1
|
Ros-Moner E, Jiménez-Góngora T, Villar-Martín L, Vogrinec L, González-Miguel VM, Kutnjak D, Rubio-Somoza I. Conservation of molecular responses upon viral infection in the non-vascular plant Marchantia polymorpha. Nat Commun 2024; 15:8326. [PMID: 39333479 PMCID: PMC11436993 DOI: 10.1038/s41467-024-52610-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
After plants transitioned from water to land around 450 million years ago, they faced novel pathogenic microbes. Their colonization of diverse habitats was driven by anatomical innovations like roots, stomata, and vascular tissue, which became central to plant-microbe interactions. However, the impact of these innovations on plant immunity and pathogen infection strategies remains poorly understood. Here, we explore plant-virus interactions in the bryophyte Marchantia polymorpha to gain insights into the evolution of these relationships. Virome analysis reveals that Marchantia is predominantly associated with RNA viruses. Comparative studies with tobacco mosaic virus (TMV) show that Marchantia shares core defense responses with vascular plants but also exhibits unique features, such as a sustained wound response preventing viral spread. Additionally, general defense responses in Marchantia are equivalent to those restricted to vascular tissues in Nicotiana, suggesting that evolutionary acquisition of developmental innovations results in re-routing of defense responses in vascular plants.
Collapse
Affiliation(s)
- Eric Ros-Moner
- Molecular Reprogramming and Evolution (MoRE) Laboratory, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB-Edifci CRAG, Cerdanyola del Vallés, Spain
| | - Tamara Jiménez-Góngora
- Molecular Reprogramming and Evolution (MoRE) Laboratory, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB-Edifci CRAG, Cerdanyola del Vallés, Spain
| | - Luis Villar-Martín
- Molecular Reprogramming and Evolution (MoRE) Laboratory, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB-Edifci CRAG, Cerdanyola del Vallés, Spain
| | - Lana Vogrinec
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Víctor M González-Miguel
- Data Analysis area, Bioinformatics Core Unit, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB-Edifci CRAG, Cerdanyola del Vallés, Spain
| | - Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Ignacio Rubio-Somoza
- Molecular Reprogramming and Evolution (MoRE) Laboratory, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB-Edifci CRAG, Cerdanyola del Vallés, Spain.
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.
| |
Collapse
|
2
|
Shin S, Bong S, Moon H, Jeon H, Kim H, Choi GJ, Lee DY, Son H. Oxaloacetate anaplerosis differently contributes to pathogenicity in plant pathogenic fungi Fusarium graminearum and F. oxysporum. PLoS Pathog 2024; 20:e1012544. [PMID: 39250495 PMCID: PMC11412510 DOI: 10.1371/journal.ppat.1012544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 09/19/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
Anaplerosis refers to enzymatic reactions or pathways replenishing metabolic intermediates in the tricarboxylic acid (TCA) cycle. Pyruvate carboxylase (PYC) plays an important anaplerotic role by catalyzing pyruvate carboxylation, forming oxaloacetate. Although PYC orthologs are well conserved in prokaryotes and eukaryotes, their pathobiological functions in filamentous pathogenic fungi have yet to be fully understood. Here, we delve into the molecular functions of the ortholog gene PYC1 in Fusarium graminearum and F. oxysporum, prominent fungal plant pathogens with distinct pathosystems, demonstrating variations in carbon metabolism for pathogenesis. Surprisingly, the PYC1 deletion mutant of F. oxysporum exhibited pleiotropic defects in hyphal growth, conidiation, and virulence, unlike F. graminearum, where PYC1 deletion did not significantly impact virulence. To further explore the species-specific effects of PYC1 deletion on pathogenicity, we conducted comprehensive metabolic profiling. Despite shared metabolic changes, distinct reprogramming in central carbon and nitrogen metabolism was identified. Specifically, alpha-ketoglutarate, a key link between the TCA cycle and amino acid metabolism, showed significant down-regulation exclusively in the PYC1 deletion mutant of F. oxysporum. The metabolic response associated with pathogenicity was notably characterized by S-methyl-5-thioadenosine and S-adenosyl-L-methionine. This research sheds light on how PYC1-mediated anaplerosis affects fungal metabolism and reveals species-specific variations, exemplified in F. graminearum and F. oxysporum.
