in mitosis, or in tumor-stroma interactions. Finally, we highlight the current challenges and open questions in the field and provide perspectives for future research.
Collapse
Affiliation(s)
- Chieh-Ren Hsia
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States. https://twitter.com/JeremiahHsia
| | - Daniël P Melters
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States. https://twitter.com/dpmelters
| | - Yamini Dalal
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States. https://twitter.com/NCIYaminiDalal
| |
Collapse
|
13
|
Yang BA, da Rocha AM, Newton I, Shcherbina A, Wong SW, Fraczek PM, Larouche JA, Hiraki HL, Baker BM, Shin JW, Takayama S, Thouless MD, Aguilar CA. Manipulation of the nucleoscaffold potentiates cellular reprogramming kinetics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.12.532246. [PMID: 36993714 PMCID: PMC10055010 DOI: 10.1101/2023.03.12.532246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Somatic cell fate is an outcome set by the activities of specific transcription factors and the chromatin landscape and is maintained by gene silencing of alternate cell fates through physical interactions with the nuclear scaffold. Here, we evaluate the role of the nuclear scaffold as a guardian of cell fate in human fibroblasts by comparing the effects of transient loss (knockdown) and mutation (progeria) of functional Lamin A/C, a core component of the nuclear scaffold. We observed that Lamin A/C deficiency or mutation disrupts nuclear morphology, heterochromatin levels, and increases access to DNA in lamina-associated domains. Changes in Lamin A/C were also found to impact the mechanical properties of the nucleus when measured by a microfluidic cellular squeezing device. We also show that transient loss of Lamin A/C accelerates the kinetics of cellular reprogramming to pluripotency through opening of previously silenced heterochromatin domains while genetic mutation of Lamin A/C into progerin induces a senescent phenotype that inhibits the induction of reprogramming genes. Our results highlight the physical role of the nuclear scaffold in safeguarding cellular fate.
Collapse
Affiliation(s)
- Benjamin A. Yang
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Isabel Newton
- Dept. of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anna Shcherbina
- Dept. of Biomedical Informatics, Stanford University, Palo Alto, CA 94305, USA
| | - Sing-Wan Wong
- Dept. of Pharmacology and Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Paula M. Fraczek
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jacqueline A. Larouche
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Harrison L. Hiraki
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brendon M. Baker
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jae-Won Shin
- Dept. of Pharmacology and Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Shuichi Takayama
- Wallace Coulter Dept. of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - M. D. Thouless
- Dept. of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Dept. of Materials Science & Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carlos A. Aguilar
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
14
|
Contact guidance of mesenchymal stem cells by flagellin-modified substrates: aspects of cell-surface interaction from the point of view of liquid crystal theory. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
15
|
Zhang H, Zhu H, Feng J, Zhang Z, Zhang S, Wang Z, Sun L, Zhang W, Gao B, Zhang Y, Lin M. Reprogramming of Activated Pancreatic Stellate Cells via Mechanical Modulation of Transmembrane Force-sensitive N-cadherin Receptor. J Mol Biol 2023; 435:167819. [PMID: 36089055 DOI: 10.1016/j.jmb.2022.167819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 02/04/2023]
Abstract
Cancer has been the leading cause of death due mainly to tumor metastasis. The tumor microenvironment plays a key role in tumor metastasis. As the main stromal cells in tumor microenvironment originated from activated fibroblast, cancer-associated fibroblasts (CAFs) play a major role in promoting tumor metastasis. A promising therapeutic avenue is reprogramming of CAFs into tumor-restraining quiescence state. In this study, we observed that CAF-like active pancreatic stellate cells (PSCs) interact with each other via N-cadherin, a force-sensitive transmembrane receptor. Since N-cadherin ligation mediated mechanotransduction has been reported to restrict integrin mediated signalling, we thus hypothesized that the reprogramming of activated PSCs by mechanical modulation of N-cadherin ligation might be possible. To test this hypothesis, we grafted N-cadherin ligand (HAVDI peptide) onto soft polyethylene glycol hydrogel substrate prior to cell adhesion to mimic cell-cell interaction via N-cadherin ligation. We found that the activated PSCs could be reprogrammed to their original quiescent state when transferred onto the substrate with immobilized HAVDI peptide. These results reveal a key role of mechanosensing by intercellular transmembrane receptor in reprogramming of activated PSCs, and provide a potential way for designing novel therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Huan Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Hongyuan Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Jinteng Feng
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Zheng Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Simei Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Lin Sun
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Wencheng Zhang
- Department of Endocrinology, Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710038, PR China
| | - Bin Gao
- Department of Endocrinology, Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710038, PR China
| | - Ying Zhang
- Xijing 986 Hospital Department, Fourth Military Medical University, Xi'an 710054, PR China
| | - Min Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
16
|
Tassinari R, Olivi E, Cavallini C, Taglioli V, Zannini C, Marcuzzi M, Fedchenko O, Ventura C. Mechanobiology: A landscape for reinterpreting stem cell heterogeneity and regenerative potential in diseased tissues. iScience 2022; 26:105875. [PMID: 36647385 PMCID: PMC9839966 DOI: 10.1016/j.isci.2022.105875] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mechanical forces play a fundamental role in cellular dynamics from the molecular level to the establishment of complex heterogeneity in somatic and stem cells. Here, we highlight the role of cytoskeletal mechanics and extracellular matrix in generating mechanical forces merging into oscillatory synchronized patterns. We discuss how cellular mechanosensing/-transduction can be modulated by mechanical forces to control tissue metabolism and set the basis for nonpharmacologic tissue rescue. Control of bone anabolic activity and repair, as well as obesity prevention, through a fine-tuning of the stem cell morphodynamics are highlighted. We also discuss the use of mechanical forces in the treatment of cardiovascular diseases and heart failure through the fine modulation of stem cell metabolic activity and regenerative potential. We finally focus on the new landscape of delivering specific mechanical stimuli to reprogram tissue-resident stem cells and enhance our self-healing potential, without the need for stem cell or tissue transplantation.
Collapse
Affiliation(s)
| | - Elena Olivi
- ELDOR LAB, via Corticella 183, 40129 Bologna, Italy
| | | | | | | | - Martina Marcuzzi
- NIBB, National Institute of Biostructures and Biosystems, National Laboratory of Molecular Biology and Stem Cell Engineering, via Corticella 183, 40129 Bologna, Italy
| | - Oleksandra Fedchenko
- NIBB, National Institute of Biostructures and Biosystems, National Laboratory of Molecular Biology and Stem Cell Engineering, via Corticella 183, 40129 Bologna, Italy
| | - Carlo Ventura
- ELDOR LAB, via Corticella 183, 40129 Bologna, Italy,NIBB, National Institute of Biostructures and Biosystems, National Laboratory of Molecular Biology and Stem Cell Engineering, via Corticella 183, 40129 Bologna, Italy,Corresponding author
| |
Collapse
|
17
|
Ultrastructural Characterization of Human Gingival Fibroblasts in 3D Culture. Cells 2022; 11:cells11223647. [PMID: 36429075 PMCID: PMC9688082 DOI: 10.3390/cells11223647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Cell spheroids are applied in various fields of research, such as the fabrication of three-dimensional artificial tissues in vitro, disease modeling, stem cell research, regenerative therapy, and biotechnology. A preclinical 3D culture model of primary human gingival fibroblasts free of external factors and/or chemical inducers is presented herein. The ultrastructure of the spheroids was characterized to establish a cellular model for the study of periodontal tissue regeneration. The liquid overlay technique was used with agarose to generate spheroids. Fibroblasts in 2D culture and cell spheroids were characterized by immunofluorescence, and cell spheroids were characterized by optical and scanning electron microscopy, energy-dispersive X-ray spectroscopy, backscattered electrons, and Fourier transform infrared spectroscopy. Ostegenic related genes were analyzed by RT-qPCR. Gingival fibroblasts formed spheroids spontaneously and showed amorphous calcium phosphate nanoparticle deposits on their surface. The results suggest that human gingival fibroblasts have an intrinsic potential to generate a mineralized niche in 3D culture.
