1
|
Vinogradov AA, Bashiri G, Suga H. Illuminating Substrate Preferences of Promiscuous F 420H 2-Dependent Dehydroamino Acid Reductases with 4-Track mRNA Display. J Am Chem Soc 2024; 146:31124-31136. [PMID: 39474650 DOI: 10.1021/jacs.4c11013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Stereoselective reduction of dehydroamino acids is a common biosynthetic strategy to introduce d-amino acids into peptidic natural products. The reduction, often observed during the biosynthesis of lanthipeptides, is performed by dedicated dehydroamino acid reductases (dhAARs). Enzymes from the three known dhAAR families utilize nicotinamide, flavin, or F420H2 coenzymes as hydride donors, and little is known about the catalysis performed by the latter family proteins. Here, we perform a bioinformatics-guided identification and large-scale in vitro characterization of five F420H2-dependent dhAARs. We construct an mRNA display-based pipeline for ultrahigh throughput substrate specificity profiling of the enzymes. The pipeline relies on a 4-track selection strategy to deliver large quantities of clean data, which were leveraged to build accurate substrate fitness models. Our results identify a remarkably promiscuous enzyme, referred to as MaeJC, that is capable of installing d-Ala residues into arbitrary substrates with minimal recognition requirements. We integrate MaeJC into a thiopeptide biosynthetic pathway to produce d-amino acids-containing thiopeptides, demonstrating the utility of MaeJC for the programmable installation of d-amino acids in ribosomal peptides.
Collapse
Affiliation(s)
- Alexander A Vinogradov
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ghader Bashiri
- Laboratory of Microbial Biochemistry and Biotechnology, School of Biological Sciences, University of Auckland, Private Bag, 92019 Auckland, New Zealand
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Gao L, Ding Q, Lei X. Hunting for the Intermolecular Diels-Alderase. Acc Chem Res 2024; 57:2166-2183. [PMID: 38994670 DOI: 10.1021/acs.accounts.4c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
ConspectusThe Diels-Alder reaction is well known as a concerted [4 + 2] cycloaddition governed by the Woodward-Hoffmann rules. Since Prof. Otto Diels and his student Kurt Alder initially reported the intermolecular [4 + 2] cycloaddition between cyclopentadiene and quinone in 1928, it has been recognized as one of the most powerful chemical transformations to build C-C bonds and construct cyclic structures. This named reaction has been widely used in synthesizing natural products and drug molecules. Driven by the synthetic importance of the Diels-Alder reaction, identifying the enzyme that stereoselectively catalyzes the Diels-Alder reaction has become an intriguing research area in natural product biosynthesis and biocatalysis. With significant progress in sequencing and bioinformatics, dozens of Diels-Alderases have been characterized in microbial natural product biosynthesis. However, few are evolutionally dedicated to catalyzing an intermolecular Diels-Alder reaction with a concerted mechanism.This Account summarizes our endeavors to hunt for the naturally occurring intermolecular Diels-Alderase from plants. Our research journey started from the biomimetic syntheses of D-A-type terpenoids and flavonoids, showing that plants use both nonenzymatic and enzymatic intermolecular [4 + 2] cycloadditions to create complex molecules. Inspired by the biomimetic syntheses, we identify an intermolecular Diels-Alderase hidden in the biosynthetic pathway of mulberry Diels-Alder-type cycloadducts using a biosynthetic intermediate probe-based target identification strategy. This enzyme, MaDA, is an endo-selective Diels-Alderase and is then functionally characterized as a standalone intermolecular Diels-Alderase with a concerted but asynchronous mechanism. We also discover the exo-selective intermolecular Diels-Alderases in Morus plants. Both the endo- and exo-selective Diels-Alderases feature a broad substrate scope, but their mechanisms for controlling the endo/exo pathway are different. These unique intermolecular Diels-Alderases phylogenetically form a subgroup of FAD-dependent enzymes that can be found only in moraceous plants, explaining why this type of [4 + 2] cycloadduct is unique to moraceous plants. Further studies of the evolutionary mechanism reveal that an FAD-dependent oxidocyclase could acquire the Diels-Alderase activity via four critical amino acid mutations and then gradually lose its original oxidative activity to become a standalone Diels-Alderase during the natural evolution. Based on these insights, we designed new Diels-Alderases and achieved the diversity-oriented chemoenzymatic synthesis of D-A products using either naturally occurring or engineered Diels-Alderases.Overall, this Account describes our decade-long efforts to discover the intermolecular Diels-Alderases in Morus plants, particularly highlighting the importance of biomimetic synthesis and chemical proteomics in discovering new intermolecular Diels-Alderases from plants. Meanwhile, this Account also covers the evolutionary and catalytic mechanism study of intermolecular Diels-Alderases that may provide new insights into how to discover and design new Diels-Alderases as powerful biocatalysts for organic synthesis.
Collapse
Affiliation(s)
- Lei Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qi Ding
- School of Life Science, Tsinghua University, Beijing 100084, China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Ramos Figueroa J, Zhu L, van der Donk WA. Unexpected Transformations during Pyrroloiminoquinone Biosynthesis. J Am Chem Soc 2024; 146:14235-14245. [PMID: 38719200 PMCID: PMC11117183 DOI: 10.1021/jacs.4c03677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/21/2024]
Abstract
Pyrroloiminoquinone-containing natural products have long been known for their biological activities. They are derived from tryptophan, but their biosynthetic pathways have remained elusive. Studies on the biosynthetic gene cluster (BGC) that produces the ammosamides revealed that the first step is attachment of Trp to the C-terminus of a scaffold peptide in an ATP- and tRNA-dependent manner catalyzed by a PEptide Aminoacyl-tRNA Ligase (PEARL). The indole of Trp is then oxidized to a hydroxyquinone. We previously proposed a chemically plausible and streamlined pathway for converting this intermediate to the ammosamides using additional enzymes encoded in the BGC. In this study, we report the activity of four additional enzymes from two gene clusters, which show that the previously proposed pathway is incorrect and that Nature's route toward pyrroloiminoquinones is much more complicated. We demonstrate that, surprisingly, amino groups in pyrroloiminoquinones are derived from (at least) three different sources, glycine, asparagine, and leucine, all introduced in a tRNA-dependent manner. We also show that an FAD-dependent putative glycine oxidase (Amm14) is required for the process that incorporates the nitrogens from glycine and leucine and that a quinone reductase is required for the incorporation of asparagine. Additionally, we provide the first insights into the evolutionary origin of the PEARLs as well as related enzymes, such as the glutamyl-tRNA-dependent dehydratases involved in the biosynthesis of lanthipeptides and thiopeptides. These enzymes appear to all have descended from the ATP-GRASP protein family.
Collapse
Affiliation(s)
- Josseline Ramos Figueroa
- Department of Chemistry and
Howard Hughes Medical Institute, University
of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Lingyang Zhu
- Department of Chemistry and
Howard Hughes Medical Institute, University
of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department of Chemistry and
Howard Hughes Medical Institute, University
of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Vinogradov AA, Zhang Y, Hamada K, Kobayashi S, Ogata K, Sengoku T, Goto Y, Suga H. A Compact Reprogrammed Genetic Code for De Novo Discovery of Proteolytically Stable Thiopeptides. J Am Chem Soc 2024; 146:8058-8070. [PMID: 38491946 PMCID: PMC10979747 DOI: 10.1021/jacs.3c12037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/18/2024]
Abstract
Thiopeptides make up a group of structurally complex peptidic natural products holding promise in bioengineering applications. The previously established thiopeptide/mRNA display platform enables de novo discovery of natural product-like thiopeptides with designed bioactivities. However, in contrast to natural thiopeptides, the discovered structures are composed predominantly of proteinogenic amino acids, which results in low metabolic stability in many cases. Here, we redevelop the platform and demonstrate that the utilization of compact reprogrammed genetic codes in mRNA display libraries can lead to the discovery of thiopeptides predominantly composed of nonproteinogenic structural elements. We demonstrate the feasibility of our designs by conducting affinity selections against Traf2- and NCK-interacting kinase (TNIK). The experiment identified a series of thiopeptides with high affinity to the target protein (the best KD = 2.1 nM) and kinase inhibitory activity (the best IC50 = 0.15 μM). The discovered compounds, which bore as many as 15 nonproteinogenic amino acids in an 18-residue macrocycle, demonstrated high metabolic stability in human serum with a half-life of up to 99 h. An X-ray cocrystal structure of TNIK in complex with a discovered thiopeptide revealed how nonproteinogenic building blocks facilitate the target engagement and orchestrate the folding of the thiopeptide into a noncanonical conformation. Altogether, the established platform takes a step toward the discovery of thiopeptides with high metabolic stability for early drug discovery applications.
Collapse
Affiliation(s)
- Alexander A. Vinogradov
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yue Zhang
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keisuke Hamada
- Department
of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Shunsuke Kobayashi
- Department
of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Kazuhiro Ogata
- Department
of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Toru Sengoku
- Department
of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Yuki Goto
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
5
|
Suarez AFL, Nguyen TQN, Chang L, Tooh YW, Yong RHS, Leow LC, Koh IYF, Chen H, Koh JWH, Selvanayagam A, Lim V, Tan YE, Agatha I, Winnerdy FR, Morinaka BI. Functional and Promiscuity Studies of Three-Residue Cyclophane Forming Enzymes Show Nonnative C-C Cross-Linked Products and Leader-Dependent Cyclization. ACS Chem Biol 2024; 19:774-783. [PMID: 38417140 DOI: 10.1021/acschembio.3c00795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Enzymes catalyzing peptide macrocyclization are important biochemical tools in drug discovery. The three-residue cyclophane-forming enzymes (3-CyFEs) are an emerging family of post-translational modifying enzymes that catalyze the formation of three-residue peptide cyclophanes. In this report, we introduce three additional 3-CyFEs, including ChlB, WnsB, and FnnB, that catalyze cyclophane formation on Tyr, Trp, and Phe, respectively. To understand the promiscuity of these enzymes and those previously reported (MscB, HaaB, and YxdB), we tested single amino acid substitutions at the three-residue motif of modification (Ω1X2X3, Ω1 = aromatic). Collectively, we observe that substrate promiscuity is observed at the Ω1 and X2 positions, but a greater specificity is observed for the X3 residue. Two nonnative cyclophane products were characterized showing a Phe-C3 to Arg-Cβ and His-C2 to Pro-Cβ cross-links, respectively. We also tested the leader dependence of selected 3-CyFEs and show that a predicted helix region is important for cyclophane formation. These results demonstrate the biocatalytic potential of these maturases and allow rational design of substrates to obtain a diverse array of genetically encoded 3-residue cyclophanes.
Collapse
Affiliation(s)
| | - Thi Quynh Ngoc Nguyen
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Litao Chang
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Yi Wei Tooh
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Rubin How Sheng Yong
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Li Chuan Leow
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Ivan Yu Fan Koh
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Huiyi Chen
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Jeffery Wei Heng Koh
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | | | - Vernon Lim
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Yi En Tan
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Irene Agatha
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Fernaldo R Winnerdy
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Brandon I Morinaka
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| |
Collapse
|
6
|
Figueroa JR, Zhu L, van der Donk WA. Unexpected transformations during pyrroloiminoquinone biosynthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584671. [PMID: 38559119 PMCID: PMC10979984 DOI: 10.1101/2024.03.12.584671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Pyrroloiminoquinone containing natural products have long been known for their biological activities. They are derived from tryptophan, but their biosynthetic pathways have remained elusive. Studies on the biosynthetic gene cluster (BGC) that produces the ammosamides revealed that the first step is attachment of Trp to the C-terminus of a scaffold peptide in an ATP and tRNA dependent manner catalyzed by a PEptide Amino-acyl tRNA ligase (PEARL). The indole of the Trp is then oxidized to a hydroxyquinone. We previously proposed a chemically plausible and streamlined pathway for converting this intermediate to the ammosamides using additional enzymes encoded in the BGC. In this study, we report the activity of four additional enzymes that show that the proposed pathway is incorrect and that Nature's route towards pyrroloiminoquinones is much more complicated. We demonstrate that, surprisingly, the amino groups in pyrroloiminoquinones are derived from three different sources, glycine, asparagine, and leucine, all introduced in a tRNA dependent manner. We also show that an FAD-dependent putative glycine oxidase is required for the process that incorporates the nitrogens from glycine and leucine, and that a quinone reductase is required for the incorporation of the asparagine. Additionally, we provide the first insights into the evolutionary origin of the PEARLs as well as related enzymes such as the glutamyl-tRNA dependent dehydratases involved in the biosynthesis of lanthipeptides and thiopeptides. These enzymes appear to all have descended from the ATP-GRASP protein family.