Collapse
Affiliation(s)
- Soobin Shin
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Seonghun Bong
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Heeji Moon
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Hosung Jeon
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Hun Kim
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Gyung Ja Choi
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Do Yup Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hokyoung Son
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Coles DW, Bithell SL, Jeffries T, Cuddy WS, Plett JM. Functional genomics identifies a small secreted protein that plays a role during the biotrophic to necrotrophic shift in the root rot pathogen Phytophthora medicaginis. FRONTIERS IN PLANT SCIENCE 2024; 15:1439020. [PMID: 39224851 PMCID: PMC11366588 DOI: 10.3389/fpls.2024.1439020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024]
Abstract
Introduction Hemibiotrophic Phytophthora are a group of agriculturally and ecologically important pathogenic oomycetes causing severe decline in plant growth and fitness. The lifestyle of these pathogens consists of an initial biotrophic phase followed by a switch to a necrotrophic phase in the latter stages of infection. Between these two phases is the biotrophic to necrotrophic switch (BNS) phase, the timing and controls of which are not well understood particularly in Phytophthora spp. where host resistance has a purely quantitative genetic basis. Methods To investigate this we sequenced and annotated the genome of Phytophthora medicaginis, causal agent of root rot and substantial yield losses to Fabaceae hosts. We analyzed the transcriptome of P. medicaginis across three phases of colonization of a susceptible chickpea host (Cicer arietinum) and performed co-regulatory analysis to identify putative small secreted protein (SSP) effectors that influence timing of the BNS in a quantitative pathosystem. Results The genome of P. medicaginis is ~78 Mb, comparable to P. fragariae and P. rubi which also cause root rot. Despite this, it encodes the second smallest number of RxLR (arginine-any amino acid-leucine-arginine) containing proteins of currently sequenced Phytophthora species. Only quantitative resistance is known in chickpea to P. medicaginis, however, we found that many RxLR, Crinkler (CRN), and Nep1-like protein (NLP) proteins and carbohydrate active enzymes (CAZymes) were regulated during infection. Characterization of one of these, Phytmed_10271, which encodes an RxLR effector demonstrates that it plays a role in the timing of the BNS phase and root cell death. Discussion These findings provide an important framework and resource for understanding the role of pathogenicity factors in purely quantitative Phytophthora pathosystems and their implications to the timing of the BNS phase.
Collapse
Affiliation(s)
- Donovin W. Coles
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Sean L. Bithell
- New South Wales Department of Primary Industries, Tamworth, NSW, Australia
| | - Thomas Jeffries
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
- School of Science and Health, Western Sydney University, Penrith, NSW, Australia
| | - William S. Cuddy
- New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia
| | - Jonathan M. Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| |
Collapse
|
4
|
Baev V, Gecheva G, Apostolova E, Gozmanova M, Yahubyan G. Exploring the Metatranscriptome of Bacterial Communities of Two Moss Species Thriving in Different Environments-Terrestrial and Aquatic. PLANTS (BASEL, SWITZERLAND) 2024; 13:1210. [PMID: 38732425 PMCID: PMC11085137 DOI: 10.3390/plants13091210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Mosses host diverse bacterial communities essential for their fitness, nutrient acquisition, stress tolerance, and pathogen defense. Understanding the microbiome's taxonomic composition is the first step, but unraveling their functional capabilities is crucial for grasping their ecological significance. Metagenomics characterizes microbial communities by composition, while metatranscriptomics explores gene expression, providing insights into microbiome functionality beyond the structure. Here, we present for the first time a metatranscriptomic study of two moss species, Hypnum cupressiforme (Hedw.) and Platyhypnidium riparioides (Hedw.) Dixon., renowned as key biomonitors of atmospheric and water pollution. Our investigation extends beyond taxonomic profiling and offers a profound exploration of moss bacterial communities. Pseudomonadota and Actinobacteria are the dominant bacterial phyla in both moss species, but their proportions differ. In H. cupressiforme, Actinobacteria make up 62.45% and Pseudomonadota 32.48%, while in P. riparioides, Actinobacteria account for only 25.67% and Pseudomonadota 69.08%. This phylum-level contrast is reflected in genus-level differences. Our study also shows the expression of most genes related to nitrogen cycling across both microbiomes. Additionally, functional annotation highlights disparities in pathway prevalence, including carbon dioxide fixation, photosynthesis, and fatty acid biosynthesis, among others. These findings hint at potential metabolic distinctions between microbial communities associated with different moss species, influenced by their specific genotypes and habitats. The integration of metatranscriptomic data holds promise for enhancing our understanding of bryophyte-microbe partnerships, opening avenues for novel applications in conservation, bioremediation, and sustainable agriculture.