Collapse
|
18
|
Liu H, Chansoria P, Delrot P, Angelidakis E, Rizzo R, Rütsche D, Applegate LA, Loterie D, Zenobi-Wong M. Filamented Light (FLight) Biofabrication of Highly Aligned Tissue-Engineered Constructs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204301. [PMID: 36095325 DOI: 10.1002/adma.202204301] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Cell-laden hydrogels used in tissue engineering generally lack sufficient 3D topographical guidance for cells to mature into aligned tissues. A new strategy called filamented light (FLight) biofabrication rapidly creates hydrogels composed of unidirectional microfilament networks, with diameters on the length scale of single cells. Due to optical modulation instability, a light beam is divided optically into FLight beams. Local polymerization of a photoactive resin is triggered, leading to local increase in refractive index, which itself creates self-focusing waveguides and further polymerization of photoresin into long hydrogel microfilaments. Diameter and spacing of the microfilaments can be tuned from 2 to 30 µm by changing the coherence length of the light beam. Microfilaments show outstanding cell instructive properties with fibroblasts, tenocytes, endothelial cells, and myoblasts, influencing cell alignment, nuclear deformation, and extracellular matrix deposition. FLight is compatible with multiple types of photoresins and allows for biofabrication of centimeter-scale hydrogel constructs with excellent cell viability within seconds (<10 s per construct). Multidirectional microfilaments are achievable within a single hydrogel construct by changing the direction of FLight projection, and complex multimaterial/multicellular tissue-engineered constructs are possible by sequentially exchanging the cell-laden photoresin. FLight offers a transformational approach to developing anisotropic tissues using photo-crosslinkable biomaterials.
Collapse
Affiliation(s)
- Hao Liu
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - Parth Chansoria
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - Paul Delrot
- Readily3D SA, EPFL Innovation Park, Lausanne, 1015, Switzerland
| | - Emmanouil Angelidakis
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - Riccardo Rizzo
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - Dominic Rütsche
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Plastic, Reconstructive & Hand Surgery, Lausanne University Hospital, University of Lausanne, Epalinges, 1066, Switzerland
| | - Damien Loterie
- Readily3D SA, EPFL Innovation Park, Lausanne, 1015, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| |
Collapse
|
19
|
Efremov AK, Hovan L, Yan J. Nucleus size and its effect on nucleosome stability in living cells. Biophys J 2022; 121:4189-4204. [PMID: 36146936 PMCID: PMC9675033 DOI: 10.1016/j.bpj.2022.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/15/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
DNA architectural proteins play a major role in organization of chromosomal DNA in living cells by packaging it into chromatin, whose spatial conformation is determined by an intricate interplay between the DNA-binding properties of architectural proteins and physical constraints applied to the DNA by a tight nuclear space. Yet, the exact effects of the nucleus size on DNA-protein interactions and chromatin structure currently remain obscure. Furthermore, there is even no clear understanding of molecular mechanisms responsible for the nucleus size regulation in living cells. To find answers to these questions, we developed a general theoretical framework based on a combination of polymer field theory and transfer-matrix calculations, which showed that the nucleus size is mainly determined by the difference between the surface tensions of the nuclear envelope and the endoplasmic reticulum membrane as well as the osmotic pressure exerted by cytosolic macromolecules on the nucleus. In addition, the model demonstrated that the cell nucleus functions as a piezoelectric element, changing its electrostatic potential in a size-dependent manner. This effect has been found to have a profound impact on stability of nucleosomes, revealing a previously unknown link between the nucleus size and chromatin structure. Overall, our study provides new insights into the molecular mechanisms responsible for regulation of the nucleus size, as well as the potential role of nuclear organization in shaping the cell response to environmental cues.
Collapse
Affiliation(s)
- Artem K Efremov
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China; Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
| | - Ladislav Hovan
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
20
|
Devulapally A, Parekh V, Pazhayidam George C, Balakrishnan S. On the Variability in Cell and Nucleus Shapes. Cells Tissues Organs 2022; 213:96-107. [PMID: 36315993 DOI: 10.1159/000527825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/26/2022] [Indexed: 02/17/2024] Open
Abstract
Cell morphology is an important regulator of cell function. Many abnormalities in cellular behavior can be discerned from changes in the shape of the cell and its organelles, typically the nucleus. Two major challenges for developing such phenotypic assays are reconstructing 3D surfaces of individual cells and nuclei from confocal images and developing characterizations of these surfaces for comparisons. We demonstrate two algorithms - 3D active contours and 3D condensed-attention UNet - to segment cells and nuclei from confocal images. The cell and nuclear surfaces are then converted into vectors using a reversible, spherical transform - i.e., shapes can be recovered from the vectors. Typical methods for characterizing shapes using size, shape, and image parameters such as area, volume, shape factor, solidity, and pixel intensities are not amenable to such reverse transformation. Our vector representation's principal component analysis shows that the significant modes of variability among cell and nucleus shapes are scaling and flattening. We benchmark these modes using a known mechanical model for nucleus morphology. Subsequent modes alter the eccentricity of the nucleus and translate and rotate it with respect to the cell. Our vector-space representation of cell and nucleus shape helps physically interpret the variability sources. It may further help to guide mechanical models and identify molecular mechanisms driving cell and nuclear shape changes.
Collapse
Affiliation(s)
- Anusha Devulapally
- School of Mathematics and Computer Science, Indian Institute of Technology Goa, Veling, India
| | - Varun Parekh
- School of Mathematics and Computer Science, Indian Institute of Technology Goa, Veling, India
| | - Clint Pazhayidam George
- School of Mathematics and Computer Science, Indian Institute of Technology Goa, Veling, India
- School of Interdisciplinary Life Sciences, Indian Institute of Technology Goa, Veling, India
| | - Sreenath Balakrishnan
- School of Interdisciplinary Life Sciences, Indian Institute of Technology Goa, Veling, India
- School of Mechanical Sciences, Indian Institute of Technology Goa, Veling, India
| |
Collapse
|
21
|
Yuan L, Roy B, Ratna P, Uhler C, Shivashankar GV. Lateral confined growth of cells activates Lef1 dependent pathways to regulate cell-state transitions. Sci Rep 2022; 12:17318. [PMID: 36243826 PMCID: PMC9569372 DOI: 10.1038/s41598-022-21596-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/29/2022] [Indexed: 01/10/2023] Open
Abstract
Long-term sustained mechano-chemical signals in tissue microenvironment regulate cell-state transitions. In recent work, we showed that laterally confined growth of fibroblasts induce dedifferentiation programs. However, the molecular mechanisms underlying such mechanically induced cell-state transitions are poorly understood. In this paper, we identify Lef1 as a critical somatic transcription factor for the mechanical regulation of de-differentiation pathways. Network optimization methods applied to time-lapse RNA-seq data identify Lef1 dependent signaling as potential regulators of such cell-state transitions. We show that Lef1 knockdown results in the down-regulation of fibroblast de-differentiation and that Lef1 directly interacts with the promoter regions of downstream reprogramming factors. We also evaluate the potential upstream activation pathways of Lef1, including the Smad4, Atf2, NFkB and Beta-catenin pathways, thereby identifying that Smad4 and Atf2 may be critical for Lef1 activation. Collectively, we describe an important mechanotransduction pathway, including Lef1, which upon activation, through progressive lateral cell confinement, results in fibroblast de-differentiation.
Collapse
Affiliation(s)
- Luezhen Yuan
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Bibhas Roy
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
- Institute of Molecular Oncology, Italian Foundation for Cancer Research, 20139, Milan, Italy
| | - Prasuna Ratna
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Caroline Uhler
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - G V Shivashankar
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland.
- Department of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland.
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore.
- Institute of Molecular Oncology, Italian Foundation for Cancer Research, 20139, Milan, Italy.
| |
Collapse
|
22
|
Actomyosin contractility as a mechanical checkpoint for cell state transitions. Sci Rep 2022; 12:16063. [PMID: 36163393 PMCID: PMC9512847 DOI: 10.1038/s41598-022-20089-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/08/2022] [Indexed: 11/08/2022] Open
Abstract
Cell state transitions induced by mechano-chemical cues result in a heterogeneous population of cell states. While much of the work towards understanding the origins of such heterogeneity has focused on the gene regulatory mechanisms, the contribution of intrinsic mechanical properties of cells remains unknown. In this paper, using a well-defined single cell platform to induce cell-state transitions, we reveal the importance of actomyosin contractile forces in regulating the heterogeneous cell-fate decisions. Temporal analysis of laterally confined growth of fibroblasts revealed sequential changes in the colony morphology which was tightly coupled to the progressive erasure of lineage-specific transcription programs. Pseudo-trajectory constructed using unsupervised diffusion analysis of the colony morphology features revealed a bifurcation event in which some cells undergo successful cell state transitions towards partial reprogramming. Importantly, inhibiting actomyosin contractility before the bifurcation event leads to more efficient dedifferentiation. Taken together, this study highlights the presence of mechanical checkpoints that contribute to the heterogeneity in cell state transitions.