Collapse
Affiliation(s)
- Josseline Ramos Figueroa
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Lingyang Zhu
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
7
|
Wang S, Wu K, Tang YJ, Deng H. Dehydroamino acid residues in bioactive natural products. Nat Prod Rep 2024; 41:273-297. [PMID: 37942836 PMCID: PMC10880069 DOI: 10.1039/d3np00041a] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Indexed: 11/10/2023]
Abstract
Covering: 2000 to up to 2023α,β-Dehydroamino acids (dhAAs) are unsaturated nonproteinogenic amino acids found in a wide array of naturally occurring peptidyl metabolites, predominantly those from bacteria. Other organisms, such as fungi, higher plants and marine invertebrates, have also been found to produce dhAA-containing peptides. The α,β-unsaturation in dhAAs has profound effects on the properties of these molecules. They display significant synthetic flexibility, readily undergoing reactions such as Michael additions, transition-metal-catalysed cross-couplings, and cycloadditions. These residues in peptides/proteins also exhibit great potential in bioorthogonal applications using click chemistry. Peptides containing contiguous dhAA residues have been extensively investigated in the field of foldamers, self-assembling supermolecules that mimic biomacromolecules such as proteins to fold into well-defined conformations. dhAA residues in these peptidyl materials tend to form a 2.05-helix. As a result, stretches of dhAA residues arrange in an extended conformation. In particular, peptidyl foldamers containing β-enamino acid units display interesting conformational, electronic, and supramolecular aggregation properties that can be modulated by light-dependent E-Z isomerization. Among approximately 40 dhAAs found in the natural product inventory, dehydroalanine (Dha) and dehydrobutyrine (Dhb) are the most abundant. Dha is the simplest dehydro-α-amino acid, or α-dhAA, without any geometrical isomers, while its re-arranged isomer, 3-aminoacrylic acid (Aaa or ΔβAla), is the simplest dehydro-β-amino acid, or β-enamino acid, and displays E/Z isomerism. Dhb is the simplest α-dhAA that exhibits E/Z isomerism. The Z-isomer of Dhb (Z-Dhb) is sterically favourable and is present in the majority of naturally occurring peptides containing Dhb residues. Dha and Z-Dhb motifs are commonly found in ribosomally synthesized and post-translationally modified peptides (RiPPs). In the last decade, the formation of Dha and Dhb motifs in RiPPs has been extensively investigated, which will be briefly discussed in this review. The formation of other dhAA residues in natural products (NPs) is, however, less understood. In this review, we will discuss recent advances in the biosynthesis of peptidyl NPs containing unusual dhAA residues and cryptic dhAA residues. The proposed biosynthetic pathways of these natural products will also be discussed.
Collapse
Affiliation(s)
- Shan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Kewen Wu
- Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK.
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Hai Deng
- Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK.
| |
Collapse
|
8
|
Gordon CH, Hendrix E, He Y, Walker MC. AlphaFold Accurately Predicts the Structure of Ribosomally Synthesized and Post-Translationally Modified Peptide Biosynthetic Enzymes. Biomolecules 2023; 13:1243. [PMID: 37627309 PMCID: PMC10452190 DOI: 10.3390/biom13081243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a growing class of natural products biosynthesized from a genetically encoded precursor peptide. The enzymes that install the post-translational modifications on these peptides have the potential to be useful catalysts in the production of natural-product-like compounds and can install non-proteogenic amino acids in peptides and proteins. However, engineering these enzymes has been somewhat limited, due in part to limited structural information on enzymes in the same families that nonetheless exhibit different substrate selectivities. Despite AlphaFold2's superior performance in single-chain protein structure prediction, its multimer version lacks accuracy and requires high-end GPUs, which are not typically available to most research groups. Additionally, the default parameters of AlphaFold2 may not be optimal for predicting complex structures like RiPP biosynthetic enzymes, due to their dynamic binding and substrate-modifying mechanisms. This study assessed the efficacy of the structure prediction program ColabFold (a variant of AlphaFold2) in modeling RiPP biosynthetic enzymes in both monomeric and dimeric forms. After extensive benchmarking, it was found that there were no statistically significant differences in the accuracy of the predicted structures, regardless of the various possible prediction parameters that were examined, and that with the default parameters, ColabFold was able to produce accurate models. We then generated additional structural predictions for select RiPP biosynthetic enzymes from multiple protein families and biosynthetic pathways. Our findings can serve as a reference for future enzyme engineering complemented by AlphaFold-related tools.
Collapse
Affiliation(s)
| | | | | | - Mark C. Walker
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
9
|
Thibodeaux CJ. The conformationally dynamic structural biology of lanthipeptide biosynthesis. Curr Opin Struct Biol 2023; 81:102644. [PMID: 37352604 DOI: 10.1016/j.sbi.2023.102644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/25/2023]
Abstract
Lanthipeptide synthetases are fascinating biosynthetic enzymes that install intramolecular thioether bridges into genetically encoded peptides, typically endowing the peptide with therapeutic properties. The factors that control the macrocyclic topology of lanthipeptides are numerous and remain difficult to predict and manipulate. The key challenge in this endeavor derives from the vast conformational space accessible to the disordered precursor lanthipeptide, which can be manipulated in subtle ways by interaction with the cognate synthetase. This review explores the unique strategies employed by each of the five phylogenetically divergent classes of lanthipeptide synthetase to manipulate and exploit the dynamic lanthipeptide conformational ensemble, collectively enabling these biosynthetic enzymes to guide peptide maturation along specific trajectories to products with distinct macrocyclic topology and biological activity.
Collapse
Affiliation(s)
- Christopher J Thibodeaux
- McGill University, Department of Chemistry, 801Sherbooke St. West, Montréal, Québec, H3A 0B8, Canada.
| |
Collapse
|
10
|
Rice AJ, Pelton JM, Kramer NJ, Catlin DS, Nair SK, Pogorelov TV, Mitchell DA, Bowers AA. Enzymatic Pyridine Aromatization during Thiopeptide Biosynthesis. J Am Chem Soc 2022; 144:21116-21124. [PMID: 36351243 PMCID: PMC9955758 DOI: 10.1021/jacs.2c07377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Thiazole-containing pyritides (thiopeptides) are ribosomally synthesized and post-translationally modified peptides (RiPPs) that have attracted interest owing to their potent biological activities and structural complexity. The class-defining feature of a thiopeptide is a six-membered, nitrogenous heterocycle formed by an enzymatic [4 + 2]-cycloaddition. In rare cases, piperidine or dehydropiperidine (DHP) is present; however, the aromatized pyridine is considerably more common. Despite significant effort, the mechanism by which the central pyridine is formed remains poorly understood. Building on our recent observation of the Bycroft-Gowland intermediate (i.e., the direct product of the [4 + 2]-cycloaddition), we interrogated thiopeptide pyridine synthases using a combination of targeted mutagenesis, kinetic assays, substrate analogs, enzyme-substrate cross-linking, and chemical rescue experiments. Collectively, our data delineate roles for several conserved residues in thiopeptide pyridine synthases. A critical tyrosine facilitates the final aromatization step of pyridine formation. This work provides a foundation for further exploration of the [4 + 2]-cycloaddition reaction and future customization of pyridine-containing macrocyclic peptides.
Collapse
Affiliation(s)
- Andrew J. Rice
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Jarrett M. Pelton
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 301 Pharmacy Lane, Chapel Hill, North Carolina 27599, USA
| | - Nicholas J. Kramer
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 301 Pharmacy Lane, Chapel Hill, North Carolina 27599, USA
| | - Daniel S. Catlin
- Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois, Urbana, Illinois 61801, USA
| | - Satish K. Nair
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA.,Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois, Urbana, Illinois 61801, USA
| | - Taras V. Pogorelov
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA.,School of Chemical Sciences, University of Illinois at Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, USA.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, 1205 West Clark Street, Urbana, Illinois 61801, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA.,Department of Microbiology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Albert A. Bowers
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 301 Pharmacy Lane, Chapel Hill, North Carolina 27599, USA,Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
11
|
Liu SH, Sun JL, Hu YL, Zhang L, Zhang X, Yan ZY, Guo X, Guo ZK, Jiao RH, Zhang B, Tan RX, Ge HM. Biosynthesis of Sordarin Revealing a Diels–Alderase for the Formation of the Norbornene Skeleton. Angew Chem Int Ed Engl 2022; 61:e202205577. [DOI: 10.1002/anie.202205577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Shuang He Liu
- State Key Laboratory of Pharmaceutical Biotechnology Institute of Functional Biomolecules Chemistry and Biomedicine Innovation Center (ChemBIC) School of Life Sciences Nanjing University Nanjing 210023 China
| | - Jia Li Sun
- State Key Laboratory of Pharmaceutical Biotechnology Institute of Functional Biomolecules Chemistry and Biomedicine Innovation Center (ChemBIC) School of Life Sciences Nanjing University Nanjing 210023 China
| | - Yi Ling Hu
- State Key Laboratory of Pharmaceutical Biotechnology Institute of Functional Biomolecules Chemistry and Biomedicine Innovation Center (ChemBIC) School of Life Sciences Nanjing University Nanjing 210023 China
| | - Li Zhang
- State Key Laboratory of Pharmaceutical Biotechnology Institute of Functional Biomolecules Chemistry and Biomedicine Innovation Center (ChemBIC) School of Life Sciences Nanjing University Nanjing 210023 China
| | - Xuan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology Institute of Functional Biomolecules Chemistry and Biomedicine Innovation Center (ChemBIC) School of Life Sciences Nanjing University Nanjing 210023 China
| | - Zhang Yuan Yan
- State Key Laboratory of Pharmaceutical Biotechnology Institute of Functional Biomolecules Chemistry and Biomedicine Innovation Center (ChemBIC) School of Life Sciences Nanjing University Nanjing 210023 China
| | - Xing Guo
- State Key Laboratory of Pharmaceutical Biotechnology Institute of Functional Biomolecules Chemistry and Biomedicine Innovation Center (ChemBIC) School of Life Sciences Nanjing University Nanjing 210023 China
| | - Zhi Kai Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops Ministry of Agriculture Institute of Tropical Bioscience and Bio-technology Chinese Academy of Tropical Agricultural Sciences Haikou 571101 China
| | - Rui Hua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology Institute of Functional Biomolecules Chemistry and Biomedicine Innovation Center (ChemBIC) School of Life Sciences Nanjing University Nanjing 210023 China
| | - Bo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology Institute of Functional Biomolecules Chemistry and Biomedicine Innovation Center (ChemBIC) School of Life Sciences Nanjing University Nanjing 210023 China
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology Institute of Functional Biomolecules Chemistry and Biomedicine Innovation Center (ChemBIC) School of Life Sciences Nanjing University Nanjing 210023 China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology Institute of Functional Biomolecules Chemistry and Biomedicine Innovation Center (ChemBIC) School of Life Sciences Nanjing University Nanjing 210023 China
| |
Collapse
|
12
|
Abstract
The past decade has seen impressive advances in understanding the biosynthesis of ribosomally synthesized and posttranslationally modified peptides (RiPPs). One of the most common modifications found in these natural products is macrocyclization, a strategy also used by medicinal chemists to improve metabolic stability and target affinity and specificity. Another tool of the peptide chemist, modification of the amides in a peptide backbone, has also been observed in RiPPs. This review discusses the molecular mechanisms of biosynthesis of a subset of macrocyclic RiPP families, chosen because of the unusual biochemistry involved: the five classes of lanthipeptides (thioether cyclization by Michael-type addition), sactipeptides and ranthipeptides (thioether cyclization by radical chemistry), thiopeptides (cyclization by [4+2] cycloaddition), and streptide (cyclization by radical C-C bond formation). In addition, the mechanisms of backbone amide methylation, backbone epimerization, and backbone thioamide formation are discussed, as well as an unusual route to small molecules by posttranslational modification.