Collapse
Affiliation(s)
- Vesselin Baev
- Department of Molecular Biology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria; (E.A.); (M.G.)
| | - Gana Gecheva
- Department of Ecology and Environmental Conservation, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria;
| | - Elena Apostolova
- Department of Molecular Biology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria; (E.A.); (M.G.)
| | - Mariyana Gozmanova
- Department of Molecular Biology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria; (E.A.); (M.G.)
| | - Galina Yahubyan
- Department of Molecular Biology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria; (E.A.); (M.G.)
| |
Collapse
|
5
|
Poveda J. Analysis of Marchantia polymorpha-microorganism interactions: basis for understanding plant-microbe and plant-pathogen interactions. FRONTIERS IN PLANT SCIENCE 2024; 15:1301816. [PMID: 38384768 PMCID: PMC10879820 DOI: 10.3389/fpls.2024.1301816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/23/2024] [Indexed: 02/23/2024]
Abstract
Marchantia polymorpha is a bryophyte gaining significance as a model plant in evolutionary studies in recent years. This is attributed to its small-sequenced genome, standardized transformation methodology, global distribution, and easy and rapid in vitro culturing. As an evolutionary model, M. polymorpha contributes to our understanding of the evolution of plant defensive responses and the associated hormonal signaling pathways. Through its interaction with microorganisms, M. polymorpha serves as a valuable source of knowledge, yielding insights into new microbial species and bioactive compounds. Bibliographic analysis involved collecting, reading, and categorizing documents obtained from the Scopus and Web of Science databases using different search terms. The review was based on 30 articles published between 1995 and 2023, with Japanese and Spanish authors emerging as the most prolific contributors in this field. These articles have been grouped into four main themes: antimicrobial metabolites produced by M. polymorpha; identification and characterization of epiphytic, endophytic, and pathogenic microorganisms; molecular studies of the direct interaction between M. polymorpha and microorganisms; and plant transformation using bacterial vectors. This review highlights the key findings from these articles and identifies potential future research directions.
Collapse
Affiliation(s)
- Jorge Poveda
- Recognised Research Group AGROBIOTECH, UIC-370 (JCyL), Department of Plant Production and Forest Resources, Higher Technical School of Agricultural Engineering of Palencia, University Institute for Research in Sustainable Forest Management (iuFOR), University of Valladolid, Palencia, Spain
| |
Collapse
|
6
|
Kamble A, Michavila S, Gimenez-Ibanez S, Redkar A. Shared infection strategy of a fungal pathogen across diverse lineages of land plants, the Fusarium example. CURRENT OPINION IN PLANT BIOLOGY 2024; 77:102498. [PMID: 38142620 DOI: 10.1016/j.pbi.2023.102498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/26/2023]
Abstract
Plants engage with a wide variety of microorganisms either in parasitic or mutualistic relationships, which have helped them to adapt to terrestrial ecosystems. Microbial interactions have driven plant evolution and led to the emergence of complex interaction outcomes via suppression of host defenses by evolving pathogens. The evolution of plant-microbe interactions is shaped by conserved host and pathogen gene modules and fast-paced lineage-specific adaptability which determines the interaction outcome. Recent findings from different microbes ranging from bacteria, oomycetes, and fungi suggest recurrent concepts in establishing interactions with evolutionarily distant plant hosts, but also clade-specific adaptation that ultimately contributes to pathogenicity. Here, we revisit some of the latest features that illustrate shared colonization strategies of the fungal pathogen Fusarium oxysporum on distant plant lineages and lineage-specific adaptability of mini-chromosomal units encoding effectors, for shaping host-specific pathogenicity in angiosperms.
