1
|
Jary A, Kim Y, Rozemeijer K, Eijk PP, van der Zee RP, Bleeker MCG, Wilting SM, Steenbergen RDM. Accurate detection of copy number aberrations in FFPE samples using the mFAST-SeqS approach. Exp Mol Pathol 2024; 137:104906. [PMID: 38820761 DOI: 10.1016/j.yexmp.2024.104906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Shallow whole genome sequencing (Shallow-seq) is used to determine the copy number aberrations (CNA) in tissue samples and circulating tumor DNA. However, costs of NGS and challenges of small biopsies ask for an alternative to the untargeted NGS approaches. The mFAST-SeqS approach, relying on LINE-1 repeat amplification, showed a good correlation with Shallow-seq to detect CNA in blood samples. In the present study, we evaluated whether mFAST-SeqS is suitable to assess CNA in small formalin-fixed paraffin-embedded (FFPE) tissue specimens, using vulva and anal HPV-related lesions. METHODS Seventy-two FFPE samples, including 36 control samples (19 vulva;17 anal) for threshold setting and 36 samples (24 vulva; 12 anal) for clinical evaluation, were analyzed by mFAST-SeqS. CNA in vulva and anal lesions were determined by calculating genome-wide and chromosome arm-specific z-scores in comparison with the respective control samples. Sixteen samples were also analyzed with the conventional Shallow-seq approach. RESULTS Genome-wide z-scores increased with the severity of disease, with highest values being found in cancers. In vulva samples median and inter quartile ranges [IQR] were 1[0-2] in normal tissues (n = 4), 3[1-7] in premalignant lesions (n = 9) and 21[13-48] in cancers (n = 10). In anal samples, median [IQR] were 0[0-1] in normal tissues (n = 4), 14[6-38] in premalignant lesions (n = 4) and 18[9-31] in cancers (n = 4). At threshold 4, all controls were CNA negative, while 8/13 premalignant lesions and 12/14 cancers were CNA positive. CNA captured by mFAST-SeqS were mostly also found by Shallow-seq. CONCLUSION mFAST-SeqS is easy to perform, requires less DNA and less sequencing reads reducing costs, thereby providing a good alternative for Shallow-seq to determine CNA in small FFPE samples.
Collapse
Affiliation(s)
- Aude Jary
- Department of Pathology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Biomarkers and Imaging, Amsterdam, the Netherlands
| | - Yongsoo Kim
- Department of Pathology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Biomarkers and Imaging, Amsterdam, the Netherlands
| | - Kirsten Rozemeijer
- Department of Pathology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Biomarkers and Imaging, Amsterdam, the Netherlands
| | - Paul P Eijk
- Department of Pathology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Biomarkers and Imaging, Amsterdam, the Netherlands
| | - Ramon P van der Zee
- Department of Pathology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Internal Medicine, division of Infectious Diseases, Amsterdam UMC, location Universiteit van Amsterdam, Amsterdam, the Netherlands
| | - Maaike C G Bleeker
- Department of Pathology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Biomarkers and Imaging, Amsterdam, the Netherlands
| | - Saskia M Wilting
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Renske D M Steenbergen
- Department of Pathology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Biomarkers and Imaging, Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Annapragada AV, Niknafs N, White JR, Bruhm DC, Cherry C, Medina JE, Adleff V, Hruban C, Mathios D, Foda ZH, Phallen J, Scharpf RB, Velculescu VE. Genome-wide repeat landscapes in cancer and cell-free DNA. Sci Transl Med 2024; 16:eadj9283. [PMID: 38478628 PMCID: PMC11323656 DOI: 10.1126/scitranslmed.adj9283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/16/2024] [Indexed: 03/22/2024]
Abstract
Genetic changes in repetitive sequences are a hallmark of cancer and other diseases, but characterizing these has been challenging using standard sequencing approaches. We developed a de novo kmer finding approach, called ARTEMIS (Analysis of RepeaT EleMents in dISease), to identify repeat elements from whole-genome sequencing. Using this method, we analyzed 1.2 billion kmers in 2837 tissue and plasma samples from 1975 patients, including those with lung, breast, colorectal, ovarian, liver, gastric, head and neck, bladder, cervical, thyroid, or prostate cancer. We identified tumor-specific changes in these patients in 1280 repeat element types from the LINE, SINE, LTR, transposable element, and human satellite families. These included changes to known repeats and 820 elements that were not previously known to be altered in human cancer. Repeat elements were enriched in regions of driver genes, and their representation was altered by structural changes and epigenetic states. Machine learning analyses of genome-wide repeat landscapes and fragmentation profiles in cfDNA detected patients with early-stage lung or liver cancer in cross-validated and externally validated cohorts. In addition, these repeat landscapes could be used to noninvasively identify the tissue of origin of tumors. These analyses reveal widespread changes in repeat landscapes of human cancers and provide an approach for their detection and characterization that could benefit early detection and disease monitoring of patients with cancer.
Collapse
Affiliation(s)
- Akshaya V. Annapragada
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Noushin Niknafs
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - James R. White
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Daniel C. Bruhm
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Christopher Cherry
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jamie E. Medina
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Vilmos Adleff
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Carolyn Hruban
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Dimitrios Mathios
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Zachariah H. Foda
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jillian Phallen
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Robert B. Scharpf
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Victor E. Velculescu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
3
|
Gezer U, Oberhofer A, Worf K, Stoetzer O, Holdenrieder S, Bronkhorst A. Targeted Sequencing of Human Satellite 2 Repeat Sequences in Plasma cfDNA Reveals Potential Breast Cancer Biomarkers. Diagnostics (Basel) 2024; 14:609. [PMID: 38535029 PMCID: PMC10968943 DOI: 10.3390/diagnostics14060609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 11/11/2024] Open
Abstract
Liquid biopsies are revolutionizing the detection and management of malignant diseases. While repetitive DNA sequences, such as LINE-1 and ALU are established in cell-free DNA (cfDNA) research, their clinical applications remain limited. In this study, we explore human satellite 2 (HSATII), a prevalent repeat DNA sequence in plasma that exhibits increased levels in cancer patients, thereby positioning it as a potential pan-cancer biomarker. We employed targeted sequencing and copy number variation (CNV) analysis using two primer pairs to assess the differential abundance of HSATII sequences in the plasma of breast cancer patients compared to healthy individuals. PCR amplicons of HSATII from 10 patients and 10 control subjects were sequenced, generating 151 bp paired-end reads. By constructing a pooled reference dataset, HSATII copy ratios were estimated in the patients. Our analysis revealed several significant CNVs in HSATII, with certain sequences displaying notable gains and losses across all breast cancer patients, suggesting their potential as biomarkers. However, we observed pronounced fragmentation of cfDNA in cancer, leading to the loss of longer PCR amplicons (>180 bp). While not all observed losses can be attributed to fragmentation artifacts, this phenomenon does introduce complexity in interpreting CNV data. Notably, this research marks the first instance of targeted HSATII sequencing in a liquid biopsy context. Our findings lay the groundwork for developing sequencing-based assays to detect differentially represented HSATII sequences, potentially advancing the field of minimally-invasive cancer screening.
Collapse
Affiliation(s)
- Ugur Gezer
- Department of Basic Oncology, Oncology Institute, Istanbul University, Istanbul 34093, Türkiye;
| | - Angela Oberhofer
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center, Technical University Munich, 80636 Munich, Germany; (A.O.); (K.W.); (S.H.)
| | - Karolina Worf
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center, Technical University Munich, 80636 Munich, Germany; (A.O.); (K.W.); (S.H.)
| | - Oliver Stoetzer
- Medical Center for Hematology and Oncology Munich GmbH, 80639 Munich, Germany;
| | - Stefan Holdenrieder
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center, Technical University Munich, 80636 Munich, Germany; (A.O.); (K.W.); (S.H.)
| | - Abel Bronkhorst
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center, Technical University Munich, 80636 Munich, Germany; (A.O.); (K.W.); (S.H.)
| |
Collapse
|
4
|
Wang Y, Douville C, Chien YW, Wang BG, Chen CL, Pinto A, Smith SA, Drapkin R, Chui MH, Numan T, Vang R, Papadopoulos N, Wang TL, Shih IM. Aneuploidy Landscape in Precursors of Ovarian Cancer. Clin Cancer Res 2024; 30:600-615. [PMID: 38048050 DOI: 10.1158/1078-0432.ccr-23-0932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/21/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
PURPOSE Serous tubal intraepithelial carcinoma (STIC) is now recognized as the main precursor of ovarian high-grade serous carcinoma (HGSC). Other potential tubal lesions include p53 signatures and tubal intraepithelial lesions. We aimed to investigate the extent and pattern of aneuploidy in these epithelial lesions and HGSC to define the features that characterize stages of tumor initiation and progression. EXPERIMENTAL DESIGN We applied RealSeqS to compare genome-wide aneuploidy patterns among the precursors, HGSC (cases, n = 85), and histologically unremarkable fallopian tube epithelium (HU-FTE; control, n = 65). On the basis of a discovery set (n = 67), we developed an aneuploidy-based algorithm, REAL-FAST (Repetitive Element AneupLoidy Sequencing Fallopian Tube Aneuploidy in STIC), to correlate the molecular data with pathology diagnoses. We validated the result in an independent validation set (n = 83) to determine its performance. We correlated the molecularly defined precursor subgroups with proliferative activity and histology. RESULTS We found that nearly all p53 signatures lost the entire Chr17, offering a "two-hit" mechanism involving both TP53 and BRCA1 in BRCA1 germline mutation carriers. Proliferatively active STICs harbor gains of 19q12 (CCNE1), 19q13.2, 8q24 (MYC), or 8q arm, whereas proliferatively dormant STICs show 22q loss. REAL-FAST classified HU-FTE and STICs into 5 clusters and identified a STIC subgroup harboring unique aneuploidy that is associated with increased proliferation and discohesive growth. On the basis of a validation set, REAL-FAST showed 95.8% sensitivity and 97.1% specificity in detecting STIC/HGSC. CONCLUSIONS Morphologically similar STICs are molecularly distinct. The REAL-FAST assay identifies a potentially "aggressive" STIC subgroup harboring unique DNA aneuploidy that is associated with increased cellular proliferation and discohesive growth. REAL-FAST offers a highly reproducible adjunct technique to assist the diagnosis of STIC lesions.
Collapse
Affiliation(s)
- Yeh Wang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Christopher Douville
- Department of Oncology, the Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Ludwig Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Yen-Wei Chien
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Brant G Wang
- Department of Pathology, Inova Fairfax Hospital, Falls Church, Virginia
- School of Medicine Inova Campus, University of Virginia, Falls Church, Virginia
- Department of Pathology, Georgetown University Medical Center, Washington, DC
| | - Chi-Long Chen
- Department of Pathology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Andre Pinto
- University of Miami Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Saron Ann Smith
- Cascade Pathology Services, Legacy Health System, Portland, Oregon
| | - Ronny Drapkin
- Department of Obstetrics and Gynecology and Basser Center for BRCA, University of Pennsylvania, Philadelphia, Pennsylvania
| | - M Herman Chui
- Department of Pathology and Laboratory Medicine, Sloan-Kettering Cancer Center, New York, New York
| | - Tricia Numan
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Pathology, Sibley Memorial Hospital, Washington, DC
| | - Russell Vang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Nickolas Papadopoulos
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Oncology, the Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Ludwig Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Tian-Li Wang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Ie-Ming Shih
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, Maryland
| |
Collapse
|
5
|
Douville C, Lahouel K, Kuo A, Grant H, Avigdor BE, Curtis SD, Summers M, Cohen JD, Wang Y, Mattox A, Dudley J, Dobbyn L, Popoli M, Ptak J, Nehme N, Silliman N, Blair C, Romans K, Thoburn C, Gizzi J, Schoen RE, Tie J, Gibbs P, Ho-Pham LT, Tran BNH, Tran TS, Nguyen TV, Goggins M, Wolfgang CL, Wang TL, Shih IM, Lennon AM, Hruban RH, Bettegowda C, Kinzler KW, Papadopoulos N, Vogelstein B, Tomasetti C. Machine learning to detect the SINEs of cancer. Sci Transl Med 2024; 16:eadi3883. [PMID: 38266106 PMCID: PMC11210392 DOI: 10.1126/scitranslmed.adi3883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
We previously described an approach called RealSeqS to evaluate aneuploidy in plasma cell-free DNA through the amplification of ~350,000 repeated elements with a single primer. We hypothesized that an unbiased evaluation of the large amount of sequencing data obtained with RealSeqS might reveal other differences between plasma samples from patients with and without cancer. This hypothesis was tested through the development of a machine learning approach called Alu Profile Learning Using Sequencing (A-PLUS) and its application to 7615 samples from 5178 individuals, 2073 with solid cancer and the remainder without cancer. Samples from patients with cancer and controls were prespecified into four cohorts used for model training, analyte integration, and threshold determination, validation, and reproducibility. A-PLUS alone provided a sensitivity of 40.5% across 11 different cancer types in the validation cohort, at a specificity of 98.5%. Combining A-PLUS with aneuploidy and eight common protein biomarkers detected 51% of the cancers at 98.9% specificity. We found that part of the power of A-PLUS could be ascribed to a single feature-the global reduction of AluS subfamily elements in the circulating DNA of patients with solid cancer. We confirmed this reduction through the analysis of another independent dataset obtained with a different approach (whole-genome sequencing). The evaluation of Alu elements may therefore have the potential to enhance the performance of several methods designed for the earlier detection of cancer.