Collapse
|
23
|
Diaz JA, Sánchez L, Diaz LA, Murillo MF, Poveda L, Suescun OF, Castro L. Sequential development of embryoblast-like memory entities in human cancer tissues: an evolutionary self-repair structure with pluripotentiality. Am J Transl Res 2022; 14:6011-6028. [PMID: 36247292 PMCID: PMC9556478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/19/2022] [Indexed: 06/16/2023]
Abstract
Hidden collective organization of cancer cells can partially or completely return to embryoid genotype-phenotype with the plasticity to transform their morphology on cell embryoblast-like memory entities by expression of dormant genes that arise from embryogenesis. After hundreds of driver mutations, cancer cells gain new abilities or attributes and recapitulate early stages of embryogenesis. Our findings document how malignant tissues reactivated ancestral storage memory and elaborate inside tumor glands spiral-pyramidal-fractal chiral crystals (Tc) as geometric attractor proteins and biomimicry the primitive cellular blastocyst embryoblast fluid-filled cavity. The resultant evolutionary embryoblast-like entity has higher survivability and spatial cephalic-caudal growth organization with pluripotentiality that carry the correct DNA instructions to repair, and regenerate. The isolation and manipulation of these order structures can guide and control the regenerative pathway mechanism in human tumors as follows: modify and reprogram the phenotype of the tumor where these entities are generated, establish a reverse primordial microscopic mold to use the swirlonic collective behavior of cellular building blocks to regenerate injured tissues, convert cancer cells to a normal phenotype through regeneration using the organizational level and scale properties of reverse genetic guidance, global control of mitotic activity and morphogenetic movements avoiding their spread and metastasis, determining a better life prognosis for patients who incubate these entities in their tumors compared to those who do not express them. An emergent self-repair order structure, biological template can develop targeted therapeutic alternatives not only in cancer but also in treatment of autoimmune, viral diseases, and in regenerative medicine and rejuvenation.
Collapse
Affiliation(s)
- Jairo A Diaz
- Faculty of Medicine, Cooperative University of ColombiaVillavicencio, Meta, Colombia
- Laboratory of Pathology, Departmental Hospital of VillavicencioMeta, Colombia
- Hospital Regional de GranadaMeta, Colombia
- Laboratory of Pathology, Liga Colombiana Contra el Cáncer, Villavicencio, Meta, Colombia; Empresa Social del Estado ESEVillavicencio, Meta, Colombia
| | - Liliana Sánchez
- Faculty of Medicine, Cooperative University of ColombiaVillavicencio, Meta, Colombia
| | - Luis A Diaz
- Faculty of Medicine, Cooperative University of ColombiaVillavicencio, Meta, Colombia
- Laboratory of Pathology, Departmental Hospital of VillavicencioMeta, Colombia
| | - Mauricio F Murillo
- Laboratory of Pathology, Departmental Hospital of VillavicencioMeta, Colombia
| | - Laura Poveda
- Faculty of Medicine, Cooperative University of ColombiaVillavicencio, Meta, Colombia
| | - Oscar F Suescun
- Faculty of Medicine, Cooperative University of ColombiaVillavicencio, Meta, Colombia
| | | |
Collapse
|
24
|
Chen YJ, Chang R, Fan YJ, Yang KC, Wang PY, Tseng CL. Binary Colloidal Crystals (BCCs) Modulate the Retina-related Gene Expression of hBMSCs – A Preliminary Study. Colloids Surf B Biointerfaces 2022; 218:112717. [PMID: 35961109 DOI: 10.1016/j.colsurfb.2022.112717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/26/2022]
Abstract
Surface topography-induced lineage commitment of human bone marrow stem cells (hBMSCs) has been reported. However, this effect on hBMSC differentiation toward retinal pigment epithelium (RPE)-like cells has not been explored. Herein, a family of cell culture substrates called binary colloidal crystals (BCCs) was used to stimulate hBMSCs into RPE-like cells without induction factors. Two BCCs, named SiPS (silica (Si)/polystyrene (PS)) and SiPSC (Si/carboxylated PS), having similar surface topographies but different surface chemistry was used for cell culture. The result showed that cell proliferation was no difference between the two BCCs and tissue culture polystyrene (TCPS) control. However, the cell attachment, spreading area, and aspect ratio between surfaces were significantly changed. For example, cells displayed more elongated on SiPS (aspect ratio ~7.0) than those on SiPSC and TCPS (~2.0). The size of focal adhesions on SiPSC (~1.6 µm2) was smaller than that on the TCPS (~2.5 µm2). qPCR results showed that hBMSCs expressed higher RPE progenitor genes (i.e., MITF and PAX6) on day 15, and mature RPE genes (i.e., CRALBP and RPE65) on day 30 on SiPS than TCPS. On the other hand, the expression of optical vesicle or neuroretina genes (i.e., MITF and VSX2) was upregulated on day 15 on SiPSC compared to the TCPS. This study reveals that hBMSCs could be modulated into different cell subtypes depending on the BCC combinations. This study shows the potential of BCCs in controlling stem cell differentiation.
Collapse
|
25
|
Falo-Sanjuan J, Bray S. Notch-dependent and -independent transcription are modulated by tissue movements at gastrulation. eLife 2022; 11:e73656. [PMID: 35583918 PMCID: PMC9183233 DOI: 10.7554/elife.73656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/27/2022] [Indexed: 12/30/2022] Open
Abstract
Cells sense and integrate external information from diverse sources that include mechanical cues. Shaping of tissues during development may thus require coordination between mechanical forces from morphogenesis and cell-cell signalling to confer appropriate changes in gene expression. By live-imaging Notch-induced transcription in real time, we have discovered that morphogenetic movements during Drosophila gastrulation bring about an increase in activity-levels of a Notch-responsive enhancer. Mutations that disrupt the timing of gastrulation resulted in concomitant delays in transcription up-regulation that correlated with the start of mesoderm invagination. As a similar gastrulation-induced effect was detected when transcription was elicited by the intracellular domain NICD, it cannot be attributed to forces exerted on Notch receptor activation. A Notch-independent vnd enhancer also exhibited a modest gastrulation-induced activity increase in the same stripe of cells. Together, these observations argue that gastrulation-associated forces act on the nucleus to modulate transcription levels. This regulation was uncoupled when the complex linking the nucleoskeleton and cytoskeleton (LINC) was disrupted, indicating a likely conduit. We propose that the coupling between tissue-level mechanics, arising from gastrulation, and enhancer activity represents a general mechanism for ensuring correct tissue specification during development and that Notch-dependent enhancers are highly sensitive to this regulation.
Collapse
Affiliation(s)
- Julia Falo-Sanjuan
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Sarah Bray
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
26
|
Mechanical Cues Regulate Histone Modifications and Cell Behavior. Stem Cells Int 2022; 2022:9179111. [PMID: 35599845 PMCID: PMC9117061 DOI: 10.1155/2022/9179111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/19/2022] [Indexed: 11/17/2022] Open
Abstract
Change of biophysical factors in tissue microenvironment is an important step in a chronic disease development process. A mechanical and biochemical factor from cell living microniche can regulate cell epigenetic decoration and, therefore, further induce change of gene expression. In this review, we will emphasize the mechanism that biophysical microenvironment manipulates cell behavior including gene expression and protein decoration, through modifying histone amino acid residue modification. The influence given by different mechanical forces, including mechanical stretch, substrate surface stiffness, and shear stress, on cell fate and behavior during chronic disease development including tumorigenesis will also be teased out. Overall, the recent work summarized in this review culminates on the hypothesis that a mechanical factor stimulates the modification on histone which could facilitate disease detection and potential therapeutic target.
Collapse
|
27
|
Tsukamoto S, Chiam KH, Asakawa T, Sawasaki K, Takesue N, Sakamoto N. Compressive forces driven by lateral actin fibers are a key to the nuclear deformation under uniaxial cell-substrate stretching. Biochem Biophys Res Commun 2022; 597:37-43. [PMID: 35123264 DOI: 10.1016/j.bbrc.2022.01.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 01/10/2023]
Abstract
Cells sense the direction of mechanical stimuli including substrate stretching and show morphological and functional responses. The nuclear deformation with respect to the direction of mechanical stimuli is thought of as a vital factor in mechanosensitive intracellular signaling and gene transcription, but the detailed relationship between the direction of stimuli and nuclear deformation behavior is not fully solved yet. Here, we assessed the role of actin cytoskeletons in nuclear deformation caused by cell substrate stretching with different directions. Cells on a PDMS stretching chamber were subjected to a step-strain and changes of long- and short-axes of nucleus before and after stretching were evaluated in terms of nuclear orientation against the direction of stretching. Nuclei oriented parallel to the stretching direction showed elongation and shrinkage in the long and short axes, respectively, and vice versa. However, calculation of the aspect ratio (ratio of long- and short-axes) changes revealed orientation-depend nuclear deformation: The nucleus oriented parallel to the stretching direction showed a greater aspect ratio change than it aligned in the perpendicular direction of the stretching. A decrease in actin cytoskeletal tension significantly changed the nuclear deformation only in the short axis direction, thereby abolishing the orientation-depend deformation of the nucleus. These results suggest that lateral compressive forces exerted by the actin cytoskeleton is a key factor of orientation-depend deformation in short axis of the nucleus under the cell-substrate stretching condition, and may be crucial for mechano-sensing and responses to the cell-substrate stretching direction.