Collapse
Affiliation(s)
- Avinash Kamble
- Department of Botany, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Santiago Michavila
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología CSIC, Campus Universidad Autonoma, Madrid, 28049, Spain
| | - Selena Gimenez-Ibanez
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología CSIC, Campus Universidad Autonoma, Madrid, 28049, Spain
| | - Amey Redkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research (NCBS-TIFR), GKVK Campus, Bellary Road, Bengaluru, 560065, India.
| |
Collapse
|
7
|
Ponce de León I. Evolution of immunity networks across embryophytes. CURRENT OPINION IN PLANT BIOLOGY 2024; 77:102450. [PMID: 37704543 DOI: 10.1016/j.pbi.2023.102450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023]
Abstract
Land plants (embryophytes), including vascular (tracheophytes) and non-vascular plants (bryophytes), co-evolved with microorganisms since descendants of an algal ancestor colonized terrestrial habitats around 500 million years ago. To cope with microbial pathogen infections, embryophytes evolved a complex immune system for pathogen perception and activation of defenses. With the growing number of sequenced genomes and transcriptome datasets from algae, bryophytes, tracheophytes, and available plant models, comparative analyses are increasing our understanding of the evolution of molecular mechanisms underpinning immune responses in different plant lineages. In this review, recent progress on plant immunity networks is highlighted with emphasis on the identification of key components that shaped immunity against pathogens in bryophytes compared to angiosperms during plant evolution.
Collapse
Affiliation(s)
- Inés Ponce de León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, 11600, Montevideo, Uruguay.
| |
Collapse
|
8
|
Maizatul-Suriza M, Dickinson M, Al-Jaf B, Madihah AZ. Cross-pathogenicity of Phytophthora palmivora associated with bud rot disease of oil palm and development of biomarkers for detection. World J Microbiol Biotechnol 2024; 40:55. [PMID: 38165501 DOI: 10.1007/s11274-023-03860-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024]
Abstract
Phytophthora palmivora has caused disease in many crops including oil palm in the South America region. The pathogen has had a significant economic impact on oil palm cultivation in Colombia, and therefore poses a threat to oil palm cultivation in other regions of the World, especially in Southeast Asia, the largest producer of the crop. This study aimed to look at the ability of isolates from Malaysia, Colombia, and other regions to cross-infect Malaysian oil palm, durian, and cocoa and to develop specific biomarkers and assays for identification, detection, and diagnosis of P. palmivora as a key component for the oil palm biosecurity continuum in order to contain the disease especially at the ports of entry. We have developed specific molecular biomarkers to identify and detect Phytophthora palmivora using polymerase chain reaction (PCR) and real-time loop mediated isothermal amplification (rt-LAMP) in various sample types such as soil and plants. The limit of detection (DNA template, pure culture assay) for the PCR assay is 5.94 × 10-2 ng µl-1 and for rt-LAMP is 9.28 × 10-4 ng µl-1. Diagnosis using rt-LAMP can be achieved within 30 min of incubation. In addition, PCR primer pair AV3F/AV3R developed successfully distinguished the Colombian and Malaysian P. palmivora isolates.
Collapse
Affiliation(s)
- Mohamed Maizatul-Suriza
- Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia.