Collapse
Affiliation(s)
- Hyunji Lee
- Department of Chemistry and the Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Wilfred A van der Donk
- Department of Chemistry and the Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
13
|
Habibi Y, Weerasinghe NW, Uggowitzer KA, Thibodeaux CJ. Partially Modified Peptide Intermediates in Lanthipeptide Biosynthesis Alter the Structure and Dynamics of a Lanthipeptide Synthetase. J Am Chem Soc 2022; 144:10230-10240. [PMID: 35647706 DOI: 10.1021/jacs.2c00727] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lanthipeptide synthetases construct macrocyclic peptide natural products by catalyzing an iterative cascade of post-translational modifications. Class II lanthipeptide synthetases (LanM enzymes) catalyze multiple rounds of peptide dehydration and thioether macrocycle formation in a manner that guides precursor peptide maturation to the biologically active final product with high fidelity. The mechanistic details underlying the contradictory phenomena of substrate flexibility coupled with high biosynthetic fidelity have proven challenging to illuminate. In this work, we employ mass spectrometry to investigate how the structure of a maturing precursor lanthipeptide (HalA2) influences the local and global structure of its cognate lanthipeptide synthetase (HalM2). Using enzymatically synthesized HalA2 peptides that contain sets of native thioether macrocycles, we employ ion mobility mass spectrometry (IM-MS) to show that HalA2 macrocyclization alters the conformational landscape of the HalM2 enzyme in a systematic manner. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) studies show that local HalM2 structural dynamics also change in response to HalA2 post-translational modification. Notably, deuterium uptake in a critical HalM2 α-helical region depends on the number of thioether macrocycles present in the HalA2 core peptide. Binding of the isolated leader and core peptide portions of the modular HalA2 precursor led to a synergistic structuring of this α-helical region, providing evidence for distinct leader and core peptide binding sites that independently alter the dynamics of this functionally critical α-helix. The data support a mechanistic model where the sequential post-translational modification of HalA2 alters the conformational dynamics of HalM2 in regions of the enzyme that are known to be functionally critical.
Collapse
Affiliation(s)
- Yeganeh Habibi
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada
| | - Nuwani W Weerasinghe
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada
| | - Kevin A Uggowitzer
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada
| | - Christopher J Thibodeaux
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
14
|
Ge HM, Liu SH, Sun JL, Hu YL, Zhang L, Zhang X, Yan ZY, Guo X, Guo ZK, Jiao RH, Zhang B, Tan RX. Biosynthesis of Sordarin Revealing a Diels‐Alderase for the Formation of the Norbornene Skeleton. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hui Ming Ge
- Nanjing University School of Lifescience 22 Hankou Road 210093 Nanjing CHINA
| | | | - Jia Li Sun
- Nanjing University School of Life Science CHINA
| | - Yi Ling Hu
- Nanjing University School of Life Science CHINA
| | - Li Zhang
- Nanjing University School of Life Science CHINA
| | - Xuan Zhang
- Nanjing University School of Life Science CHINA
| | | | - Xing Guo
- Nanjing University School of Life Science CHINA
| | - Zhi Kai Guo
- Chinese Academy of Tropical Agricultural Sciences Key Laboratory of Biology and Genetic Resources of Tropical Crops CHINA
| | | | - Bo Zhang
- Nanjing University School of Life Science xianlin No163, Jiangsu, ChinaJiangsu, China 210023 nanjing CHINA
| | | |
Collapse
|
15
|
Hamry SR, Thibodeaux CJ. Biochemical and biophysical investigation of the HalM2 lanthipeptide synthetase using mass spectrometry. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The rapid emergence of antimicrobial resistance in clinical settings has called for renewed efforts to discover and develop new antimicrobial compounds. Lanthipeptides present a promising, genetically encoded molecular scaffold for the engineering of structurally complex, biologically active peptides. These peptide natural products are constructed by enzymes (lanthipeptide synthetases) with relaxed substrate specificity that iteratively modify the precursor lanthipeptide to generate structures with defined sets of thioether macrocycles. The mechanistic features that guide the maturation of lanthipeptides into their proper, fully modified forms are obscured by the complexity of the multistep maturation and the large size and dynamic structures of the synthetases and precursor peptides. Over the past several years, our lab has been developing a suite of mass spectrometry-based techniques that are ideally suited to untangling the complex reaction sequences and molecular interactions that define lanthipeptide biosynthesis. This review focuses on our development and application of these mass spectrometry-based techniques to investigate the biochemical, kinetic, and biophysical properties of the haloduracin β class II lanthipeptide synthetase, HalM2.
Collapse
Affiliation(s)
- Sally R. Hamry
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
| | - Christopher J. Thibodeaux
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
16
|
Cofactor F420, an emerging redox power in biosynthesis of secondary metabolites. Biochem Soc Trans 2022; 50:253-267. [PMID: 35191491 DOI: 10.1042/bst20211286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 02/07/2023]
Abstract
Cofactor F420 is a low-potential hydride-transfer deazaflavin that mediates important oxidoreductive reactions in the primary metabolism of archaea and a wide range of bacteria. Over the past decade, biochemical studies have demonstrated another essential role for F420 in the biosynthesis of various classes of natural products. These studies have substantiated reports predating the structural determination of F420 that suggested a potential role for F420 in the biosynthesis of several antibiotics produced by Streptomyces. In this article, we focus on this exciting and emerging role of F420 in catalyzing the oxidoreductive transformation of various imine, ketone and enoate moieties in secondary metabolites. Given the extensive and increasing availability of genomic and metagenomic data, these F420-dependent transformations may lead to the discovery of novel secondary metabolites, providing an invaluable and untapped resource in various biotechnological applications.
Collapse
|
17
|
Song I, Kim Y, Yu J, Go SY, Lee HG, Song WJ, Kim S. Molecular mechanism underlying substrate recognition of the peptide macrocyclase PsnB. Nat Chem Biol 2021; 17:1123-1131. [PMID: 34475564 DOI: 10.1038/s41589-021-00855-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/08/2021] [Indexed: 01/02/2023]
Abstract
Graspetides, also known as ω-ester-containing peptides (OEPs), are a family of ribosomally synthesized and post-translationally modified peptides (RiPPs) bearing side chain-to-side chain macrolactone or macrolactam linkages. Here, we present the molecular details of precursor peptide recognition by the macrocyclase enzyme PsnB in the biosynthesis of plesiocin, a group 2 graspetide. Biochemical analysis revealed that, in contrast to other RiPPs, the core region of the plesiocin precursor peptide noticeably enhanced the enzyme-precursor interaction via the conserved glutamate residues. We obtained four crystal structures of symmetric or asymmetric PsnB dimers, including those with a bound core peptide and a nucleotide, and suggest that the highly conserved Arg213 at the enzyme active site specifically recognizes a ring-forming acidic residue before phosphorylation. Collectively, this study provides insights into the mechanism underlying substrate recognition in graspetide biosynthesis and lays a foundation for engineering new variants.
Collapse
Affiliation(s)
- Inseok Song
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Younghyeon Kim
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Jaeseung Yu
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Su Yong Go
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Hong Geun Lee
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Woon Ju Song
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Seokhee Kim
- Department of Chemistry, Seoul National University, Seoul, South Korea.
| |
Collapse
|
18
|
Fujiyama K, Kato N, Re S, Kinugasa K, Watanabe K, Takita R, Nogawa T, Hino T, Osada H, Sugita Y, Takahashi S, Nagano S. Molecular Basis for Two Stereoselective Diels–Alderases that Produce Decalin Skeletons**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Keisuke Fujiyama
- Department of Chemistry and Biotechnology Graduate School of Engineering Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
- Current address: Dormancy and Adaptation Research Unit RIKEN Center for Sustainable Resource Science 1-7-22 Suehiro, Tsurumi Yokohama Kanagawa 230-0045 Japan
| | - Naoki Kato
- Natural Product Biosynthesis Research Unit RIKEN Center for Sustainable Research Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
- Faculty of Agriculture Setsunan University 45-1 Nagaotoge-cho, Hirakata Osaka 573-0101 Japan
| | - Suyong Re
- Laboratory for Biomolecular Function Simulation RIKEN Center for Biosystems Dynamics Research 2-2-3 Minatojima-minami-machi, Chuo-ku Kobe Hyogo 650-0047 Japan
- Artificial Intelligence Center for Health and Biomedical Research National Institutes of Biomedical Innovation, Health, and Nutrition 7-6-8, Saito-Asagi, Ibaraki Osaka 567-0085 Japan
| | - Kiyomi Kinugasa
- Natural Product Biosynthesis Research Unit RIKEN Center for Sustainable Research Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Kohei Watanabe
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Ryo Takita
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Toshihiko Nogawa
- Chemical Biology Research Group RIKEN Center for Sustainable Research Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Tomoya Hino
- Department of Chemistry and Biotechnology Graduate School of Engineering Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
- Center for Research on Green Sustainable Chemistry Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group RIKEN Center for Sustainable Research Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Yuji Sugita
- Laboratory for Biomolecular Function Simulation RIKEN Center for Biosystems Dynamics Research 2-2-3 Minatojima-minami-machi, Chuo-ku Kobe Hyogo 650-0047 Japan
- Theoretical Molecular Science Laboratory RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako Saitama 351-0198 Japan
- Computational Biophysics Research Team RIKEN Center for Computational Science 7-1-26 Minatojima-minami-machi Chuo-ku Kobe, Hyogo 650-0047 Japan
| | - Shunji Takahashi
- Natural Product Biosynthesis Research Unit RIKEN Center for Sustainable Research Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Shingo Nagano
- Department of Chemistry and Biotechnology Graduate School of Engineering Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
- Center for Research on Green Sustainable Chemistry Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
| |
Collapse
|
19
|
Fujiyama K, Kato N, Re S, Kinugasa K, Watanabe K, Takita R, Nogawa T, Hino T, Osada H, Sugita Y, Takahashi S, Nagano S. Molecular Basis for Two Stereoselective Diels-Alderases that Produce Decalin Skeletons*. Angew Chem Int Ed Engl 2021; 60:22401-22410. [PMID: 34121297 PMCID: PMC8518865 DOI: 10.1002/anie.202106186] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Indexed: 12/02/2022]
Abstract
Enzymes catalyzing [4+2] cycloaddition have attracted increasing attention because of their key roles in natural product biosynthesis. Here, we solved the X-ray crystal structures of a pair of decalin synthases, Fsa2 and Phm7, that catalyze intramolecular [4+2] cycloadditions to form enantiomeric decalin scaffolds during biosynthesis of the HIV-1 integrase inhibitor equisetin and its stereochemical opposite, phomasetin. Computational modeling, using molecular dynamics simulations as well as quantum chemical calculations, demonstrates that the reactions proceed through synergetic conformational constraints assuring transition state-like substrates folds and their stabilization by specific protein-substrate interactions. Site-directed mutagenesis experiments verified the binding models. Intriguingly, the flexibility of bound substrates is largely different in two enzymes, suggesting the distinctive mechanism of dynamics regulation behind these stereoselective reactions. The proposed reaction mechanism herein deepens the basic understanding how these enzymes work but also provides a guiding principle to create artificial enzymes.