Collapse
Affiliation(s)
- Shingo Tsukamoto
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Hachioji, Tokyo, Japan; Bioinformatics Institute, A∗STAR, Singapore.
| | | | - Takumi Asakawa
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Kaoru Sawasaki
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Naoyuki Takesue
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Naoya Sakamoto
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Hachioji, Tokyo, Japan.
| |
Collapse
|
28
|
Luciano M, Versaevel M, Vercruysse E, Procès A, Kalukula Y, Remson A, Deridoux A, Gabriele S. Appreciating the role of cell shape changes in the mechanobiology of epithelial tissues. BIOPHYSICS REVIEWS 2022; 3:011305. [PMID: 38505223 PMCID: PMC10903419 DOI: 10.1063/5.0074317] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/23/2022] [Indexed: 03/21/2024]
Abstract
The wide range of epithelial cell shapes reveals the complexity and diversity of the intracellular mechanisms that serve to construct their morphology and regulate their functions. Using mechanosensitive steps, epithelial cells can sense a variety of different mechanochemical stimuli and adapt their behavior by reshaping their morphology. These changes of cell shape rely on a structural reorganization in space and time that generates modifications of the tensional state and activates biochemical cascades. Recent studies have started to unveil how the cell shape maintenance is involved in mechanical homeostatic tasks to sustain epithelial tissue folding, identity, and self-renewal. Here, we review relevant works that integrated mechanobiology to elucidate some of the core principles of how cell shape may be conveyed into spatial information to guide collective processes such as epithelial morphogenesis. Among many other parameters, we show that the regulation of the cell shape can be understood as the result of the interplay between two counteracting mechanisms: actomyosin contractility and intercellular adhesions, and that both do not act independently but are functionally integrated to operate on molecular, cellular, and tissue scales. We highlight the role of cadherin-based adhesions in force-sensing and mechanotransduction, and we report recent developments that exploit physics of liquid crystals to connect cell shape changes to orientational order in cell aggregates. Finally, we emphasize that the further intermingling of different disciplines to develop new mechanobiology assays will lead the way toward a unified picture of the contribution of cell shape to the pathophysiological behavior of epithelial tissues.
Collapse
Affiliation(s)
- Marine Luciano
- University of Mons, Interfaces and Complex Fluids Laboratory, Mechanobiology and Biomaterials Group, Research Institute for Biosciences, CIRMAP, 20 Place du Parc, B-7000 Mons, Belgium
| | - Marie Versaevel
- University of Mons, Interfaces and Complex Fluids Laboratory, Mechanobiology and Biomaterials Group, Research Institute for Biosciences, CIRMAP, 20 Place du Parc, B-7000 Mons, Belgium
| | - Eléonore Vercruysse
- University of Mons, Interfaces and Complex Fluids Laboratory, Mechanobiology and Biomaterials Group, Research Institute for Biosciences, CIRMAP, 20 Place du Parc, B-7000 Mons, Belgium
| | - Anthony Procès
- University of Mons, Interfaces and Complex Fluids Laboratory, Mechanobiology and Biomaterials Group, Research Institute for Biosciences, CIRMAP, 20 Place du Parc, B-7000 Mons, Belgium
| | - Yohalie Kalukula
- University of Mons, Interfaces and Complex Fluids Laboratory, Mechanobiology and Biomaterials Group, Research Institute for Biosciences, CIRMAP, 20 Place du Parc, B-7000 Mons, Belgium
| | - Alexandre Remson
- University of Mons, Interfaces and Complex Fluids Laboratory, Mechanobiology and Biomaterials Group, Research Institute for Biosciences, CIRMAP, 20 Place du Parc, B-7000 Mons, Belgium
| | - Amandine Deridoux
- University of Mons, Interfaces and Complex Fluids Laboratory, Mechanobiology and Biomaterials Group, Research Institute for Biosciences, CIRMAP, 20 Place du Parc, B-7000 Mons, Belgium
| | - Sylvain Gabriele
- University of Mons, Interfaces and Complex Fluids Laboratory, Mechanobiology and Biomaterials Group, Research Institute for Biosciences, CIRMAP, 20 Place du Parc, B-7000 Mons, Belgium
| |
Collapse
|
29
|
Xia P, Luo Y. Vascularization in tissue engineering: The architecture cues of pores in scaffolds. J Biomed Mater Res B Appl Biomater 2021; 110:1206-1214. [PMID: 34860454 DOI: 10.1002/jbm.b.34979] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/21/2021] [Accepted: 11/19/2021] [Indexed: 12/28/2022]
Abstract
Vascularization is a key event and also still a challenge in tissue engineering. Many efforts have been devoted to the development of vascularization based on cells, growth factors, and porous scaffolds in the past decades. Among these efforts, the architecture features of pores in scaffolds played important roles for vascularization, which have attracted increasing attention. It has been known that the open macro pores in scaffolds could facilitate cell migration, nutrient, and oxygen diffusion, which then could promote new tissue formation and vascularization. The pore parameters are the important factors affecting cells response and vessel formation. Thus, this review will give an overview of the current advances in the effects of pore parameters on vascularization in tissue engineering, mainly including pore size, interconnectivity, pore size distribution, pore shape (channel structure), and the micro/nano-surface topography of pores.
Collapse
Affiliation(s)
- Ping Xia
- People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen, China
| | - Yongxiang Luo
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
30
|
Fibroblast Memory in Development, Homeostasis and Disease. Cells 2021; 10:cells10112840. [PMID: 34831065 PMCID: PMC8616330 DOI: 10.3390/cells10112840] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023] Open
Abstract
Fibroblasts are the major cell population in the connective tissue of most organs, where they are essential for their structural integrity. They are best known for their role in remodelling the extracellular matrix, however more recently they have been recognised as a functionally highly diverse cell population that constantly responds and adapts to their environment. Biological memory is the process of a sustained altered cellular state and functions in response to a transient or persistent environmental stimulus. While it is well established that fibroblasts retain a memory of their anatomical location, how other environmental stimuli influence fibroblast behaviour and function is less clear. The ability of fibroblasts to respond and memorise different environmental stimuli is essential for tissue development and homeostasis and may become dysregulated in chronic disease conditions such as fibrosis and cancer. Here we summarise the four emerging key areas of fibroblast adaptation: positional, mechanical, inflammatory, and metabolic memory and highlight the underlying mechanisms and their implications in tissue homeostasis and disease.
Collapse
|
31
|
Stricher M, Sarde CO, Guénin E, Egles C, Delbecq F. Cellulosic/Polyvinyl Alcohol Composite Hydrogel: Synthesis, Characterization and Applications in Tissue Engineering. Polymers (Basel) 2021; 13:3598. [PMID: 34685357 PMCID: PMC8539384 DOI: 10.3390/polym13203598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/11/2021] [Accepted: 10/16/2021] [Indexed: 12/29/2022] Open
Abstract
The biomedical field still requires composite materials for medical devices and tissue engineering model design. As part of the pursuit of non-animal and non-proteic scaffolds, we propose here a cellulose-based material. In this study, 9%, 18% and 36% dialdehyde-functionalized microcrystalline celluloses (DAC) were synthesized by sodium periodate oxidation. The latter was subsequently coupled to PVA at ratios 1:2, 1:1 and 2:1 by dissolving in N-methyl pyrrolidone and lithium chloride. Moulding and successive rehydration in ethanol and water baths formed soft hydrogels. While oxidation effectiveness was confirmed by dialdehyde content determination for all DAC, we observed increasing hydrolysis associated with particle fragmentation. Imaging, FTIR and XDR analysis highlighted an intertwined DAC/PVA network mainly supported by electrostatic interactions, hemiacetal and acetal linkage. To meet tissue engineering requirements, an interconnected porosity was optimized using 0-50 µm salts. While the role of DAC in strengthening the hydrogel was identified, the oxidation ratio of DAC showed no distinct trend. DAC 9% material exhibited the highest indirect and direct cytocompatibility creating spheroid-like structures. DAC/PVA hydrogels showed physical stability and acceptability in vivo that led us to propose our DAC 9%/PVA based material for soft tissue graft application.