Collapse
Affiliation(s)
- Christopher Douville
- Division of Quantitative Sciences, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kamel Lahouel
- Center for Cancer Prevention and Early Detection, City of Hope, Duarte, CA 91010, USA
- Center for Cancer Prevention and Early Detection, City of Hope, Division of Mathematics for Cancer Evolution and Early Detection, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, MD 21205, USA
| | - Albert Kuo
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, MD 21205, USA
| | - Haley Grant
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, MD 21205, USA
| | - Bracha Erlanger Avigdor
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Samuel D. Curtis
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mahmoud Summers
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Joshua D. Cohen
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yuxuan Wang
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Austin Mattox
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jonathan Dudley
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pathology, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Lisa Dobbyn
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Maria Popoli
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Janine Ptak
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Nadine Nehme
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Natalie Silliman
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Cherie Blair
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Katharine Romans
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Christopher Thoburn
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Jennifer Gizzi
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Robert E. Schoen
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Jeanne Tie
- Division of Personalized Oncology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Oncology, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3011, Australia
| | - Peter Gibbs
- Division of Personalized Oncology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Oncology, Melbourne, VIC 3000, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Lan T. Ho-Pham
- BioMedical Research Center, Pham Ngoc Thach University of Medicine, Ho Chi Minh City 72510, Vietnam
- Clinical Genetics Research Group, Saigon Precision Medicine Research Center, Ho Chi Minh City 72512, Vietnam
| | - Bich N. H. Tran
- Saigon Precision Medicine Research Center, Ho Chi Minh City 72512, Vietnam
| | - Thach S. Tran
- Saigon Precision Medicine Research Center, Ho Chi Minh City 72512, Vietnam
- School of Biomedical Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Tuan V. Nguyen
- Saigon Precision Medicine Research Center, Ho Chi Minh City 72512, Vietnam
- School of Biomedical Engineering, University of Technology Sydney, NSW 2007, Australia
- Tâm Anh Research Institute, Ho Chi Minh City, Vietnam
- Centre for Health Technologies, University of Technology, NSW 2007, Australia
- School of Population Health, University of New South Wales, NSW 2003, Australia
| | - Michael Goggins
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Department of Pathology, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins Medical Institutes, 733 N. Broadway, Baltimore, MD 21205, USA
| | | | - Tian-Li Wang
- Department of Pathology, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Ie-Ming Shih
- Department of Pathology, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Anne Marie Lennon
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Medicine, Johns Hopkins Medical Institutes, 733 N. Broadway, Baltimore, MD 21205, USA
- Department of Surgery, Johns Hopkins Medical Institutes, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Ralph H. Hruban
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Department of Pathology, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Chetan Bettegowda
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Kenneth W. Kinzler
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Nickolas Papadopoulos
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Bert Vogelstein
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Cristian Tomasetti
- Center for Cancer Prevention and Early Detection, City of Hope, Duarte, CA 91010, USA
- Center for Cancer Prevention and Early Detection, City of Hope, Division of Mathematics for Cancer Evolution and Early Detection, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
6
|
Bronkhorst AJ, Holdenrieder S. The changing face of circulating tumor DNA (ctDNA) profiling: Factors that shape the landscape of methodologies, technologies, and commercialization. MED GENET-BERLIN 2023; 35:201-235. [PMID: 38835739 PMCID: PMC11006350 DOI: 10.1515/medgen-2023-2065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Liquid biopsies, in particular the profiling of circulating tumor DNA (ctDNA), have long held promise as transformative tools in cancer precision medicine. Despite a prolonged incubation phase, ctDNA profiling has recently experienced a strong wave of development and innovation, indicating its imminent integration into the cancer management toolbox. Various advancements in mutation-based ctDNA analysis methodologies and technologies have greatly improved sensitivity and specificity of ctDNA assays, such as optimized preanalytics, size-based pre-enrichment strategies, targeted sequencing, enhanced library preparation methods, sequencing error suppression, integrated bioinformatics and machine learning. Moreover, research breakthroughs have expanded the scope of ctDNA analysis beyond hotspot mutational profiling of plasma-derived apoptotic, mono-nucleosomal ctDNA fragments. This broader perspective considers alternative genetic features of cancer, genome-wide characterization, classical and newly discovered epigenetic modifications, structural variations, diverse cellular and mechanistic ctDNA origins, and alternative biospecimen types. These developments have maximized the utility of ctDNA, facilitating landmark research, clinical trials, and the commercialization of ctDNA assays, technologies, and products. Consequently, ctDNA tests are increasingly recognized as an important part of patient guidance and are being implemented in clinical practice. Although reimbursement for ctDNA tests by healthcare providers still lags behind, it is gaining greater acceptance. In this work, we provide a comprehensive exploration of the extensive landscape of ctDNA profiling methodologies, considering the multitude of factors that influence its development and evolution. By illuminating the broader aspects of ctDNA profiling, the aim is to provide multiple entry points for understanding and navigating the vast and rapidly evolving landscape of ctDNA methodologies, applications, and technologies.
Collapse
Affiliation(s)
- Abel J Bronkhorst
- Technical University Munich Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center Lazarettstr. 36 80636 Munich Germany
| | - Stefan Holdenrieder
- Technical University Munich Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center Lazarettstr. 36 80636 Munich Germany
| |
Collapse
|
7
|
Yang J, Qiu L, Wang X, Chen X, Cao P, Yang Z, Wen Q. Liquid biopsy biomarkers to guide immunotherapy in breast cancer. Front Immunol 2023; 14:1303491. [PMID: 38077355 PMCID: PMC10701691 DOI: 10.3389/fimmu.2023.1303491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) therapy has emerged as a promising treatment strategy for breast cancer (BC). However, current reliance on immunohistochemical (IHC) detection of PD-L1 expression alone has limited predictive capability, resulting in suboptimal efficacy of ICIs for some BC patients. Hence, developing novel predictive biomarkers is indispensable to enhance patient selection for immunotherapy. In this context, utilizing liquid biopsy (LB) can provide supplementary or alternative value to PD-L1 IHC testing for identifying patients most likely to benefit from immunotherapy and exhibit favorable responses. This review discusses the predictive and prognostic value of LB in breast cancer immunotherapy, as well as its limitations and future directions. We aim to promote the individualization and precision of immunotherapy in BC by elucidating the role of LB in clinical practice.
Collapse
Affiliation(s)
- Jinghan Yang
- Department of Biological Science, Vanderbilt University, Nashville, TN, United States
| | - Liang Qiu
- Department of Radiation Oncology, Stanford University, Palo Alto, CA, United States
| | - Xi Wang
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xi Chen
- Department of Human Resource, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Pingdong Cao
- Department of Radiation Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhe Yang
- Department of Radiation Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qiang Wen
- Department of Radiation Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
8
|
Mattox AK, Douville C, Wang Y, Popoli M, Ptak J, Silliman N, Dobbyn L, Schaefer J, Lu S, Pearlman AH, Cohen JD, Tie J, Gibbs P, Lahouel K, Bettegowda C, Hruban RH, Tomasetti C, Jiang P, Chan KA, Lo YMD, Papadopoulos N, Kinzler KW, Vogelstein B. The Origin of Highly Elevated Cell-Free DNA in Healthy Individuals and Patients with Pancreatic, Colorectal, Lung, or Ovarian Cancer. Cancer Discov 2023; 13:2166-2179. [PMID: 37565753 PMCID: PMC10592331 DOI: 10.1158/2159-8290.cd-21-1252] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/16/2022] [Accepted: 08/09/2023] [Indexed: 08/12/2023]
Abstract
Cell-free DNA (cfDNA) concentrations from patients with cancer are often elevated compared with those of healthy controls, but the sources of this extra cfDNA have never been determined. To address this issue, we assessed cfDNA methylation patterns in 178 patients with cancers of the colon, pancreas, lung, or ovary and 64 patients without cancer. Eighty-three of these individuals had cfDNA concentrations much greater than those generally observed in healthy subjects. The major contributor of cfDNA in all samples was leukocytes, accounting for ∼76% of cfDNA, with neutrophils predominating. This was true regardless of whether the samples were derived from patients with cancer or the total plasma cfDNA concentration. High levels of cfDNA observed in patients with cancer did not come from either neoplastic cells or surrounding normal epithelial cells from the tumor's tissue of origin. These data suggest that cancers may have a systemic effect on cell turnover or DNA clearance. SIGNIFICANCE The origin of excess cfDNA in patients with cancer is unknown. Using cfDNA methylation patterns, we determined that neither the tumor nor the surrounding normal tissue contributes this excess cfDNA-rather it comes from leukocytes. This finding suggests that cancers have a systemic impact on cell turnover or DNA clearance. See related commentary by Thierry and Pisareva, p. 2122. This article is featured in Selected Articles from This Issue, p. 2109.
Collapse
Affiliation(s)
- Austin K. Mattox
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Christopher Douville
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Yuxuan Wang
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Maria Popoli
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Janine Ptak
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Natalie Silliman
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Lisa Dobbyn
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Joy Schaefer
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Steve Lu
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Alexander H. Pearlman
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Joshua D. Cohen
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Jeanne Tie
- Division of Systems Biology and Personalized Medicine, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Oncology, Western Health, St Albans, Victoria 3021, Australia
- Department of Medical Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Peter Gibbs
- Division of Systems Biology and Personalized Medicine, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Oncology, Western Health, St Albans, Victoria 3021, Australia
- Department of Medical Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Kamel Lahouel
- Division of Mathematics for Cancer Evolution and Early Detection, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010
| | - Chetan Bettegowda
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287
| | - Ralph H. Hruban
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Cristian Tomasetti
- Division of Mathematics for Cancer Evolution and Early Detection, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010
| | - Peiyong Jiang
- State Key Laboratory of Translational Oncology and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
| | - K.C. Allen Chan
- State Key Laboratory of Translational Oncology and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
| | - Yuk Ming Dennis Lo
- State Key Laboratory of Translational Oncology and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
| | - Nickolas Papadopoulos
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Kenneth W. Kinzler
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Bert Vogelstein
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| |
Collapse
|
9
|
Douville C, Curtis S, Summers M, Azad TD, Rincon-Torroella J, Wang Y, Mattox A, Avigdor B, Dudley J, Materi J, Raj D, Nair S, Bhanja D, Tuohy K, Dobbyn L, Popoli M, Ptak J, Nehme N, Silliman N, Blair C, Judge K, Gallia GL, Groves M, Jackson CM, Jackson EM, Laterra J, Lim M, Mukherjee D, Weingart J, Naidoo J, Koschmann C, Smith N, Schreck KC, Pardo CA, Glantz M, Holdhoff M, Kinzler KW, Papadopoulos N, Vogelstein B, Bettegowda C. Seq-ing the SINEs of central nervous system tumors in cerebrospinal fluid. Cell Rep Med 2023; 4:101148. [PMID: 37552989 PMCID: PMC10439243 DOI: 10.1016/j.xcrm.2023.101148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/30/2023] [Accepted: 07/13/2023] [Indexed: 08/10/2023]
Abstract
It is often challenging to distinguish cancerous from non-cancerous lesions in the brain using conventional diagnostic approaches. We introduce an analytic technique called Real-CSF (repetitive element aneuploidy sequencing in CSF) to detect cancers of the central nervous system from evaluation of DNA in the cerebrospinal fluid (CSF). Short interspersed nuclear elements (SINEs) are PCR amplified with a single primer pair, and the PCR products are evaluated by next-generation sequencing. Real-CSF assesses genome-wide copy-number alterations as well as focal amplifications of selected oncogenes. Real-CSF was applied to 280 CSF samples and correctly identified 67% of 184 cancerous and 96% of 96 non-cancerous brain lesions. CSF analysis was considerably more sensitive than standard-of-care cytology and plasma cell-free DNA analysis in the same patients. Real-CSF therefore has the capacity to be used in combination with other clinical, radiologic, and laboratory-based data to inform the diagnosis and management of patients with suspected cancers of the brain.
Collapse
Affiliation(s)
- Christopher Douville
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Samuel Curtis
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mahmoud Summers
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Tej D Azad
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Jordina Rincon-Torroella
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Yuxuan Wang
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Austin Mattox
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Bracha Avigdor
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jonathan Dudley
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Pathology, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Joshua Materi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Divyaansh Raj
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Sumil Nair
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Debarati Bhanja
- Department of Neurosurgery, Pennsylvania State University, Hershey, PA, USA
| | - Kyle Tuohy
- Department of Neurosurgery, Pennsylvania State University, Hershey, PA, USA
| | - Lisa Dobbyn
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Maria Popoli
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Janine Ptak
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Nadine Nehme
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Natalie Silliman
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Cherie Blair
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kathy Judge
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Gary L Gallia
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Mari Groves
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Christopher M Jackson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Eric M Jackson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - John Laterra
- Department of Neurology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Michael Lim
- Department of Neurosurgery, Stanford University, Palo Alto, CA, USA
| | - Debraj Mukherjee
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Jon Weingart
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | | | - Carl Koschmann
- Division of Pediatric Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Natalya Smith
- Department of Neurosurgery, Pennsylvania State University, Hershey, PA, USA
| | - Karisa C Schreck
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Carlos A Pardo
- Department of Neurology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Michael Glantz
- Department of Neurosurgery, Pennsylvania State University, Hershey, PA, USA
| | - Matthias Holdhoff
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Kenneth W Kinzler
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Nickolas Papadopoulos
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Bert Vogelstein
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Chetan Bettegowda
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA.
| |
Collapse
|
10
|
Sivapalan L, Iams WT, Belcaid Z, Scott SC, Niknafs N, Balan A, White JR, Kopparapu P, Cann C, Landon BV, Pereira G, Velculescu VE, Hann CL, Lovly CM, Anagnostou V. Dynamics of Sequence and Structural Cell-Free DNA Landscapes in Small-Cell Lung Cancer. Clin Cancer Res 2023; 29:2310-2323. [PMID: 37071497 PMCID: PMC10261918 DOI: 10.1158/1078-0432.ccr-22-2242] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/27/2022] [Accepted: 02/03/2023] [Indexed: 04/19/2023]
Abstract
PURPOSE Patients with small-cell lung cancer (SCLC) have an exceptionally poor prognosis, calling for improved real-time noninvasive biomarkers of therapeutic response. EXPERIMENTAL DESIGN We performed targeted error-correction sequencing on 171 serial plasmas and matched white blood cell (WBC) DNA from 33 patients with metastatic SCLC who received treatment with chemotherapy (n = 16) or immunotherapy-containing (n = 17) regimens. Tumor-derived sequence alterations and plasma aneuploidy were evaluated serially and combined to assess changes in total cell-free tumor load (cfTL). Longitudinal dynamic changes in cfTL were monitored to determine circulating cell-free tumor DNA (ctDNA) molecular response during therapy. RESULTS Combined tiered analyses of tumor-derived sequence alterations and plasma aneuploidy allowed for the assessment of ctDNA molecular response in all patients. Patients classified as molecular responders (n = 9) displayed sustained elimination of cfTL to undetectable levels. For 14 patients, we observed initial molecular responses, followed by ctDNA recrudescence. A subset of patients (n = 10) displayed a clear pattern of molecular progression, with persistence of cfTL across all time points. Molecular responses captured the therapeutic effect and long-term clinical outcomes in a more accurate and rapid manner compared with radiographic imaging. Patients with sustained molecular responses had longer overall (log-rank P = 0.0006) and progression-free (log-rank P < 0.0001) survival, with molecular responses detected on average 4 weeks earlier than imaging. CONCLUSIONS ctDNA analyses provide a precise approach for the assessment of early on-therapy molecular responses and have important implications for the management of patients with SCLC, including the development of improved strategies for real-time tumor burden monitoring. See related commentary by Pellini and Chaudhuri, p. 2176.