Collapse
Affiliation(s)
- Keisuke Fujiyama
- Department of Chemistry and BiotechnologyGraduate School of EngineeringTottori University4-101 Koyama-choMinamiTottori680-8552Japan
- Current address: Dormancy and Adaptation Research UnitRIKEN Center for Sustainable Resource Science1-7-22 Suehiro, TsurumiYokohamaKanagawa230-0045Japan
| | - Naoki Kato
- Natural Product Biosynthesis Research UnitRIKEN Center for Sustainable Research Science2-1 HirosawaWakoSaitama351-0198Japan
- Faculty of AgricultureSetsunan University45-1 Nagaotoge-cho, HirakataOsaka573-0101Japan
| | - Suyong Re
- Laboratory for Biomolecular Function SimulationRIKEN Center for Biosystems Dynamics Research2-2-3 Minatojima-minami-machi, Chuo-kuKobeHyogo650-0047Japan
- Artificial Intelligence Center for Health and Biomedical ResearchNational Institutes of Biomedical Innovation, Health, and Nutrition7-6-8, Saito-Asagi, IbarakiOsaka567-0085Japan
| | - Kiyomi Kinugasa
- Natural Product Biosynthesis Research UnitRIKEN Center for Sustainable Research Science2-1 HirosawaWakoSaitama351-0198Japan
| | - Kohei Watanabe
- Graduate School of Pharmaceutical SciencesThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyo113-0033Japan
| | - Ryo Takita
- Graduate School of Pharmaceutical SciencesThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyo113-0033Japan
| | - Toshihiko Nogawa
- Chemical Biology Research GroupRIKEN Center for Sustainable Research Science2-1 HirosawaWakoSaitama351-0198Japan
| | - Tomoya Hino
- Department of Chemistry and BiotechnologyGraduate School of EngineeringTottori University4-101 Koyama-choMinamiTottori680-8552Japan
- Center for Research on Green Sustainable ChemistryTottori University4-101 Koyama-choMinamiTottori680-8552Japan
| | - Hiroyuki Osada
- Chemical Biology Research GroupRIKEN Center for Sustainable Research Science2-1 HirosawaWakoSaitama351-0198Japan
| | - Yuji Sugita
- Laboratory for Biomolecular Function SimulationRIKEN Center for Biosystems Dynamics Research2-2-3 Minatojima-minami-machi, Chuo-kuKobeHyogo650-0047Japan
- Theoretical Molecular Science LaboratoryRIKEN Cluster for Pioneering Research2-1 HirosawaWakoSaitama351-0198Japan
- Computational Biophysics Research TeamRIKEN Center for Computational Science7-1-26 Minatojima-minami-machiChuo-kuKobe, Hyogo650-0047Japan
| | - Shunji Takahashi
- Natural Product Biosynthesis Research UnitRIKEN Center for Sustainable Research Science2-1 HirosawaWakoSaitama351-0198Japan
| | - Shingo Nagano
- Department of Chemistry and BiotechnologyGraduate School of EngineeringTottori University4-101 Koyama-choMinamiTottori680-8552Japan
- Center for Research on Green Sustainable ChemistryTottori University4-101 Koyama-choMinamiTottori680-8552Japan
| |
Collapse
|
20
|
Miller FS, Crone KK, Jensen MR, Shaw S, Harcombe WR, Elias MH, Freeman MF. Conformational rearrangements enable iterative backbone N-methylation in RiPP biosynthesis. Nat Commun 2021; 12:5355. [PMID: 34504067 PMCID: PMC8429565 DOI: 10.1038/s41467-021-25575-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/18/2021] [Indexed: 11/10/2022] Open
Abstract
Peptide backbone α-N-methylations change the physicochemical properties of amide bonds to provide structural constraints and other favorable characteristics including biological membrane permeability to peptides. Borosin natural product pathways are the only known ribosomally encoded and posttranslationally modified peptides (RiPPs) pathways to incorporate backbone α-N-methylations on translated peptides. Here we report the discovery of type IV borosin natural product pathways (termed 'split borosins'), featuring an iteratively acting α-N-methyltransferase and separate precursor peptide substrate from the metal-respiring bacterium Shewanella oneidensis. A series of enzyme-precursor complexes reveal multiple conformational states for both α-N-methyltransferase and substrate. Along with mutational and kinetic analyses, our results give rare context into potential strategies for iterative maturation of RiPPs.
Collapse
Affiliation(s)
- Fredarla S Miller
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, St. Paul, MN, USA
| | - Kathryn K Crone
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, St. Paul, MN, USA
| | - Matthew R Jensen
- BioTechnology Institute, University of Minnesota-Twin Cities, St. Paul, MN, USA
- Science Department, Concordia University-St. Paul, St. Paul, MN, USA
| | - Sudipta Shaw
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, St. Paul, MN, USA
| | - William R Harcombe
- BioTechnology Institute, University of Minnesota-Twin Cities, St. Paul, MN, USA
- Department of Ecology, Evolution and Behavior, University of Minnesota-Twin Cities, St. Paul, MN, USA
| | - Mikael H Elias
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, St. Paul, MN, USA.
- BioTechnology Institute, University of Minnesota-Twin Cities, St. Paul, MN, USA.
| | - Michael F Freeman
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, St. Paul, MN, USA.
- BioTechnology Institute, University of Minnesota-Twin Cities, St. Paul, MN, USA.
| |
Collapse
|
21
|
Vinogradov AA, Nagano M, Goto Y, Suga H. Site-Specific Nonenzymatic Peptide S/O-Glutamylation Reveals the Extent of Substrate Promiscuity in Glutamate Elimination Domains. J Am Chem Soc 2021; 143:13358-13369. [PMID: 34392675 DOI: 10.1021/jacs.1c06470] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Formation of dehydroalanine and dehydrobutyrine residues via tRNA-dependent dehydration of serine and threonine is a key post-translational modification in the biosynthesis of lanthipeptide and thiopeptide RiPPs. The dehydration process involves two reactions, wherein the O-glutamyl Ser/Thr intermediate, accessed by a dedicated enzyme utilizing Glu-tRNAGlu as the acyl donor, is recognized by the second enzyme, referred to as the glutamate elimination domain (ED), which catalyzes the eponymous reaction yielding a dehydroamino acid. Many details of ED catalysis remain unexplored because the scope of available substrates for testing is limited to those that the upstream enzymes can furnish. Here, we report two complementary strategies for direct, nonenzymatic access to diverse ED substrates. We establish that a thiol-thioester exchange reaction between a Cys-containing peptide and an α thioester of glutamic acid leads an S-glutamylated intermediate which can act as a substrate for EDs. Furthermore, we show that the native O-glutamylated substrates can be accessible from S-glutamylated peptides upon a site-specific S-to-O acyl transfer reaction. Combined with flexible in vitro translation utilized for rapid peptide production, these chemistries enabled us to dissect the substrate recognition requirements of three known EDs. Our results establish that EDs are uniquely promiscuous enzymes capable of acting on substrates with arbitrary amino acid sequences and performing retro-Michael reaction beyond the canonical glutamate elimination. To facilitate substrate recruitment, EDs apparently engage in nonspecific hydrophobic interactions with their substrates. Altogether, our results establish the substrate scope of EDs and provide clues to their catalysis.
Collapse
Affiliation(s)
- Alexander A Vinogradov
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masanobu Nagano
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
22
|
Chi C, Wang Z, Liu T, Zhang Z, Zhou H, Li A, Jin H, Jia H, Yin F, Yang D, Ma M. Crystal Structures of Fsa2 and Phm7 Catalyzing [4 + 2] Cycloaddition Reactions with Reverse Stereoselectivities in Equisetin and Phomasetin Biosynthesis. ACS OMEGA 2021; 6:12913-12922. [PMID: 34056443 PMCID: PMC8154222 DOI: 10.1021/acsomega.1c01593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Fsa2 and Phm7 are a unique pair of pericyclases catalyzing [4 + 2] cycloaddition reactions with reverse stereoselectivities in the biosynthesis of equisetin and phomasetin, both of which are potent HIV-1 integrase inhibitors. We here solve the crystal structures of Fsa2 and Phm7, both of which possess unusual "two-β barrel" folds. Different residues are evident between the active sites of Fsa2 and Phm7, and modeling experiments provide key structural information determining the reverse stereoselectivities. These results provide a better understanding of how natural pericyclases control the catalytic stereoselectivities and benefit the protein engineering in future.
Collapse
Affiliation(s)
- Changbiao Chi
- State
Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical
Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Zhengdong Wang
- State
Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical
Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Tan Liu
- State
Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical
Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Zhongyi Zhang
- State
Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical
Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Huan Zhou
- Shanghai
Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhangheng Road, Pudong District, Shanghai 201204, China
| | - Annan Li
- State
Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical
Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Hongwei Jin
- State
Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical
Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Hongli Jia
- State
Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical
Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Fuling Yin
- State
Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical
Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Donghui Yang
- State
Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical
Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Ming Ma
- State
Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical
Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| |
Collapse
|
23
|
Weerasinghe NW, Habibi Y, Uggowitzer KA, Thibodeaux CJ. Exploring the Conformational Landscape of a Lanthipeptide Synthetase Using Native Mass Spectrometry. Biochemistry 2021; 60:1506-1519. [PMID: 33887902 DOI: 10.1021/acs.biochem.1c00085] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lanthipeptides are ribosomally synthesized and post-translationally modified peptide (RiPP) natural products. These genetically encoded peptides are biosynthesized by multifunctional enzymes (lanthipeptide synthetases) that possess relaxed substrate specificity and catalyze iterative rounds of post-translational modification. Recent evidence has suggested that some lanthipeptide synthetases are structurally dynamic enzymes that are allosterically activated by precursor peptide binding and that conformational sampling of the enzyme-peptide complex may play an important role in defining the efficiency and sequence of biosynthetic events. These "biophysical" processes, while critical for defining the activity and function of the synthetase, remain very challenging to study with existing methodologies. Herein, we show that native mass spectrometry coupled to ion mobility (native IM-MS) provides a powerful and sensitive means for investigating the conformational landscapes and intermolecular interactions of lanthipeptide synthetases. Namely, we demonstrate that the class II lanthipeptide synthetase (HalM2) and its noncovalent complex with the cognate HalA2 precursor peptide can be delivered into the gas phase in a manner that preserves native structures and intermolecular enzyme-peptide contacts. Moreover, gas phase ion mobility studies of the natively folded ions demonstrate that peptide binding and mutations to dynamic structural elements of HalM2 alter the conformational landscape of the enzyme. Cumulatively, these data support previous claims that lanthipeptide synthetases are structurally dynamic enzymes that undergo functionally relevant conformational changes in response to precursor peptide binding. This work establishes native IM-MS as a versatile approach for characterizing intermolecular interactions and for unraveling the relationships between protein structure and biochemical function in RiPP biosynthetic systems.