Collapse
Affiliation(s)
- Mathilde Stricher
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu, CEDEX CS 60 319, 60 203 Compiègne, France; (M.S.); (C.E.)
| | - Claude-Olivier Sarde
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu, CEDEX CS 60 319, 60 203 Compiègne, France; (C.-O.S.); (E.G.)
| | - Erwann Guénin
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu, CEDEX CS 60 319, 60 203 Compiègne, France; (C.-O.S.); (E.G.)
| | - Christophe Egles
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu, CEDEX CS 60 319, 60 203 Compiègne, France; (M.S.); (C.E.)
| | - Frédéric Delbecq
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu, CEDEX CS 60 319, 60 203 Compiègne, France; (C.-O.S.); (E.G.)
| |
Collapse
|
32
|
Hang Y, Ma X, Liu C, Li S, Zhang S, Feng R, Shang Q, Liu Q, Ding Z, Zhang X, Yu L, Lu Q, Shao C, Chen H, Shi Y, He J, Kaplan DL. Blastocyst-Inspired Hydrogels to Maintain Undifferentiation of Mouse Embryonic Stem Cells. ACS NANO 2021; 15:14162-14173. [PMID: 34516077 DOI: 10.1021/acsnano.0c10468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stem cell fate is determined by specific niches that provide multiple physical, chemical, and biological cues. However, the hierarchy or cascade of impact of these cues remains elusive due to their spatiotemporal complexity. Here, anisotropic silk protein nanofiber-based hydrogels with suitable cell adhesion capacity are developed to mimic the physical microenvironment inside the blastocele. The hydrogels enable mouse embryonic stem cells (mESCs) to maintain stemness in vitro in the absence of both leukemia inhibitory factor (LIF) and mouse embryonic fibroblasts (MEFs), two critical factors in the standard protocol for mESC maintenance. The mESCs on hydrogels can achieve superior pluripotency, genetic stability, developmental capacity, and germline transmission to those cultured with the standard protocol. Such biomaterials establish an improved dynamic niche through stimulating the secretion of autocrine factors and are sufficient to maintain the pluripotency and propagation of ESCs. The mESCs on hydrogels are distinct in their expression profiles and more resemble ESCs in vivo. The physical cues can thus initiate a self-sustaining stemness-maintaining program. In addition to providing a relatively simple and low-cost option for expansion and utility of ESCs in biological research and therapeutic applications, this biomimetic material helps gain more insights into the underpinnings of early mammalian embryogenesis.
Collapse
Affiliation(s)
- Yingjie Hang
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Xiaoliang Ma
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Chunxiao Liu
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China
| | - Siyuan Li
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Sixuan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Ruyan Feng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Qianwen Shang
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China
| | - Qi Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Xiaoyi Zhang
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Liyin Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Changshun Shao
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China
| | - Hong Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Yufang Shi
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China
| | - Jiuyang He
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute Academy of Science, Beijing 100101, People's Republic of China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
33
|
Tayler IM, Stowers RS. Engineering hydrogels for personalized disease modeling and regenerative medicine. Acta Biomater 2021; 132:4-22. [PMID: 33882354 DOI: 10.1016/j.actbio.2021.04.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Technological innovations and advances in scientific understanding have created an environment where data can be collected, analyzed, and interpreted at scale, ushering in the era of personalized medicine. The ability to isolate cells from individual patients offers tremendous promise if those cells can be used to generate functional tissue replacements or used in disease modeling to determine optimal treatment strategies. Here, we review recent progress in the use of hydrogels to create artificial cellular microenvironments for personalized tissue engineering and regenerative medicine applications, as well as to develop personalized disease models. We highlight engineering strategies to control stem cell fate through hydrogel design, and the use of hydrogels in combination with organoids, advanced imaging methods, and novel bioprinting techniques to generate functional tissues. We also discuss the use of hydrogels to study molecular mechanisms underlying diseases and to create personalized in vitro disease models to complement existing pre-clinical models. Continued progress in the development of engineered hydrogels, in combination with other emerging technologies, will be essential to realize the immense potential of personalized medicine. STATEMENT OF SIGNIFICANCE: In this review, we cover recent advances in hydrogel engineering strategies with applications in personalized medicine. Specifically, we focus on material systems to expand or control differentiation of patient-derived stem cells, and hydrogels to reprogram somatic cells to pluripotent states. We then review applications of hydrogels in developing personalized engineered tissues. We also highlight the use of hydrogel systems as personalized disease models, focusing on specific examples in fibrosis and cancer, and more broadly on drug screening strategies using patient-derived cells and hydrogels. We believe this review will be a valuable contribution to the Special Issue and the readership of Acta Biomaterialia will appreciate the comprehensive overview of the utility of hydrogels in the developing field of personalized medicine.
Collapse
|
34
|
Wagh K, Ishikawa M, Garcia DA, Stavreva DA, Upadhyaya A, Hager GL. Mechanical Regulation of Transcription: Recent Advances. Trends Cell Biol 2021; 31:457-472. [PMID: 33712293 PMCID: PMC8221528 DOI: 10.1016/j.tcb.2021.02.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 01/01/2023]
Abstract
Mechanotransduction is the ability of a cell to sense mechanical cues from its microenvironment and convert them into biochemical signals to elicit adaptive transcriptional and other cellular responses. Here, we describe recent advances in the field of mechanical regulation of transcription, highlight mechanical regulation of the epigenome as a key novel aspect of mechanotransduction, and describe recent technological advances that could further elucidate the link between mechanical stimuli and gene expression. In this review, we emphasize the importance of mechanotransduction as one of the governing principles of cancer progression, underscoring the need to conduct further studies of the molecular mechanisms involved in sensing mechanical cues and coordinating transcriptional responses.
Collapse
Affiliation(s)
- Kaustubh Wagh
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - Momoko Ishikawa
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David A Garcia
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - Diana A Stavreva
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Arpita Upadhyaya
- Department of Physics, University of Maryland, College Park, MD 20742, USA; Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA.
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
35
|
Tsukamoto S, Asakawa T, Kimura S, Takesue N, Mofrad MRK, Sakamoto N. Intranuclear strain in living cells subjected to substrate stretching: A combined experimental and computational study. J Biomech 2021; 119:110292. [PMID: 33667883 DOI: 10.1016/j.jbiomech.2021.110292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 01/11/2021] [Accepted: 01/23/2021] [Indexed: 10/22/2022]
Abstract
Nuclear deformation caused by mechanical stimuli has been suggested to significantly impact various cellular activities, such as gene expression, protein synthesis and mechanotransduction. To understand how nuclear deformation regulates cellular behaviors, the details of intranuclear strain distribution caused by mechanical stimuli as well as intranuclear mechanical properties are required. Here, we examine local mechanical strains within the nucleus in a living cell subjected to substrate stretching and estimate the local nuclear mechanical properties. A HeLa cell in a PDMS chamber was subjected to a 10% step-strain by using a custom-made uni-axial stretching device. Local displacements and the distribution of the equivalent strain within the nucleus were obtained from fluorescence images of the nucleus before and after the application of stretching. The intranuclear strain showed heterogeneous distribution, and higher strain regions were observed not only at the center, but also periphery of the nucleus. We examined the role of the chromatin condensation level and actin cytoskeleton by treating cells with Trichostatin A and Cytochalasin D, respectively. Interestingly, these treatments did not cause significant changes in the intranuclear strain distribution. Referring to the experimental results, we reproduced the nuclear strain distribution in a finite element model to estimate relative distribution of Young's modulus within the nucleus, and observed substantially lower Young's modulus levels in the peripheral regions of the nucleus relative to those found in the central regions of the nucleus. We reveal heterogeneous strain distribution within the nucleus in a living cell subjected to substrate stretching, and the results provide insights into the importance of heterogeneity of intranuclear mechanical properties.
Collapse
Affiliation(s)
- Shingo Tsukamoto
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Hachioji, Tokyo, Japan; Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, CA, USA.
| | - Takumi Asakawa
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Shun Kimura
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Naoyuki Takesue
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Naoya Sakamoto
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Hachioji, Tokyo, Japan.
| |
Collapse
|
36
|
Pennacchio FA, Nastały P, Poli A, Maiuri P. Tailoring Cellular Function: The Contribution of the Nucleus in Mechanotransduction. Front Bioeng Biotechnol 2021; 8:596746. [PMID: 33490050 PMCID: PMC7820809 DOI: 10.3389/fbioe.2020.596746] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
Cells sense a variety of different mechanochemical stimuli and promptly react to such signals by reshaping their morphology and adapting their structural organization and tensional state. Cell reactions to mechanical stimuli arising from the local microenvironment, mechanotransduction, play a crucial role in many cellular functions in both physiological and pathological conditions. To decipher this complex process, several studies have been undertaken to develop engineered materials and devices as tools to properly control cell mechanical state and evaluate cellular responses. Recent reports highlight how the nucleus serves as an important mechanosensor organelle and governs cell mechanoresponse. In this review, we will introduce the basic mechanisms linking cytoskeleton organization to the nucleus and how this reacts to mechanical properties of the cell microenvironment. We will also discuss how perturbations of nucleus-cytoskeleton connections, affecting mechanotransduction, influence health and disease. Moreover, we will present some of the main technological tools used to characterize and perturb the nuclear mechanical state.
