1
|
Faber NR, Xu X, Chen J, Hou S, Du J, Pannebakker BA, Zwaan BJ, van den Heuvel J, Champer J. Improving the suppressive power of homing gene drive by co-targeting a distant-site female fertility gene. Nat Commun 2024; 15:9249. [PMID: 39461949 PMCID: PMC11513003 DOI: 10.1038/s41467-024-53631-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Gene drive technology has the potential to address major biological challenges. Well-studied homing suppression drives have been shown to be highly efficient in Anopheles mosquitoes, but for other organisms, lower rates of drive conversion prevent elimination of the target population. To tackle this issue, we propose a gene drive design that has two targets: a drive homing site where drive conversion takes place, and a distant site where cleavage induces population suppression. We model this design and find that the two-target system allows suppression to occur over a much wider range of drive conversion efficiency. Specifically, the cutting efficiency now determines the suppressive power of the drive, rather than the conversion efficiency as in standard suppression drives. We construct a two-target drive in Drosophila melanogaster and show that both components of the gene drive function successfully. However, cleavage in the embryo from maternal deposition as well as fitness costs in female drive heterozygotes both remain significant challenges for both two-target and standard suppression drives. Overall, our improved gene drive design has the potential to ease problems associated with homing suppression gene drives for many species where drive conversion is less efficient.
Collapse
Affiliation(s)
- Nicky R Faber
- Laboratory of Genetics, Department of Plant Sciences, Wageningen University & Research, Wageningen, The Netherlands.
| | - Xuejiao Xu
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing, China
| | - Jingheng Chen
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing, China
| | - Shibo Hou
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing, China
| | - Jie Du
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing, China
| | - Bart A Pannebakker
- Laboratory of Genetics, Department of Plant Sciences, Wageningen University & Research, Wageningen, The Netherlands
| | - Bas J Zwaan
- Laboratory of Genetics, Department of Plant Sciences, Wageningen University & Research, Wageningen, The Netherlands
| | - Joost van den Heuvel
- Laboratory of Genetics, Department of Plant Sciences, Wageningen University & Research, Wageningen, The Netherlands
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
2
|
Zhu J, Chen J, Liu Y, Xu X, Champer J. Population suppression with dominant female-lethal alleles is boosted by homing gene drive. BMC Biol 2024; 22:201. [PMID: 39256812 PMCID: PMC11389273 DOI: 10.1186/s12915-024-02004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Methods to suppress pest insect populations using genetic constructs and repeated releases of male homozygotes have recently been shown to be an attractive alternative to older sterile insect techniques based on radiation. Female-specific lethal alleles have substantially increased power, but still require large, sustained transgenic insect releases. Gene drive alleles bias their own inheritance to spread throughout populations, potentially allowing population suppression with a single, small-size release. However, suppression drives often suffer from efficiency issues, and the most well-studied type, homing drives, tend to spread without limit. RESULTS In this study, we show that coupling female-specific lethal alleles with homing gene drive allowed substantial improvement in efficiency while still retaining the self-limiting nature (and thus confinement) of a lethal allele strategy. Using a mosquito model, we show the required release sizes for population elimination in a variety of scenarios, including different density growth curves, with comparisons to other systems. Resistance alleles reduced the power of this method, but these could be overcome by targeting an essential gene with the drive while also providing rescue. A proof-of-principle demonstration of this system in Drosophila melanogaster was effective in both biasing its inheritance and achieving high lethality among females that inherit the construct in the absence of antibiotic. CONCLUSIONS Overall, our study shows that substantial improvements can be achieved in female-specific lethal systems for population suppression by combining them with various types of gene drive.
Collapse
Affiliation(s)
- Jinyu Zhu
- Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jingheng Chen
- Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yiran Liu
- Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xuejiao Xu
- Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jackson Champer
- Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
3
|
Johnson ML, Hay BA, Maselko M. Altering traits and fates of wild populations with Mendelian DNA sequence modifying Allele Sails. Nat Commun 2024; 15:6665. [PMID: 39138152 PMCID: PMC11322531 DOI: 10.1038/s41467-024-50992-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024] Open
Abstract
Population-scale genome modification can alter the composition or fate of wild populations. Synthetic gene drives provide one set of tools, but their use is complicated by scientific, regulatory, and social issues associated with transgene persistence and flow. Here we propose an alternative approach. An Allele Sail consists of a genome editor (the Wind) that introduces DNA sequence edits, and is inherited in a Mendelian fashion. Meanwhile, the edits (the Sail) experience an arithmetic, Super-Mendelian increase in frequency. We model this system and identify contexts in which a single, low frequency release of an editor brings edits to a very high frequency. We also identify conditions in which manipulation of sex determination can bring about population suppression. In regulatory frameworks that distinguish between transgenics (GMO) and their edited non-transgenic progeny (non-GMO) Allele Sails may prove useful since the spread and persistence of the GM component can be limited.
Collapse
Affiliation(s)
- Michelle L Johnson
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, MC156-29, Pasadena, CA, 91125, USA
| | - Bruce A Hay
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, MC156-29, Pasadena, CA, 91125, USA.
| | - Maciej Maselko
- Applied BioSciences, Macquarie University, North Ryde, NSW, 2109, Australia.
| |
Collapse
|
4
|
Southworth J, Gonzalez E, Nevard K, Larrosa-Godall M, Alphey L, Anderson MAE. Expanding the transgene expression toolbox of the malaria vector Anopheles stephensi. INSECT MOLECULAR BIOLOGY 2024. [PMID: 39129057 DOI: 10.1111/imb.12953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024]
Abstract
Anopheles stephensi Liston, 1901 (Diptera: culicidae) is a competent vector of Plasmodium falciparum (Haemosporida: plasmodiidae) malaria, and its expansion in the African continent is of concern due to its viability in urban settings and resistance to insecticides. To enhance its genetic tractability, we determined the utility of a ~2 kb An. stephensi lipophorin (lp) promoter fragment in driving transgene expression. Lipophorin genes are involved in lipid transport in insects, and an orthologous promoter in An. gambiae (AGAP001826) was previously demonstrated to successfully express a transgene. In the present study, we qualitatively characterised the expression of a ZsYellow fluorescent marker protein, expressed by An. stephensi lp promoter fragment. Our study indicated that the lp promoter fragment was effective, generating a distinct expression pattern in comparison to the commonly utilised 3xP3 promoter. The lp:ZsYellow fluorescence was largely visible in early instar larvae and appeared more intense in later instar larvae, pupae and adults, becoming especially conspicuous in adult females after a blood meal. Different isolines showed some variation in expression pattern and intensity. Aside from general transgene expression, as the lp promoter produces a suitable fluorescent protein marker expression pattern, it may facilitate genotypic screening and aid the development of more complex genetic biocontrol systems, such as multi-component gene drives. This study represents an expansion of the An. stephensi genetic toolbox, an important endeavour to increase the speed of An. stephensi research and reach public health milestones in combating malaria.
Collapse
Affiliation(s)
- Joshua Southworth
- Department of Biosciences, Durham University, Durham, UK
- Arthropod Genetics, The Pirbright Institute, Pirbright, UK
| | | | | | - Mireia Larrosa-Godall
- Arthropod Genetics, The Pirbright Institute, Pirbright, UK
- Department of Biology, University of York, York, UK
| | - Luke Alphey
- Arthropod Genetics, The Pirbright Institute, Pirbright, UK
- Department of Biology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Michelle A E Anderson
- Arthropod Genetics, The Pirbright Institute, Pirbright, UK
- Department of Biology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| |
Collapse
|
5
|
Naidoo K, Oliver SV. Gene drives: an alternative approach to malaria control? Gene Ther 2024:10.1038/s41434-024-00468-8. [PMID: 39039203 DOI: 10.1038/s41434-024-00468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Genetic modification for the control of mosquitoes is frequently touted as a solution for a variety of vector-borne diseases. There has been some success using non-insecticidal methods like sterile or incompatible insect techniques to control arbovirus diseases. However, control by genetic modifications to reduce mosquito populations or create mosquitoes that are refractory to infection with pathogens are less developed. The advent of CRISPR-Cas9-mediated gene drives may advance this mechanism of control. In this review, use and progress of gene drives for vector control, particularly for malaria, is discussed. A brief history of population suppression and replacement gene drives in mosquitoes, rapid advancement of the field over the last decade and how genetic modification fits into the current scope of vector control are described. Mechanisms of alternative vector control by genetic modification to modulate mosquitoes' immune responses and anti-parasite effector molecules as part of a combinational strategy to combat malaria are considered. Finally, the limitations and ethics of using gene drives for mosquito control are discussed.
Collapse
Affiliation(s)
- Kubendran Naidoo
- SAMRC/Wits Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- National Health Laboratory Service, Johannesburg, South Africa.
- Wits Research Institute for Malaria, Faculty of Health Sciences, National Health Laboratory Service, University of the Witwatersrand, Johannesburg, South Africa.
- Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Shüné V Oliver
- Wits Research Institute for Malaria, Faculty of Health Sciences, National Health Laboratory Service, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
6
|
Hernandes N, Qi XM, Bhide S, Brown C, Camm BJ, Baxter SW, Robin C. Acetylcholine esterase of Drosophila melanogaster: a laboratory model to explore insecticide susceptibility gene drives. PEST MANAGEMENT SCIENCE 2024; 80:2950-2964. [PMID: 38344908 DOI: 10.1002/ps.8003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/28/2024] [Accepted: 02/12/2024] [Indexed: 03/01/2024]
Abstract
BACKGROUND One of the proposed applications of gene drives has been to revert pesticide resistant mutations back to the ancestral susceptible state. Insecticides that have become ineffective because of the rise of resistance could have reinvigorated utility and be used to suppress pest populations again, perhaps at lower application doses. RESULTS We have created a laboratory model for susceptibility gene drives that replaces field-selected resistant variants of the acetylcholine esterase (Ace) locus of Drosophila melanogaster with ancestral susceptible variants. We constructed a CRISPR/Cas9 homing drive and found that homing occurred in many genetic backgrounds with varying efficiencies. While the drive itself could not be homozygous, it converted resistant alleles into susceptible ones and produced recessive lethal alleles that could suppress populations. Our studies provided evidence for two distinct classes of gene drive resistance (GDR): rather than being mediated by the conventional non-homologous end-joining (NHEJ) pathway, one seemed to involve short homologous repair and the other was defined by genetic background. Additionally, we used simulations to explore a distinct application of susceptibility drives; the use of chemicals to prevent the spread of synthetic gene drives into protected areas. CONCLUSIONS Insecticide susceptibility gene drives could be useful tools to control pest insects however problems with particularities of target loci and GDR will need to be overcome for them to be effective. Furthermore, realistic patterns of pest dispersal and high insecticide exposure rates would be required if susceptibility were to be useful as a 'safety-switch' to prevent the unwanted spread of gene drives. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Natalia Hernandes
- The School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Xiaomeng Mollyann Qi
- The School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Soumitra Bhide
- The School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Courtney Brown
- The School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Benjamin J Camm
- The School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Simon W Baxter
- The School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Charles Robin
- The School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Resnik DB, Medina RF, Gould F, Church G, Kuzma J. Genes drive organisms and slippery slopes. Pathog Glob Health 2024; 118:348-357. [PMID: 36562087 PMCID: PMC11234912 DOI: 10.1080/20477724.2022.2160895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The bioethical debate about using gene drives to alter or eradicate wild populations has focused mostly on issues concerning short-term risk assessment and management, governance and oversight, and public and community engagement, but has not examined big-picture- 'where is this going?'-questions in great depth. In other areas of bioethical controversy, big-picture questions often enter the public forum via slippery slope arguments. Given the incredible potential of gene drive organisms to alter the Earth's biota, it is somewhat surprising that slippery slope arguments have not played a more prominent role in ethical and policy debates about these emerging technologies. In this article, we examine a type of slippery slope argument against using gene drives to alter or suppress wild pest populations and consider whether it has a role to play in ethical and policy debates. Although we conclude that this argument does not provide compelling reasons for banning the use of gene drives in wild pest populations, we believe that it still has value as a morally instructive cautionary narrative that can motivate scientists, ethicists, and members of the public to think more clearly about appropriate vs. inappropriate uses of gene drive technologies, the long-term and cumulative and emergent risks of using gene drives in wild populations, and steps that can be taken to manage these risks, such as protecting wilderness areas where people can enjoy life forms that have not been genetically engineered.
Collapse
Affiliation(s)
- David B. Resnik
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Raul F. Medina
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Fred Gould
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - George Church
- Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, MA, USA
| | - Jennifer Kuzma
- School of Public and International Affairs, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
8
|
Du J, Chen W, Jia X, Xu X, Yang E, Zhou R, Zhang Y, Metzloff M, Messer PW, Champer J. Germline Cas9 promoters with improved performance for homing gene drive. Nat Commun 2024; 15:4560. [PMID: 38811556 PMCID: PMC11137117 DOI: 10.1038/s41467-024-48874-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 05/16/2024] [Indexed: 05/31/2024] Open
Abstract
Gene drive systems could be a viable strategy to prevent pathogen transmission or suppress vector populations by propagating drive alleles with super-Mendelian inheritance. CRISPR-based homing gene drives convert wild type alleles into drive alleles in heterozygotes with Cas9 and gRNA. It is thus desirable to identify Cas9 promoters that yield high drive conversion rates, minimize the formation rate of resistance alleles in both the germline and the early embryo, and limit somatic Cas9 expression. In Drosophila, the nanos promoter avoids leaky somatic expression, but at the cost of high embryo resistance from maternally deposited Cas9. To improve drive efficiency, we test eleven Drosophila melanogaster germline promoters. Some achieve higher drive conversion efficiency with minimal embryo resistance, but none completely avoid somatic expression. However, such somatic expression often does not carry detectable fitness costs for a rescue homing drive targeting a haplolethal gene, suggesting somatic drive conversion. Supporting a 4-gRNA suppression drive, one promoter leads to a low drive equilibrium frequency due to fitness costs from somatic expression, but the other outperforms nanos, resulting in successful suppression of the cage population. Overall, these Cas9 promoters hold advantages for homing drives in Drosophila species and may possess valuable homologs in other organisms.
Collapse
Affiliation(s)
- Jie Du
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, 100871, Beijing, China.
| | - Weizhe Chen
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, 100871, Beijing, China
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xihua Jia
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Xuejiao Xu
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Emily Yang
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Ruizhi Zhou
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Yuqi Zhang
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Matt Metzloff
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Philipp W Messer
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, 100871, Beijing, China.
| |
Collapse
|
9
|
Chae K, Contreras B, Romanowski JS, Dawson C, Myles KM, Adelman ZN. Transgene removal using an in cis programmed homing endonuclease via single-strand annealing in the mosquito Aedes aegypti. Commun Biol 2024; 7:660. [PMID: 38811748 PMCID: PMC11137009 DOI: 10.1038/s42003-024-06348-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
While gene drive strategies have been proposed to aid in the control of mosquito-borne diseases, additional genome engineering technologies may be required to establish a defined end-of-product-life timeline. We previously demonstrated that single-strand annealing (SSA) was sufficient to program the scarless elimination of a transgene while restoring a disrupted gene in the disease vector mosquito Aedes aegypti. Here, we extend these findings by establishing that complete transgene removal (four gene cassettes comprising ~8-kb) can be programmed in cis. Reducing the length of the direct repeat from 700-bp to 200-bp reduces, but does not eliminate, SSA activity. In contrast, increasing direct repeat length to 1.5-kb does not increase SSA rates, suggesting diminishing returns above a certain threshold size. Finally, we show that while the homing endonuclease Y2-I-AniI triggered both SSA and NHEJ at significantly higher rates than I-SceI at one genomic locus (P5-EGFP), repair events are heavily skewed towards NHEJ at another locus (kmo), suggesting the nuclease used and the genomic region targeted have a substantial influence on repair outcomes. Taken together, this work establishes the feasibility of engineering temporary transgenes in disease vector mosquitoes, while providing critical details concerning important operational parameters.
Collapse
Affiliation(s)
- Keun Chae
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Bryan Contreras
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Joseph S Romanowski
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Chanell Dawson
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Kevin M Myles
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Zach N Adelman
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
10
|
de Haas FJH, Kläy L, Débarre F, Otto SP. Modelling daisy quorum drive: A short-term bridge across engineered fitness valleys. PLoS Genet 2024; 20:e1011262. [PMID: 38753875 PMCID: PMC11135765 DOI: 10.1371/journal.pgen.1011262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/29/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Engineered gene-drive techniques for population modification and/or suppression have the potential for tackling complex challenges, including reducing the spread of diseases and invasive species. Gene-drive systems with low threshold frequencies for invasion, such as homing-based gene drive, require initially few transgenic individuals to spread and are therefore easy to introduce. The self-propelled behavior of such drives presents a double-edged sword, however, as the low threshold can allow transgenic elements to expand beyond a target population. By contrast, systems where a high threshold frequency must be reached before alleles can spread-above a fitness valley-are less susceptible to spillover but require introduction at a high frequency. We model a proposed drive system, called "daisy quorum drive," that transitions over time from a low-threshold daisy-chain system (involving homing-based gene drive such as CRISPR-Cas9) to a high-threshold fitness-valley system (requiring a high frequency-a "quorum"-to spread). The daisy-chain construct temporarily lowers the high thresholds required for spread of the fitness-valley construct, facilitating use in a wide variety of species that are challenging to breed and release in large numbers. Because elements in the daisy chain only drive subsequent elements in the chain and not themselves and also carry deleterious alleles ("drive load"), the daisy chain is expected to exhaust itself, removing all CRISPR elements and leaving only the high-threshold fitness-valley construct, whose spread is more spatially restricted. Developing and analyzing both discrete patch and continuous space models, we explore how various attributes of daisy quorum drive affect the chance of modifying local population characteristics and the risk that transgenic elements expand beyond a target area. We also briefly explore daisy quorum drive when population suppression is the goal. We find that daisy quorum drive can provide a promising bridge between gene-drive and fitness-valley constructs, allowing spread from a low frequency in the short term and better containment in the long term, without requiring repeated introductions or persistence of CRISPR elements.
Collapse
Affiliation(s)
- Frederik J. H. de Haas
- Biodiversity Research Center, Department of Zoology, University of British Columbia, Vancouver BC, Canada
| | - Léna Kläy
- Institute of Ecology and Environmental Sciences Paris (IEES Paris), Sorbonne Université, CNRS, IRD, INRAE, Université Paris Est Creteil, Université de Paris, Paris Cedex 5, France
| | - Florence Débarre
- Institute of Ecology and Environmental Sciences Paris (IEES Paris), Sorbonne Université, CNRS, IRD, INRAE, Université Paris Est Creteil, Université de Paris, Paris Cedex 5, France
| | - Sarah P. Otto
- Biodiversity Research Center, Department of Zoology, University of British Columbia, Vancouver BC, Canada
| |
Collapse
|
11
|
Ambrose L, Allen SL, Iro'ofa C, Butafa C, Beebe NW. Genetic and geographic population structure in the malaria vector, Anopheles farauti, provides a candidate system for pioneering confinable gene-drive releases. Heredity (Edinb) 2024; 132:232-246. [PMID: 38494530 PMCID: PMC11074138 DOI: 10.1038/s41437-024-00677-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
Indoor insecticide applications are the primary tool for reducing malaria transmission in the Solomon Archipelago, a region where Anopheles farauti is the only common malaria vector. Due to the evolution of behavioural resistance in some An. farauti populations, these applications have become less effective. New malaria control interventions are therefore needed in this region, and gene-drives provide a promising new technology. In considering developing a population-specific (local) gene-drive in An. farauti, we detail the species' population genetic structure using microsatellites and whole mitogenomes, finding many spatially confined populations both within and between landmasses. This strong population structure suggests that An. farauti would be a useful system for developing a population-specific, confinable gene-drive for field release, where private alleles can be used as Cas9 targets. Previous work on Anopheles gambiae has used the Cardinal gene for the development of a global population replacement gene-drive. We therefore also analyse the Cardinal gene to assess whether it may be a suitable target to engineer a gene-drive for the modification of local An. farauti populations. Despite the extensive population structure observed in An. farauti for microsatellites, only one remote island population from Vanuatu contained fixed and private alleles at the Cardinal locus. Nonetheless, this study provides an initial framework for further population genomic investigations to discover high-frequency private allele targets in localized An. farauti populations. This would enable the development of gene-drive strains for modifying localised populations with minimal chance of escape and may provide a low-risk route to field trial evaluations.