Collapse
Affiliation(s)
- Nuwani W Weerasinghe
- Department of Chemistry and Centre de Recherche en Biologie Structurale, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Yeganeh Habibi
- Department of Chemistry and Centre de Recherche en Biologie Structurale, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Kevin A Uggowitzer
- Department of Chemistry and Centre de Recherche en Biologie Structurale, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Christopher J Thibodeaux
- Department of Chemistry and Centre de Recherche en Biologie Structurale, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| |
Collapse
|
24
|
Xu G, Yang S. Diverse evolutionary origins of microbial [4 + 2]-cyclases in natural product biosynthesis. Int J Biol Macromol 2021; 182:154-161. [PMID: 33836196 DOI: 10.1016/j.ijbiomac.2021.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 10/21/2022]
Abstract
Natural [4 + 2]-cyclases catalyze concerted cycloaddition during biosynthesis of over 400 natural products reported. Microbial [4 + 2]-cyclases are structurally diverse with a broad range of substrates. Thus far, about 52 putative microbial [4 + 2]-cyclases of 13 different types have been characterized, with over 20 crystal structures. However, how these cyclases have evolved during natural product biosynthesis remains elusive. Structural and phylogenetic analyses suggest that these different types of [4 + 2]-cyclases might have diverse evolutionary origins, such as reductases, dehydratases, methyltransferases, oxidases, etc. Divergent evolution of enzyme function might have occurred in these different families. Understanding the independent evolutionary history of these cyclases would provide new insights into their catalysis mechanisms and the biocatalyst design.
Collapse
Affiliation(s)
- Gangming Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| | - Suiqun Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
25
|
Bao G, Wang P, Li G, Yu C, Li Y, Liu Y, He Z, Zhao T, Rao J, Xie J, Hong L, Sun W, Wang R. 1,3‐Dipolar Cycloaddition between Dehydroalanines and C,N‐Cyclic Azomethine Imines: Application to Late‐Stage Peptide Modification. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Guangjun Bao
- School of Life Sciences Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science Chinese Academy of Medical Sciences, 2019RU066 Lanzhou University 199 West Donggang Rd Lanzhou 730000 Gansu P. R. China
| | - Peng Wang
- School of Life Sciences Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science Chinese Academy of Medical Sciences, 2019RU066 Lanzhou University 199 West Donggang Rd Lanzhou 730000 Gansu P. R. China
| | - Guofeng Li
- School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 China
| | - Changjun Yu
- School of Life Sciences Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science Chinese Academy of Medical Sciences, 2019RU066 Lanzhou University 199 West Donggang Rd Lanzhou 730000 Gansu P. R. China
| | - Yiping Li
- School of Life Sciences Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science Chinese Academy of Medical Sciences, 2019RU066 Lanzhou University 199 West Donggang Rd Lanzhou 730000 Gansu P. R. China
| | - Yuyang Liu
- School of Life Sciences Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science Chinese Academy of Medical Sciences, 2019RU066 Lanzhou University 199 West Donggang Rd Lanzhou 730000 Gansu P. R. China
| | - Zeyuan He
- School of Life Sciences Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science Chinese Academy of Medical Sciences, 2019RU066 Lanzhou University 199 West Donggang Rd Lanzhou 730000 Gansu P. R. China
| | - Tiantian Zhao
- School of Life Sciences Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science Chinese Academy of Medical Sciences, 2019RU066 Lanzhou University 199 West Donggang Rd Lanzhou 730000 Gansu P. R. China
| | - Jing Rao
- School of Life Sciences Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science Chinese Academy of Medical Sciences, 2019RU066 Lanzhou University 199 West Donggang Rd Lanzhou 730000 Gansu P. R. China
| | - Junqiu Xie
- School of Life Sciences Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science Chinese Academy of Medical Sciences, 2019RU066 Lanzhou University 199 West Donggang Rd Lanzhou 730000 Gansu P. R. China
| | - Liang Hong
- School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 China
| | - Wangsheng Sun
- School of Life Sciences Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science Chinese Academy of Medical Sciences, 2019RU066 Lanzhou University 199 West Donggang Rd Lanzhou 730000 Gansu P. R. China
| | - Rui Wang
- School of Life Sciences Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science Chinese Academy of Medical Sciences, 2019RU066 Lanzhou University 199 West Donggang Rd Lanzhou 730000 Gansu P. R. China
| |
Collapse
|
26
|
Bao G, Wang P, Li G, Yu C, Li Y, Liu Y, He Z, Zhao T, Rao J, Xie J, Hong L, Sun W, Wang R. 1,3-Dipolar Cycloaddition between Dehydroalanines and C,N-Cyclic Azomethine Imines: Application to Late-Stage Peptide Modification. Angew Chem Int Ed Engl 2021; 60:5331-5338. [PMID: 33179384 DOI: 10.1002/anie.202012523] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/03/2020] [Indexed: 12/12/2022]
Abstract
A non-catalytic, mild, and easy-to-handle protecting group switched 1,3-dipolar cycloaddition (1,3-DC) between bi- or mono-N-protected Dha and C,N-cyclic azomethine imines, which afford various quaternary amino acids with diverse scaffolds, is disclosed. Specifically, normal-electron-demand 1,3-DC reaction occurs between bi-N-protected Dha and C,N-cyclic azomethine imines, while inverse-electron-demand 1,3-DC reaction occurs between mono-N-protected Dha and C,N-cyclic azomethine imines. Above all, the reactions can be carried out between peptides with Dha residues at the position of interest and C,N-cyclic azomethine imines, both in homogeneous phase and on resins in SPPS. It provides a new toolkit for late-stage peptide modification, labeling, and peptide-drug conjugation. To shed light on the high regioselectivity of the reaction, DFT calculations were carried out, which were qualitatively consistent with the experimental observations.
Collapse
Affiliation(s)
- Guangjun Bao
- School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Rd, Lanzhou, 730000, Gansu, P. R. China
| | - Peng Wang
- School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Rd, Lanzhou, 730000, Gansu, P. R. China
| | - Guofeng Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Changjun Yu
- School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Rd, Lanzhou, 730000, Gansu, P. R. China
| | - Yiping Li
- School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Rd, Lanzhou, 730000, Gansu, P. R. China
| | - Yuyang Liu
- School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Rd, Lanzhou, 730000, Gansu, P. R. China
| | - Zeyuan He
- School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Rd, Lanzhou, 730000, Gansu, P. R. China
| | - Tiantian Zhao
- School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Rd, Lanzhou, 730000, Gansu, P. R. China
| | - Jing Rao
- School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Rd, Lanzhou, 730000, Gansu, P. R. China
| | - Junqiu Xie
- School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Rd, Lanzhou, 730000, Gansu, P. R. China
| | - Liang Hong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Wangsheng Sun
- School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Rd, Lanzhou, 730000, Gansu, P. R. China
| | - Rui Wang
- School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Rd, Lanzhou, 730000, Gansu, P. R. China
| |
Collapse
|
27
|
Lu J, Li Y, Bai Z, Lv H, Wang H. Enzymatic macrocyclization of ribosomally synthesized and posttranslational modified peptides via C-S and C-C bond formation. Nat Prod Rep 2021; 38:981-992. [PMID: 33185226 DOI: 10.1039/d0np00044b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: 2000 to 2020 Ribosomally synthesized and posttranslational modified peptides (RiPPs) are a rapidly growing class of bioactive natural products. Many members of RiPPs contain macrocyclic structural units constructed by modification enzymes through macrocyclization of linear precursor peptides. In this study, we summarize recent progress in the macrocyclization of RiPPs by C-S and C-C bond formation with a focus on the current understanding of the enzymatic mechanisms.
Collapse
Affiliation(s)
- Jingxia Lu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Yuqing Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Zengbing Bai
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Hongmei Lv
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
28
|
Montalbán-López M, Scott TA, Ramesh S, Rahman IR, van Heel AJ, Viel JH, Bandarian V, Dittmann E, Genilloud O, Goto Y, Grande Burgos MJ, Hill C, Kim S, Koehnke J, Latham JA, Link AJ, Martínez B, Nair SK, Nicolet Y, Rebuffat S, Sahl HG, Sareen D, Schmidt EW, Schmitt L, Severinov K, Süssmuth RD, Truman AW, Wang H, Weng JK, van Wezel GP, Zhang Q, Zhong J, Piel J, Mitchell DA, Kuipers OP, van der Donk WA. New developments in RiPP discovery, enzymology and engineering. Nat Prod Rep 2021; 38:130-239. [PMID: 32935693 PMCID: PMC7864896 DOI: 10.1039/d0np00027b] [Citation(s) in RCA: 450] [Impact Index Per Article: 112.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: up to June 2020Ribosomally-synthesized and post-translationally modified peptides (RiPPs) are a large group of natural products. A community-driven review in 2013 described the emerging commonalities in the biosynthesis of RiPPs and the opportunities they offered for bioengineering and genome mining. Since then, the field has seen tremendous advances in understanding of the mechanisms by which nature assembles these compounds, in engineering their biosynthetic machinery for a wide range of applications, and in the discovery of entirely new RiPP families using bioinformatic tools developed specifically for this compound class. The First International Conference on RiPPs was held in 2019, and the meeting participants assembled the current review describing new developments since 2013. The review discusses the new classes of RiPPs that have been discovered, the advances in our understanding of the installation of both primary and secondary post-translational modifications, and the mechanisms by which the enzymes recognize the leader peptides in their substrates. In addition, genome mining tools used for RiPP discovery are discussed as well as various strategies for RiPP engineering. An outlook section presents directions for future research.
Collapse
|
29
|
Chan DCK, Burrows LL. Thiopeptides: antibiotics with unique chemical structures and diverse biological activities. J Antibiot (Tokyo) 2020; 74:161-175. [PMID: 33349675 DOI: 10.1038/s41429-020-00387-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/05/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022]
Abstract
Thiopeptides are a class of natural product antibiotics with diverse structures and functions. Their complex structures and biosynthesis have intrigued researchers since their discovery in 1948, but not a single thiopeptide has been approved for human use. This is mainly due to their poor solubility, challenging synthesis, and low bioavailability. This review summarizes the current research on the biosynthesis and biological activity of thiopeptide antibiotics since 2015. The focus of research since 2015 has been on uncovering biosynthetic routes, developing methods for total synthesis, and understanding the biological activity of thiopeptides. Overall, there is still much to learn about this family of molecules.
Collapse
Affiliation(s)
- Derek C K Chan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.,Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, ON, Canada
| | - Lori L Burrows
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada. .,Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
30
|
Hudson GA, Hooper AR, DiCaprio AJ, Sarlah D, Mitchell DA. Structure Prediction and Synthesis of Pyridine-Based Macrocyclic Peptide Natural Products. Org Lett 2020; 23:253-256. [PMID: 32845158 DOI: 10.1021/acs.orglett.0c02699] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structural and functional characterization of natural products is vastly outpaced by the bioinformatic identification of biosynthetic gene clusters (BGCs) that encode such molecules. Uniting our knowledge of bioinformatics and enzymology to predict and synthetically access natural products is an effective platform for investigating cryptic/silent BGCs. We report the identification, biosynthesis, and total synthesis of a minimalistic class of ribosomally synthesized and post-translationally modified peptides (RiPPs) with the responsible BGCs encoding a subset of enzymes known from thiopeptide biosynthesis. On the basis of the BGC content, these RiPPs were predicted to undergo enzymatic dehydration of serine followed by [4+2]-cycloaddition to produce a trisubstituted, pyridine-based macrocycle. These RiPPs, termed "pyritides", thus contain the same six-membered, nitrogenous heterocycle that defines the thiopeptide RiPP class but lack the ubiquitous thiazole/thiazoline heterocycles, suggesting that thiopeptides should be reclassified as a more elaborate subclass of the pyritides. One pyritide product was obtained using an 11-step synthesis, and the structure verified by an orthogonal chemoenzymatic route using the precursor peptide and cognate pyridine synthase. This work exemplifies complementary bioinformatics, enzymology, and synthesis to characterize a minimalistic yet structurally intriguing scaffold that, unlike most thiopeptides, lacks growth-suppressive activity toward Gram-positive bacteria.