Collapse
Affiliation(s)
- Fabrizio A. Pennacchio
- FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
| | - Paulina Nastały
- FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
- Laboratory of Translational Oncology, Institute of Medical Biotechnology and Experimental Oncology, Medical University of Gdańsk, Gdańsk, Poland
| | - Alessandro Poli
- FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
| | - Paolo Maiuri
- FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
| |
Collapse
|
37
|
Song Y, Soto J, Li S. Mechanical regulation of histone modifications and cell plasticity. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2020; 24:100872. [PMID: 33214755 PMCID: PMC7671577 DOI: 10.1016/j.cossms.2020.100872] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Cell plasticity is important in development and tissue remodeling. Cells can sense physical and chemical cues from their local microenvironment and transduce the signals into the nucleus to regulate the epigenetic state and gene expression, resulting in a change in cell phenotype. In this review, we highlight the role of mechanical cues in regulating stem cell differentiation and cell reprogramming through the modulation of histone modifications. The effects of various mechanical cues, including matrix stiffness, mechanical stretch, and shear stress, on cell fate during tissue regeneration and remodeling will be discussed. Taken together, recent work demonstrates that the alterations in histone modifications by mechanical stimuli can facilitate epigenetic changes during cell phenotypic switching, which has potential applications in the development of biomaterials and bioreactors for cell engineering.
Collapse
Affiliation(s)
- Yang Song
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jennifer Soto
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
38
|
Veerasubramanian PK, Trinh A, Akhtar N, Liu WF, Downing TL. Biophysical and epigenetic regulation of cancer stemness, invasiveness and immune action. CURRENT TISSUE MICROENVIRONMENT REPORTS 2020; 1:277-300. [PMID: 33817661 PMCID: PMC8015331 DOI: 10.1007/s43152-020-00021-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/14/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW The tumor microenvironment (TME) is an amalgam of multiple dysregulated biophysical cues that can alter cellular behavior through mechanotransductive signaling and epigenetic modifications. Through this review, we seek to characterize the extent of biophysical and epigenetic regulation of cancer stemness and tumor-associated immune cells in order to identify ideal targets for cancer therapy. RECENT FINDINGS Recent studies have identified cancer stemness and immune action as significant contributors to neoplastic disease, due to their susceptibility to microenvironmental influences. Matrix stiffening, altered vasculature, and resultant hypoxia within the TME can influence cancer stem cell (CSC) and immune cell behavior, as well as alter the epigenetic landscapes involved in cancer development. SUMMARY This review highlights the importance of aberrant biophysical cues in driving cancer progression through altered behavior of CSCs and immune cells, which in turn sustains further biophysical dysregulation. We examine current and potential therapeutic approaches that break this self-sustaining cycle of disease progression by targeting the presented biophysical and epigenetic signatures of cancer. We also summarize strategies including the normalization of the TME, targeted drug delivery, and inhibition of cancer-enabling epigenetic players.
Collapse
Affiliation(s)
- Praveen Krishna Veerasubramanian
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California-Irvine, Irvine, CA, USA
| | - Annie Trinh
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California-Irvine, Irvine, CA, USA
- Department of Microbiology and Molecular Genetics, University of California-Irvine, Irvine, CA, USA
| | - Navied Akhtar
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California-Irvine, Irvine, CA, USA
| | - Wendy F. Liu
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California-Irvine, Irvine, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California-Irvine, Irvine, CA, USA
| | - Timothy L. Downing
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California-Irvine, Irvine, CA, USA
- Department of Microbiology and Molecular Genetics, University of California-Irvine, Irvine, CA, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California-Irvine, Irvine, CA, USA
| |
Collapse
|
39
|
Lessons from the Embryo: an Unrejected Transplant and a Benign Tumor. Stem Cell Rev Rep 2020; 17:850-861. [PMID: 33225425 DOI: 10.1007/s12015-020-10088-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2020] [Indexed: 10/22/2022]
Abstract
Embryogenesis is regarded the 'miracle of life', yet numerous aspects of this process are not fully understood. As the embryo grows in the mother's womb, immune components, stem cells and microenvironmental cues cooperate among others to promote embryonic development. Evidently, these key players are frequently associated with transplantation failure and tumor growth. While the fields of transplantation and cancer biology do not overlap, both can be viewed from the perspective of an embryo. As an 'unrejected transplant' and a 'benign tumor', lessons from embryonic development may reveal features of transplants and tumors that have been overlooked. Therefore, eavesdropping at these natural complex events during pregnancy may inspire more durable approaches to arrest transplant rejection or cancer progression.
Collapse
|
40
|
Alexandrushkina N, Nimiritsky P, Eremichev R, Popov V, Arbatskiy M, Danilova N, Malkov P, Akopyan Z, Tkachuk V, Makarevich P. Cell Sheets from Adipose Tissue MSC Induce Healing of Pressure Ulcer and Prevent Fibrosis via Trigger Effects on Granulation Tissue Growth and Vascularization. Int J Mol Sci 2020; 21:E5567. [PMID: 32759725 PMCID: PMC7432086 DOI: 10.3390/ijms21155567] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/16/2020] [Accepted: 08/01/2020] [Indexed: 12/19/2022] Open
Abstract
We report a comparative study of multipotent mesenchymal stromal cells (MSC) delivered by injection, MSC-based cell sheets (CS) or MSC secretome to induce healing of cutaneous pressure ulcer in C57Bl/6 mice. We found that transplantation of CS from adipose-derived MSC resulted in reduction of fibrosis and recovery of skin structure with its appendages (hair and cutaneous glands). Despite short retention of CS on ulcer surface (3-7 days) it induced profound changes in granulation tissue (GT) structure, increasing its thickness and altering vascularization pattern with reduced blood vessel density and increased maturation of blood vessels. Comparable effects on GT vascularization were induced by MSC secretome, yet this treatment has failed to induce repair of skin with its appendages we observed in the CS group. Study of secretome components produced by MSC in monolayer or sheets revealed that CS produce more factors involved in pericyte chemotaxis and blood vessel maturation (PDGF-BB, HGF, G-CSF) but not sprouting inducer (VEGF165). Analysis of transcriptome using RNA sequencing and Gene Ontology mapping found in CS upregulation of proteins responsible for collagen binding and GT maturation as well as fatty acid metabolism enzymes known to be negative regulators of blood vessel sprouting. At the same time, downregulated transcripts were enriched by factors activating capillary growth, suggesting that in MSC sheets paracrine activity may shift towards matrix remodeling and maturation of vasculature, but not activation of blood vessel sprouting. We proposed a putative paracrine trigger mechanism potentially rendering an impact on GT vascularization and remodeling. Our results suggest that within sheets, MSC may change their functional state and spectrum of soluble factors that influence tissue repair and induce more effective skin healing inclining towards regeneration and reduced scarring.
Collapse
Affiliation(s)
- Natalya Alexandrushkina
- Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovskiy av., 27-10, 119191 Moscow, Russia; (P.N.); (R.E.); (N.D.); (P.M.); (Z.A.); (V.T.); (P.M.)
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovskiy av., 27-1, 119192 Moscow, Russia; (V.P.); (M.A.)
| | - Peter Nimiritsky
- Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovskiy av., 27-10, 119191 Moscow, Russia; (P.N.); (R.E.); (N.D.); (P.M.); (Z.A.); (V.T.); (P.M.)
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovskiy av., 27-1, 119192 Moscow, Russia; (V.P.); (M.A.)
| | - Roman Eremichev
- Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovskiy av., 27-10, 119191 Moscow, Russia; (P.N.); (R.E.); (N.D.); (P.M.); (Z.A.); (V.T.); (P.M.)
| | - Vladimir Popov
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovskiy av., 27-1, 119192 Moscow, Russia; (V.P.); (M.A.)
| | - Mikhail Arbatskiy
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovskiy av., 27-1, 119192 Moscow, Russia; (V.P.); (M.A.)
| | - Natalia Danilova
- Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovskiy av., 27-10, 119191 Moscow, Russia; (P.N.); (R.E.); (N.D.); (P.M.); (Z.A.); (V.T.); (P.M.)
| | - Pavel Malkov
- Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovskiy av., 27-10, 119191 Moscow, Russia; (P.N.); (R.E.); (N.D.); (P.M.); (Z.A.); (V.T.); (P.M.)
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovskiy av., 27-1, 119192 Moscow, Russia; (V.P.); (M.A.)
| | - Zhanna Akopyan
- Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovskiy av., 27-10, 119191 Moscow, Russia; (P.N.); (R.E.); (N.D.); (P.M.); (Z.A.); (V.T.); (P.M.)
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovskiy av., 27-1, 119192 Moscow, Russia; (V.P.); (M.A.)
| | - Vsevolod Tkachuk
- Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovskiy av., 27-10, 119191 Moscow, Russia; (P.N.); (R.E.); (N.D.); (P.M.); (Z.A.); (V.T.); (P.M.)