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, Leicestershire, UK.
| | - Matthew Dickinson
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, Leicestershire, UK
| | - Bryar Al-Jaf
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, Leicestershire, UK
- Horticulture Department, College of Agricultural Engineering Sciences, University of Sulaimani, Sulaimani, Iraq
| | - Ahmad Zairun Madihah
- Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
9
|
Castel B, El Mahboubi K, Jacquet C, Delaux PM. Immunobiodiversity: Conserved and specific immunity across land plants and beyond. MOLECULAR PLANT 2024; 17:92-111. [PMID: 38102829 DOI: 10.1016/j.molp.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/20/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Angiosperms represent most plants that humans cultivate, grow, and eat. However, angiosperms are only one of five major land plant lineages. As a whole lineage, plants also include algal groups. All these clades represent a tremendous genetic diversity that can be investigated to reveal the evolutionary history of any given mechanism. In this review, we describe the current model of the plant immune system, discuss its evolution based on the recent literature, and propose future directions for the field. In angiosperms, plant-microbe interactions have been intensively studied, revealing essential cell surface and intracellular immune receptors, as well as metabolic and hormonal defense pathways. Exploring diversity at the genomic and functional levels demonstrates the conservation of these pathways across land plants, some of which are beyond plants. On basis of the conserved mechanisms, lineage-specific variations have occurred, leading to diversified reservoirs of immune mechanisms. In rare cases, this diversity has been harnessed and successfully transferred to other species by integration of wild immune receptors or engineering of novel forms of receptors for improved resistance to pathogens. We propose that exploring further the diversity of immune mechanisms in the whole plant lineage will reveal completely novel sources of resistance to be deployed in crops.
Collapse
Affiliation(s)
- Baptiste Castel
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Karima El Mahboubi
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Christophe Jacquet
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France.
| |
Collapse
|
10
|
Monte I. Jasmonates and salicylic acid: Evolution of defense hormones in land plants. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102470. [PMID: 37801737 DOI: 10.1016/j.pbi.2023.102470] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 10/08/2023]
Abstract
The emergence of plant hormone signaling pathways is deeply intertwined with land plant evolution. In angiosperms, two plant hormones, salicylic Acid (SA) and Jasmonates (JAs), play a key role in plant defense, where JAs-mediated defenses are typically activated in response to herbivores and necrotrophic pathogens, whereas SA is prioritized against hemi/biotrophic pathogens. Thus, studying the evolution of SA and JAs and their crosstalk is essential to understand the evolution of molecular plant-microbe interactions (EvoMPMI) in land plants. Recent advances in the evolution of SA and JAs biosynthesis, signaling, and crosstalk in land plants illustrated that the insight gained in angiosperms does not necessarily apply to non-seed plant lineages, where the receptors perceive different ligands and the hormones activate pathways independently on the canonical receptors. In this review, recent findings on the two main defense hormones (JAs and SA) in non-seed plants, including functional studies in the bryophyte model Marchantia polymorpha, will be discussed.
Collapse
Affiliation(s)
- Isabel Monte
- ZMBP, University of Tuebingen, Auf der Morgenstelle 32, 72076 Tuebingen Germany.
| |
Collapse
|
11
|
Jeong HM, Patterson H, Carella P. Bryo-FIGHTs: Emerging insights and principles acquired from non-vascular plant-pathogen interactions. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102484. [PMID: 37931549 DOI: 10.1016/j.pbi.2023.102484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 11/08/2023]
Abstract
Since the dawn of land plant evolution, pathogenic microbes have impacted plant health and threatened their survival. Though much of our knowledge on plant-pathogen interactions is derived from flowering plants, emerging research leveraging evolutionarily divergent non-vascular/non-seed bryophytes is beginning to shed light on the history and diversity of plant immune and infection processes. Here, we highlight key bryophyte-microbe pathosystems used to address fundamental questions on plant health. To this end, we outline the idea that core molecular aspects impacting plant infection and immunity are likely conserved across land plants. We discuss recent advances in the emerging field of Evo-MPMI (evolutionary molecular plant-microbe interactions) and highlight future opportunities that will clarify our understanding of the evolutionary framework that underpins host-pathogen interactions across the full spectrum of plant evolution.