Collapse
Affiliation(s)
- Graham A Hudson
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Annie R Hooper
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Adam J DiCaprio
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, United States
| | - David Sarlah
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Douglas A Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, United States
| |
Collapse
|
31
|
Li Q, Ding W, Tu J, Chi C, Huang H, Ji X, Yao Z, Ma M, Ju J. Nonspecific Heme-Binding Cyclase, AbmU, Catalyzes [4 + 2] Cycloaddition during Neoabyssomicin Biosynthesis. ACS OMEGA 2020; 5:20548-20557. [PMID: 32832808 PMCID: PMC7439702 DOI: 10.1021/acsomega.0c02776] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/27/2020] [Indexed: 05/05/2023]
Abstract
Diels-Alder (DA) [4 + 2]-cycloaddition reactions rank among the most powerful transformations in synthetic organic chemistry; biosynthetic examples, however, are few and far between. We report here a heme-binding cyclase, AbmU, that catalyzes an essential [4 + 2] cycloaddition during neoabyssomicin scaffold assembly. In vivo genetic and in vitro biochemical analyses strongly suggest that AbmU catalyzes an intramolecular and stereoselective [4 + 2] cycloaddition to form a spirotetronate skeleton from an acyclic substrate featuring both a terminal 1,3-diene and an exo-methylene group. Biochemical assays and X-ray diffraction analyses reveal that AbmU binds nonspecifically to a heme b cofactor and that this association does not play a catalytic role in AbmU catalysis. A detailed study of the AbmU crystal structure reveals a unique mode of substrate binding and reaction catalysis; His160 forms a H-bond with the C-1 carbonyl O-atom of the acyclic substrate, and the imidazole of the same amino acid directs the tetronate moiety of acyclic substrate toward the terminal Δ10,11, Δ12,13-diene moiety, thereby facilitating intramolecular DA chemistry. Our findings expand upon what is known about mechanistic diversities available to biosynthetic [4 + 2] cyclases and help to lay the foundation for the use of AbmU in possible industrial applications.
Collapse
Affiliation(s)
- Qinglian Li
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia
Medica, RNAM Center for Marine Microbiology, South China Sea Institute
of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Wenjuan Ding
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia
Medica, RNAM Center for Marine Microbiology, South China Sea Institute
of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- College
of Oceanology, University of Chinese Academy
of Sciences, 19 Yuquan
Road, Beijing 100049, China
| | - Jiajia Tu
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia
Medica, RNAM Center for Marine Microbiology, South China Sea Institute
of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Changbiao Chi
- State
Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical
Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Hongbo Huang
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia
Medica, RNAM Center for Marine Microbiology, South China Sea Institute
of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Xiaoqi Ji
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia
Medica, RNAM Center for Marine Microbiology, South China Sea Institute
of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- College
of Oceanology, University of Chinese Academy
of Sciences, 19 Yuquan
Road, Beijing 100049, China
| | - Ziwei Yao
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia
Medica, RNAM Center for Marine Microbiology, South China Sea Institute
of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- College
of Oceanology, University of Chinese Academy
of Sciences, 19 Yuquan
Road, Beijing 100049, China
| | - Ming Ma
- State
Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical
Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Jianhua Ju
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia
Medica, RNAM Center for Marine Microbiology, South China Sea Institute
of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- College
of Oceanology, University of Chinese Academy
of Sciences, 19 Yuquan
Road, Beijing 100049, China
| |
Collapse
|
32
|
Vinogradov AA, Shimomura M, Kano N, Goto Y, Onaka H, Suga H. Promiscuous Enzymes Cooperate at the Substrate Level En Route to Lactazole A. J Am Chem Soc 2020; 142:13886-13897. [PMID: 32664727 DOI: 10.1021/jacs.0c05541] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enzymes involved in the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs) often have relaxed specificity profiles and are able to modify diverse substrates. When several such enzymes act together during precursor peptide maturation, a multitude of products can form, yet usually the biosynthesis converges on a single natural product. For the most part, the mechanisms controlling the integrity of RiPP assembly remain elusive. Here, we investigate the biosynthesis of lactazole A, a model thiopeptide produced by five promiscuous enzymes from a ribosomal precursor peptide. Using our in vitro thiopeptide production (FIT-Laz) system, we determine the order of biosynthetic events at the individual modification level and supplement this study with substrate scope analysis for participating enzymes. Our results reveal an unusual but well-defined assembly process where cyclodehydration, dehydroalanine formation, and azoline dehydrogenation events are intertwined due to minimal substrate recognition requirements characteristic of every lactazole enzyme. Additionally, each enzyme plays a role in directing LazBF-mediated dehydroalanine formation, which emerges as the central theme of the assembly process. Cyclodehydratase LazDE discriminates a single serine residue for azoline formation, leaving the remaining five as potential dehydratase substrates. Pyridine synthase LazC exerts kinetic control over LazBF to prevent the formation of overdehydrated thiopeptides, whereas the coupling of dehydrogenation to dehydroalanine installation impedes generation of underdehydrated products. Altogether, our results indicate that substrate-level cooperation between the biosynthetic enzymes maintains the integrity of lactazole assembly. This work advances our understanding of RiPP biosynthesis processes and facilitates thiopeptide bioengineering.
Collapse
Affiliation(s)
- Alexander A Vinogradov
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | - Naokazu Kano
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
33
|
Bogart JW, Kramer NJ, Turlik A, Bleich RM, Catlin DS, Schroeder FC, Nair SK, Williamson RT, Houk KN, Bowers AA. Interception of the Bycroft-Gowland Intermediate in the Enzymatic Macrocyclization of Thiopeptides. J Am Chem Soc 2020; 142:13170-13179. [PMID: 32609512 PMCID: PMC7429253 DOI: 10.1021/jacs.0c05639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Thiopeptides are a broad class of macrocyclic, heavily modified peptide natural products that are unified by the presence of a substituted, nitrogen-containing heterocycle core. Early work indicated that this core might be fashioned from two dehydroalanines by an enzyme-catalyzed aza-[4 + 2] cycloaddition to give a cyclic-hemiaminal intermediate. This common intermediate could then follow a reductive path toward a dehydropiperidine, as in the thiopeptide thiostrepton, or an aromatization path to yield the pyridine groups observed in many other thiopeptides. Although several of the enzymes proposed to perform this cycloaddition have been reconstituted, only pyridine products have been isolated and any hemiaminal intermediates have yet to be observed. Here, we identify the conditions and substrates that decouple the cycloaddition from subsequent steps and allow interception and characterization of this long hypothesized intermediate. Transition state modeling indicates that the key amide-iminol tautomerization is the major hurdle in an otherwise energetically favorable cycloaddition. An anionic model suggests that deprotonation and polarization of this amide bond by TbtD removes this barrier and provides a sufficient driving force for facile (stepwise) cycloaddition. This work provides evidence for a mechanistic link between disparate cyclases in thiopeptide biosynthesis.
Collapse
Affiliation(s)
- Jonathan W. Bogart
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Nicholas J. Kramer
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Aneta Turlik
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Rachel M. Bleich
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Daniel S. Catlin
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Frank C. Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Ithaca, New York 14853, USA
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| | - R. Thomas Williamson
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403, USA
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Albert A. Bowers
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
34
|
Vinogradov AA, Suga H. Introduction to Thiopeptides: Biological Activity, Biosynthesis, and Strategies for Functional Reprogramming. Cell Chem Biol 2020; 27:1032-1051. [PMID: 32698017 DOI: 10.1016/j.chembiol.2020.07.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/21/2020] [Accepted: 07/01/2020] [Indexed: 12/16/2022]
Abstract
Thiopeptides (also known as thiazolyl peptides) are structurally complex natural products with rich biological activities. Known for over 70 years for potent killing of Gram-positive bacteria, thiopeptides are experiencing a resurgence of interest in the last decade, primarily brought about by the genomic revolution of the 21st century. Every area of thiopeptide research-from elucidating their biological function and biosynthesis to expanding their structural diversity through genome mining-has made great strides in recent years. These advances lay the foundation for and inspire novel strategies for thiopeptide engineering. Accordingly, a number of diverse approaches are being actively pursued in the hope of developing the next generation of natural-product-inspired therapeutics. Here, we review the contemporary understanding of thiopeptide biological activities, biosynthetic pathways, and approaches to structural and functional reprogramming, with a special focus on the latter.
Collapse
Affiliation(s)
- Alexander A Vinogradov
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
35
|
Walker MC, Eslami SM, Hetrick KJ, Ackenhusen SE, Mitchell DA, van der Donk WA. Precursor peptide-targeted mining of more than one hundred thousand genomes expands the lanthipeptide natural product family. BMC Genomics 2020; 21:387. [PMID: 32493223 PMCID: PMC7268733 DOI: 10.1186/s12864-020-06785-7] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 05/18/2020] [Indexed: 02/08/2023] Open
Abstract
Background Lanthipeptides belong to the ribosomally synthesized and post-translationally modified peptide group of natural products and have a variety of biological activities ranging from antibiotics to antinociceptives. These peptides are cyclized through thioether crosslinks and can bear other secondary post-translational modifications. While lanthipeptide biosynthetic gene clusters can be identified by the presence of genes encoding characteristic enzymes involved in the post-translational modification process, locating the precursor peptides encoded within these clusters is challenging due to their short length and high sequence variability, which limits the high-throughput exploration of lanthipeptide biosynthesis. To address this challenge, we enhanced the predictive capabilities of Rapid ORF Description & Evaluation Online (RODEO) to identify members of all four known classes of lanthipeptides. Results Using RODEO, we mined over 100,000 bacterial and archaeal genomes in the RefSeq database. We identified nearly 8500 lanthipeptide precursor peptides. These precursor peptides were identified in a broad range of bacterial phyla as well as the Euryarchaeota phylum of archaea. Bacteroidetes were found to encode a large number of these biosynthetic gene clusters, despite making up a relatively small portion of the genomes in this dataset. A number of these precursor peptides are similar to those of previously characterized lanthipeptides, but even more were not, including potential antibiotics. One such new antimicrobial lanthipeptide was purified and characterized. Additionally, examination of the biosynthetic gene clusters revealed that enzymes installing secondary post-translational modifications are more widespread than initially thought. Conclusion Lanthipeptide biosynthetic gene clusters are more widely distributed and the precursor peptides encoded within these clusters are more diverse than previously appreciated, demonstrating that the lanthipeptide sequence-function space remains largely underexplored.