Collapse
Affiliation(s)
- Luke Ambrose
- School of the Environment, University of Queensland, St Lucia, Brisbane, QLD, Australia.
| | - Scott L Allen
- School of the Environment, University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - Charlie Iro'ofa
- Solomon Islands Ministry of Health, Honiara, Guadalcanal, Solomon Islands
| | - Charles Butafa
- Solomon Islands Ministry of Health, Honiara, Guadalcanal, Solomon Islands
| | - Nigel W Beebe
- School of the Environment, University of Queensland, St Lucia, Brisbane, QLD, Australia.
| |
Collapse
|
12
|
Anderson MAE, Gonzalez E, Edgington MP, Ang JXD, Purusothaman DK, Shackleford L, Nevard K, Verkuijl SAN, Harvey-Samuel T, Leftwich PT, Esvelt K, Alphey L. A multiplexed, confinable CRISPR/Cas9 gene drive can propagate in caged Aedes aegypti populations. Nat Commun 2024; 15:729. [PMID: 38272895 PMCID: PMC10810878 DOI: 10.1038/s41467-024-44956-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
Aedes aegypti is the main vector of several major pathogens including dengue, Zika and chikungunya viruses. Classical mosquito control strategies utilizing insecticides are threatened by rising resistance. This has stimulated interest in new genetic systems such as gene drivesHere, we test the regulatory sequences from the Ae. aegypti benign gonial cell neoplasm (bgcn) homolog to express Cas9 and a separate multiplexing sgRNA-expressing cassette inserted into the Ae. aegypti kynurenine 3-monooxygenase (kmo) gene. When combined, these two elements provide highly effective germline cutting at the kmo locus and act as a gene drive. Our target genetic element drives through a cage trial population such that carrier frequency of the element increases from 50% to up to 89% of the population despite significant fitness costs to kmo insertions. Deep sequencing suggests that the multiplexing design could mitigate resistance allele formation in our gene drive system.
Collapse
Affiliation(s)
- Michelle A E Anderson
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0HN, UK
- The Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Estela Gonzalez
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0HN, UK
- Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| | - Matthew P Edgington
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0HN, UK
- The Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Joshua X D Ang
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0HN, UK
- The Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Deepak-Kumar Purusothaman
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0HN, UK
- MRC-University of Glasgow Centre for Virus Research, Henry Wellcome Building, 464 Bearsden Road, Glasgow, G61 1QH, UK
| | - Lewis Shackleford
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0HN, UK
- The Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Katherine Nevard
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0HN, UK
| | - Sebald A N Verkuijl
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0HN, UK
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | | | - Philip T Leftwich
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0HN, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK
| | - Kevin Esvelt
- Media Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Luke Alphey
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0HN, UK.
- The Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.
| |
Collapse
|
13
|
Olejarz JW, Nowak MA. Gene drives for the extinction of wild metapopulations. J Theor Biol 2024; 577:111654. [PMID: 37984587 DOI: 10.1016/j.jtbi.2023.111654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/15/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
Population-suppressing gene drives may be capable of extinguishing wild populations, with proposed applications in conservation, agriculture, and public health. However, unintended and potentially disastrous consequences of release of drive-engineered individuals are extremely difficult to predict. We propose a model for the dynamics of a sex ratio-biasing drive, and using simulations, we show that failure of the suppression drive is often a natural outcome due to stochastic and spatial effects. We further demonstrate rock-paper-scissors dynamics among wild-type, drive-infected, and extinct populations that can persist for arbitrarily long times. Gene drive-mediated extinction of wild populations entails critical complications that lurk far beyond the reach of laboratory-based studies. Our findings help in addressing these challenges.
Collapse
Affiliation(s)
- Jason W Olejarz
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA; Department of Mathematics, Harvard University, Cambridge, MA, 02138, USA.
| | - Martin A Nowak
- Department of Mathematics, Harvard University, Cambridge, MA, 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
14
|
Harris KD, Greenbaum G. Rescue by gene swamping as a gene drive deployment strategy. Cell Rep 2023; 42:113499. [PMID: 38039130 DOI: 10.1016/j.celrep.2023.113499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 10/05/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023] Open
Abstract
Gene drives are genetic constructs that can spread deleterious alleles with potential application to population suppression of harmful species. As gene drives can potentially spill over to other populations or species, control measures and fail-safe strategies must be considered. Gene drives can generate a rapid change in the population's genetic composition, leading to substantial demographic decline, processes that are expected to occur at a similar timescale during gene drive spread. We developed a gene drive model that combines evolutionary and demographic dynamics in a two-population setting. The model demonstrates how feedback between these dynamics generates additional outcomes to those generated by the evolutionary dynamics alone. We identify an outcome of particular interest where short-term suppression of the target population is followed by gene swamping and loss of the gene drive. This outcome can prevent spillover and is robust to the evolution of resistance, suggesting it may be suitable as a fail-safe strategy for gene drive deployment.
Collapse
Affiliation(s)
- Keith D Harris
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Gili Greenbaum
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
15
|
Kumam Y, Trick HN, Vara Prasad P, Jugulam M. Transformative Approaches for Sustainable Weed Management: The Power of Gene Drive and CRISPR-Cas9. Genes (Basel) 2023; 14:2176. [PMID: 38136999 PMCID: PMC10742955 DOI: 10.3390/genes14122176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/25/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Weeds can negatively impact crop yields and the ecosystem's health. While many weed management strategies have been developed and deployed, there is a greater need for the development of sustainable methods for employing integrated weed management. Gene drive systems can be used as one of the approaches to suppress the aggressive growth and reproductive behavior of weeds, although their efficacy is yet to be tested. Their popularity in insect pest management has increased, however, with the advent of CRISPR-Cas9 technology, which provides specificity and precision in editing the target gene. This review focuses on the different types of gene drive systems, including the use of CRISPR-Cas9-based systems and their success stories in pest management, while also exploring their possible applications in weed species. Factors that govern the success of a gene drive system in weeds, including the mode of reproduction, the availability of weed genome databases, and well-established transformation protocols are also discussed. Importantly, the risks associated with the release of weed populations with gene drive-bearing alleles into wild populations are also examined, along with the importance of addressing ecological consequences and ethical concerns.
Collapse
Affiliation(s)
- Yaiphabi Kumam
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA; (Y.K.); (P.V.V.P.)
| | - Harold N Trick
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA;
| | - P.V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA; (Y.K.); (P.V.V.P.)
| | - Mithila Jugulam
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA; (Y.K.); (P.V.V.P.)
| |
Collapse
|
16
|
Raban R, Marshall JM, Hay BA, Akbari OS. Manipulating the Destiny of Wild Populations Using CRISPR. Annu Rev Genet 2023; 57:361-390. [PMID: 37722684 PMCID: PMC11064769 DOI: 10.1146/annurev-genet-031623-105059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Genetic biocontrol aims to suppress or modify populations of species to protect public health, agriculture, and biodiversity. Advancements in genome engineering technologies have fueled a surge in research in this field, with one gene editing technology, CRISPR, leading the charge. This review focuses on the current state of CRISPR technologies for genetic biocontrol of pests and highlights the progress and ongoing challenges of using these approaches.
Collapse
Affiliation(s)
- Robyn Raban
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| | - John M Marshall
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, California, USA
| | - Bruce A Hay
- Division of Biology and Biological Engineering (BBE), California Institute of Technology, Pasadena, California, USA
| | - Omar S Akbari
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
17
|
Fooladi S, Rabiee N, Iravani S. Genetically engineered bacteria: a new frontier in targeted drug delivery. J Mater Chem B 2023; 11:10072-10087. [PMID: 37873584 DOI: 10.1039/d3tb01805a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Genetically engineered bacteria (GEB) have shown significant promise to revolutionize modern medicine. These engineered bacteria with unique properties such as enhanced targeting, versatility, biofilm disruption, reduced drug resistance, self-amplification capabilities, and biodegradability represent a highly promising approach for targeted drug delivery and cancer theranostics. This innovative approach involves modifying bacterial strains to function as drug carriers, capable of delivering therapeutic agents directly to specific cells or tissues. Unlike synthetic drug delivery systems, GEB are inherently biodegradable and can be naturally eliminated from the body, reducing potential long-term side effects or complications associated with residual foreign constituents. However, several pivotal challenges such as safety and controllability need to be addressed. Researchers have explored novel tactics to improve their capabilities and overcome existing challenges, including synthetic biology tools (e.g., clustered regularly interspaced short palindromic repeats (CRISPR) and bioinformatics-driven design), microbiome engineering, combination therapies, immune system interaction, and biocontainment strategies. Because of the remarkable advantages and tangible progress in this field, GEB may emerge as vital tools in personalized medicine, providing precise and controlled drug delivery for various diseases (especially cancer). In this context, future directions include the integration of nanotechnology with GEB, the focus on microbiota-targeted therapies, the incorporation of programmable behaviors, the enhancement in immunotherapy treatments, and the discovery of non-medical applications. In this way, careful ethical considerations and regulatory frameworks are necessary for developing GEB-based systems for targeted drug delivery. By addressing safety concerns, ensuring informed consent, promoting equitable access, understanding long-term effects, mitigating dual-use risks, and fostering public engagement, these engineered bacteria can be employed as promising delivery vehicles in bio- and nanomedicine. In this review, recent advances related to the application of GEB in targeted drug delivery and cancer therapy are discussed, covering crucial challenging issues and future perspectives.
Collapse
Affiliation(s)
- Saba Fooladi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia.
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| |
Collapse
|
18
|
Bennett JB, Wu SL, Chennuri PR, Myles KM, Ndeffo-Mbah ML. Expansions to the MGDrivE suite for simulating the efficacy of novel gene-drive constructs in the control of mosquito-borne diseases. BMC Res Notes 2023; 16:258. [PMID: 37798614 PMCID: PMC10557238 DOI: 10.1186/s13104-023-06533-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023] Open
Abstract
OBJECTIVE The MGDrivE (MGDrivE 1 and MGDrivE 2) modeling framework provides a flexible and expansive environment for testing the efficacy of novel gene-drive constructs for the control of mosquito-borne diseases. However, the existing model framework did not previously support several features necessary to simulate some types of intervention strategies. Namely, current MGDrivE versions do not permit modeling of small molecule inducible systems for controlling gene expression in gene drive designs or the inheritance patterns of self-eliminating gene drive mechanisms. RESULTS Here, we demonstrate a new MGDrivE 2 module that permits the simulation of gene drive strategies incorporating small molecule-inducible systems and self-eliminating gene drive mechanisms. Additionally, we also implemented novel sparsity-aware sampling algorithms for improved computational efficiency in MGDrivE 2 and supplied an analysis and plotting function applicable to the outputs of MGDrivE 1 and MGDrivE 2.