Collapse
Affiliation(s)
- Lavanya Sivapalan
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Wade T. Iams
- Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Zineb Belcaid
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Susan C. Scott
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Noushin Niknafs
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Archana Balan
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - James R. White
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Prasad Kopparapu
- Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Christopher Cann
- Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Blair V. Landon
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gavin Pereira
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Victor E. Velculescu
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christine L. Hann
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christine M. Lovly
- Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Valsamo Anagnostou
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
11
|
Hu Y, Lu B, Deng Z, Xing F, Hsu W. Virus-like particle-based delivery of Cas9/guide RNA ribonucleoprotein efficiently edits the brachyury gene and inhibits chordoma growth in vivo. Discov Oncol 2023; 14:70. [PMID: 37198417 DOI: 10.1007/s12672-023-00680-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023] Open
Abstract
PURPOSE Chordoma is a rare and aggressive bone cancer driven by the developmental transcription factor brachyury. Efforts to target brachyury are hampered by the absence of ligand-accessible small-molecule binding pockets. Genome editing with CRISPR systems provides an unprecedented opportunity to modulate undruggable transcription factor targets. However, delivery of CRISPR remains a bottleneck for in vivo therapy development. The aim was to investigate the in vivo therapeutic efficiency of Cas9/guide RNA (gRNA) ribonucleoprotein (RNP) delivery through a novel virus-like particle (VLP) by fusing an aptamer-binding protein to the lentiviral nucleocapsid protein. METHODS The p24 based ELISA and transmission electron microscopy were used to determine the characterization of engineered VLP-packaged Cas9/gRNA RNP. The deletion efficiency of brachyury gene in chordoma cells and tissues was measured by genome cleavage detection assay. RT-PCR, Western blot, immunofluorescence staining, and IHC were employed to test the function of brachyury deletion. Cell growth and tumor volume were measured to evaluate the therapeutic efficiency of brachyury deletion by VLP-packaged Cas9/gRNA RNP. RESULTS Our "all-in-one" VLP-based Cas9/gRNA RNP system allows for transient expression of Cas9 in chordoma cells, but maintains efficient editing capacity leading to approximately 85% knockdown of brachyury with subsequent inhibition of chordoma cell proliferation and tumor progression. In addition, this VLP-packaged brachyury-targeting Cas9 RNP avoids systemic toxicities in vivo. CONCLUSION Our preclinical studies demonstrate the potential of VLP-based Cas9/gRNA RNP gene therapy for the treatment of brachyury-dependent chordoma.
Collapse
Affiliation(s)
- Yunping Hu
- Department of Neurological Surgery, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
| | - Baisong Lu
- Medical Center Boulevard, Wake Forest University Institute for Regenerative Medicine, Winston-Salem, NC, 27157, USA
| | - Zhiyong Deng
- Department of Physiology and Pharmacology, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Fei Xing
- Department of Cancer Biology, Medical Center Boulevard, Wake Forest University School of Medicine, Winston- Salem, NC, 27157, USA
| | - Wesley Hsu
- Department of Neurological Surgery, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
12
|
Sivapalan L, Murray JC, Canzoniero JV, Landon B, Jackson J, Scott S, Lam V, Levy BP, Sausen M, Anagnostou V. Liquid biopsy approaches to capture tumor evolution and clinical outcomes during cancer immunotherapy. J Immunother Cancer 2023; 11:e005924. [PMID: 36657818 PMCID: PMC9853269 DOI: 10.1136/jitc-2022-005924] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 01/20/2023] Open
Abstract
Circulating cell-free tumor DNA (ctDNA) can serve as a real-time biomarker of tumor burden and provide unique insights into the evolving molecular landscape of cancers under the selective pressure of immunotherapy. Tracking the landscape of genomic alterations detected in ctDNA may reveal the clonal architecture of the metastatic cascade and thus improve our understanding of the molecular wiring of therapeutic responses. While liquid biopsies may provide a rapid and accurate evaluation of tumor burden dynamics during immunotherapy, the complexity of antitumor immune responses is not fully captured through single-feature ctDNA analyses. This underscores a need for integrative studies modeling the tumor and the immune compartment to understand the kinetics of tumor clearance in association with the quality of antitumor immune responses. Clinical applications of ctDNA testing in patients treated with immune checkpoint inhibitors have shown both predictive and prognostic value through the detection of genomic biomarkers, such as tumor mutational burden and microsatellite instability, as well as allowing for real-time monitoring of circulating tumor burden and the assessment of early on-therapy responses. These efforts highlight the emerging role of liquid biopsies in selecting patients for cancer immunotherapy, monitoring therapeutic efficacy, determining the optimal duration of treatment and ultimately guiding treatment selection and sequencing. The clinical translation of liquid biopsies is propelled by the increasing number of ctDNA-directed interventional clinical trials in the immuno-oncology space, signifying a critical step towards implementation of liquid biopsies in precision immuno-oncology.
Collapse
Affiliation(s)
- Lavanya Sivapalan
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joseph C Murray
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jenna VanLiere Canzoniero
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Blair Landon
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Susan Scott
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vincent Lam
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Benjamin P Levy
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mark Sausen
- Personal Genome Diagnostics, Baltimore, Maryland, USA
| | - Valsamo Anagnostou
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
13
|
Abujudeh S, Zeki SS, van Lanschot MCJ, Pusung M, Weaver JMJ, Li X, Noorani A, Metz AJ, Bornschein J, Bower L, Miremadi A, Fitzgerald RC, Morrissey ER, Lynch AG. Low-cost and clinically applicable copy number profiling using repeat DNA. BMC Genomics 2022; 23:599. [PMID: 35978291 PMCID: PMC9386984 DOI: 10.1186/s12864-022-08681-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Somatic copy number alterations (SCNAs) are an important class of genomic alteration in cancer. They are frequently observed in cancer samples, with studies showing that, on average, SCNAs affect 34% of a cancer cell's genome. Furthermore, SCNAs have been shown to be major drivers of tumour development and have been associated with response to therapy and prognosis. Large-scale cancer genome studies suggest that tumours are driven by somatic copy number alterations (SCNAs) or single-nucleotide variants (SNVs). Despite the frequency of SCNAs and their clinical relevance, the use of genomics assays in the clinic is biased towards targeted gene panels, which identify SNVs but provide limited scope to detect SCNAs throughout the genome. There is a need for a comparably low-cost and simple method for high-resolution SCNA profiling. RESULTS We present conliga, a fully probabilistic method that infers SCNA profiles from a low-cost, simple, and clinically-relevant assay (FAST-SeqS). When applied to 11 high-purity oesophageal adenocarcinoma samples, we obtain good agreement (Spearman's rank correlation coefficient, rs=0.94) between conliga's inferred SCNA profiles using FAST-SeqS data (approximately £14 per sample) and those inferred by ASCAT using high-coverage WGS (gold-standard). We find that conliga outperforms CNVkit (rs=0.89), also applied to FAST-SeqS data, and is comparable to QDNAseq (rs=0.96) applied to low-coverage WGS, which is approximately four-fold more expensive, more laborious and less clinically-relevant. By performing an in silico dilution series experiment, we find that conliga is particularly suited to detecting SCNAs in low tumour purity samples. At two million reads per sample, conliga is able to detect SCNAs in all nine samples at 3% tumour purity and as low as 0.5% purity in one sample. Crucially, we show that conliga's hidden state information can be used to decide when a sample is abnormal or normal, whereas CNVkit and QDNAseq cannot provide this critical information. CONCLUSIONS We show that conliga provides high-resolution SCNA profiles using a convenient, low-cost assay. We believe conliga makes FAST-SeqS a more clinically valuable assay as well as a useful research tool, enabling inexpensive and fast copy number profiling of pre-malignant and cancer samples.
Collapse
Affiliation(s)
- Sam Abujudeh
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Sebastian S Zeki
- Medical Research Council (MRC) Cancer Unit, University of Cambridge, Cambridge, UK. .,Department of Gastroenterology, Guy's and St Thomas' NHS Trust, London, SE1 7EH, UK.
| | | | - Mark Pusung
- Medical Research Council (MRC) Cancer Unit, University of Cambridge, Cambridge, UK
| | - Jamie M J Weaver
- Medical Research Council (MRC) Cancer Unit, University of Cambridge, Cambridge, UK.,Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, M20 4TX, UK
| | - Xiaodun Li
- Medical Research Council (MRC) Cancer Unit, University of Cambridge, Cambridge, UK
| | - Ayesha Noorani
- Medical Research Council (MRC) Cancer Unit, University of Cambridge, Cambridge, UK
| | - Andrew J Metz
- Medical Research Council (MRC) Cancer Unit, University of Cambridge, Cambridge, UK
| | - Jan Bornschein
- Medical Research Council (MRC) Cancer Unit, University of Cambridge, Cambridge, UK
| | - Lawrence Bower
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Ahmad Miremadi
- Medical Research Council (MRC) Cancer Unit, University of Cambridge, Cambridge, UK
| | - Rebecca C Fitzgerald
- Medical Research Council (MRC) Cancer Unit, University of Cambridge, Cambridge, UK.
| | - Edward R Morrissey
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK. .,Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| | - Andy G Lynch
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK. .,School of Mathematics and Statistics/School of Medicine, University of St Andrews, St Andrews, UK.
| |
Collapse
|
14
|
The Utility of Repetitive Cell-Free DNA in Cancer Liquid Biopsies. Diagnostics (Basel) 2022; 12:diagnostics12061363. [PMID: 35741173 PMCID: PMC9221655 DOI: 10.3390/diagnostics12061363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 02/05/2023] Open
Abstract
Liquid biopsy is a broad term that refers to the testing of body fluids for biomarkers that correlate with a pathological condition. While a variety of body-fluid components (e.g., circulating tumor cells, extracellular vesicles, RNA, proteins, and metabolites) are studied as potential liquid biopsy biomarkers, cell-free DNA (cfDNA) has attracted the most attention in recent years. The total cfDNA population in a typical biospecimen represents an immensely rich source of biological and pathological information and has demonstrated significant potential as a versatile biomarker in oncology, non-invasive prenatal testing, and transplant monitoring. As a significant portion of cfDNA is composed of repeat DNA sequences and some families (e.g., pericentric satellites) were recently shown to be overrepresented in cfDNA populations vs their genomic abundance, it holds great potential for developing liquid biopsy-based biomarkers for the early detection and management of patients with cancer. By outlining research that employed cell-free repeat DNA sequences, in particular the ALU and LINE-1 elements, we highlight the clinical potential of the repeat-element content of cfDNA as an underappreciated marker in the cancer liquid biopsy repertoire.
Collapse
|
15
|
Liu W, Li Y, Tang Y, Song Q, Wang J, Li N, Chen S, Shi J, Wang S, Li Y, Jiao Y, Zeng Y, Jin J. Response prediction and risk stratification of patients with rectal cancer after neoadjuvant therapy through an analysis of circulating tumour DNA. EBioMedicine 2022; 78:103945. [PMID: 35306340 PMCID: PMC8933829 DOI: 10.1016/j.ebiom.2022.103945] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 11/11/2022] Open
Abstract
Background Multiple approaches based on cell-free DNA (cfDNA) have been applied to detect minimal residual disease (MRD) and to predict prognosis or recurrence. However, a comparison of the approaches used in different cohorts and studies is difficult. We aimed to compare multiple approaches for MRD analysis after neoadjuvant therapy (NAT) in patients with locally advanced rectal cancer (LARC). Methods Sixty patients with LARC from a multicentre, phase II/III randomized trial were included, with tissue and blood samples collected. For each cfDNA sample, we profiled MRD using 3 approaches: personalized assay targeting tumour-informed mutations, universal panel of genes frequently mutated in colorectal cancer (CRC), and low depth sequencing for copy number alterations (CNAs). Findings Positive MRD based on post-NAT personalized assay was significantly associated with an increased risk of recurrence (HR = 27.38; log-rank P < 0.0001). MRD analysis based on universal panel (HR = 5.18; log-rank P = 0.00086) and CNAs analysis (HR = 9.24; log-rank P = 0.00017) showed a compromised performance in predicting recurrence. Both the personalized assay and universal panel showed complementary pattern to CNAs analysis in detecting cases with recurrence and the combination of the two types of biomarkers may lead to better performance. Interpretation The combination of mutation profiling and CNA profiling can improve the detection of MRD, which may help optimize the treatment strategies for patients with LARC.