Collapse
Affiliation(s)
- Mark C Walker
- Department of Chemistry and Chemical Biology, University of New Mexico, 346 Clark Hall, 300 Terrace St. NE, Albuquerque, NM, 87131, USA. .,Department of Chemistry, University of Illinois at Urbana-Champaign, Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL, 61801, USA.
| | - Sara M Eslami
- Department of Chemistry, University of Illinois at Urbana-Champaign, Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL, 61801, USA
| | - Kenton J Hetrick
- Department of Chemistry, University of Illinois at Urbana-Champaign, Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL, 61801, USA
| | - Sarah E Ackenhusen
- Department of Chemistry, University of Illinois at Urbana-Champaign, Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL, 61801, USA
| | - Douglas A Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL, 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, 61801, USA.,Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Wilfred A van der Donk
- Department of Chemistry, University of Illinois at Urbana-Champaign, Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL, 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, 61801, USA.,Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, IL, 61801, USA
| |
Collapse
|
36
|
Minimal lactazole scaffold for in vitro thiopeptide bioengineering. Nat Commun 2020; 11:2272. [PMID: 32385237 PMCID: PMC7210931 DOI: 10.1038/s41467-020-16145-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022] Open
Abstract
Lactazole A is a cryptic thiopeptide from Streptomyces lactacystinaeus, encoded by a compact 9.8 kb biosynthetic gene cluster. Here, we establish a platform for in vitro biosynthesis of lactazole A, referred to as the FIT-Laz system, via a combination of the flexible in vitro translation (FIT) system with recombinantly produced lactazole biosynthetic enzymes. Systematic dissection of lactazole biosynthesis reveals remarkable substrate tolerance of the biosynthetic enzymes and leads to the development of the minimal lactazole scaffold, a construct requiring only 6 post-translational modifications for macrocyclization. Efficient assembly of such minimal thiopeptides with FIT-Laz opens access to diverse lactazole analogs with 10 consecutive mutations, 14- to 62-membered macrocycles, and 18 amino acid-long tail regions, as well as to hybrid thiopeptides containing non-proteinogenic amino acids. This work suggests that the minimal lactazole scaffold is amenable to extensive bioengineering and opens possibilities to explore untapped chemical space of thiopeptides. Lactazole A is a thiopeptide from Streptomyces lactacystinaeus, encoded by a compact 9.8 kb biosynthetic gene cluster. Here, the authors show a platform for in vitro biosynthesis of lactazole A via a combination of a flexible in vitro translation system with recombinantly produced lactazole biosynthetic enzymes.
Collapse
|
37
|
Abstract
Covering1993 up to May 2020 Linaridins, defined as linear, dehydrated (arid) peptides, are a small but growing family of natural products belonging to the ribosomally synthesized and post-translationally modified peptide (RiPP) superfamily. To date, only a few members of the linaridin family have been characterized; however, in silico analysis has shown that this family of RiPPs is widespread in nature with high structural diversity. Unlike the case of most of the dehydroamino acid-containing RiPPs, such as lanthipeptides and thiopeptides, in which dehydroamino acids are produced by lanthipeptide dehydratase-like enzymes, in linaridins, dehydroamino acids are produced by a distinct set of enzymes with still unknown biochemistry. In this Highlight we have discussed the structural features, classification, biosynthesis, engineering, and widespread occurrence of linaridins and highlighted several intriguing issues in the maturation of this RiPP family.
Collapse
Affiliation(s)
- Suze Ma
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
38
|
Little R, Paiva FCR, Jenkins R, Hong H, Sun Y, Demydchuk Y, Samborskyy M, Tosin M, Leeper FJ, Dias MVB, Leadlay PF. Unexpected enzyme-catalysed [4+2] cycloaddition and rearrangement in polyether antibiotic biosynthesis. Nat Catal 2019; 2:1045-1054. [PMID: 39659772 PMCID: PMC7617221 DOI: 10.1038/s41929-019-0351-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/17/2019] [Indexed: 12/12/2022]
Abstract
Enzymes catalysing remarkable Diels-Alder-like [4+2] cyclisations have been previously implicated in the biosynthesis of spirotetronate and spirotetramate antibiotics. Biosynthesis of the polyether antibiotic tetronasin is not anticipated to require such steps, yet the tetronasin gene cluster encodes enzymes Tsn11 and Tsn15, homologous to authentic [4+2] cyclases. Here we show that deletion of Tsn11 led to accumulation of a late-stage intermediate, in which the two central rings of tetronasin, and four of its 12 asymmetric centres, remain unformed. In vitro reconstitution showed that Tsn11 catalyses an apparent inverse-electron-demand hetero Diels-Alder-like [4+2] cyclisation of this species to an unexpected oxadecalin compound, which is then rearranged by Tsn15 to form tetronasin. To gain structural and mechanistic insight into the activity of Tsn15, a 1.7 Å crystal structure of a Tsn15-substrate complex has been solved.
Collapse
Affiliation(s)
- Rory Little
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA Cambridge, United Kingdom
| | - Fernanda C. R. Paiva
- Department of Microbiology, Institute of Biomedical Sciences II, University of São Paulo, Avenida Professor Lineu Prestes, 1374 São Paulo, Brazil
| | - Rob Jenkins
- Department of Chemistry, University of Warwick, Gibbet Hill, CV4 7AL Coventry, United Kingdom
| | - Hui Hong
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA Cambridge, United Kingdom
| | - Yuhui Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071 Wuhan, People’s Republic of China
| | - Yuliya Demydchuk
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA Cambridge, United Kingdom
| | - Markiyan Samborskyy
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA Cambridge, United Kingdom
| | - Manuela Tosin
- Department of Chemistry, University of Warwick, Gibbet Hill, CV4 7AL Coventry, United Kingdom
| | - Finian J. Leeper
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Marcio V. B. Dias
- Department of Microbiology, Institute of Biomedical Sciences II, University of São Paulo, Avenida Professor Lineu Prestes, 1374 São Paulo, Brazil
- Department of Chemistry, University of Warwick, Gibbet Hill, CV4 7AL Coventry, United Kingdom
| | - Peter F. Leadlay
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA Cambridge, United Kingdom
| |
Collapse
|
39
|
Habibi Y, Uggowitzer KA, Issak H, Thibodeaux CJ. Insights into the Dynamic Structural Properties of a Lanthipeptide Synthetase using Hydrogen-Deuterium Exchange Mass Spectrometry. J Am Chem Soc 2019; 141:14661-14672. [PMID: 31449409 DOI: 10.1021/jacs.9b06020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs) proceeds via the multistep maturation of genetically encoded precursor peptides, often catalyzed by enzymes with multiple functions and iterative activities. Recent studies have suggested that, among other factors, conformational sampling of enzyme:peptide complexes likely plays a critical role in defining the kinetics and, ultimately, the set of post-translational modifications in these systems. However, detailed characterizations of these putative conformational sampling mechanisms have not yet been possible on many RiPP biosynthetic systems. In this study, we report the first comprehensive application of hydrogen-deuterium exchange mass spectrometry (HDX-MS) to study the biophysical properties of a RiPP biosynthetic enzyme. Using the well-characterized class II lanthipeptide synthetase HalM2 as a model system, we have employed HDX-MS to demonstrate that HalM2 is indeed a highly structurally dynamic enzyme. Using this HDX-MS approach, we have identified novel precursor peptide binding elements, have uncovered long-range structural communication across the enzyme that is triggered by ligand binding and ATP hydrolysis, and have detected specific interactions between the HalM2 synthetase and the leader- and core-peptide subdomains of the modular HalA2 precursor peptide substrate. The functional relevance of the dynamic HalM2 elements discovered in this study are validated with biochemical assays and kinetic analysis of a panel of HDX-MS guided variant enzymes. Overall, the data have provided a wealth of fundamentally new information on LanM systems that will inform the rational manipulation and engineering of these impressive multifunctional catalysts. Moreover, this work highlights the broad utility of the HDX-MS platform for revealing important biophysical properties and enzyme structural dynamics that likely play a widespread role in RiPP biosynthesis.
Collapse
Affiliation(s)
- Yeganeh Habibi
- McGill University , Department of Chemistry , 801 Sherbrooke Street , West Montréal , Québec , Canada H3A 0B8
| | - Kevin A Uggowitzer
- McGill University , Department of Chemistry , 801 Sherbrooke Street , West Montréal , Québec , Canada H3A 0B8
| | - Hassan Issak
- McGill University , Department of Chemistry , 801 Sherbrooke Street , West Montréal , Québec , Canada H3A 0B8
| | - Christopher J Thibodeaux
- McGill University , Department of Chemistry , 801 Sherbrooke Street , West Montréal , Québec , Canada H3A 0B8
| |
Collapse
|
40
|
Structural basis for stereoselective dehydration and hydrogen-bonding catalysis by the SAM-dependent pericyclase LepI. Nat Chem 2019; 11:812-820. [PMID: 31332284 PMCID: PMC6708486 DOI: 10.1038/s41557-019-0294-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/14/2019] [Indexed: 12/04/2022]
Abstract
LepI is an S-adenosylmethionine (SAM)-dependent pericyclase that catalyzes the formation of 2-pyridone natural product leporin C. Biochemical characterization showed LepI can catalyze the stereoselective dehydration to yield a reactive (E)-quinone methide that can undergo bifurcating intramolecular Diels-Alder (IMDA) and hetero-Diels-Alder (HDA) cyclizations from an ambimodal transition state, as well as a [3,3]-retro-Claisen rearrangement to recycle the IMDA product into leporin C. Here we solved the X-ray crystal structures of SAM-bound LepI and in complex with a substrate analog, the product leporin C, and a retro-Claisen reaction transition-state analog to understand the structural basis for the multitude of reactions. Structural and mutational analysis revealed how Nature evolves a classic methyltransferase active site into one that can serve as a dehydratase and a multifunctional pericyclase. Catalysis of both sets of reactions employs H133 and R295, two active site residues that are not found in canonical methyltransferases. An alternative role of SAM, which is not found to be in direct contact with the substrate, is also proposed.
Collapse
|
41
|
Abstract
Enzyme-mediated cascade reactions are widespread in biosynthesis. To facilitate comparison with the mechanistic categorizations of cascade reactions by synthetic chemists and delineate the common underlying chemistry, we discuss four types of enzymatic cascade reactions: those involving nucleophilic, electrophilic, pericyclic, and radical reactions. Two subtypes of enzymes that generate radical cascades exist at opposite ends of the oxygen abundance spectrum. Iron-based enzymes use O2 to generate high valent iron-oxo species to homolyze unactivated C-H bonds in substrates to initiate skeletal rearrangements. At anaerobic end, enzymes reversibly cleave S-adenosylmethionine (SAM) to generate the 5'-deoxyadenosyl radical as a powerful oxidant to initiate C-H bond homolysis in bound substrates. The latter enzymes are termed radical SAM enzymes. We categorize the former as "thwarted oxygenases".
Collapse
Affiliation(s)
- Christopher T Walsh
- Stanford University Chemistry, Engineering, and Medicine for Human Health (CheM-H), Stanford University, Stanford, CA, 94305, USA
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
42
|
Chang M, Zhou Y, Wang H, Liu Z, Zhang Y, Feng Y. Crystal structure of the multifunctional SAM-dependent enzyme LepI provides insights into its catalytic mechanism. Biochem Biophys Res Commun 2019; 515:255-260. [PMID: 31101338 DOI: 10.1016/j.bbrc.2019.05.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 05/03/2019] [Indexed: 01/13/2023]
Abstract
Pericyclic reactions are among the most powerful synthetic transformations widely applied in the synthesis of multiple regioselective and stereoselective carbon-carbon bonds. LepI is a recently identified S-adenosyl-l-methionine (SAM)-dependent enzyme, which could catalyze dehydration, Diels-Alder reaction, and the retro-Claisen rearrangement reactions. However, the mechanism underlying these reactions by LepI remains elusive. Here we report the structure of LepI in complex with SAM as its co-factor, which adopts a typical class I methyltransferase fold. Docking studies are performed to investigate the binding modes of various substrates/products and provide insights into the catalytic mechanism of the multiple reactions catalyzed by LepI. Our study suggests that the dehydration reaction may start from the deprotonation of the hydroxyl group on the pyridone ring of the substrate by LepIH133, during which R295 and D296 play important roles in substrate binding and stabilizing the reaction intermediate. The stereoselective dehydration is accomplished through the trans-conformer of the leaving alcohol group which is trapped by nearby residues. The pericyclic reactions following dehydration are facilitated by the hydrophobic and hydrophilic interactions in the binding pocket. H133 and R295, two residues not conserved in other methyltransferases, might account for the unique activity of LepI among the SAM-dependent methyltransferase family. Together, this study provides important structural insights into the unique reactions catalyzed by LepI and will shed light on the knowledge of mechanisms of pericyclic reactions.