Collapse
Affiliation(s)
| | - Sean L Wu
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, 98121, USA
| | - Pratima R Chennuri
- Department of Entomology, Texas A & M University, College Station, TX, 77843, USA
- Future Fields, Edmonton, AB, T5H 0L5, Canada
| | - Kevin M Myles
- Department of Entomology, Texas A & M University, College Station, TX, 77843, USA
| | - Martial L Ndeffo-Mbah
- Department of Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
19
|
Pescod P, Bevivino G, Anthousi A, Shelton R, Shepherd J, Lombardo F, Nolan T. Measuring the Impact of Genetic Heterogeneity and Chromosomal Inversions on the Efficacy of CRISPR-Cas9 Gene Drives in Different Strains of Anopheles gambiae. CRISPR J 2023; 6:419-429. [PMID: 37702604 DOI: 10.1089/crispr.2023.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
The human malaria vector Anopheles gambiae is becoming increasingly resistant to insecticides, spurring the development of genetic control strategies. CRISPR-Cas9 gene drives can modify a population by creating double-stranded breaks at highly specific targets, triggering copying of the gene drive into the cut site ("homing"), ensuring its inheritance. The DNA repair mechanism responsible requires homology between the donor and recipient chromosomes, presenting challenges for the invasion of laboratory-developed gene drives into wild populations of target species An. gambiae species complex, which show high levels of genome variation. Two gene drives (vas2-5958 and zpg-7280) were introduced into three An. gambiae strains collected across Africa with 5.3-6.6% variation around the target sites, and the effect of this variation on homing was measured. Gene drive homing across different karyotypes of the 2La chromosomal inversion was also assessed. No decrease in gene drive homing was seen despite target site heterology, demonstrating the applicability of gene drives to wild populations.
Collapse
Affiliation(s)
- Poppy Pescod
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Giulia Bevivino
- Division of Parasitology, Department of Public Health and Infectious Diseases, University of Rome "la Sapienza," Rome, Italy; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Amalia Anthousi
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Crete, Greece; and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Insects and Vector Borne Diseases, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Ruth Shelton
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Josephine Shepherd
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Fabrizio Lombardo
- Division of Parasitology, Department of Public Health and Infectious Diseases, University of Rome "la Sapienza," Rome, Italy; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Tony Nolan
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| |
Collapse
|
20
|
Cutter AD. Guerrilla eugenics: gene drives in heritable human genome editing. JOURNAL OF MEDICAL ETHICS 2023:jme-2023-109061. [PMID: 37407027 DOI: 10.1136/jme-2023-109061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/18/2023] [Indexed: 07/07/2023]
Abstract
CRISPR-Cas9 genome editing can and has altered human genomes, bringing bioethical debates about this capability to the forefront of philosophical and policy considerations. Here, I consider the underexplored implications of CRISPR-Cas9 gene drives for heritable human genome editing. Modification gene drives applied to heritable human genome editing would introduce a novel form of involuntary eugenic practice that I term guerrilla eugenics. Once introduced into a genome, stealth genetic editing by a gene drive genetic element would occur each subsequent generation irrespective of whether reproductive partners consent to it and irrespective of whether the genetic change confers any benefit. By overriding the ability to 'opt in' to genome editing, gene drives compromise the autonomy of carrier individuals and their reproductive partners to choose to use or avoid genome editing and impose additional burdens on those who hope to 'opt out' of further genome editing. High incidence of an initially rare gene drive in small human communities could occur within 200 years, with evolutionary fixation globally in a timeframe that is thousands of times sooner than achievable by non-drive germline editing. Following any introduction of heritable gene drives into human genomes, practices intended for surveillance or reversal also create fundamental ethical problems. Current policy guidelines do not comment explicitly on gene drives in humans. These considerations motivate an explicit moratorium as being warranted on gene drive development in heritable human genome editing.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Cutter AD. Synthetic gene drives as an anthropogenic evolutionary force. Trends Genet 2023; 39:347-357. [PMID: 36997427 DOI: 10.1016/j.tig.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 03/30/2023]
Abstract
Genetic drive represents a fundamental evolutionary force that can exact profound change to the genetic composition of populations by biasing allele transmission. Herein I propose that the use of synthetic homing gene drives, the human-mediated analog of endogenous genetic drives, warrants the designation of 'genetic welding' as an anthropogenic evolutionary force. Conceptually, this distinction parallels that of artificial and natural selection. Genetic welding is capable of imposing complex and rapid heritable phenotypic change on entire populations, whether motivated by biodiversity conservation or public health. Unanticipated possible long-term evolutionary outcomes, however, demand further investigation and bioethical consideration. The emerging importance of genetic welding also compels our explicit recognition of genetic drive as an addition to the other four fundamental forces of evolution.
Collapse
|
22
|
Contreras B, Adelman ZN, Chae K. Evaluating the Mating Competency of Genetically Modified Male Mosquitoes in Laboratory Conditions. FRONTIERS IN TROPICAL DISEASES 2023; 4:1106671. [PMID: 37860147 PMCID: PMC10586724 DOI: 10.3389/fitd.2023.1106671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Efforts to eradicate mosquito-borne diseases have increased the demand for genetic control strategies, many of which involve the release of genetically modified (GM) mosquito males into natural populations. The first hurdle for GM males is to compete with their wild-type counterparts for access to females. Here, we introduce an eye color-based mating assay, in which both Lvp wild-type and kynurenine 3-monooxygenase (kmo)-null males compete for access to kmo-null females, and therefore the eye color phenotype (black or white) of the progeny is dependent on the parental mating pair. A series of tests addressed that male mating competitiveness between the two strains can significantly be influenced by adult density, light intensity, and mating duration. Interestingly, the mating competitiveness of males was not correlated with body size, which was negatively influenced by a high larval density. Lastly, this eye color-associated assay was applied to characterize GM mosquitoes in their mating competitiveness, establishing this method as a fast and precise way of benchmarking this fitness parameter for laboratory-raised males.
Collapse
Affiliation(s)
- Bryan Contreras
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Zach N. Adelman
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Keun Chae
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
23
|
Meiborg AB, Faber NR, Taylor BA, Harpur BA, Gorjanc G. The suppressive potential of a gene drive in populations of invasive social wasps is currently limited. Sci Rep 2023; 13:1640. [PMID: 36717606 PMCID: PMC9886928 DOI: 10.1038/s41598-023-28867-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Social insects are very successful invasive species, and the continued increase of global trade and transportation has exacerbated this problem. The yellow-legged hornet, Vespa velutina nigrithorax (henceforth Asian hornet), is drastically expanding its range in Western Europe. As an apex insect predator, this hornet poses a serious threat to the honey bee industry and endemic pollinators. Current suppression methods have proven too inefficient and expensive to limit its spread. Gene drives might be an effective tool to control this species, but their use has not yet been thoroughly investigated in social insects. Here, we built a model that matches the hornet's life history and modelled the effect of different gene drive scenarios on an established invasive population. To test the broader applicability and sensitivity of the model, we also incorporated the invasive European paper wasp Polistes dominula. We find that, due to the haplodiploidy of social hymenopterans, only a gene drive targeting female fertility is promising for population control. Our results show that although a gene drive can suppress a social wasp population, it can only do so under fairly stringent gene drive-specific conditions. This is due to a combination of two factors: first, the large number of surviving offspring that social wasp colonies produce make it possible that, even with very limited formation of resistance alleles, such alleles can quickly spread and rescue the population. Second, due to social wasp life history, infertile individuals do not compete with fertile ones, allowing fertile individuals to maintain a large population size even when drive alleles are widespread. Nevertheless, continued improvements in gene drive technology may make it a promising method for the control of invasive social insects in the future.
Collapse
Affiliation(s)
- Adriaan B Meiborg
- HighlanderLab, The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK. .,Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany.
| | - Nicky R Faber
- HighlanderLab, The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.,Laboratory of Genetics, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Benjamin A Taylor
- Department of Entomology, Purdue University, West Lafayette, IN, 47907, USA
| | - Brock A Harpur
- Department of Entomology, Purdue University, West Lafayette, IN, 47907, USA
| | - Gregor Gorjanc
- HighlanderLab, The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| |
Collapse
|
24
|
Li J, Champer J. Harnessing Wolbachia cytoplasmic incompatibility alleles for confined gene drive: A modeling study. PLoS Genet 2023; 19:e1010591. [PMID: 36689491 PMCID: PMC9894560 DOI: 10.1371/journal.pgen.1010591] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/02/2023] [Accepted: 12/21/2022] [Indexed: 01/24/2023] Open
Abstract
Wolbachia are maternally-inherited bacteria, which can spread rapidly in populations by manipulating reproduction. cifA and cifB are genes found in Wolbachia phage that are responsible for cytoplasmic incompatibility, the most common type of Wolbachia reproductive interference. In this phenomenon, no viable offspring are produced when a male with both cifA and cifB (or just cifB in some systems) mates with a female lacking cifA. Utilizing this feature, we propose new types of toxin-antidote gene drives that can be constructed with only these two genes in an insect genome, instead of the whole Wolbachia bacteria. By using both mathematical and simulation models, we found that a drive containing cifA and cifB together creates a confined drive with a moderate to high introduction threshold. When introduced separately, they act as a self-limiting drive. We observed that the performance of these drives is substantially influenced by various ecological parameters and drive characteristics. Extending our models to continuous space, we found that the drive individual release distribution has a critical impact on drive persistence. Our results suggest that these new types of drives based on Wolbachia transgenes are safe and flexible candidates for genetic modification of populations.
Collapse
Affiliation(s)
- Jiahe Li
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- * E-mail:
| |
Collapse
|
25
|
Brown EA, Eikenbary SR, Landis WG. Bayesian network-based risk assessment of synthetic biology: Simulating CRISPR-Cas9 gene drive dynamics in invasive rodent management. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2022; 42:2835-2846. [PMID: 35568962 DOI: 10.1111/risa.13948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Gene drive technology has been proposed to control invasive rodent populations as an alternative to rodenticides. However, this approach has not undergone risk assessment that meets criteria established by Gene Drives on the Horizon, a 2016 report by the National Academies of Sciences, Engineering, and Medicine. To conduct a risk assessment of gene drives, we employed the Bayesian network-relative risk model to calculate the risk of mouse eradication on Southeast Farallon Island using a CRISPR-Cas9 homing gene drive construct. We modified and implemented the R-based model "MGDrivE" to simulate and compare 60 management strategies for gene drive rodent management. These scenarios spanned four gene drive mouse release schemes, three gene drive homing rates, three levels of supplemental rodenticide dose, and two timings of rodenticide application relative to gene drive release. Simulation results showed that applying a supplemental rodenticide simultaneously with gene drive mouse deployment resulted in faster eradication of the island mouse population. Gene drive homing rate had the highest influence on the overall probability of successful eradication, as increased gene drive accuracy reduces the likelihood of mice developing resistance to the CRISPR-Cas9 homing mechanism.