Collapse
|
16
|
Mattox AK, Douville C, Silliman N, Ptak J, Dobbyn L, Schaefer J, Popoli M, Blair C, Judge K, Pollard K, Pratilas C, Blakeley J, Rodriguez F, Papadopoulos N, Belzberg A, Bettegowda C. Detection of malignant peripheral nerve sheath tumors in patients with neurofibromatosis using aneuploidy and mutation identification in plasma. eLife 2022; 11:e74238. [PMID: 35244537 PMCID: PMC9094745 DOI: 10.7554/elife.74238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/01/2022] [Indexed: 11/28/2022] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNST) are the deadliest cancer that arises in individuals diagnosed with neurofibromatosis and account for nearly 5% of the 15,000 soft tissue sarcomas diagnosed in the United States each year. Comprised of neoplastic Schwann cells, primary risk factors for developing MPNST include existing plexiform neurofibromas (PN), prior radiotherapy treatment, and expansive germline mutations involving the entire NF1 gene and surrounding genes. PN develop in nearly 30-50% of patients with neurofibromatosis type 1 (NF1) and most often grow rapidly in the first decade of life. One of the most important aspects of clinical care for NF1 patients is monitoring PN for signs of malignant transformation to MPNST that occurs in 10-15% of patients. We perform aneuploidy analysis on ctDNA from 883 ostensibly healthy individuals and 28 patients with neurofibromas, including 7 patients with benign neurofibroma, 9 patients with PN and 12 patients with MPNST. Overall sensitivity for detecting MPNST using genome wide aneuploidy scoring was 33%, and analysis of sub-chromosomal copy number alterations (CNAs) improved sensitivity to 50% while retaining a high specificity of 97%. In addition, we performed mutation analysis on plasma cfDNA for a subset of patients and identified mutations in NF1, NF2, RB1, TP53BP2, and GOLGA2. Given the high throughput and relatively low sequencing coverage required by our assay, liquid biopsy represents a promising technology to identify incipient MPNST.
Collapse
Affiliation(s)
- Austin K Mattox
- Ludwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Christopher Douville
- Ludwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Natalie Silliman
- Ludwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Janine Ptak
- Ludwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Lisa Dobbyn
- Ludwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Joy Schaefer
- Ludwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Maria Popoli
- Ludwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Cherie Blair
- Ludwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Kathy Judge
- Ludwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Kai Pollard
- Department of Pediatrics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, Sidney Kimmel Comprehensive Cancer, Johns Hopkins UniversityBaltimoreUnited States
| | - Christine Pratilas
- Department of Pediatrics, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Jaishri Blakeley
- Department of Neurology, Johns Hopkins University School of Medicine, MD School of MedicineBaltimoreUnited States
| | - Fausto Rodriguez
- Department of Pathology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Nickolas Papadopoulos
- Ludwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, Sidney Kimmel Comprehensive Cancer, Johns Hopkins UniversityBaltimoreUnited States
- Department of Pathology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Allan Belzberg
- Department of Neurosurgery, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Chetan Bettegowda
- Ludwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, Sidney Kimmel Comprehensive Cancer, Johns Hopkins UniversityBaltimoreUnited States
- Department of Neurosurgery, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
17
|
Wan JCM, Mughal TI, Razavi P, Dawson SJ, Moss EL, Govindan R, Tan IB, Yap YS, Robinson WA, Morris CD, Besse B, Bardelli A, Tie J, Kopetz S, Rosenfeld N. Liquid biopsies for residual disease and recurrence. MED 2021; 2:1292-1313. [PMID: 35590147 DOI: 10.1016/j.medj.2021.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/27/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023]
Abstract
Detection of minimal residual disease in patients with cancer, who are in complete remission with no cancer cells detectable, has the potential to improve recurrence-free survival through treatment selection. Studies analyzing circulating tumor DNA (ctDNA) in patients with solid tumors suggest the potential to accurately predict and detect relapse, enabling treatment strategies that may improve clinical outcomes. Over the past decade, assays for ctDNA detection in plasma samples have steadily increased in sensitivity and specificity. These are applied for the detection of residual disease after treatment and for earlier detection of recurrence. Novel clinical trials are now assessing how assays for "residual disease and recurrence" (RDR) may influence current treatment paradigms and potentially change the landscape of risk classification for cancer recurrence. In this review, we appraise the progress of RDR detection using ctDNA and consider the emerging role of liquid biopsy in the monitoring and management of solid tumors.
Collapse
Affiliation(s)
| | - Tariq Imdadali Mughal
- Tufts University School of Medicine, Boston, MA 02111, USA; University of Buckingham, Buckingham MK18 1EG, UK
| | - Pedram Razavi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Esther Louise Moss
- Leicester Cancer Research Centre, College of Life Sciences, University of Leicester, Leicester LE1 7RH, UK; Department of Gynaecological Oncology, University Hospitals of Leicester NHS Trust, Leicester General Hospital, Leicester LE5 4PW, UK
| | | | - Iain Beehuat Tan
- Division of Medical Oncology, National Cancer Centre Singapore, 169610 Singapore, Singapore
| | - Yoon-Sim Yap
- Division of Medical Oncology, National Cancer Centre Singapore, 169610 Singapore, Singapore
| | | | | | - Benjamin Besse
- Department of Cancer Medicine, Institut Gustave Roussy Cancer Center, 94805 Villejuif, France
| | - Alberto Bardelli
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo TO, Italy; Department of Oncology, University of Turin, 10060 Candiolo TO, Italy
| | - Jeanne Tie
- Peter MacCallum Cancer Center, Melbourne, VIC 3000, Australia; Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Scott Kopetz
- MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nitzan Rosenfeld
- Inivata, Cambridge CB22 3FH, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK; Cancer Research UK Cambridge Centre, Cambridge CB2 0RE, UK.
| |
Collapse
|
18
|
Xian S, Dosset M, Almanza G, Searles S, Sahani P, Waller TC, Jepsen K, Carter H, Zanetti M. The unfolded protein response links tumor aneuploidy to local immune dysregulation. EMBO Rep 2021; 22:e52509. [PMID: 34698427 PMCID: PMC8647024 DOI: 10.15252/embr.202152509] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 12/19/2022] Open
Abstract
Aneuploidy is a chromosomal abnormality associated with poor prognosis in many cancer types. Here, we tested the hypothesis that the unfolded protein response (UPR) mechanistically links aneuploidy and local immune dysregulation. Using a single somatic copy number alteration (SCNA) score inclusive of whole‐chromosome, chromosome arm, and focal alterations in a pan‐cancer analysis of 9,375 samples in The Cancer Genome Atlas (TCGA) database, we found an inverse correlation with a cytotoxicity (CYT) score across disease stages. Co‐expression patterns of UPR genes changed substantially between SCNAlow and SCNAhigh groups. Pathway activity scores showed increased activity of multiple branches of the UPR in response to aneuploidy. The PERK branch showed the strongest association with a reduced CYT score. The conditioned medium of aneuploid cells transmitted XBP1 splicing and caused IL‐6 and arginase 1 transcription in receiver bone marrow‐derived macrophages and markedly diminished the production of IFN‐γ and granzyme B in activated human T cells. We propose the UPR as a mechanistic link between aneuploidy and immune dysregulation in the tumor microenvironment.
Collapse
Affiliation(s)
- Su Xian
- Division of Medical Genetics Biostatistics, Department of Medicine, Bioinformatics and System Biology Program, University of California, San Diego, La Jolla, CA, USA
| | - Magalie Dosset
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Gonzalo Almanza
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Stephen Searles
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Paras Sahani
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - T Cameron Waller
- Division of Medical Genetics Biostatistics, Department of Medicine, Bioinformatics and System Biology Program, University of California, San Diego, La Jolla, CA, USA
| | - Kristen Jepsen
- IGM Genomics Center, University of California, San Diego, La Jolla, CA, USA
| | - Hannah Carter
- Division of Medical Genetics Biostatistics, Department of Medicine, Bioinformatics and System Biology Program, University of California, San Diego, La Jolla, CA, USA
| | - Maurizio Zanetti
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
19
|
Naidoo J, Schreck KC, Fu W, Hu C, Carvajal-Gonzalez A, Connolly RM, Santa-Maria CA, Lipson EJ, Holdhoff M, Forde PM, Douville C, Riemer J, Barnes A, Redmond KJ, Kleinberg L, Page B, Aygun N, Kinzler KW, Papadopoulos N, Bettegowda C, Venkatesan A, Brahmer JR, Grossman SA. Pembrolizumab for patients with leptomeningeal metastasis from solid tumors: efficacy, safety, and cerebrospinal fluid biomarkers. J Immunother Cancer 2021; 9:jitc-2021-002473. [PMID: 34380662 PMCID: PMC8359453 DOI: 10.1136/jitc-2021-002473] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 01/17/2023] Open
Abstract
Background The benefit of immune checkpoint inhibitors (ICIs) in patients with leptomeningeal metastases (LMM) is unknown. Methods We undertook a phase II trial of pembrolizumab in patients with LMM from solid tumors. Eligible patients had radiologic/cytologic LMM and Eastern Cooperative Oncology Group performance status 0–1. Pembrolizumab was administered intravenously at 200 mg q3W until disease progression/unacceptable toxicity. The primary endpoint was central nervous system (CNS) response after four cycles, defined radiologically/cytologically/clinically. Serial cerebrospinal fluid (CSF) was assessed for tumor-derived DNA (t-DNA) aneuploidy and cytokines. Results Thirteen of a planned 16 patients were treated between April 2017 and December 2019. The study closed early for poor accrual. Median age was 57 years (range: 22–79). Sixty-two percent of patients had tumors not traditionally ICI-responsive (hormone-receptor (HR)-positive breast carcinoma=39%; high-grade glioma=23%), while 38% had ICI-responsive tumors (non-small cell lung cancer (NSCLC)=23%, head and neck carcinoma=8%, cutaneous squamous carcinoma (CSC)=8%). CNS response was observed in 38% of patients at 12 weeks (95% CI 13.9% to 68.4%) by pre-defined criteria and LM-RANO, and 2 achieved durable complete responses (CSC=1, overall survival (OS) 3+ years; NSCLC=1, OS 9 months). Median CNS progression-free survival and OS was 2.9 months (95% CI 1.3 to NR) and 4.9 months (95% CI 3.7 to NR), respectively. Grade 3+ treatment-related adverse events occurred in 15% of patients. Sensitivity for LMM detection by t-DNA and cytopathology was 84.6% (95% CI 54.6% to 98.1%) and 53.9% (95% CI 25.1% to 80.8%), respectively. Pre-therapy and on-therapy CSF cytokine analysis demonstrated complete responders clustered together. Conclusions Pembrolizumab conferred a 38% CNS response rate in patients with LMM, a tolerable safety profile, and deep responses in selected patients with ICI-responsive tumors. CSF t-DNA may be sensitive for LMM detection, and immunologic subsets of CNS response warrant further study. Trial registration number NCT03091478
Collapse
Affiliation(s)
- Jarushka Naidoo
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA .,Department of Immunology, The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Oncology, Beaumont Hospital and RCSI University of Health Sciences, Dublin, Ireland
| | - Karisa C Schreck
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Neurology, John Hopkins Medicine, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Wei Fu
- Department of Biostatistics, Sidney Kimmel Comprehensive Cancer Center, John Hopkins University, Baltimore, Maryland, USA
| | - Chen Hu
- Department of Biostatistics, Sidney Kimmel Comprehensive Cancer Center, John Hopkins University, Baltimore, Maryland, USA
| | | | - Roisin M Connolly
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA.,Cancer Research@UCC, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Cesar A Santa-Maria
- Department of Immunology, The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Immunology, Johns Hopkins Medicine Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Evan J Lipson
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Immunology, The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA
| | - Matthias Holdhoff
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Patrick M Forde
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Immunology, The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA
| | - Christopher Douville
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Immunology, The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA.,Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University, Baltimore, Maryland, USA.,Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Joanne Riemer
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Immunology, The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA
| | - Amanda Barnes
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Immunology, The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kristin J Redmond
- Department of Radiation Oncology, Sidney Kimmel Comprehensive Cancer. John Hopkins University, Baltimore, Maryland, USA
| | - Lawrence Kleinberg
- Department of Radiation Oncology, Sidney Kimmel Comprehensive Cancer. John Hopkins University, Baltimore, Maryland, USA
| | - Brandi Page
- Department of Radiation Oncology, Sidney Kimmel Comprehensive Cancer. John Hopkins University, Baltimore, Maryland, USA
| | - Nafi Aygun
- Division of Radiology, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Kenneth W Kinzler
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Immunology, The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA.,Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University, Baltimore, Maryland, USA.,Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nickolas Papadopoulos
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Immunology, The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA.,Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University, Baltimore, Maryland, USA.,Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Chetan Bettegowda
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Immunology, The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland, USA.,Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University, Baltimore, Maryland, USA.,Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Arun Venkatesan
- Department of Neurology, John Hopkins Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Julie R Brahmer
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Immunology, The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA
| | - Stuart A Grossman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
20
|
Bohers E, Viailly PJ, Jardin F. cfDNA Sequencing: Technological Approaches and Bioinformatic Issues. Pharmaceuticals (Basel) 2021; 14:ph14060596. [PMID: 34205827 PMCID: PMC8234829 DOI: 10.3390/ph14060596] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 12/14/2022] Open
Abstract
In the era of precision medicine, it is crucial to identify molecular alterations that will guide the therapeutic management of patients. In this context, circulating tumoral DNA (ctDNA) released by the tumor in body fluids, like blood, and carrying its molecular characteristics is becoming a powerful biomarker for non-invasive detection and monitoring of cancer. Major recent technological advances, especially in terms of sequencing, have made possible its analysis, the challenge still being its reliable early detection. Different parameters, from the pre-analytical phase to the choice of sequencing technology and bioinformatic tools can influence the sensitivity of ctDNA detection.