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovskiy av., 27-1, 119192 Moscow, Russia; (V.P.); (M.A.)
| | - Pavel Makarevich
- Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovskiy av., 27-10, 119191 Moscow, Russia; (P.N.); (R.E.); (N.D.); (P.M.); (Z.A.); (V.T.); (P.M.)
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovskiy av., 27-1, 119192 Moscow, Russia; (V.P.); (M.A.)
| |
Collapse
|
41
|
Domingues C, Geraldo AM, Anjo SI, Matos A, Almeida C, Caramelo I, Lopes-da-Silva JA, Paiva A, Carvalho J, Pires das Neves R, Manadas B, Grãos M. Cofilin-1 Is a Mechanosensitive Regulator of Transcription. Front Cell Dev Biol 2020; 8:678. [PMID: 32903827 PMCID: PMC7438942 DOI: 10.3389/fcell.2020.00678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022] Open
Abstract
The mechanical properties of the extracellular environment are interrogated by cells and integrated through mechanotransduction. Many cellular processes depend on actomyosin-dependent contractility, which is influenced by the microenvironment’s stiffness. Here, we explored the influence of substrate stiffness on the proteome of proliferating undifferentiated human umbilical cord-matrix mesenchymal stem/stromal cells. The relative abundance of several proteins changed significantly by expanding cells on soft (∼3 kPa) or stiff substrates (GPa). Many such proteins are associated with the regulation of the actin cytoskeleton, a major player of mechanotransduction and cell physiology in response to mechanical cues. Specifically, Cofilin-1 levels were elevated in cells cultured on soft comparing with stiff substrates. Furthermore, Cofilin-1 was de-phosphorylated (active) and present in the nuclei of cells kept on soft substrates, in contrast with phosphorylated (inactive) and widespread distribution in cells on stiff. Soft substrates promoted Cofilin-1-dependent increased RNA transcription and faster RNA polymerase II-mediated transcription elongation. Cofilin-1 is part of a novel mechanism linking mechanotransduction and transcription.
Collapse
Affiliation(s)
- Catarina Domingues
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Coimbra, Portugal
| | - A Margarida Geraldo
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Sandra Isabel Anjo
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - André Matos
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Polytechnic Institute of Coimbra, Coimbra College of Agriculture, Coimbra, Portugal
| | - Cláudio Almeida
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Polytechnic Institute of Coimbra, Coimbra College of Agriculture, Coimbra, Portugal
| | - Inês Caramelo
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Coimbra, Portugal
| | | | - Artur Paiva
- Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, Ciências Biomédicas Laboratoriais, Coimbra, Portugal
| | - João Carvalho
- Centro de Física da Universidade de Coimbra (CFisUC), Department of Physics, University of Coimbra, Coimbra, Portugal
| | - Ricardo Pires das Neves
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Coimbra, Portugal
| | - Bruno Manadas
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Mário Grãos
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Coimbra, Portugal.,Biocant, Technology Transfer Association, Cantanhede, Portugal
| |
Collapse
|
42
|
Jain N, Moeller J, Vogel V. Mechanobiology of Macrophages: How Physical Factors Coregulate Macrophage Plasticity and Phagocytosis. Annu Rev Biomed Eng 2020; 21:267-297. [PMID: 31167103 DOI: 10.1146/annurev-bioeng-062117-121224] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In addition to their early-recognized functions in host defense and the clearance of apoptotic cell debris, macrophages play vital roles in tissue development, homeostasis, and repair. If misregulated, they steer the progression of many inflammatory diseases. Much progress has been made in understanding the mechanisms underlying macrophage signaling, transcriptomics, and proteomics, under physiological and pathological conditions. Yet, the detailed mechanisms that tune circulating monocytes/macrophages and tissue-resident macrophage polarization, differentiation, specification, and their functional plasticity remain elusive. We review how physical factors affect macrophage phenotype and function, including how they hunt for particles and pathogens, as well as the implications for phagocytosis, autophagy, and polarization from proinflammatory to prohealing phenotype. We further discuss how this knowledge can be harnessed in regenerative medicine and for the design of new drugs and immune-modulatory drug delivery systems, biomaterials, and tissue scaffolds.
Collapse
Affiliation(s)
- Nikhil Jain
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, and Department of Health Sciences and Technology, ETH Zurich, CH-8093 Zurich, Switzerland;
| | - Jens Moeller
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, and Department of Health Sciences and Technology, ETH Zurich, CH-8093 Zurich, Switzerland;
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, and Department of Health Sciences and Technology, ETH Zurich, CH-8093 Zurich, Switzerland;
| |
Collapse
|
43
|
Abstract
The mechanical reprogramming of fibroblasts, followed by their redifferentiation into rejuvenated fibroblasts in an optimized 3D collagen matrix, made these cells more contractile and more efficient at synthesizing matrix components including laminin, fibronectin, and collagen-IV. Moreover, the rejuvenated fibroblasts obtained through this approach exhibited a decrease in DNA damage. The rejuvenated fibroblasts derived from this method precisely align into tissue architectures, suggesting its potential application as clinical implants in tissue engineering and regenerative medicine. Over the course of the aging process, fibroblasts lose contractility, leading to reduced connective-tissue stiffness. A promising therapeutic avenue for functional rejuvenation of connective tissue is reprogrammed fibroblast replacement, although major hurdles still remain. Toward this, we recently demonstrated that the laterally confined growth of fibroblasts on micropatterned substrates induces stem-cell-like spheroids. In this study, we embedded these partially reprogrammed spheroids in collagen-I matrices of varying densities, mimicking different three-dimensional (3D) tissue constraints. In response to such matrix constraints, these spheroids regained their fibroblastic properties and sprouted to form 3D connective-tissue networks. Interestingly, we found that these differentiated fibroblasts exhibit reduced DNA damage, enhanced cytoskeletal gene expression, and actomyosin contractility. In addition, the rejuvenated fibroblasts show increased matrix protein (fibronectin and laminin) deposition and collagen remodeling compared to the parental fibroblast tissue network. Furthermore, we show that the partially reprogrammed cells have comparatively open chromatin compaction states and may be more poised to redifferentiate into contractile fibroblasts in 3D-collagen matrix. Collectively, our results highlight efficient fibroblast rejuvenation through laterally confined reprogramming, which has important implications in regenerative medicine.
Collapse
|
44
|
Doolin MT, Moriarty RA, Stroka KM. Mechanosensing of Mechanical Confinement by Mesenchymal-Like Cells. Front Physiol 2020; 11:365. [PMID: 32390868 PMCID: PMC7193100 DOI: 10.3389/fphys.2020.00365] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) and tumor cells have the unique capability to migrate out of their native environment and either home or metastasize, respectively, through extremely heterogeneous environments to a distant location. Once there, they can either aid in tissue regrowth or impart an immunomodulatory effect in the case of MSCs, or form secondary tumors in the case of tumor cells. During these journeys, cells experience physically confining forces that impinge on the cell body and the nucleus, ultimately causing a multitude of cellular changes. Most drastically, confining individual MSCs within hydrogels or confining monolayers of MSCs within agarose wells can sway MSC lineage commitment, while applying a confining compressive stress to metastatic tumor cells can increase their invasiveness. In this review, we seek to understand the signaling cascades that occur as cells sense confining forces and how that translates to behavioral changes, including elongated and multinucleated cell morphologies, novel migrational mechanisms, and altered gene expression, leading to a unique MSC secretome that could hold great promise for anti-inflammatory treatments. Through comparison of these altered behaviors, we aim to discern how MSCs alter their lineage selection, while tumor cells may become more aggressive and invasive. Synthesizing this information can be useful for employing MSCs for therapeutic approaches through systemic injections or tissue engineered grafts, and developing improved strategies for metastatic cancer therapies.
Collapse
Affiliation(s)
- Mary T. Doolin
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, United States
| | - Rebecca A. Moriarty
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, United States
| | - Kimberly M. Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, United States
- Maryland Biophysics Program, University of Maryland, College Park, College Park, MD, United States
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Baltimore, MD, United States
| |
Collapse
|
45
|
Venkatachalapathy S, Jokhun DS, Shivashankar GV. Multivariate analysis reveals activation-primed fibroblast geometric states in engineered 3D tumor microenvironments. Mol Biol Cell 2020; 31:803-812. [PMID: 32023167 PMCID: PMC7185960 DOI: 10.1091/mbc.e19-08-0420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Fibroblasts are a heterogeneous group of cells comprising subpopulations that have been found to be activated in the stromal microenvironment that regulates tumor initiation and growth. The underlying mechanisms of such selective activation of fibroblasts are not understood. We propose that the intrinsic geometric heterogeneity of fibroblasts modulates the nuclear mechanotransduction of signals from the microenvironment, resulting in their selective activation. To test this, we developed an engineered 3D fibroblast tumor coculture system and used high resolution images to quantify multiple cell geometry sensitive nuclear morphological and chromatin organizational features. These features were then mapped to activation levels as measured by the nuclear abundance of transcription cofactor, megakaryoblastic leukemia, and protein levels of its target, αSMA. Importantly, our results indicate the presence of activation-“primed” cell geometries that present higher activation levels, which are further enhanced in the presence of stimuli from cancer cells. Further, we show that by enriching the population of activation-primed cell geometric states by either increasing matrix rigidity or micropatterning primed cell shapes, fibroblast activation levels can be increased. Collectively, our results reveal important cellular geometric states that select for fibroblast activation within the heterogenous tumor microenvironment.