Collapse
Affiliation(s)
- Ethan A Brown
- Institute of Environmental Toxicology and Chemistry, College of the Environment, Western Washington University, Bellingham, Washington, USA
| | - Steven R Eikenbary
- Institute of Environmental Toxicology and Chemistry, College of the Environment, Western Washington University, Bellingham, Washington, USA
| | - Wayne G Landis
- Institute of Environmental Toxicology and Chemistry, College of the Environment, Western Washington University, Bellingham, Washington, USA
| |
Collapse
|
26
|
Verkuijl SAN, Gonzalez E, Li M, Ang JXD, Kandul NP, Anderson MAE, Akbari OS, Bonsall MB, Alphey L. A CRISPR endonuclease gene drive reveals distinct mechanisms of inheritance bias. Nat Commun 2022; 13:7145. [PMID: 36414618 PMCID: PMC9681865 DOI: 10.1038/s41467-022-34739-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 11/04/2022] [Indexed: 11/24/2022] Open
Abstract
CRISPR/Cas gene drives can bias transgene inheritance through different mechanisms. Homing drives are designed to replace a wild-type allele with a copy of a drive element on the homologous chromosome. In Aedes aegypti, the sex-determining locus is closely linked to the white gene, which was previously used as a target for a homing drive element (wGDe). Here, through an analysis using this linkage we show that in males inheritance bias of wGDe did not occur by homing, rather through increased propagation of the donor drive element. We test the same wGDe drive element with transgenes expressing Cas9 with germline regulatory elements sds3, bgcn, and nup50. We only find inheritance bias through homing, even with the identical nup50-Cas9 transgene. We propose that DNA repair outcomes may be more context dependent than anticipated and that other previously reported homing drives may, in fact, bias their inheritance through other mechanisms.
Collapse
Affiliation(s)
- Sebald A N Verkuijl
- Mathematical Ecology Research Group, Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
| | - Estela Gonzalez
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
- The Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Ming Li
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Joshua X D Ang
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
- The Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Nikolay P Kandul
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Michelle A E Anderson
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
- The Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Omar S Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Michael B Bonsall
- Mathematical Ecology Research Group, Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Luke Alphey
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK.
- The Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.
| |
Collapse
|
27
|
Macfarlane NB, Adams J, Bennett EL, Brooks TM, Delborne JA, Eggermont H, Endy D, Esvelt KM, Kolodziejczyk B, Kuiken T, Oliva MJ, Peña Moreno S, Slobodian L, Smith RB, Thizy D, Tompkins DM, Wei W, Redford KH. Direct and indirect impacts of synthetic biology on biodiversity conservation. iScience 2022; 25:105423. [PMID: 36388962 PMCID: PMC9641226 DOI: 10.1016/j.isci.2022.105423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The world's biodiversity is in crisis. Synthetic biology has the potential to transform biodiversity conservation, both directly and indirectly, in ways that are negative and positive. However, applying these biotechnology tools to environmental questions is fraught with uncertainty and could harm cultures, rights, livelihoods, and nature. Decisions about whether or not to use synthetic biology for conservation should be understood alongside the reality of ongoing biodiversity loss. In 2022, the 196 Parties to the United Nations Convention on Biological Diversity are negotiating the post-2020 Global Biodiversity Framework that will guide action by governments and other stakeholders for the next decade to conserve the worlds' biodiversity. To date, synthetic biologists, conservationists, and policy makers have operated in isolation. At this critical time, this review brings these diverse perspectives together and emerges out of the need for a balanced and inclusive examination of the potential application of these technologies to biodiversity conservation.
Collapse
Affiliation(s)
| | - Jonathan Adams
- Pangolin Words, Inc., 10301 Nolan Drive, Rockville, MD 20850, USA
| | | | - Thomas M. Brooks
- IUCN, 28 rue Mauverney, 1196 Gland, Switzerland
- World Agroforestry Center (ICRAF), University of the Philippines Los Baños, Laguna 4031, The Philippines
- Institute for Marine & Antarctic Studies, University of Tasmania, Hobart, TAS 7001, Australia
| | - Jason A. Delborne
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, NC 27695, USA
| | - Hilde Eggermont
- Belgian Biodiversity Platform, WTC III Simon Bolivarlaan 30 Bus 7, 1000 Brussels, Belgium
- Royal Belgian Institute of Natural Sciences, Vautierstraat 29, 1000 Brussels, Belgium
| | - Drew Endy
- Stanford University, 443 Via Ortega, Shriram Center RM 252, Stanford, CA 94305, USA
| | - Kevin M. Esvelt
- Massachusetts Institute of Technology, Media Lab, 77 Massachusetts Avenue, Cambridge, MA 02464, USA
| | | | - Todd Kuiken
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, NC 27695, USA
| | - Maria Julia Oliva
- Union for Ethical BioTrade (UEBT), De Ruijterkade 6b, 1013 AA Amsterdam, the Netherlands
| | | | - Lydia Slobodian
- Georgetown University Law Center, 600 New Jersey Avenue NW, Washington, DC 20001, USA
| | - Risa B. Smith
- IUCN World Commission on Protected Areas, 19915 Porlier Pass, Galiano, BC V0N1P0, Canada
| | - Delphine Thizy
- Imperial College London, Exhibition Road, South Kensington, London SW7 2BX, UK
- Delphine Thizy Consulting Scomm, rue Alphonse Hottat 35, 1050 Ixelles, Belgium
| | | | - Wei Wei
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, China
| | - Kent H. Redford
- Archipelago Consulting, Portland, ME 04112, USA
- Department of Environmental Studies, University of New England, Biddeford, ME 04005, USA
| |
Collapse
|
28
|
Piña-Domínguez IA, Ruiz-May E, Hernández-Rodríguez D, Zepeda RC, Melgar-Lalanne G. Environmental effects of harvesting some Mexican wild edible insects: An overview. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1021861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Most traditional edible insects are collected from the forest and agricultural fields, where they are considered pests. However, their importance goes beyond this. They also have an ecological role and potential to be an emerging alternative source of high-quality nutrients that can help satisfy the growing food demand for the human population. Agricultural insect pests are a healthy food source during the harvesting season in many tropical countries. In Mexico, wild insects such as chicatana (queen of flying leaf-cutter ant, Atta mexicana Smith, 1,858; Hymenoptera: Formicidae), chapulín (grasshopper, Pyrgomorphidae), chinicuil (agave red worm, Comadia redtenbacheri Hammerschmidt, 1,848: Lepidoptera, Cossidae), and meocuil (agave white worm, Aegiale hesperiaris Walker 1,856, Lepidoptera, Hesperiidae) are seasonally collected from the agricultural land and forest for food and medicine. Thus, their consumption might be regarded as support for biological plague control. However, in most countries (Mexico included), there is a lack of legislation about edible insects from harvesting to sacrifice and even their main safety aspects. So then, this research aims to provide an updated assessment of the potential use of agricultural pest insects as a sustainable alternative for food, considering current international legislative and ethical concerns about harvesting and consuming wild edible insects, focusing on some of the wild edible pest insects in Mexico.
Collapse
|
29
|
Modeling the efficacy of CRISPR gene drive for snail immunity on schistosomiasis control. PLoS Negl Trop Dis 2022; 16:e0010894. [DOI: 10.1371/journal.pntd.0010894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/10/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
CRISPR gene drives could revolutionize the control of infectious diseases by accelerating the spread of engineered traits that limit parasite transmission in wild populations. Gene drive technology in mollusks has received little attention despite the role of freshwater snails as hosts of parasitic flukes causing 200 million annual cases of schistosomiasis. A successful drive in snails must overcome self-fertilization, a common feature of host snails which could prevents a drive’s spread. Here we developed a novel population genetic model accounting for snails’ mixed mating and population dynamics, susceptibility to parasite infection regulated by multiple alleles, fitness differences between genotypes, and a range of drive characteristics. We integrated this model with an epidemiological model of schistosomiasis transmission to show that a snail population modification drive targeting immunity to infection can be hindered by a variety of biological and ecological factors; yet under a range of conditions, disease reduction achieved by chemotherapy treatment of the human population can be maintained with a drive. Alone a drive modifying snail immunity could achieve significant disease reduction in humans several years after release. These results indicate that gene drives, in coordination with existing public health measures, may become a useful tool to reduce schistosomiasis burden in selected transmission settings with effective CRISPR construct design and evaluation of the genetic and ecological landscape.
Collapse
|
30
|
Normandin AM, Fitzgerald LM, Yip J, Evans SW. Hurdles in responsive community engagement for the development of environmental biotechnologies. Synth Biol (Oxf) 2022; 7:ysac022. [PMID: 36415857 PMCID: PMC9675591 DOI: 10.1093/synbio/ysac022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/17/2022] [Accepted: 10/19/2022] [Indexed: 08/23/2024] Open
Abstract
Recent calls for engaging communities in biotechnology development do not draw enough attention to the hurdles that must be overcome for engagement strategies to effectively feed back into research design and conduct. These hurdles call into question many standard ways of operating and assessing in traditional scientific disciplines. The first steps in addressing these hurdles can be the most difficult. In reflecting on our own experiences in the early-stage development of environmental biotechnologies, we provide a set of techniques to help scientists and their collaborators learn to become more responsive to the needs and attitudes of communities with which they are engaging. Graphical Abstract.
Collapse
Affiliation(s)
- Avery M Normandin
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lily M Fitzgerald
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Julianne Yip
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- Berggruen Institute, Los Angeles, CA, USA
| | - Sam Weiss Evans
- Program on Science, Technology and Society, Harvard University, Cambridge, MA, USA
| |
Collapse
|
31
|
Garrood WT, Cuber P, Willis K, Bernardini F, Page NM, Haghighat-Khah RE. Driving down malaria transmission with engineered gene drives. Front Genet 2022; 13:891218. [PMID: 36338968 PMCID: PMC9627344 DOI: 10.3389/fgene.2022.891218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/13/2022] [Indexed: 11/26/2022] Open
Abstract
The last century has witnessed the introduction, establishment and expansion of mosquito-borne diseases into diverse new geographic ranges. Malaria is transmitted by female Anopheles mosquitoes. Despite making great strides over the past few decades in reducing the burden of malaria, transmission is now on the rise again, in part owing to the emergence of mosquito resistance to insecticides, antimalarial drug resistance and, more recently, the challenges of the COVID-19 pandemic, which resulted in the reduced implementation efficiency of various control programs. The utility of genetically engineered gene drive mosquitoes as tools to decrease the burden of malaria by controlling the disease-transmitting mosquitoes is being evaluated. To date, there has been remarkable progress in the development of CRISPR/Cas9-based homing endonuclease designs in malaria mosquitoes due to successful proof-of-principle and multigenerational experiments. In this review, we examine the lessons learnt from the development of current CRISPR/Cas9-based homing endonuclease gene drives, providing a framework for the development of gene drive systems for the targeted control of wild malaria-transmitting mosquito populations that overcome challenges such as with evolving drive-resistance. We also discuss the additional substantial works required to progress the development of gene drive systems from scientific discovery to further study and subsequent field application in endemic settings.