Collapse
|
21
|
Douville C, Moinova HR, Thota PN, Shaheen NJ, Iyer PG, Canto MI, Wang JS, Dumot JA, Faulx A, Kinzler KW, Papadopoulos N, Vogelstein B, Markowitz SD, Bettegowda C, Willis JE, Chak A. Massively Parallel Sequencing of Esophageal Brushings Enables an Aneuploidy-Based Classification of Patients With Barrett's Esophagus. Gastroenterology 2021; 160:2043-2054.e2. [PMID: 33493502 PMCID: PMC8141353 DOI: 10.1053/j.gastro.2021.01.209] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/04/2021] [Accepted: 01/13/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Aneuploidy has been proposed as a tool to assess progression in patients with Barrett's esophagus (BE), but has heretofore required multiple biopsies. We assessed whether a single esophageal brushing that widely sampled the esophagus could be combined with massively parallel sequencing to characterize aneuploidy and identify patients with disease progression to dysplasia or cancer. METHODS Esophageal brushings were obtained from patients without BE, with non-dysplastic BE (NDBE), low-grade dysplasia (LGD), high-grade dysplasia (HGD), or adenocarcinoma (EAC). To assess aneuploidy, we used RealSeqS, a technique that uses a single primer pair to interrogate ∼350,000 genome-spanning regions and identify specific chromosome arm alterations. A classifier to distinguish NDBE from EAC was trained on results from 79 patients. An independent validation cohort of 268 subjects was used to test the classifier at distinguishing patients at successive phases of BE progression. RESULTS Aneuploidy progression was associated with gains of 1q, 12p, and 20q and losses on 9p and 17p. The entire chromosome 8q was often gained in NDBE, whereas focal gain of 8q24 was identified only when there was dysplasia. Among validation subjects, a classifier incorporating these features with a global measure of aneuploidy scored positive in 96% of EAC, 68% of HGD, but only 7% of NDBE. CONCLUSIONS RealSeqS analysis of esophageal brushings provides a practical and sensitive method to determine aneuploidy in BE patients. It identifies specific chromosome changes that occur early in NDBE and others that occur late and mark progression to dysplasia. The clinical implications of this approach can now be tested in prospective trials.
Collapse
Affiliation(s)
- Christopher Douville
- Department of Oncology, the Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Ludwig Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Helen R Moinova
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Prashanthi N Thota
- Department of Gastroenterology and Hepatology, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Nicholas J Shaheen
- Center for Esophageal Diseases and Swallowing, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Prasad G Iyer
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Marcia Irene Canto
- Department of Oncology, the Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Jean S Wang
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - John A Dumot
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Ashley Faulx
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Kenneth W Kinzler
- Department of Oncology, the Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Ludwig Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nickolas Papadopoulos
- Department of Oncology, the Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Ludwig Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bert Vogelstein
- Department of Oncology, the Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Ludwig Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sanford D Markowitz
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio; Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, Ohio.
| | - Chetan Bettegowda
- Department of Oncology, the Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Ludwig Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joseph E Willis
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio; Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, Ohio; Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Amitabh Chak
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio; Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, Ohio.
| |
Collapse
|
22
|
Hwang MS, Mog BJ, Douglass J, Pearlman AH, Hsiue EHC, Paul S, DiNapoli SR, Konig MF, Pardoll DM, Gabelli SB, Bettegowda C, Papadopoulos N, Vogelstein B, Zhou S, Kinzler KW. Targeting loss of heterozygosity for cancer-specific immunotherapy. Proc Natl Acad Sci U S A 2021; 118:e2022410118. [PMID: 33731480 PMCID: PMC8000272 DOI: 10.1073/pnas.2022410118] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Developing therapeutic agents with potent antitumor activity that spare normal tissues remains a significant challenge. Clonal loss of heterozygosity (LOH) is a widespread and irreversible genetic alteration that is exquisitely specific to cancer cells. We hypothesized that LOH events can be therapeutically targeted by "inverting" the loss of an allele in cancer cells into an activating signal. Here we describe a proof-of-concept approach utilizing engineered T cells approximating NOT-gate Boolean logic to target counterexpressed antigens resulting from LOH events in cancer. The NOT gate comprises a chimeric antigen receptor (CAR) targeting the allele of human leukocyte antigen (HLA) that is retained in the cancer cells and an inhibitory CAR (iCAR) targeting the HLA allele that is lost in the cancer cells. We demonstrate that engineered T cells incorporating such NOT-gate logic can be activated in a genetically predictable manner in vitro and in mice to kill relevant cancer cells. This therapeutic approach, termed NASCAR (Neoplasm-targeting Allele-Sensing CAR), could, in theory, be extended to LOH of other polymorphic genes that result in altered cell surface antigens in cancers.
Collapse
Affiliation(s)
- Michael S Hwang
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- HHMI, Chevy Chase, MD 20815
- Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Brian J Mog
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- HHMI, Chevy Chase, MD 20815
- Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Jacqueline Douglass
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- HHMI, Chevy Chase, MD 20815
- Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Alexander H Pearlman
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- HHMI, Chevy Chase, MD 20815
- Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Emily Han-Chung Hsiue
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- HHMI, Chevy Chase, MD 20815
- Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Suman Paul
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- HHMI, Chevy Chase, MD 20815
- Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Sarah R DiNapoli
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- HHMI, Chevy Chase, MD 20815
- Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Maximilian F Konig
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- HHMI, Chevy Chase, MD 20815
- Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Drew M Pardoll
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287
| | - Sandra B Gabelli
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Chetan Bettegowda
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Nickolas Papadopoulos
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Bert Vogelstein
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- HHMI, Chevy Chase, MD 20815
- Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Shibin Zhou
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287;
- Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287
| | - Kenneth W Kinzler
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287;
- Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
23
|
Mattox AK, Yang B, Douville C, Lo SF, Sciubba D, Wolinsky JP, Gokaslan ZL, Robison J, Blair C, Jiao Y, Bettegowda C. The mutational landscape of spinal chordomas and their sensitive detection using circulating tumor DNA. Neurooncol Adv 2021; 3:vdaa173. [PMID: 33543146 PMCID: PMC7850091 DOI: 10.1093/noajnl/vdaa173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background Chordomas are the most common primary spinal column malignancy in the United States. The aim of this study was to determine whether chordomas may be detected by evaluating mutations in circulating tumor DNA (ctDNA). Methods Thirty-two patients with a biopsy-confirmed diagnosis of chordoma had blood drawn pre-operatively and/or at follow-up appointments. Mutations in the primary tumor were identified by whole exome sequencing and liquid biopsy by ddPCR and/or RACE-Seq was used to detect one or more of these mutations in plasma ctDNA at concurrent or later time points. Results At the time of initial blood draw, 87.1% of patients were ctDNA positive (P <.001). Follow-up blood draws in twenty of the patients suggest that ctDNA levels may reflect the clinical status of the disease. Patients with positive ctDNA levels were more likely to have greater mutant allele frequencies in their primary tumors (P = .004) and undergo radiotherapy (P = .02), and the presence of ctDNA may correlate with response to systemic chemotherapy and/or disease recurrence. Conclusions Detection of ctDNA mutations may allow for the detection and monitoring of disease progression for chordomas.
Collapse
Affiliation(s)
- Austin K Mattox
- Ludwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Beibei Yang
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Christopher Douville
- Ludwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sheng-Fu Lo
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel Sciubba
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jean Paul Wolinsky
- Department of Neurosurgery, Northwestern University School of Medicine, Chicago, Illinois, USA
| | - Ziya L Gokaslan
- Department of Neurosurgery, Brown University School of Medicine, Providence, Rhode Island, USA
| | - Jamie Robison
- Department of Neurosurgery, Mayo Clinic, Jacksonville, Florida, USA
| | - Cherie Blair
- Ludwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yuchen Jiao
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chetan Bettegowda
- Ludwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
24
|
Keller L, Belloum Y, Wikman H, Pantel K. Clinical relevance of blood-based ctDNA analysis: mutation detection and beyond. Br J Cancer 2021; 124:345-358. [PMID: 32968207 PMCID: PMC7852556 DOI: 10.1038/s41416-020-01047-5] [Citation(s) in RCA: 234] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/22/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Cell-free DNA (cfDNA) derived from tumours is present in the plasma of cancer patients. The majority of currently available studies on the use of this circulating tumour DNA (ctDNA) deal with the detection of mutations. The analysis of cfDNA is often discussed in the context of the noninvasive detection of mutations that lead to resistance mechanisms and therapeutic and disease monitoring in cancer patients. Indeed, substantial advances have been made in this area, with the development of methods that reach high sensitivity and can interrogate a large number of genes. Interestingly, however, cfDNA can also be used to analyse different features of DNA, such as methylation status, size fragment patterns, transcriptomics and viral load, which open new avenues for the analysis of liquid biopsy samples from cancer patients. This review will focus on the new perspectives and challenges of cfDNA analysis from mutation detection in patients with solid malignancies.
Collapse
Affiliation(s)
- Laura Keller
- University Medical Center Hamburg-Eppendorf, Institute of Tumor Biology, Martinistrasse 52, Building N27, 20246, Hamburg, Germany
| | - Yassine Belloum
- University Medical Center Hamburg-Eppendorf, Institute of Tumor Biology, Martinistrasse 52, Building N27, 20246, Hamburg, Germany
| | - Harriet Wikman
- University Medical Center Hamburg-Eppendorf, Institute of Tumor Biology, Martinistrasse 52, Building N27, 20246, Hamburg, Germany
| | - Klaus Pantel
- University Medical Center Hamburg-Eppendorf, Institute of Tumor Biology, Martinistrasse 52, Building N27, 20246, Hamburg, Germany.
| |
Collapse
|
25
|
Thompson ED, Roberts NJ, Wood LD, Eshleman JR, Goggins MG, Kern SE, Klein AP, Hruban RH. The genetics of ductal adenocarcinoma of the pancreas in the year 2020: dramatic progress, but far to go. Mod Pathol 2020; 33:2544-2563. [PMID: 32704031 PMCID: PMC8375585 DOI: 10.1038/s41379-020-0629-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
The publication of the "Pan-Cancer Atlas" by the Pan-Cancer Analysis of Whole Genomes Consortium, a partnership formed by The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC), provides a wonderful opportunity to reflect on where we stand in our understanding of the genetics of pancreatic cancer, as well as on the opportunities to translate this understanding to patient care. From germline variants that predispose to the development of pancreatic cancer, to somatic mutations that are therapeutically targetable, genetics is now providing hope, where there once was no hope, for those diagnosed with pancreatic cancer.
Collapse
Affiliation(s)
- Elizabeth D Thompson
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicholas J Roberts
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura D Wood
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James R Eshleman
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael G Goggins
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Scott E Kern
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alison P Klein
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ralph H Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
26
|
Cohen JD, Diergaarde B, Papadopoulos N, Kinzler KW, Schoen RE. Tumor DNA as a Cancer Biomarker through the Lens of Colorectal Neoplasia. Cancer Epidemiol Biomarkers Prev 2020; 29:2441-2453. [PMID: 33033144 PMCID: PMC7710619 DOI: 10.1158/1055-9965.epi-20-0549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/06/2020] [Accepted: 09/30/2020] [Indexed: 12/24/2022] Open
Abstract
Biomarkers have a wide range of applications in the clinical management of cancer, including screening and therapeutic management. Tumor DNA released from neoplastic cells has become a particularly active area of cancer biomarker development due to the critical role somatic alterations play in the pathophysiology of cancer and the ability to assess released tumor DNA in accessible clinical samples, in particular blood (i.e., liquid biopsy). Many of the early applications of tumor DNA as a biomarker were pioneered in colorectal cancer due to its well-defined genetics and common occurrence, the effectiveness of early detection, and the availability of effective therapeutic options. Herein, in the context of colorectal cancer, we describe how the intended clinical application dictates desired biomarker test performance, how features of tumor DNA provide unique challenges and opportunities for biomarker development, and conclude with specific examples of clinical application of tumor DNA as a biomarker with particular emphasis on early detection.See all articles in this CEBP Focus section, "NCI Early Detection Research Network: Making Cancer Detection Possible."
Collapse
Affiliation(s)
- Joshua D Cohen
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Brenda Diergaarde
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nickolas Papadopoulos
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kenneth W Kinzler
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert E Schoen
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
27
|
Dudley JC, Diehn M. Detection and Diagnostic Utilization of Cellular and Cell-Free Tumor DNA. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 16:199-222. [PMID: 33228464 DOI: 10.1146/annurev-pathmechdis-012419-032604] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Because cancer is caused by an accumulation of genetic mutations, mutant DNA released by tumors can be used as a highly specific biomarker for cancer. Although this principle was described decades ago, the advent and falling costs of next-generation sequencing have made the use of tumor DNA as a biomarker increasingly practical. This review surveys the use of cellular and cell-free DNA for the detection of cancer, with a focus on recent technological developments and applications to solid tumors. It covers (a) key principles and technology enabling the highly sensitive detection of tumor DNA; (b) assessment of tumor DNA in plasma, including for genotyping, minimal residual disease detection, and early detection of localized cancer; (c) detection of tumor DNA in body cavity fluids, such as urine or cerebrospinal fluid; and (d) challenges posed to the use of tumor DNA as a biomarker by the phenomenon of benign clonal expansions.
Collapse
Affiliation(s)
- Jonathan C Dudley
- Ludwig Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Maximilian Diehn
- Department of Radiation Oncology, Stanford Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA;
| |
Collapse
|
28
|
Springer S, Masica DL, Dal Molin M, Douville C, Thoburn CJ, Afsari B, Li L, Cohen JD, Thompson E, Allen PJ, Klimstra DS, Schattner MA, Schmidt CM, Yip-Schneider M, Simpson RE, Fernandez-Del Castillo C, Mino-Kenudson M, Brugge W, Brand RE, Singhi AD, Scarpa A, Lawlor R, Salvia R, Zamboni G, Hong SM, Hwang DW, Jang JY, Kwon W, Swan N, Geoghegan J, Falconi M, Crippa S, Doglioni C, Paulino J, Schulick RD, Edil BH, Park W, Yachida S, Hijioka S, van Hooft J, He J, Weiss MJ, Burkhart R, Makary M, Canto MI, Goggins MG, Ptak J, Dobbyn L, Schaefer J, Sillman N, Popoli M, Klein AP, Tomasetti C, Karchin R, Papadopoulos N, Kinzler KW, Vogelstein B, Wolfgang CL, Hruban RH, Lennon AM. A multimodality test to guide the management of patients with a pancreatic cyst. Sci Transl Med 2020; 11:11/501/eaav4772. [PMID: 31316009 DOI: 10.1126/scitranslmed.aav4772] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/07/2019] [Accepted: 06/24/2019] [Indexed: 12/12/2022]
Abstract
Pancreatic cysts are common and often pose a management dilemma, because some cysts are precancerous, whereas others have little risk of developing into invasive cancers. We used supervised machine learning techniques to develop a comprehensive test, CompCyst, to guide the management of patients with pancreatic cysts. The test is based on selected clinical features, imaging characteristics, and cyst fluid genetic and biochemical markers. Using data from 436 patients with pancreatic cysts, we trained CompCyst to classify patients as those who required surgery, those who should be routinely monitored, and those who did not require further surveillance. We then tested CompCyst in an independent cohort of 426 patients, with histopathology used as the gold standard. We found that clinical management informed by the CompCyst test was more accurate than the management dictated by conventional clinical and imaging criteria alone. Application of the CompCyst test would have spared surgery in more than half of the patients who underwent unnecessary resection of their cysts. CompCyst therefore has the potential to reduce the patient morbidity and economic costs associated with current standard-of-care pancreatic cyst management practices.