Collapse
Affiliation(s)
- Min Chang
- Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Yu Zhou
- National Institute of Biological Sciences, Beijing, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, PR China
| | - Hao Wang
- Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Zihe Liu
- Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Yi Zhang
- Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Yue Feng
- Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| |
Collapse
|
43
|
Bogart JW, Bowers AA. Dehydroamino acids: chemical multi-tools for late-stage diversification. Org Biomol Chem 2019; 17:3653-3669. [PMID: 30849157 PMCID: PMC6637761 DOI: 10.1039/c8ob03155j] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
α,β-Dehydroamino acids (dhAAs) are noncanonical amino acids that are found in a wide array of natural products and can be easily installed into peptides and proteins. dhAAs exhibit remarkable synthetic flexibility, readily undergoing a number of reactions, such as polar and single-electron additions, transition metal catalyzed cross-couplings, and cycloadditions. Because of the relatively mild conditions required for many of these reactions, dhAAs are increasingly being used as orthogonal chemical handles for late-stage modification of biomolecules. Still, only a fraction of the chemical reactivity of dhAAs has been exploited in such biorthogonal applications. Herein, we provide an overview of the broad spectrum of chemical reactivity of dhAAs, with special emphasis on recent efforts to adapt such transformations for biomolecules such as natural products, peptides, and proteins. We also discuss examples of enzymes from natural product biosynthetic pathways that have been found to catalyze many similar reactions; these enzymes provide mild, regio- and stereoselective, biocatalytic alternatives for future development. We anticipate that the continued investigation of the innate reactivity of dhAAs will furnish a diverse portfolio dhAA-based chemistries for use in chemical biology and drug discovery.
Collapse
Affiliation(s)
- Jonathan W Bogart
- Division of Chemical Biology and Medicinal Chemistry Eshelman School of Pharmacy, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| | | |
Collapse
|
44
|
Wang B, LaMattina JW, Marshall SL, Booker SJ. Capturing Intermediates in the Reaction Catalyzed by NosN, a Class C Radical S-Adenosylmethionine Methylase Involved in the Biosynthesis of the Nosiheptide Side-Ring System. J Am Chem Soc 2019; 141:5788-5797. [PMID: 30865439 DOI: 10.1021/jacs.8b13157] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nosiheptide is a ribosomally synthesized and post-translationally modified thiopeptide natural product that possesses antibacterial, anticancer, and immunosuppressive properties. It contains a bicyclic structure composed of a large macrocycle and a unique side-ring system containing a 3,4-dimethylindolic acid bridge connected to the side chains of Glu6 and Cys8 of the core peptide via ester and thioester linkages, respectively. In addition to the structural peptide, encoded by the nosM gene, the biosynthesis of the side-ring structure requires the actions of NosI, -J, -K, -L, and -N. NosN is annotated as a class C radical S-adenosylmethionine (SAM) methylase, but its true function is to transfer a C1 unit from SAM to C4 of 3-methyl-2-indolic acid (MIA) with concomitant formation of a bond between the carboxylate of Glu6 of the core peptide and the nascent C1 unit. However, exactly when NosN performs its function during the biosynthesis of nosiheptide is unknown. Herein, we report the syntheses and use of three peptide mimics as potential substrates designed to address the timing of NosN's function. Our results show that NosN clearly closes the side ring before NosO forms the pyridine ring and most likely before NosD/E catalyzes formation of the dehydrated amino acids, although the possibility of a more random process (i.e., NosN acting after NosD/E) cannot be ruled out. Using a substrate mimic containing a rigid structure, we also identify and characterize two reaction-based adducts containing SAM fused to C4 of MIA. The two SAM adducts are derived from a consensus radical-containing species proposed to be the key intermediate-or a derivative of the key intermediate-in our proposed catalytic mechanism of NosN.
Collapse
|
45
|
Lichman BR, O'Connor SE, Kries H. Biocatalytic Strategies towards [4+2] Cycloadditions. Chemistry 2019; 25:6864-6877. [DOI: 10.1002/chem.201805412] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/17/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Benjamin R. Lichman
- Department of Biological Chemistry; The John Innes Centre; Colney Lane Norwich UK
- Current address: Department of Biology; University of York; York YO10 5YW UK
| | - Sarah E. O'Connor
- Department of Biological Chemistry; The John Innes Centre; Colney Lane Norwich UK
| | - Hajo Kries
- Independent Junior Research Group, Biosynthetic Design of Natural Products; Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI Jena); Beutenbergstr. 11a 07745 Jena Germany
| |
Collapse
|
46
|
Chang Z, Ansbacher T, Zhang L, Yang Y, Ko TP, Zhang G, Liu W, Huang JW, Dai L, Guo RT, Major DT, Chen CC. Crystal structure of LepI, a multifunctional SAM-dependent enzyme which catalyzes pericyclic reactions in leporin biosynthesis. Org Biomol Chem 2019; 17:2070-2076. [PMID: 30628619 DOI: 10.1039/c8ob02758g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
LepI is a novel multifunctional enzyme that catalyzes stereoselective dehydration, Diels-Alder reaction, and retro-Claisen rearrangement. Here we report the crystal structure of LepI in complex with its co-factor S-adenosyl methionine (SAM). LepI forms a tetramer via the N-terminal helical domain and binds to a SAM molecule in the C-terminal catalytic domain. The binding modes of various LepI substrates are investigated by docking simulations, which suggest that the substrates are bound via both hydrophobic and hydrophilic forces, as well as cation-π interactions with the positively charged SAM. The reaction starts with a dehydration step in which H133 possibly deprotonates the pyridone hydroxyl group of the substrate, while D296 might protonate an alkyl-chain hydroxyl group. Subsequent pericyclization may be facilitated by the correct fold of the substrate's alkyl chain and a thermodynamic driving force towards σ-bonds at the expense of π-bonds. These results provide structural insights into LepI catalysis and are important in understanding the mechanism of enzymatic pericyclization.
Collapse
Affiliation(s)
- Zhenying Chang
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Helf MJ, Freeman MF, Piel J. Investigations into PoyH, a promiscuous protease from polytheonamide biosynthesis. ACTA ACUST UNITED AC 2019; 46:551-563. [DOI: 10.1007/s10295-018-02129-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/20/2018] [Indexed: 10/27/2022]
Abstract
Abstract
Polytheonamides are the most extensively modified ribosomally synthesized and post-translationally modified peptide natural products (RiPPs) currently known. In RiPP biosynthesis, the processed peptide is usually released from a larger precursor by proteolytic cleavage to generate the bioactive terminal product of the pathway. For polytheonamides, which are members of a new RiPP family termed proteusins, we have recently shown that such cleavage is catalyzed by the cysteine protease PoyH acting on the precursor PoyA, both encoded in the polytheonamide biosynthetic gene cluster. We now report activity for PoyH under a variety of reaction conditions for different maturation states of PoyA and demonstrate a potential use of PoyH as a promiscuous protease to liberate and characterize RiPPs from other pathways. As a proof of concept, the identified recognition motif was introduced into precursors of the thiopeptide thiocillin and the lanthipeptide lichenicidin VK1, allowing for their site-specific cleavage with PoyH. Additionally, we show that PoyH cleavage is inhibited by PoyG, a previously uncharacterized chagasin-like protease inhibitor encoded in the polytheonamide gene cluster.
Collapse
Affiliation(s)
- Maximilian J Helf
- 0000 0001 2156 2780 grid.5801.c Institute of Microbiology Eidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
- 000000041936877X grid.5386.8 Boyce Thompson Institute Cornell University 533 Tower Road 14853 Ithaca USA
| | - Michael F Freeman
- 0000 0001 2156 2780 grid.5801.c Institute of Microbiology Eidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
- 0000000419368657 grid.17635.36 Department of Biochemistry, Molecular Biology, and Biophysics and BioTechnology Institute University of Minnesota-Twin Cities 55108 St. Paul MN USA
| | - Jörn Piel
- 0000 0001 2156 2780 grid.5801.c Institute of Microbiology Eidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| |
Collapse
|
48
|
Affiliation(s)
- Christopher T. Walsh
- Stanford University Chemistry, Engineering, and Medicine for Human Health (CheM-H)Stanford University Stanford CA 94305 USA
| | - Bradley S. Moore
- Center for Marine Biotechnology and BiomedicineScripps Institution of OceanographyUniversity of California, San Diego La Jolla CA 92093 USA
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California, San Diego La Jolla CA 92093 USA
| |
Collapse
|
49
|
Bogart JW, Bowers AA. Thiopeptide Pyridine Synthase TbtD Catalyzes an Intermolecular Formal Aza-Diels-Alder Reaction. J Am Chem Soc 2019; 141:1842-1846. [PMID: 30653303 DOI: 10.1021/jacs.8b11852] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Thiopeptide pyridine synthases catalyze a multistep reaction involving a unique and nonspontaneous intramolecular aza-[4 + 2] cycloaddition between two dehydroalanines to forge a trisubstituted pyridine core. We discovered that the in vitro activity of pyridine synthases from the thiocillin and thiomuracin pathways are significantly enhanced by general base catalysis and that this broadly expands the enzymes substrate tolerance. Remarkably, TbtD is competent to perform an intermolecular cyclization in addition to its cognate intramolecular reaction, underscoring its versatility as a biocatalyst. These data provide evidence that pyridine synthases use a two-site substrate recognition model to engage and process their substrates.
Collapse
Affiliation(s)
- Jonathan W Bogart
- Division of Chemical Biology and Medicinal Chemistry Eshelman School of Pharmacy, and Lineberger Comprehensive Cancer Center , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27514 , United States
| | - Albert A Bowers
- Division of Chemical Biology and Medicinal Chemistry Eshelman School of Pharmacy, and Lineberger Comprehensive Cancer Center , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27514 , United States
| |
Collapse
|
50
|
Fleming SR, Bartges TE, Vinogradov AA, Kirkpatrick CL, Goto Y, Suga H, Hicks LM, Bowers AA. Flexizyme-Enabled Benchtop Biosynthesis of Thiopeptides. J Am Chem Soc 2019; 141:758-762. [PMID: 30602112 DOI: 10.1021/jacs.8b11521] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Thiopeptides are natural antibiotics that are fashioned from short peptides by multiple layers of post-translational modification. Their biosynthesis, in particular the pyridine synthases that form the macrocyclic antibiotic core, has attracted intensive research but is complicated by the challenges of reconstituting multiple-pathway enzymes. By combining select RiPP enzymes with cell free expression and flexizyme-based codon reprogramming, we have developed a benchtop biosynthesis of thiopeptide scaffolds. This strategy side-steps several challenges related to the investigation of thiopeptide enzymes and allows access to analytical quantities of new thiopeptide analogs. We further demonstrate that this strategy can be used to validate the activity of new pyridine synthases without the need to reconstitute the cognate prior pathway enzymes.
Collapse
Affiliation(s)
- Steven R Fleming
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Tessa E Bartges
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Alexander A Vinogradov
- Department of Chemistry, Graduate School of Science , The University of Tokyo , Bunkyo-ku , Tokyo 113-0033 , Japan.,JST , PRESTO , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Christine L Kirkpatrick
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science , The University of Tokyo , Bunkyo-ku , Tokyo 113-0033 , Japan.,JST , PRESTO , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science , The University of Tokyo , Bunkyo-ku , Tokyo 113-0033 , Japan.,JST , CREST , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Leslie M Hicks
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Albert A Bowers
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| |
Collapse
|