Collapse
Affiliation(s)
- William T. Garrood
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Piotr Cuber
- Department of Molecular Biology, Core Research Laboratories, Natural History Museum, London, United Kingdom
| | - Katie Willis
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Federica Bernardini
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Nicole M. Page
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | |
Collapse
|
32
|
Wise IJ, Borry P. An Ethical Overview of the CRISPR-Based Elimination of Anopheles gambiae to Combat Malaria. JOURNAL OF BIOETHICAL INQUIRY 2022; 19:371-380. [PMID: 35175513 PMCID: PMC9463432 DOI: 10.1007/s11673-022-10172-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/02/2021] [Indexed: 05/07/2023]
Abstract
Approximately a quarter of a billion people around the world suffer from malaria each year. Most cases are located in sub-Saharan Africa where Anopheles gambiae mosquitoes are the principal vectors of this public health problem. With the use of CRISPR-based gene drives, the population of mosquitoes can be modified, eventually causing their extinction. First, we discuss the moral status of the organism and argue that using genetically modified mosquitoes to combat malaria should not be abandoned based on some moral value of A. gambiae. Secondly, we argue that environmental impact studies should be performed to obtain an accurate account of the possible effects of a potential eradication of the organism. However, the risks from the purposeful extinction of A. gambiae should not overtake the benefits of eradicating malaria and risk assessments should be used to determine acceptable risks. Thirdly, we argue that the eventual release of the genetically modified mosquitoes will depend on transparency, community involvement, and cooperation between different nations.
Collapse
Affiliation(s)
- India Jane Wise
- Centre for Biomedical Ethics and Law (CBMER), Department of Public Health and Primary Care, Faculty of Medicine, KU Leuven, Kapucijnenvoer 35 Box, 7001 3000 Leuven, Belgium
| | - Pascal Borry
- Centre for Biomedical Ethics and Law (CBMER), Department of Public Health and Primary Care, Faculty of Medicine, KU Leuven, Kapucijnenvoer 35 Box, 7001 3000 Leuven, Belgium
| |
Collapse
|
33
|
Verkuijl SAN, Anderson MAE, Alphey L, Bonsall MB. Daisy-chain gene drives: The role of low cut-rate, resistance mutations, and maternal deposition. PLoS Genet 2022; 18:e1010370. [PMID: 36121880 PMCID: PMC9521892 DOI: 10.1371/journal.pgen.1010370] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 09/29/2022] [Accepted: 08/01/2022] [Indexed: 11/28/2022] Open
Abstract
The introgression of genetic traits through gene drive may serve as a powerful and widely applicable method of biological control. However, for many applications, a self-perpetuating gene drive that can spread beyond the specific target population may be undesirable and preclude use. Daisy-chain gene drives have been proposed as a means of tuning the invasiveness of a gene drive, allowing it to spread efficiently into the target population, but be self-limiting beyond that. Daisy-chain gene drives are made up of multiple independent drive elements, where each element, except one, biases the inheritance of another, forming a chain. Under ideal inheritance biasing conditions, the released drive elements remain linked in the same configuration, generating copies of most of their elements except for the last remaining link in the chain. Through mathematical modelling of populations connected by migration, we have evaluated the effect of resistance alleles, different fitness costs, reduction in the cut-rate, and maternal deposition on two alternative daisy-chain gene drive designs. We find that the self-limiting nature of daisy-chain gene drives makes their spread highly dependent on the efficiency and fidelity of the inheritance biasing mechanism. In particular, reductions in the cut-rate and the formation of non-lethal resistance alleles can cause drive elements to lose their linked configuration. This severely reduces the invasiveness of the drives and allows for phantom cutting, where an upstream drive element cuts a downstream target locus despite the corresponding drive element being absent, creating and biasing the inheritance of additional resistance alleles. This phantom cutting can be mitigated by an alternative indirect daisy-chain design. We further find that while dominant fitness costs and maternal deposition reduce daisy-chain invasiveness, if overcome with an increased release frequency, they can reduce the spread of the drive into a neighbouring population.
Collapse
Affiliation(s)
- Sebald A. N. Verkuijl
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Arthropod Genetics, The Pirbright Institute, Pirbright, United Kingdom
| | | | - Luke Alphey
- Arthropod Genetics, The Pirbright Institute, Pirbright, United Kingdom
| | | |
Collapse
|
34
|
Melesse Vergara M, Labbé J, Tannous J. Reflection on the Challenges, Accomplishments, and New Frontiers of Gene Drives. BIODESIGN RESEARCH 2022; 2022:9853416. [PMID: 37850135 PMCID: PMC10521683 DOI: 10.34133/2022/9853416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/19/2022] [Indexed: 10/19/2023] Open
Abstract
Ongoing pest and disease outbreaks pose a serious threat to human, crop, and animal lives, emphasizing the need for constant genetic discoveries that could serve as mitigation strategies. Gene drives are genetic engineering approaches discovered decades ago that may allow quick, super-Mendelian dissemination of genetic modifications in wild populations, offering hopes for medicine, agriculture, and ecology in combating diseases. Following its first discovery, several naturally occurring selfish genetic elements were identified and several gene drive mechanisms that could attain relatively high threshold population replacement have been proposed. This review provides a comprehensive overview of the recent advances in gene drive research with a particular emphasis on CRISPR-Cas gene drives, the technology that has revolutionized the process of genome engineering. Herein, we discuss the benefits and caveats of this technology and place it within the context of natural gene drives discovered to date and various synthetic drives engineered. Later, we elaborate on the strategies for designing synthetic drive systems to address resistance issues and prevent them from altering the entire wild populations. Lastly, we highlight the major applications of synthetic CRISPR-based gene drives in different living organisms, including plants, animals, and microorganisms.
Collapse
Affiliation(s)
| | - Jesse Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Invaio Sciences, Cambridge, MA 02138USA
| | - Joanna Tannous
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
35
|
Larval mosquito management and risk to aquatic ecosystems: A comparative approach including current tactics and gene-drive Anopheles techniques. Transgenic Res 2022; 31:489-504. [PMID: 35798930 PMCID: PMC9489571 DOI: 10.1007/s11248-022-00315-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022]
Abstract
Genetic engineering of mosquitoes represents a promising tactic for reducing human suffering from malaria. Gene-drive techniques being developed that suppress or modify populations of Anopheles gambiae have the potential to be used with, or even possibly obviate, microbial and synthetic insecticides. However, these techniques are new and therefore there is attendant concern and uncertainty from regulators, policymakers, and the public about their environmental risks. Therefore, there is a need to assist decision-makers and public health stewards by assessing the risks associated with these newer mosquito management tactics so the risks can be compared as a basis for informed decision making. Previously, the effect of gene-drive mosquitoes on water quality in Africa was identified as a concern by stakeholders. Here, we use a comparative risk assessment approach for the effect of gene-drive mosquitoes on water quality in Africa. We compare the use of existing larvicides and the proposed genetic techniques in aquatic environments. Based on our analysis, we conclude that the tactic of gene-drive Anopheles for malaria management is unlikely to result in risks to aquatic environments that exceed current tactics for larval mosquitoes. As such, these new techniques would likely comply with currently recommended safety standards.
Collapse
|
36
|
Abstract
Insects have evolved highly diverse genetic sex-determination mechanisms and a relatively balanced male to female sex ratio is generally expected. However, selection may shift the optimal sex ratio while meiotic drive and endosymbiont manipulation can result in sex ratio distortion (SRD). Recent advances in sex chromosome genomics and CRISPR/Cas9-mediated genome editing brought significant insights into the molecular regulators of sex determination in an increasing number of insects and provided new ways to engineer SRD. We review these advances and discuss both naturally occurring and engineered SRD in the context of the Anthropocene. We emphasize SRD-mediated biological control of insects to help improve One Health, sustain agriculture, and conserve endangered species.
Collapse
Affiliation(s)
- Austin Compton
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Zhijian Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
37
|
Metzloff M, Yang E, Dhole S, Clark AG, Messer PW, Champer J. Experimental demonstration of tethered gene drive systems for confined population modification or suppression. BMC Biol 2022; 20:119. [PMID: 35606745 PMCID: PMC9128227 DOI: 10.1186/s12915-022-01292-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 04/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Homing gene drives hold great promise for the genetic control of natural populations. However, current homing systems are capable of spreading uncontrollably between populations connected by even marginal levels of migration. This could represent a substantial sociopolitical barrier to the testing or deployment of such drives and may generally be undesirable when the objective is only local population control, such as suppression of an invasive species outside of its native range. Tethered drive systems, in which a locally confined gene drive provides the CRISPR nuclease needed for a homing drive, could provide a solution to this problem, offering the power of a homing drive and confinement of the supporting drive. RESULTS Here, we demonstrate the engineering of a tethered drive system in Drosophila, using a regionally confined CRISPR Toxin-Antidote Recessive Embryo (TARE) drive to support modification and suppression homing drives. Each drive was able to bias inheritance in its favor, and the TARE drive was shown to spread only when released above a threshold frequency in experimental cage populations. After the TARE drive had established in the population, it facilitated the spread of a subsequently released split homing modification drive (to all individuals in the cage) and of a homing suppression drive (to its equilibrium frequency). CONCLUSIONS Our results show that the tethered drive strategy is a viable and easily engineered option for providing confinement of homing drives to target populations.
Collapse
Affiliation(s)
- Matthew Metzloff
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Emily Yang
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Sumit Dhole
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Andrew G Clark
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Philipp W Messer
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Jackson Champer
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA.
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA.
- Present Address: Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
38
|
Chae K, Dawson C, Valentin C, Contreras B, Zapletal J, Myles KM, Adelman ZN. Engineering a self-eliminating transgene in the yellow fever mosquito, Aedes aegypti. PNAS NEXUS 2022; 1:pgac037. [PMID: 36713320 PMCID: PMC9802104 DOI: 10.1093/pnasnexus/pgac037] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023]
Abstract
Promising genetics-based approaches are being developed to reduce or prevent the transmission of mosquito-vectored diseases. Less clear is how such transgenes can be removed from the environment, a concern that is particularly relevant for highly invasive gene drive transgenes. Here, we lay the groundwork for a transgene removal system based on single-strand annealing (SSA), a eukaryotic DNA repair mechanism. An SSA-based rescuer strain (kmoRG ) was engineered to have direct repeat sequences (DRs) in the Aedes aegypti kynurenine 3-monooxygenase (kmo) gene flanking the intervening transgenic cargo genes, DsRED and EGFP. Targeted induction of DNA double-strand breaks (DSBs) in the DsRED transgene successfully triggered complete elimination of the entire cargo from the kmoRG strain, restoring the wild-type kmo gene, and thereby, normal eye pigmentation. Our work establishes the framework for strategies to remove transgene sequences during the evaluation and testing of modified strains for genetics-based mosquito control.