Collapse
Affiliation(s)
- Simeon Springer
- Ludwig Center and Howard Hughes Medical Institute at the Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA.,Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, MD 21287, USA
| | - David L Masica
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, MD 21287, USA.,Department of Biomedical Engineering, Johns Hopkins Medical Institutions, Johns Hopkins University, Baltimore, MD 21287, USA.,Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Marco Dal Molin
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, MD 21287, USA.,Department of Pathology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Christopher Douville
- Ludwig Center and Howard Hughes Medical Institute at the Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA.,Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, MD 21287, USA.,Department of Biomedical Engineering, Johns Hopkins Medical Institutions, Johns Hopkins University, Baltimore, MD 21287, USA.,Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Christopher J Thoburn
- Ludwig Center and Howard Hughes Medical Institute at the Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA.,Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Bahman Afsari
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, MD 21287, USA.,Department of Oncology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Lu Li
- Ludwig Center and Howard Hughes Medical Institute at the Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA.,Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Joshua D Cohen
- Ludwig Center and Howard Hughes Medical Institute at the Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA.,Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, MD 21287, USA.,Department of Biomedical Engineering, Johns Hopkins Medical Institutions, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Elizabeth Thompson
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, MD 21287, USA.,Department of Pathology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Peter J Allen
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - David S Klimstra
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Mark A Schattner
- Department of Gastroenterology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - C Max Schmidt
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michele Yip-Schneider
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rachel E Simpson
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Mari Mino-Kenudson
- Department of Histopathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - William Brugge
- Department of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Randall E Brand
- Department of Medicine, University of Pittsburgh, Pittsburgh PA 15213, USA
| | - Aatur D Singhi
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Aldo Scarpa
- ARC-Net Research Centre, University and Hospital Trust of Verona, Verona 37134, Italy.,Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona 37134, Italy
| | - Rita Lawlor
- ARC-Net Research Centre, University and Hospital Trust of Verona, Verona 37134, Italy.,Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona 37134, Italy
| | - Roberto Salvia
- General and Pancreatic Surgery, Pancreas Institute, University and Hospital Trust of Verona, Verona 37134, Italy
| | - Giuseppe Zamboni
- Department of Pathology, Ospedale Sacro Cuore-Don Calabria, Negrar 37024, Italy
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Dae Wook Hwang
- Hepatobiliary and Pancreas Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Jin-Young Jang
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Wooil Kwon
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Niall Swan
- Department of Histopathology, St. Vincent's University Hospital, Dublin D04 T6F4, Ireland
| | - Justin Geoghegan
- Department of Surgery, St. Vincent's University Hospital, Dublin D04 T6F4, Ireland
| | - Massimo Falconi
- Division of Pancreatic Surgery, Department of Surgery, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Stefano Crippa
- Division of Pancreatic Surgery, Department of Surgery, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Claudio Doglioni
- Department of Pathology, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Jorge Paulino
- Department of Surgery, Centro Hepatobiliopancreático e Transplantação, Hospital Curry Cabral, Lisbon 1050-099, Portugal
| | | | - Barish H Edil
- Department of Surgery, University of Colorado, Aurora, CO 80045, USA
| | - Walter Park
- Department of Medicine, Stanford University Medical Center, Palo Alto, CA 94304, USA
| | - Shinichi Yachida
- Department of Hepatobiliary and Pancreatic Surgery, Pathology and Cancer Genomics, National Cancer Center Hospital and National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Susumu Hijioka
- Department of Gastroenterology, Aichi Cancer Center Hospital, Nagoya 464-8681, Japan
| | - Jeanin van Hooft
- Department of Gastroenterology and Hepatology, Amsterdam Medical Center, Amsterdam 1017 ZX, Netherlands
| | - Jin He
- Department of Surgery, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Matthew J Weiss
- Department of Surgery, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Richard Burkhart
- Department of Surgery, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Martin Makary
- Department of Surgery, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Marcia I Canto
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Michael G Goggins
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, MD 21287, USA.,Department of Pathology, Johns Hopkins University, Baltimore, MD 21287, USA.,Department of Oncology, Johns Hopkins University, Baltimore, MD 21287, USA.,Department of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Janine Ptak
- Ludwig Center and Howard Hughes Medical Institute at the Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA.,Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Lisa Dobbyn
- Ludwig Center and Howard Hughes Medical Institute at the Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA.,Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Joy Schaefer
- Ludwig Center and Howard Hughes Medical Institute at the Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA.,Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Natalie Sillman
- Ludwig Center and Howard Hughes Medical Institute at the Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA.,Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Maria Popoli
- Ludwig Center and Howard Hughes Medical Institute at the Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA.,Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Alison P Klein
- Ludwig Center and Howard Hughes Medical Institute at the Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA.,Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, MD 21287, USA.,Department of Oncology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Cristian Tomasetti
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, MD 21287, USA. .,Department of Biostatistics and Bioinformatics, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Rachel Karchin
- Department of Biomedical Engineering, Johns Hopkins Medical Institutions, Johns Hopkins University, Baltimore, MD 21287, USA.,Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21287, USA.,Department of Oncology, Johns Hopkins University, Baltimore, MD 21287, USA.,Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, MD 21287, USA.
| | - Nickolas Papadopoulos
- Ludwig Center and Howard Hughes Medical Institute at the Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA.,Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Kenneth W Kinzler
- Ludwig Center and Howard Hughes Medical Institute at the Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA.,Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Bert Vogelstein
- Ludwig Center and Howard Hughes Medical Institute at the Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA. .,Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Christopher L Wolfgang
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, MD 21287, USA. .,Department of Oncology, Johns Hopkins University, Baltimore, MD 21287, USA.,Department of Surgery, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Ralph H Hruban
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, MD 21287, USA.,Department of Pathology, Johns Hopkins University, Baltimore, MD 21287, USA.,Department of Oncology, Johns Hopkins University, Baltimore, MD 21287, USA.,Ludwig Center and Howard Hughes Medical Institute at the Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA.
| | - Anne Marie Lennon
- Ludwig Center and Howard Hughes Medical Institute at the Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA. .,Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, MD 21287, USA.,Department of Oncology, Johns Hopkins University, Baltimore, MD 21287, USA.,Department of Surgery, Johns Hopkins University, Baltimore, MD 21287, USA.,Department of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA.,Department of Radiology, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
29
|
Lozano F, Raventos CX, Carrion A, Trilla E, Morote J. Current status of genetic urinary biomarkers for surveillance of non-muscle invasive bladder cancer: a systematic review. BMC Urol 2020; 20:99. [PMID: 32664878 PMCID: PMC7362437 DOI: 10.1186/s12894-020-00670-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/08/2020] [Indexed: 01/22/2023] Open
Abstract
Background Genetic biomarkers are a promising and growing field in the management of bladder cancer in all stages. The aim of this paper is to understand the role of genetic urinary biomarkers in the follow up of patients with non muscle invasive bladder cancer where there is increasing evidence that they can play a role in avoiding invasive techniques. Methods Following PRISMA criteria, we have performed a systematic review. The search yielded 164 unique articles, of which 21 articles were included involving a total of 7261 patients. Sixteen of the articles were DNA based biomarkers, analyzing different methylations, microsatellite aberrations and gene mutations. Five articles studied the role of RNA based biomarkers, based on measuring levels of different combinations of mRNA. QUADAS2 critical evaluation of each paper has been reported. Results There are not randomized control trials comparing any biomarker with the gold standard follow-up, and the level of evidence is 2B in almost all the studies. Negative predictive value varies between 55 and 98.5%, being superior in RNA based biomarkers. Conclusions Although cystoscopy and cytology are the gold standard for non muscle invasive bladder cancer surveillance, genetic urinary biomarkers are a promising tool to avoid invasive explorations to the patients with a safe profile of similar sensitivity and negative predictive value. The accuracy that genetic biomarkers can offer should be taken into account to modify the paradigm of surveillance in non muscle invasive bladder cancer patients, especially in high-risk ones where many invasive explorations are recommended and biomarkers experiment better results.
Collapse
Affiliation(s)
- F Lozano
- Urology Department, Vall d'Hebron University Hospital, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain. .,Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - C X Raventos
- Urology Department, Vall d'Hebron University Hospital, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - A Carrion
- Urology Department, Vall d'Hebron University Hospital, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - E Trilla
- Urology Department, Vall d'Hebron University Hospital, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - J Morote
- Urology Department, Vall d'Hebron University Hospital, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
30
|
Tao K, Bian Z, Zhang Q, Guo X, Yin C, Wang Y, Zhou K, Wan S, Shi M, Bao D, Yang C, Xing J. Machine learning-based genome-wide interrogation of somatic copy number aberrations in circulating tumor DNA for early detection of hepatocellular carcinoma. EBioMedicine 2020; 56:102811. [PMID: 32512514 PMCID: PMC7276513 DOI: 10.1016/j.ebiom.2020.102811] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/27/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
Background DNAs released from tumor cells into blood (circulating tumor DNAs, ctDNAs) carry tumor-specific genomic aberrations, providing a non-invasive means for cancer detection. In this study, we aimed to leverage somatic copy number aberration (SCNA) in ctDNA to develop assays to detect early-stage HCCs. Methods We conducted low-depth whole-genome sequencing (WGS) to profile SCNAs in 384 plasma samples of hepatitis B virus (HBV)-related HCC and cancer-free HBV patients, using one discovery and two validation cohorts. To fully capture the robust signals of WGS data from the complete genome, we developed a machine learning-based statistical model that is focused on detection accuracy in early-stage HCC. Findings We built the model using a discovery cohort of 209 patients, achieving an overall area under curve (AUC) of 0.893, with 0.874 for early-stage (Barcelona clinical liver cancer [BCLC] stage 0-A) and 0.933 for advanced-stage (BCLC stage B-D). The performance of the model was then assessed in two validation cohorts (76 and 99 patients) that only consisted of patients with stage 0-A HCC. Our model exhibited a robust predictive performance, with an AUC of 0.920 and 0.812 for the two validation cohorts. Further analyses showed the impact of tumor sample heterogeneity in model training on detecting early-stage tumors, and a refined model addressing the heterogeneity in the discovery cohort significantly increased model performance in validation. Interpretation We developed an SCNA-based, machine learning-driven model in the non-invasive detection of early-stage HCC in HBV patients and demonstrated its performance through strict independent validations.
Collapse
Affiliation(s)
- Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhenyuan Bian
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China; Department of General Surgery, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, China
| | - Qiong Zhang
- Research and Development Division, Oriomics Biotech, Hangzhou, Zhejiang 310018, China
| | - Xu Guo
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Chun Yin
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yang Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Kaixiang Zhou
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Shaogui Wan
- Center for Molecular Pathology, First Affiliated Hospital, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Meifang Shi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital of Fudan University, Shanghai 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Dengke Bao
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng 475001, China
| | - Chuhu Yang
- Research and Development Division, Oriomics Biotech, Hangzhou, Zhejiang 310018, China.
| | - Jinliang Xing
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
31
|
Measuring Performance Metrics of Machine Learning Algorithms for Detecting and Classifying Transposable Elements. Processes (Basel) 2020. [DOI: 10.3390/pr8060638] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Because of the promising results obtained by machine learning (ML) approaches in several fields, every day is more common, the utilization of ML to solve problems in bioinformatics. In genomics, a current issue is to detect and classify transposable elements (TEs) because of the tedious tasks involved in bioinformatics methods. Thus, ML was recently evaluated for TE datasets, demonstrating better results than bioinformatics applications. A crucial step for ML approaches is the selection of metrics that measure the realistic performance of algorithms. Each metric has specific characteristics and measures properties that may be different from the predicted results. Although the most commonly used way to compare measures is by using empirical analysis, a non-result-based methodology has been proposed, called measure invariance properties. These properties are calculated on the basis of whether a given measure changes its value under certain modifications in the confusion matrix, giving comparative parameters independent of the datasets. Measure invariance properties make metrics more or less informative, particularly on unbalanced, monomodal, or multimodal negative class datasets and for real or simulated datasets. Although several studies applied ML to detect and classify TEs, there are no works evaluating performance metrics in TE tasks. Here, we analyzed 26 different metrics utilized in binary, multiclass, and hierarchical classifications, through bibliographic sources, and their invariance properties. Then, we corroborated our findings utilizing freely available TE datasets and commonly used ML algorithms. Based on our analysis, the most suitable metrics for TE tasks must be stable, even using highly unbalanced datasets, multimodal negative class, and training datasets with errors or outliers. Based on these parameters, we conclude that the F1-score and the area under the precision-recall curve are the most informative metrics since they are calculated based on other metrics, providing insight into the development of an ML application.
Collapse
|
32
|
Khatib S, Pomyen Y, Dang H, Wang XW. Understanding the Cause and Consequence of Tumor Heterogeneity. Trends Cancer 2020; 6:267-271. [DOI: 10.1016/j.trecan.2020.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/08/2020] [Accepted: 01/16/2020] [Indexed: 12/26/2022]
|
33
|
Abstract
We report a sensitive PCR-based assay called Repetitive Element AneupLoidy Sequencing System (RealSeqS) that can detect aneuploidy in samples containing as little as 3 pg of DNA. Using a single primer pair, we amplified ∼350,000 amplicons distributed throughout the genome. Aneuploidy was detected in 49% of liquid biopsies from a total of 883 nonmetastatic, clinically detected cancers of the colorectum, esophagus, liver, lung, ovary, pancreas, breast, or stomach. Combining aneuploidy with somatic mutation detection and eight standard protein biomarkers yielded a median sensitivity of 80% in these eight cancer types, while only 1% of 812 healthy controls scored positive.