Collapse
Affiliation(s)
- Saradha Venkatachalapathy
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, 117411, Singapore
| | - Doorgesh Sharma Jokhun
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, 117411, Singapore
| | - G V Shivashankar
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, 117411, Singapore.,FIRC Institute for Molecular Oncology, Milan 20139, Italy.,Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Paul Scherrer Institut, 5232 Villigen, Switzerland
| |
Collapse
|
46
|
Song Y, Soto J, Chen B, Yang L, Li S. Cell engineering: Biophysical regulation of the nucleus. Biomaterials 2020; 234:119743. [PMID: 31962231 DOI: 10.1016/j.biomaterials.2019.119743] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/02/2019] [Accepted: 12/25/2019] [Indexed: 12/12/2022]
Abstract
Cells live in a complex and dynamic microenvironment, and a variety of microenvironmental cues can regulate cell behavior. In addition to biochemical signals, biophysical cues can induce not only immediate intracellular responses, but also long-term effects on phenotypic changes such as stem cell differentiation, immune cell activation and somatic cell reprogramming. Cells respond to mechanical stimuli via an outside-in and inside-out feedback loop, and the cell nucleus plays an important role in this process. The mechanical properties of the nucleus can directly or indirectly modulate mechanotransduction, and the physical coupling of the cell nucleus with the cytoskeleton can affect chromatin structure and regulate the epigenetic state, gene expression and cell function. In this review, we will highlight the recent progress in nuclear biomechanics and mechanobiology in the context of cell engineering, tissue remodeling and disease development.
Collapse
Affiliation(s)
- Yang Song
- Department of Bioengineering, University of California, Los Angeles, CA, USA; School of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Jennifer Soto
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Binru Chen
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Li Yang
- School of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, CA, USA; Department of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
47
|
Li Y, Mao AS, Seo BR, Zhao X, Gupta SK, Chen M, Han YL, Shih TY, Mooney DJ, Guo M. Compression-induced dedifferentiation of adipocytes promotes tumor progression. SCIENCE ADVANCES 2020; 6:eaax5611. [PMID: 32010780 PMCID: PMC6976290 DOI: 10.1126/sciadv.aax5611] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 11/25/2019] [Indexed: 04/14/2023]
Abstract
Dysregulated physical stresses are generated during tumorigenesis that affect the surrounding compliant tissues including adipocytes. However, the effect of physical stressors on the behavior of adipocytes and their cross-talk with tumor cells remain elusive. Here, we demonstrate that compression of cells, resulting from various types of physical stresses, can induce dedifferentiation of adipocytes via mechanically activating Wnt/β-catenin signaling. The compression-induced dedifferentiated adipocytes (CiDAs) have a distinct transcriptome profile, long-term self-renewal, and serial clonogenicity, but do not form teratomas. We then show that CiDAs notably enhance human mammary adenocarcinoma proliferation both in vitro and in a xenograft model, owing to myofibrogenesis of CiDAs in the tumor-conditioned environment. Collectively, our results highlight unique physical interplay in the tumor ecosystem; tumor-induced physical stresses stimulate de novo generation of CiDAs, which feedback to tumor growth.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Angelo S. Mao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Bo Ri Seo
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Xing Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Satish Kumar Gupta
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Maorong Chen
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Yu Long Han
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ting-Yu Shih
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - David J. Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Corresponding author.
| |
Collapse
|
48
|
Targeting cell plasticity for regeneration: From in vitro to in vivo reprogramming. Adv Drug Deliv Rev 2020; 161-162:124-144. [PMID: 32822682 DOI: 10.1016/j.addr.2020.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022]
Abstract
The discovery of induced pluripotent stem cells (iPSCs), reprogrammed to pluripotency from somatic cells, has transformed the landscape of regenerative medicine, disease modelling and drug discovery pipelines. Since the first generation of iPSCs in 2006, there has been enormous effort to develop new methods that increase reprogramming efficiency, and obviate the need for viral vectors. In parallel to this, the promise of in vivo reprogramming to convert cells into a desired cell type to repair damage in the body, constitutes a new paradigm in approaches for tissue regeneration. This review article explores the current state of reprogramming techniques for iPSC generation with a specific focus on alternative methods that use biophysical and biochemical stimuli to reduce or eliminate exogenous factors, thereby overcoming the epigenetic barrier towards vector-free approaches with improved clinical viability. We then focus on application of iPSC for therapeutic approaches, by giving an overview of ongoing clinical trials using iPSCs for a variety of health conditions and discuss future scope for using materials and reagents to reprogram cells in the body.
Collapse
|
49
|
Ventre M, Coppola V, Natale CF, Netti PA. Aligned fibrous decellularized cell derived matrices for mesenchymal stem cell amplification. J Biomed Mater Res A 2019; 107:2536-2546. [PMID: 31325203 DOI: 10.1002/jbm.a.36759] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/15/2019] [Indexed: 01/08/2023]
Abstract
Biochemical and biophysical stimuli of stem cell niches finely regulate the self-renewal/differentiation equilibrium. Replicating this in vitro is technically challenging, making the control of stem cell functions difficult. Cell derived matrices capture certain aspect of niches that influence fate decisions. Here, aligned fibrous matrices synthesized by MC3T3 cells were produced and the role of matrix orientation and stiffness on the maintenance of stem cell characteristics and adipo- or osteo-genic differentiation of murine mesenchymal stem cells (mMSCs) was investigated. Decellularized matrices promoted mMSC proliferation. Fibrillar alignment and matrix stiffness work in concert in defining cell fate. Soft matrices preserve stemness, whereas stiff ones, in presence of biochemical supplements, promptly induce differentiation. Matrix alignment impacts the homogeneity of the cell population, that is, soft aligned matrices ameliorate the spontaneous adipogenic differentiation, whereas stiff aligned matrices reduce cross-differentiation. We infer that mechanical signaling is a dominant factor in mMSC fate decision and the matrix alignment contributes to produce a more homogeneous environment, which results in a uniform response of cells to biophysical environment. Matrix thus produced can be obtained in vitro in a facile and consistent manner and can be used for homogeneous stem cell amplification or for mechanotransduction-related studies.
Collapse
Affiliation(s)
- Maurizio Ventre
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy.,Interdisciplinary Research Centre on Biomaterials, University of Naples Federico II, Naples, Italy.,Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| | - Valerio Coppola
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
| | - Carlo F Natale
- Interdisciplinary Research Centre on Biomaterials, University of Naples Federico II, Naples, Italy
| | - Paolo A Netti
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy.,Interdisciplinary Research Centre on Biomaterials, University of Naples Federico II, Naples, Italy.,Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| |
Collapse
|
50
|
Mohammed D, Versaevel M, Bruyère C, Alaimo L, Luciano M, Vercruysse E, Procès A, Gabriele S. Innovative Tools for Mechanobiology: Unraveling Outside-In and Inside-Out Mechanotransduction. Front Bioeng Biotechnol 2019; 7:162. [PMID: 31380357 PMCID: PMC6646473 DOI: 10.3389/fbioe.2019.00162] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/20/2019] [Indexed: 12/26/2022] Open
Abstract
Cells and tissues can sense and react to the modifications of the physico-chemical properties of the extracellular environment (ECM) through integrin-based adhesion sites and adapt their physiological response in a process called mechanotransduction. Due to their critical localization at the cell-ECM interface, transmembrane integrins are mediators of bidirectional signaling, playing a key role in “outside-in” and “inside-out” signal transduction. After presenting the basic conceptual fundamentals related to cell mechanobiology, we review the current state-of-the-art technologies that facilitate the understanding of mechanotransduction signaling pathways. Finally, we highlight innovative technological developments that can help to advance our understanding of the mechanisms underlying nuclear mechanotransduction.
Collapse
Affiliation(s)
- Danahe Mohammed
- Mechanobiology and Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Marie Versaevel
- Mechanobiology and Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Céline Bruyère
- Mechanobiology and Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Laura Alaimo
- Mechanobiology and Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Marine Luciano
- Mechanobiology and Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Eléonore Vercruysse
- Mechanobiology and Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Anthony Procès
- Mechanobiology and Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium.,Department of Neurosciences, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Sylvain Gabriele
- Mechanobiology and Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| |
Collapse
|