Collapse
Affiliation(s)
- Keun Chae
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Chanell Dawson
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Collin Valentin
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Bryan Contreras
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Josef Zapletal
- Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Kevin M Myles
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | | |
Collapse
|
39
|
Verkuijl SAN, Ang JXD, Alphey L, Bonsall MB, Anderson MAE. The Challenges in Developing Efficient and Robust Synthetic Homing Endonuclease Gene Drives. Front Bioeng Biotechnol 2022; 10:856981. [PMID: 35419354 PMCID: PMC8996256 DOI: 10.3389/fbioe.2022.856981] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Making discrete and precise genetic changes to wild populations has been proposed as a means of addressing some of the world's most pressing ecological and public health challenges caused by insect pests. Technologies that would allow this, such as synthetic gene drives, have been under development for many decades. Recently, a new generation of programmable nucleases has dramatically accelerated technological development. CRISPR-Cas9 has improved the efficiency of genetic engineering and has been used as the principal effector nuclease in different gene drive inheritance biasing mechanisms. Of these nuclease-based gene drives, homing endonuclease gene drives have been the subject of the bulk of research efforts (particularly in insects), with many different iterations having been developed upon similar core designs. We chart the history of homing gene drive development, highlighting the emergence of challenges such as unintended repair outcomes, "leaky" expression, and parental deposition. We conclude by discussing the progress made in developing strategies to increase the efficiency of homing endonuclease gene drives and mitigate or prevent unintended outcomes.
Collapse
Affiliation(s)
- Sebald A. N. Verkuijl
- Arthropod Genetics, The Pirbright Institute, Pirbright, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Joshua X. D. Ang
- Arthropod Genetics, The Pirbright Institute, Pirbright, United Kingdom
| | - Luke Alphey
- Arthropod Genetics, The Pirbright Institute, Pirbright, United Kingdom
| | | | | |
Collapse
|
40
|
Wang GH, Du J, Chu CY, Madhav M, Hughes GL, Champer J. Symbionts and gene drive: two strategies to combat vector-borne disease. Trends Genet 2022; 38:708-723. [PMID: 35314082 DOI: 10.1016/j.tig.2022.02.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 01/26/2023]
Abstract
Mosquitoes bring global health problems by transmitting parasites and viruses such as malaria and dengue. Unfortunately, current insecticide-based control strategies are only moderately effective because of high cost and resistance. Thus, scalable, sustainable, and cost-effective strategies are needed for mosquito-borne disease control. Symbiont-based and genome engineering-based approaches provide new tools that show promise for meeting these criteria, enabling modification or suppression approaches. Symbiotic bacteria like Wolbachia are maternally inherited and manipulate mosquito host reproduction to enhance their vertical transmission. Genome engineering-based gene drive methods, in which mosquitoes are genetically altered to spread drive alleles throughout wild populations, are also proving to be a potentially powerful approach in the laboratory. Here, we review the latest developments in both symbionts and gene drive-based methods. We describe some notable similarities, as well as distinctions and obstacles, relating to these promising technologies.
Collapse
Affiliation(s)
- Guan-Hong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jie Du
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Chen Yi Chu
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Mukund Madhav
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
41
|
Xu X, Harvey-Samuel T, Siddiqui HA, Ang JXD, Anderson ME, Reitmayer CM, Lovett E, Leftwich PT, You M, Alphey L. Toward a CRISPR-Cas9-based Gene Drive in the Diamondback Moth Plutella xylostella. CRISPR J 2022; 5:224-236. [PMID: 35285719 DOI: 10.1089/crispr.2021.0129] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Promising to provide powerful genetic control tools, gene drives have been constructed in multiple dipteran insects, yeast, and mice for the purposes of population elimination or modification. However, it remains unclear whether these techniques can be applied to lepidopterans. Here, we used endogenous regulatory elements to drive Cas9 and single guide RNA (sgRNA) expression in the diamondback moth (DBM), Plutella xylostella, and test the first split gene drive system in a lepidopteran. The DBM is an economically important global agriculture pest of cruciferous crops and has developed severe resistance to various insecticides, making it a prime candidate for such novel control strategy development. A very high level of somatic editing was observed in Cas9/sgRNA transheterozygotes, although no significant homing was revealed in the subsequent generation. Although heritable Cas9-medated germline cleavage as well as maternal and paternal Cas9 deposition were observed, rates were far lower than for somatic cleavage events, indicating robust somatic but limited germline activity of Cas9/sgRNA under the control of selected regulatory elements. Our results provide valuable experience, paving the way for future construction of gene drives or other Cas9-based genetic control strategies in DBM and other lepidopterans.
Collapse
Affiliation(s)
- Xuejiao Xu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, P.R. China.,School of Life Sciences, Peking University, Beijing, P.R. China
| | - Tim Harvey-Samuel
- Arthropod Genetics Group, The Pirbright Institute, Woking, Pirbright, United Kingdom
| | - Hamid Anees Siddiqui
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Joshua Xin De Ang
- Arthropod Genetics Group, The Pirbright Institute, Woking, Pirbright, United Kingdom
| | | | - Christine M Reitmayer
- Arthropod Genetics Group, The Pirbright Institute, Woking, Pirbright, United Kingdom
| | - Erica Lovett
- Arthropod Genetics Group, The Pirbright Institute, Woking, Pirbright, United Kingdom
| | - Philip T Leftwich
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| | - Luke Alphey
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, P.R. China.,Arthropod Genetics Group, The Pirbright Institute, Woking, Pirbright, United Kingdom
| |
Collapse
|
42
|
On Large and Small Data Blow-Up Solutions in the Trojan Y Chromosome Model. AXIOMS 2022. [DOI: 10.3390/axioms11030120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The Trojan Y Chromosome Strategy (TYC) is the only genetic biological control method in practice in North America for controlling invasive populations with an XX–XY sex determinism. Herein a modified organism, that is a supermale or feminised supermale, is introduced into an invasive population to skew the sex ratio over time, causing local extinction. We consider the three species TYC reaction diffusion model, and show that introduction of supermales above certain thresholds, and for certain initial data, solutions can blow-up in finite time. Thus, in order to have biologically meaningful solutions, one needs to restrict parameter and initial data regimes, in TYC type models.
Collapse
|
43
|
Petersen GEL, Buntjer JB, Hely FS, Byrne TJ, Doeschl-Wilson A. Modeling suggests gene editing combined with vaccination could eliminate a persistent disease in livestock. Proc Natl Acad Sci U S A 2022; 119:2107224119. [PMID: 35217603 PMCID: PMC8892294 DOI: 10.1073/pnas.2107224119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 11/22/2022] Open
Abstract
Recent breakthroughs in gene-editing technologies that can render individual animals fully resistant to infections may offer unprecedented opportunities for controlling future epidemics in farm animals. Yet, their potential for reducing disease spread is poorly understood as the necessary theoretical framework for estimating epidemiological effects arising from gene-editing applications is currently lacking. Here, we develop semistochastic modeling approaches to investigate how the adoption of gene editing may affect infectious disease prevalence in farmed animal populations and the prospects and time scale for disease elimination. We apply our models to the porcine reproductive and respiratory syndrome (PRRS), one of the most persistent global livestock diseases to date. Whereas extensive control efforts have shown limited success, recent production of gene-edited pigs that are fully resistant to the PRRS virus have raised expectations for eliminating this deadly disease. Our models predict that disease elimination on a national scale would be difficult to achieve if gene editing was used as the only disease control. However, from a purely epidemiological perspective, disease elimination may be achievable within 3 to 6 y, if gene editing were complemented with widespread and sufficiently effective vaccination. Besides strategic distribution of genetically resistant animals, several other key determinants underpinning the epidemiological impact of gene editing were identified.
Collapse
Affiliation(s)
| | - Jaap B Buntjer
- The Roslin Institute, University of Edinburgh, Easter Bush EH25 9RG, Scotland
| | | | - Timothy John Byrne
- AbacusBio International, Roslin Innovation Centre, The University of Edinburgh, Easter Bush EH25 9RG, Scotland
- The Global Academy of Agriculture and Food Security, The University of Edinburgh, Easter Bush EH25 9RG, Scotland
| | | |
Collapse
|
44
|
Tellechea-Luzardo J, Hobbs L, Velázquez E, Pelechova L, Woods S, de Lorenzo V, Krasnogor N. Versioning biological cells for trustworthy cell engineering. Nat Commun 2022; 13:765. [PMID: 35140226 PMCID: PMC8828774 DOI: 10.1038/s41467-022-28350-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/21/2022] [Indexed: 11/18/2022] Open
Abstract
“Full-stack” biotechnology platforms for cell line (re)programming are on the horizon, thanks mostly to (a) advances in gene synthesis and editing techniques as well as (b) the growing integration of life science research with informatics, the internet of things and automation. These emerging platforms will accelerate the production and consumption of biological products. Hence, traceability, transparency, and—ultimately—trustworthiness is required from cradle to grave for engineered cell lines and their engineering processes. Here we report a cloud-based version control system for biotechnology that (a) keeps track and organizes the digital data produced during cell engineering and (b) molecularly links that data to the associated living samples. Barcoding protocols, based on standard genetic engineering methods, to molecularly link to the cloud-based version control system six species, including gram-negative and gram-positive bacteria as well as eukaryote cells, are shown. We argue that version control for cell engineering marks a significant step toward more open, reproducible, easier to trace and share, and more trustworthy engineering biology. Full traceability and transparency are important to establish trust in engineered cell lines. Here the authors argue that version control for cell engineering marks a significant step toward more open, reproducible, traceable and ultimately more trustworthy engineering biology.