Collapse
|
34
|
Du X, He K, Huang Y, Xu Z, Kong M, Zhang J, Cao J, Teng L. Establishment of a novel human cell line retaining the characteristics of the original pancreatic adenocarcinoma, and evaluation of MEK as a therapeutic target. Int J Oncol 2020; 56:761-771. [PMID: 32124956 PMCID: PMC7010221 DOI: 10.3892/ijo.2020.4965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer is a lethal solid malignancy with limited therapeutic options. The development of novel therapeutic drugs requires adequate new cell line models. A new pancreatic cancer cell line, designated PDXPC1, was established from one pancreatic ductal adenocarcinoma (PDAC) patient-derived xenograft. The PDXPC1 cells were stably cultured for >2 years and had a stable short tandem repeat profile. The PDXPC1 cell line retained the key mutations of the primary tumor, along with the epithelial origin and other important protein expression. The PDXPC1 cells induced rapid in vivo tumor growth, both subcutaneously and orthotopically, in a mouse model with an elevated CA199 level. The PDXPC1 cells showed weak growth, invasion and migration potency compared to another pancreatic cancer cell line, but were relatively resistant to multiple anti-cancer drugs. Interestingly, the MEK inhibitor trametinib significantly inhibited the proliferation of PDXPC1 cells, and not that of Panc-1 cells, by inactivating MEK/ERK/MYC signaling and activating the apoptotic pathway via Bcl-2 degradation. In conclusion, the PDXPC1 cell line, capturing the major characteristics of the primary tumor, may be a suitable tool for studying the underlying mechanisms of chemo-resistance in PDAC and developing new targeted therapeutic options.
Collapse
Affiliation(s)
- Xiaoxiao Du
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Kuifeng He
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yingying Huang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Zhenzhen Xu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Mei Kong
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jing Zhang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jiang Cao
- Clinical Research Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
35
|
Pathophysiology of ctDNA Release into the Circulation and Its Characteristics: What Is Important for Clinical Applications. Recent Results Cancer Res 2020; 215:163-180. [PMID: 31605229 DOI: 10.1007/978-3-030-26439-0_9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The clinical implications of being able to accurately detect tumor-derived DNA in the circulation, termed circulating tumor DNA (ctDNA), could be enormous. Already, a plethora of clinical applications is under validation that include detection of minimal residual disease and predicting recurrence, monitoring response and resistance to treatment, identifying targets for therapies, and early detection. ctDNA is only a fraction of the total cell-free DNA (cfDNA) which confounds its detection and sometimes conceals its properties. To use ctDNA as a cancer biomarker with confidence, we need to understand its nature. Its characteristics, including size, half-life, and amount, are critical for the development of tests for its detection and discrimination from the rest of the cfDNA. Technological advances have enabled the detection and quantification of individual fragments of cfDNA, which is pivotal for clinical applications. Understanding the causes, the source of and the mechanisms of release of ctDNA are important for the interpretation of test results. Despite the many advances in understanding the nature and biology of ctDNA, we do not yet have a clear appreciation of the processes that govern its presence and levels in the circulation. ctDNA is not detectable in the blood of every cancer patient, and there is not a directly proportional relationship to tumor type, size, or stage. It is not clear if the lack of correlation with these specific clinical parameters is strictly due to technical or biological challenges. Better understanding of the pathophysiology of ctDNA is therefore important for the improvement of clinical applications and interpretation of their results.
Collapse
|
36
|
Orozco-Arias S, Isaza G, Guyot R, Tabares-Soto R. A systematic review of the application of machine learning in the detection and classification of transposable elements. PeerJ 2019; 7:e8311. [PMID: 31976169 PMCID: PMC6967008 DOI: 10.7717/peerj.8311] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/28/2019] [Indexed: 12/16/2022] Open
Abstract
Background Transposable elements (TEs) constitute the most common repeated sequences in eukaryotic genomes. Recent studies demonstrated their deep impact on species diversity, adaptation to the environment and diseases. Although there are many conventional bioinformatics algorithms for detecting and classifying TEs, none have achieved reliable results on different types of TEs. Machine learning (ML) techniques can automatically extract hidden patterns and novel information from labeled or non-labeled data and have been applied to solving several scientific problems. Methodology We followed the Systematic Literature Review (SLR) process, applying the six stages of the review protocol from it, but added a previous stage, which aims to detect the need for a review. Then search equations were formulated and executed in several literature databases. Relevant publications were scanned and used to extract evidence to answer research questions. Results Several ML approaches have already been tested on other bioinformatics problems with promising results, yet there are few algorithms and architectures available in literature focused specifically on TEs, despite representing the majority of the nuclear DNA of many organisms. Only 35 articles were found and categorized as relevant in TE or related fields. Conclusions ML is a powerful tool that can be used to address many problems. Although ML techniques have been used widely in other biological tasks, their utilization in TE analyses is still limited. Following the SLR, it was possible to notice that the use of ML for TE analyses (detection and classification) is an open problem, and this new field of research is growing in interest.
Collapse
Affiliation(s)
- Simon Orozco-Arias
- Department of Computer Science, Universidad Autónoma de Manizales, Manizales, Caldas, Colombia.,Department of Systems and Informatics, Universidad de Caldas, Manizales, Caldas, Colombia
| | - Gustavo Isaza
- Department of Systems and Informatics, Universidad de Caldas, Manizales, Caldas, Colombia
| | - Romain Guyot
- Institut de Recherche pour le Développement, CIRAD, University of Montpellier, Montpellier, France.,Department of Electronics and Automation, Universidad Autónoma de Manizales, Manizales, Caldas, Colombia
| | - Reinel Tabares-Soto
- Department of Electronics and Automation, Universidad Autónoma de Manizales, Manizales, Caldas, Colombia
| |
Collapse
|
37
|
Wang Y, Li L, Douville C, Cohen JD, Yen TT, Kinde I, Sundfelt K, Kjær SK, Hruban RH, Shih IM, Wang TL, Kurman RJ, Springer S, Ptak J, Popoli M, Schaefer J, Silliman N, Dobbyn L, Tanner EJ, Angarita A, Lycke M, Jochumsen K, Afsari B, Danilova L, Levine DA, Jardon K, Zeng X, Arseneau J, Fu L, Diaz LA, Karchin R, Tomasetti C, Kinzler KW, Vogelstein B, Fader AN, Gilbert L, Papadopoulos N. Evaluation of liquid from the Papanicolaou test and other liquid biopsies for the detection of endometrial and ovarian cancers. Sci Transl Med 2019; 10:10/433/eaap8793. [PMID: 29563323 DOI: 10.1126/scitranslmed.aap8793] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 02/14/2018] [Indexed: 12/21/2022]
Abstract
We report the detection of endometrial and ovarian cancers based on genetic analyses of DNA recovered from the fluids obtained during a routine Papanicolaou (Pap) test. The new test, called PapSEEK, incorporates assays for mutations in 18 genes as well as an assay for aneuploidy. In Pap brush samples from 382 endometrial cancer patients, 81% [95% confidence interval (CI), 77 to 85%] were positive, including 78% of patients with early-stage disease. The sensitivity in 245 ovarian cancer patients was 33% (95% CI, 27 to 39%), including 34% of patients with early-stage disease. In contrast, only 1.4% of 714 women without cancer had positive Pap brush samples (specificity, ~99%). Next, we showed that intrauterine sampling with a Tao brush increased the detection of malignancy over endocervical sampling with a Pap brush: 93% of 123 (95% CI, 87 to 97%) patients with endometrial cancer and 45% of 51 (95% CI, 31 to 60%) patients with ovarian cancer were positive, whereas none of the samples from 125 women without cancer were positive (specificity, 100%). Finally, in 83 ovarian cancer patients in whom plasma was available, circulating tumor DNA was found in 43% of patients (95% CI, 33 to 55%). When plasma and Pap brush samples were both tested, the sensitivity for ovarian cancer increased to 63% (95% CI, 51 to 73%). These results demonstrate the potential of mutation-based diagnostics to detect gynecologic cancers at a stage when they are more likely to be curable.
Collapse
Affiliation(s)
- Yuxuan Wang
- Ludwig Center for Cancer Genetics and Therapeutics, and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Lu Li
- Division of Biostatistics and Bioinformatics, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Christopher Douville
- Ludwig Center for Cancer Genetics and Therapeutics, and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Joshua D Cohen
- Ludwig Center for Cancer Genetics and Therapeutics, and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ting-Tai Yen
- Kelly Gynecologic Oncology Service, Department of Gynecology and Obstetrics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | | | - Karin Sundfelt
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Susanne K Kjær
- Department of Obstetrics and Gynecology, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark.,Unit of Virus, Lifestyle, and Genes, Danish Cancer Society Research Center, Copenhagen 2100, Denmark
| | - Ralph H Hruban
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ie-Ming Shih
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Tian-Li Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Robert J Kurman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Simeon Springer
- Ludwig Center for Cancer Genetics and Therapeutics, and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Janine Ptak
- Ludwig Center for Cancer Genetics and Therapeutics, and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Maria Popoli
- Ludwig Center for Cancer Genetics and Therapeutics, and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Joy Schaefer
- Ludwig Center for Cancer Genetics and Therapeutics, and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Natalie Silliman
- Ludwig Center for Cancer Genetics and Therapeutics, and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Lisa Dobbyn
- Ludwig Center for Cancer Genetics and Therapeutics, and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Edward J Tanner
- Kelly Gynecologic Oncology Service, Department of Gynecology and Obstetrics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Ana Angarita
- Kelly Gynecologic Oncology Service, Department of Gynecology and Obstetrics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Maria Lycke
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Kirsten Jochumsen
- Department of Obstetrics and Gynecology, Odense University Hospital, Odense 5000, Denmark
| | - Bahman Afsari
- Division of Biostatistics and Bioinformatics, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ludmila Danilova
- Division of Biostatistics and Bioinformatics, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Douglas A Levine
- Department of Gynecologic Oncology, Laura and Isaac Perlmutter Cancer Centre, New York University Langone Medical Center, New York, NY 10016, USA
| | - Kris Jardon
- Division of Gynecologic Oncology, Departments of Obstetrics and Gynecology, Oncology, and Pathology, McGill University and McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Xing Zeng
- Division of Gynecologic Oncology, Departments of Obstetrics and Gynecology, Oncology, and Pathology, McGill University and McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Jocelyne Arseneau
- Division of Gynecologic Oncology, Departments of Obstetrics and Gynecology, Oncology, and Pathology, McGill University and McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Lili Fu
- Division of Gynecologic Oncology, Departments of Obstetrics and Gynecology, Oncology, and Pathology, McGill University and McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Luis A Diaz
- Ludwig Center for Cancer Genetics and Therapeutics, and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Rachel Karchin
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Cristian Tomasetti
- Division of Biostatistics and Bioinformatics, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Kenneth W Kinzler
- Ludwig Center for Cancer Genetics and Therapeutics, and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Bert Vogelstein
- Ludwig Center for Cancer Genetics and Therapeutics, and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA. .,Howard Hughes Medical Institute, Baltimore, MD 21287, USA
| | - Amanda N Fader
- Kelly Gynecologic Oncology Service, Department of Gynecology and Obstetrics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.
| | - Lucy Gilbert
- Division of Gynecologic Oncology, Departments of Obstetrics and Gynecology, Oncology, and Pathology, McGill University and McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.
| | - Nickolas Papadopoulos
- Ludwig Center for Cancer Genetics and Therapeutics, and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
38
|
Suppan C, Brcic I, Tiran V, Mueller HD, Posch F, Auer M, Ercan E, Ulz P, Cote RJ, Datar RH, Dandachi N, Heitzer E, Balic M. Untargeted Assessment of Tumor Fractions in Plasma for Monitoring and Prognostication from Metastatic Breast Cancer Patients Undergoing Systemic Treatment. Cancers (Basel) 2019; 11:E1171. [PMID: 31416207 PMCID: PMC6721524 DOI: 10.3390/cancers11081171] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/31/2019] [Accepted: 08/12/2019] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to assess the prognostic and predictive value of an untargeted assessment of tumor fractions in the plasma of metastatic breast cancer patients and to compare circulating tumor DNA (ctDNA) with circulating tumor cells (CTC) and conventional tumor markers. In metastatic breast cancer patients (n = 29), tumor fractions in plasma were assessed using the untargeted mFAST-SeqS method from 127 serial blood samples. Resulting z-scores for the ctDNA were compared to tumor fractions established with the recently published ichorCNA algorithm and associated with the clinical outcome. We observed a close correlation between mFAST-SeqS z-scores and ichorCNA ctDNA quantifications. Patients with mFAST-SeqS z-scores above three (34.5%) showed significantly worse overall survival (p = 0.014) and progression-free survival (p = 0.018) compared to patients with lower values. Elevated z-score values were clearly associated with radiologically proven progression. The baseline CTC count, carcinoembryonic antigen (CEA), and cancer antigen (CA)15-5 had no prognostic impact on the outcome of patients in the analyzed cohort. This proof of principle study demonstrates the prognostic impact of ctDNA levels detected with mFAST-SeqS as a very fast and cost-effective means to assess the ctDNA fraction without prior knowledge of the genetic landscape of the tumor. Furthermore, mFAST-SeqS-based ctDNA levels provided an early means of measuring treatment response.
Collapse
Affiliation(s)
- Christoph Suppan
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Iva Brcic
- Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - Verena Tiran
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Hannah D Mueller
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Florian Posch
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Martina Auer
- Institute of Human Genetics, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, 8010 Graz, Austria
| | - Erkan Ercan
- Institute of Human Genetics, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, 8010 Graz, Austria
| | - Peter Ulz
- Institute of Human Genetics, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, 8010 Graz, Austria
| | - Richard J Cote
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ram H Datar
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Nadia Dandachi
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria.