Collapse
Affiliation(s)
- Jonathan Tellechea-Luzardo
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, Newcastle University, Newcastle Upon Tyne, NE4 5TG, UK
| | - Leanne Hobbs
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, Newcastle University, Newcastle Upon Tyne, NE4 5TG, UK
| | - Elena Velázquez
- Systems and Synthetic Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), 28049, Madrid, Spain
| | - Lenka Pelechova
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, Newcastle University, Newcastle Upon Tyne, NE4 5TG, UK
| | - Simon Woods
- Policy Ethics and Life Sciences (PEALS), Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), 28049, Madrid, Spain
| | - Natalio Krasnogor
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, Newcastle University, Newcastle Upon Tyne, NE4 5TG, UK.
| |
Collapse
|
45
|
Bunting MD, Pfitzner C, Gierus L, White M, Piltz S, Thomas PQ. Generation of Gene Drive Mice for Invasive Pest Population Suppression. Methods Mol Biol 2022; 2495:203-230. [PMID: 35696035 DOI: 10.1007/978-1-0716-2301-5_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Gene drives are genetic elements that are transmitted to greater than 50% of offspring and have potential for population modification or suppression. While gene drives are known to occur naturally, the recent emergence of CRISPR-Cas9 genome-editing technology has enabled generation of synthetic gene drives in a range of organisms including mosquitos, flies, and yeast. For example, studies in Anopheles mosquitos have demonstrated >95% transmission of CRISPR-engineered gene drive constructs, providing a possible strategy for malaria control. Recently published studies have also indicated that it may be possible to develop gene drive technology in invasive rodents such as mice. Here, we discuss the prospects for gene drive development in mice, including synthetic "homing drive" and X-shredder strategies as well as modifications of the naturally occurring t haplotype. We also provide detailed protocols for generation of gene drive mice through incorporation of plasmid-based transgenes in a targeted and non-targeted manner. Importantly, these protocols can be used for generating transgenic mice for any project that requires insertion of kilobase-scale transgenes such as knock-in of fluorescent reporters, gene swaps, overexpression/ectopic expression studies, and conditional "floxed" alleles.
Collapse
Affiliation(s)
- Mark D Bunting
- School of Medicine, University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Chandran Pfitzner
- School of Medicine, University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Luke Gierus
- School of Medicine, University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Melissa White
- School of Medicine, University of Adelaide, North Terrace, Adelaide, SA, Australia
- South Australian Genome Editing Facility, North Terrace, Adelaide, SA, Australia
| | - Sandra Piltz
- School of Medicine, University of Adelaide, North Terrace, Adelaide, SA, Australia
- South Australian Genome Editing Facility, North Terrace, Adelaide, SA, Australia
| | - Paul Q Thomas
- School of Medicine, University of Adelaide, North Terrace, Adelaide, SA, Australia.
- South Australian Genome Editing Facility, North Terrace, Adelaide, SA, Australia.
- South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, Australia.
| |
Collapse
|
46
|
Metchanun N, Borgemeister C, Amzati G, von Braun J, Nikolov M, Selvaraj P, Gerardin J. Modeling impact and cost-effectiveness of driving-Y gene drives for malaria elimination in the Democratic Republic of the Congo. Evol Appl 2022; 15:132-148. [PMID: 35126652 PMCID: PMC8792473 DOI: 10.1111/eva.13331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 11/15/2021] [Accepted: 11/29/2021] [Indexed: 12/17/2022] Open
Abstract
Malaria elimination will be challenging in countries that currently continue to bear high malaria burden. Sex-ratio-distorting gene drives, such as driving-Y, could play a role in an integrated elimination strategy if they can effectively suppress vector populations. Using a spatially explicit, agent-based model of malaria transmission in eight provinces spanning the range of transmission intensities across the Democratic Republic of the Congo, we predict the impact and cost-effectiveness of integrating driving-Y gene drive mosquitoes in malaria elimination strategies that include existing interventions such as insecticide-treated nets and case management of symptomatic malaria. Gene drive mosquitoes could eliminate malaria and were the most cost-effective intervention overall if the drive component was highly effective with at least 95% X-shredder efficiency at relatively low fertility cost, and associated cost of deployment below 7.17 $int per person per year. Suppression gene drive could be a cost-effective supplemental intervention for malaria elimination, but tight constraints on drive effectiveness and cost ceilings may limit its feasibility.
Collapse
Affiliation(s)
| | | | - Gaston Amzati
- Université Evangélique en AfriqueBukavuDemocratic Republic of the Congo
| | | | | | | | - Jaline Gerardin
- Institute for Disease ModelingBellevueWashingtonUSA
- Department of Preventive Medicine and Institute for Global HealthNorthwestern UniversityChicagoIllinoisUSA
| |
Collapse
|
47
|
Mateos Fernández R, Petek M, Gerasymenko I, Juteršek M, Baebler Š, Kallam K, Moreno Giménez E, Gondolf J, Nordmann A, Gruden K, Orzaez D, Patron NJ. Insect pest management in the age of synthetic biology. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:25-36. [PMID: 34416790 PMCID: PMC8710903 DOI: 10.1111/pbi.13685] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 05/10/2023]
Abstract
Arthropod crop pests are responsible for 20% of global annual crop losses, a figure predicted to increase in a changing climate where the ranges of numerous species are projected to expand. At the same time, many insect species are beneficial, acting as pollinators and predators of pest species. For thousands of years, humans have used increasingly sophisticated chemical formulations to control insect pests but, as the scale of agriculture expanded to meet the needs of the global population, concerns about the negative impacts of agricultural practices on biodiversity have grown. While biological solutions, such as biological control agents and pheromones, have previously had relatively minor roles in pest management, biotechnology has opened the door to numerous new approaches for controlling insect pests. In this review, we look at how advances in synthetic biology and biotechnology are providing new options for pest control. We discuss emerging technologies for engineering resistant crops and insect populations and examine advances in biomanufacturing that are enabling the production of new products for pest control.
Collapse
Affiliation(s)
| | - Marko Petek
- Department of Biotechnology and Systems BiologyNational Institute of BiologyLjubljanaSlovenia
| | - Iryna Gerasymenko
- Plant Biotechnology and Metabolic EngineeringTechnische Universität DarmstadtDarmstadtGermany
| | - Mojca Juteršek
- Department of Biotechnology and Systems BiologyNational Institute of BiologyLjubljanaSlovenia
- Jožef Stefan International Postgraduate SchoolLjubljanaSlovenia
| | - Špela Baebler
- Department of Biotechnology and Systems BiologyNational Institute of BiologyLjubljanaSlovenia
| | | | | | - Janine Gondolf
- Institut für PhilosophieTechnische Universität DarmstadtDarmstadtGermany
| | - Alfred Nordmann
- Institut für PhilosophieTechnische Universität DarmstadtDarmstadtGermany
| | - Kristina Gruden
- Department of Biotechnology and Systems BiologyNational Institute of BiologyLjubljanaSlovenia
| | - Diego Orzaez
- Institute for Plant Molecular and Cell Biology (IBMCP)UPV‐CSICValenciaSpain
| | | |
Collapse
|
48
|
Grunwald HA, Weitzel AJ, Cooper KL. Applications of and considerations for using CRISPR-Cas9-mediated gene conversion systems in rodents. Nat Protoc 2022; 17:3-14. [PMID: 34949863 DOI: 10.1038/s41596-021-00646-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 10/13/2021] [Indexed: 01/23/2023]
Abstract
Genetic elements that are inherited at super-Mendelian frequencies could be used in a 'gene drive' to spread an allele to high prevalence in a population with the goal of eliminating invasive species or disease vectors. We recently demonstrated that the gene conversion mechanism underlying a CRISPR-Cas9-mediated gene drive is feasible in mice. Although substantial technical hurdles remain, overcoming these could lead to strategies that might decrease the spread of rodent-borne Lyme disease or eliminate invasive populations of mice and rats that devastate island ecology. Perhaps more immediately achievable at moderate gene conversion efficiency, applications in a laboratory setting could produce complex genotypes that reduce the time and cost in both dollars and animal lives compared with Mendelian inheritance strategies. Here, we discuss what we have learned from early efforts to achieve CRISPR-Cas9-mediated gene conversion, potential for broader applications in the laboratory, current limitations, and plans for optimizing this potentially powerful technology.
Collapse
Affiliation(s)
- Hannah A Grunwald
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Alexander J Weitzel
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Kimberly L Cooper
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
49
|
Abstract
Gene drives are an emerging technology with tremendous potential to impact public health, agriculture, and conservation. While gene drives can be described simply as selfish genetic elements (natural or engineered) that are inherited at non-Mendelian rates, upon closer inspection, engineered gene drive technology is a complex class of biotechnology that uses a diverse number of genetic features to bias rates of inheritance. As a complex technology, gene drives can be difficult to comprehend, not only for the public and stakeholders, but also to risk assessors, risk managers, and decisionmakers not familiar with gene drive literature. To address this difficulty, we describe a gene drive classification system based on 5 functional characteristics. These characteristics include a gene drive's objective, mechanism, release threshold, range, and persistence. The aggregate of the gene drive's characteristics can be described as the gene drive's architecture. Establishing a classification system to define different gene drive technologies should make them more comprehensible to the public and provide a framework to guide regulatory evaluation and decisionmaking.
Collapse
Affiliation(s)
- Justin Overcash
- Justin Overcash, PhD, is an Animal and Plant Health Inspection Service (APHIS) Science Fellow, Biotechnology Regulatory Services, Riverdale, MD
| | - Andrew Golnar
- Andrew Golnar, PhD, is an APHIS Science Fellow, Wildlife Services, Fort Collins, CO
| |
Collapse
|
50
|
St. Leger RJ. From the Lab to the Last Mile: Deploying Transgenic Approaches Against Mosquitoes. FRONTIERS IN TROPICAL DISEASES 2021. [DOI: 10.3389/fitd.2021.804066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ingenious exploitation of transgenic approaches to produce malaria resistant or sterile mosquitoes, or hypervirulent mosquito pathogens, has produced many potential solutions to vector borne diseases. However, in spite of technological feasibility, it has not been determined how well these new methods will work, and how they should be tested and regulated. Some self-limiting transgenic fungal pathogens and mosquitoes are almost field ready, and may be easier to regulate than self-sustaining strategies. However, they require repeat sales and so must show business viability; low-cost mass production is just one of a number of technical constraints that are sometimes treated as an afterthought in technology deployment. No transgenic self-sustaining approach to anopheline control has ever been deployed because of unresolved ethical, social and regulatory issues. These overlapping issues include: 1) the transparency challenge, which requires public discourse, particularly in Africa where releases are proposed, to determine what society is willing to risk given the potential benefits; 2) the transboundary challenge, self-sustaining mosquitoes or pathogens are potentially capable of crossing national boundaries and irreversibly altering ecosystems, and 3) the risk assessment challenge. The polarized debate as to whether these technologies will ever be used to save lives is ongoing; they will founder without a political answer as to how do we interpret the precautionary principle, as exemplified in the Cartagena protocol, in the global context of technological changes.
Collapse
|