- Research Unit Epigenetic and Genetic Cancer Biomarkers, Medical University of Graz, 8036 Graz, Austria.
| | - Ellen Heitzer
- Institute of Human Genetics, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, 8010 Graz, Austria.
- BioTechMed-Graz, 8036 Graz, Austria.
- Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, 8010 Graz, Austria.
| | - Marija Balic
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
- Research Unit Circulating Tumor Cells and Cancer Stem Cells, Medical University of Graz, 8036 Graz, Austria
| |
Collapse
|
39
|
Chin RI, Chen K, Usmani A, Chua C, Harris PK, Binkley MS, Azad TD, Dudley JC, Chaudhuri AA. Detection of Solid Tumor Molecular Residual Disease (MRD) Using Circulating Tumor DNA (ctDNA). Mol Diagn Ther 2019; 23:311-331. [PMID: 30941670 PMCID: PMC6561896 DOI: 10.1007/s40291-019-00390-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Circulating tumor DNA (ctDNA) is a component of cell-free DNA that is shed by malignant tumors into the bloodstream and other bodily fluids. Levels of ctDNA are typically low, particularly in patients with localized disease, requiring highly sophisticated methods for detection and quantification. Multiple liquid biopsy methods have been developed for ctDNA analysis in solid tumor malignancies and are now enabling detection and assessment of earlier stages of disease, post-treatment molecular residual disease (MRD), resistance to targeted systemic therapy, and tumor mutational burden. Understanding ctDNA biology, mechanisms of release, and clearance and size characteristics, in conjunction with the application of molecular barcoding and targeted error correction, have increased the sensitivity and specificity of ctDNA detection techniques. Combinatorial approaches including integration of ctDNA data with circulating protein biomarkers may further improve assay sensitivity and broaden the scope of ctDNA applications. Circulating viral DNA may be utilized to monitor disease in some virally induced malignancies. In spite of increasingly accurate methods of ctDNA detection, results need to be interpreted with caution given that somatic mosaicisms such as clonal hematopoiesis of indeterminate potential (CHIP) may give rise to genetic variants in the bloodstream unrelated to solid tumors, and the limited concordance observed between different commercial platforms. Overall, highly precise ctDNA detection and quantification methods have the potential to transform clinical practice via non-invasive monitoring of solid tumor malignancies, residual disease detection at earlier timepoints than standard clinical and/or imaging surveillance, and treatment personalization based on real-time assessment of the tumor genomic landscape.
Collapse
Affiliation(s)
- Re-I Chin
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kevin Chen
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Abul Usmani
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Chanelle Chua
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Peter K Harris
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael S Binkley
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Tej D Azad
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jonathan C Dudley
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aadel A Chaudhuri
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Computer Science and Engineering, Washington University, St. Louis, MO, USA.
- Alvin J. Siteman Cancer Center, Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
40
|
Chen Y, Zeng Q, Liu X, Fu J, Zeng Z, Zhao Z, Liu Z, Bai W, Dong Z, Liu H, Lu X, Zhu Y, Lu Y. LINE-1 ORF-1p enhances the transcription factor activity of pregnenolone X receptor and promotes sorafenib resistance in hepatocellular carcinoma cells. Cancer Manag Res 2018; 10:4421-4438. [PMID: 30349375 PMCID: PMC6188112 DOI: 10.2147/cmar.s176088] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background LINE-1 ORF-1p is encoded by the human pro-oncogene LINE-1. Our previous work showed that LINE-1 ORF-1p could enhance the resistance of hepatocellular carcinoma (HCC) cells to antitumor agents. However, the mechanisms involved in LINE-1 ORF-1p-mediated drug resistance remain largely unknown. Materials and methods The endogenous mRNA level of LINE-1 ORF-1p in clinical HCC specimens was examined using quantitative PCR (qPCR). The prognosis of HCC patients was assessed using time to progression and overall survival. The transcription factor activity of pregnenolone X receptor (PXR) was examined using luciferase gene reporter assays, qPCR, chromatin immunoprecipitation assays and cellular subfraction assays. Protein interaction between LINE-1 ORF-1p and PXR was detected by co-immunoprecipitation. The effect of LINE-1 ORF-1p on sorafenib resistance in HCC cells was studied using in vitro and in vivo models. Results A high level of LINE-1 ORF-1p in clinical specimens was related to poor prognosis in patients who received sorafenib treatment. LINE-1 ORF-1p increased the transcription factor activity of PXR by interacting with PXR and enhancing its cytoplasmic/nuclear translocation, and recruiting PXR to its downstream gene promoter, in turn enhancing the expression of the sorafenib resistance-related genes, CYP3A4 and mdr-1. LINE-1 ORF-1p enhanced the resistance to and clearance of sorafenib in HCC cells. Conclusion LINE-1 ORF-1p enhances the transcription factor activation of PXR and promotes the clearance of and resistance to sorafenib in HCC cells.
Collapse
Affiliation(s)
- Yan Chen
- Comprehensive Liver Cancer Center, Beijing 302 Hospital, Beijing 100039, P.R. China, .,College of Life Sciences and Bio-Engineering, Beijing Jiaotong University, Beijing 100044, P.R. China,
| | - Qinglei Zeng
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zheng Zhou 450052, Henan Province, P.R. China
| | - Xiufang Liu
- Department of Oncology, Chinese PLA 251 Hospital, Zhangjiakou 075000, P.R. China
| | - Junliang Fu
- Comprehensive Liver Cancer Center, Beijing 302 Hospital, Beijing 100039, P.R. China,
| | - Zhen Zeng
- Comprehensive Liver Cancer Center, Beijing 302 Hospital, Beijing 100039, P.R. China,
| | - Zhiqin Zhao
- Comprehensive Liver Cancer Center, Beijing 302 Hospital, Beijing 100039, P.R. China,
| | - Ze Liu
- Comprehensive Liver Cancer Center, Beijing 302 Hospital, Beijing 100039, P.R. China,
| | - Wenlin Bai
- Comprehensive Liver Cancer Center, Beijing 302 Hospital, Beijing 100039, P.R. China,
| | - Zheng Dong
- Comprehensive Liver Cancer Center, Beijing 302 Hospital, Beijing 100039, P.R. China,
| | - Hongjin Liu
- Comprehensive Liver Cancer Center, Beijing 302 Hospital, Beijing 100039, P.R. China,
| | - Xiaoxia Lu
- Comprehensive Liver Cancer Center, Beijing 302 Hospital, Beijing 100039, P.R. China,
| | - Yunfeng Zhu
- College of Life Sciences and Bio-Engineering, Beijing Jiaotong University, Beijing 100044, P.R. China, .,Cancer Center in Division of Internal Medicine, Chinese PLA General Hospital, Beijing 100853, P.R. China,
| | - Yinying Lu
- Comprehensive Liver Cancer Center, Beijing 302 Hospital, Beijing 100039, P.R. China,
| |
Collapse
|
41
|
Springer SU, Chen CH, Rodriguez Pena MDC, Li L, Douville C, Wang Y, Cohen JD, Taheri D, Silliman N, Schaefer J, Ptak J, Dobbyn L, Papoli M, Kinde I, Afsari B, Tregnago AC, Bezerra SM, VandenBussche C, Fujita K, Ertoy D, Cunha IW, Yu L, Bivalacqua TJ, Grollman AP, Diaz LA, Karchin R, Danilova L, Huang CY, Shun CT, Turesky RJ, Yun BH, Rosenquist TA, Pu YS, Hruban RH, Tomasetti C, Papadopoulos N, Kinzler KW, Vogelstein B, Dickman KG, Netto GJ. Non-invasive detection of urothelial cancer through the analysis of driver gene mutations and aneuploidy. eLife 2018; 7:32143. [PMID: 29557778 PMCID: PMC5860864 DOI: 10.7554/elife.32143] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 02/19/2018] [Indexed: 12/15/2022] Open
Abstract
Current non-invasive approaches for detection of urothelial cancers are suboptimal. We developed a test to detect urothelial neoplasms using DNA recovered from cells shed into urine. UroSEEK incorporates massive parallel sequencing assays for mutations in 11 genes and copy number changes on 39 chromosome arms. In 570 patients at risk for bladder cancer (BC), UroSEEK was positive in 83% of those who developed BC. Combined with cytology, UroSEEK detected 95% of patients who developed BC. Of 56 patients with upper tract urothelial cancer, 75% tested positive by UroSEEK, including 79% of those with non-invasive tumors. UroSEEK detected genetic abnormalities in 68% of urines obtained from BC patients under surveillance who demonstrated clinical evidence of recurrence. The advantages of UroSEEK over cytology were evident in low-grade BCs; UroSEEK detected 67% of cases whereas cytology detected none. These results establish the foundation for a new non-invasive approach for detection of urothelial cancer.
Collapse
Affiliation(s)
- Simeon U Springer
- Howard Hughes Medical Institute, Ludwig Center for Cancer Genetics and Therapeutics, Baltimore, United States.,Sidney Kimmel Comprehensive Cancer Center, Baltimore, United States
| | - Chung-Hsin Chen
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| | - Maria Del Carmen Rodriguez Pena
- Department of Pathology, Johns Hopkins University, Baltimore, United States.,Department of Pathology, University of Alabama at Birmingham, Birmingham, United States
| | - Lu Li
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - Christopher Douville
- Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, Baltimore, United States
| | - Yuxuan Wang
- Howard Hughes Medical Institute, Ludwig Center for Cancer Genetics and Therapeutics, Baltimore, United States.,Sidney Kimmel Comprehensive Cancer Center, Baltimore, United States
| | - Joshua David Cohen
- Howard Hughes Medical Institute, Ludwig Center for Cancer Genetics and Therapeutics, Baltimore, United States.,Sidney Kimmel Comprehensive Cancer Center, Baltimore, United States
| | - Diana Taheri
- Department of Pathology, Johns Hopkins University, Baltimore, United States.,Department of Pathology, Isfahan Kidney Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Natalie Silliman
- Howard Hughes Medical Institute, Ludwig Center for Cancer Genetics and Therapeutics, Baltimore, United States.,Sidney Kimmel Comprehensive Cancer Center, Baltimore, United States
| | - Joy Schaefer
- Howard Hughes Medical Institute, Ludwig Center for Cancer Genetics and Therapeutics, Baltimore, United States.,Sidney Kimmel Comprehensive Cancer Center, Baltimore, United States
| | - Janine Ptak
- Howard Hughes Medical Institute, Ludwig Center for Cancer Genetics and Therapeutics, Baltimore, United States.,Sidney Kimmel Comprehensive Cancer Center, Baltimore, United States
| | - Lisa Dobbyn
- Howard Hughes Medical Institute, Ludwig Center for Cancer Genetics and Therapeutics, Baltimore, United States.,Sidney Kimmel Comprehensive Cancer Center, Baltimore, United States
| | - Maria Papoli
- Howard Hughes Medical Institute, Ludwig Center for Cancer Genetics and Therapeutics, Baltimore, United States.,Sidney Kimmel Comprehensive Cancer Center, Baltimore, United States
| | - Isaac Kinde
- Howard Hughes Medical Institute, Ludwig Center for Cancer Genetics and Therapeutics, Baltimore, United States.,Sidney Kimmel Comprehensive Cancer Center, Baltimore, United States
| | - Bahman Afsari
- Department of Oncology, Johns Hopkins University, Baltimore, United States.,Division of Biostatistics and Bioinformatics, Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, United States
| | - Aline C Tregnago
- Department of Pathology, Johns Hopkins University, Baltimore, United States
| | | | | | | | - Dilek Ertoy
- Department of Pathology, Hacettepe University, Ankara, Turkey
| | - Isabela W Cunha
- Department of Pathology, AC Camargo Cancer Center, Sao Paulo, Brazil
| | - Lijia Yu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, United States
| | | | - Arthur P Grollman
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, United States.,Department of Medicine, Stony Brook University, Stony Brook, United States
| | - Luis A Diaz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Rachel Karchin
- Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, Baltimore, United States.,Department of Oncology, Johns Hopkins University, Baltimore, United States
| | - Ludmila Danilova
- Division of Biostatistics and Bioinformatics, Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, United States.,Department of Pathology, Hacettepe University, Ankara, Turkey
| | - Chao-Yuan Huang
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Tung Shun
- Department of Forensic Medicine and Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Robert J Turesky
- Masonic Cancer Center, University of Minnesota, Minneapolis, United States.,Department of Medicinal Chemistry, University of Minnesota, Minneapolis, United States
| | - Byeong Hwa Yun
- Masonic Cancer Center, University of Minnesota, Minneapolis, United States.,Department of Medicinal Chemistry, University of Minnesota, Minneapolis, United States
| | - Thomas A Rosenquist
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, United States
| | - Yeong-Shiau Pu
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ralph H Hruban
- Department of Pathology, Johns Hopkins University, Baltimore, United States
| | - Cristian Tomasetti
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States.,Division of Biostatistics and Bioinformatics, Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, United States
| | - Nickolas Papadopoulos
- Howard Hughes Medical Institute, Ludwig Center for Cancer Genetics and Therapeutics, Baltimore, United States.,Sidney Kimmel Comprehensive Cancer Center, Baltimore, United States
| | - Ken W Kinzler
- Howard Hughes Medical Institute, Ludwig Center for Cancer Genetics and Therapeutics, Baltimore, United States.,Sidney Kimmel Comprehensive Cancer Center, Baltimore, United States
| | - Bert Vogelstein
- Howard Hughes Medical Institute, Ludwig Center for Cancer Genetics and Therapeutics, Baltimore, United States.,Sidney Kimmel Comprehensive Cancer Center, Baltimore, United States
| | - Kathleen G Dickman
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, United States.,Department of Medicine, Stony Brook University, Stony Brook, United States
| | - George J Netto
- Department of Pathology, Johns Hopkins University, Baltimore, United States.,Department of Pathology, University of Alabama at Birmingham, Birmingham, United States
| |
Collapse
|