Collapse
Affiliation(s)
- Hyeon-Min Jeong
- Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich, NR4 7UH, United Kingdom
| | - Henrietta Patterson
- Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich, NR4 7UH, United Kingdom
| | - Philip Carella
- Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich, NR4 7UH, United Kingdom.
| |
Collapse
|
12
|
Contreras MP, Lüdke D, Pai H, Toghani A, Kamoun S. NLR receptors in plant immunity: making sense of the alphabet soup. EMBO Rep 2023; 24:e57495. [PMID: 37602936 PMCID: PMC10561179 DOI: 10.15252/embr.202357495] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/22/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023] Open
Abstract
Plants coordinately use cell-surface and intracellular immune receptors to perceive pathogens and mount an immune response. Intracellular events of pathogen recognition are largely mediated by immune receptors of the nucleotide binding and leucine rich-repeat (NLR) classes. Upon pathogen perception, NLRs trigger a potent broad-spectrum immune reaction, usually accompanied by a form of programmed cell death termed the hypersensitive response. Some plant NLRs act as multifunctional singleton receptors which combine pathogen detection and immune signaling. However, NLRs can also function in higher order pairs and networks of functionally specialized interconnected receptors. In this article, we cover the basic aspects of plant NLR biology with an emphasis on NLR networks. We highlight some of the recent advances in NLR structure, function, and activation and discuss emerging topics such as modulator NLRs, pathogen suppression of NLRs, and NLR bioengineering. Multi-disciplinary approaches are required to disentangle how these NLR immune receptor pairs and networks function and evolve. Answering these questions holds the potential to deepen our understanding of the plant immune system and unlock a new era of disease resistance breeding.
Collapse
Affiliation(s)
| | - Daniel Lüdke
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | - Hsuan Pai
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | | | - Sophien Kamoun
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| |
Collapse
|
13
|
Rubio-Somoza I, Blázquez MA. Plant-pathogen interactions: The need to evolve to stay the same. Curr Biol 2023; 33:R902-R904. [PMID: 37699346 DOI: 10.1016/j.cub.2023.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Plants and microorganisms have a long-standing relationship involving mutual and continuous adaptations. A new study shows that several molecular tools plants use to recognize their pathogens were already present when plants colonized the land.
Collapse
Affiliation(s)
- Ignacio Rubio-Somoza
- Molecular Reprogramming and Evolution (MoRE) Lab, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), Campus UAB, Carrer Vall Moronta, 08193 Barcelona, Spain.
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universitat Politècnica de València), C/Ingeniero Fausto Elio s/n, 46022 Valencia, Spain.
| |
Collapse
|
14
|
Yotsui I, Matsui H, Miyauchi S, Iwakawa H, Melkonian K, Schlüter T, Michavila S, Kanazawa T, Nomura Y, Stolze SC, Jeon HW, Yan Y, Harzen A, Sugano SS, Shirakawa M, Nishihama R, Ichihashi Y, Ibanez SG, Shirasu K, Ueda T, Kohchi T, Nakagami H. LysM-mediated signaling in Marchantia polymorpha highlights the conservation of pattern-triggered immunity in land plants. Curr Biol 2023; 33:3732-3746.e8. [PMID: 37619565 DOI: 10.1016/j.cub.2023.07.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/25/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
Pattern-recognition receptor (PRR)-triggered immunity (PTI) wards off a wide range of pathogenic microbes, playing a pivotal role in angiosperms. The model liverwort Marchantia polymorpha triggers defense-related gene expression upon sensing components of bacterial and fungal extracts, suggesting the existence of PTI in this plant model. However, the molecular components of the putative PTI in M. polymorpha and the significance of PTI in bryophytes have not yet been described. We here show that M. polymorpha has four lysin motif (LysM)-domain-containing receptor homologs, two of which, LysM-receptor-like kinase (LYK) MpLYK1 and LYK-related (LYR) MpLYR, are responsible for sensing chitin and peptidoglycan fragments, triggering a series of characteristic immune responses. Comprehensive phosphoproteomic analysis of M. polymorpha in response to chitin treatment identified regulatory proteins that potentially shape LysM-mediated PTI. The identified proteins included homologs of well-described PTI components in angiosperms as well as proteins whose roles in PTI are not yet determined, including the blue-light receptor phototropin MpPHOT. We revealed that MpPHOT is required for negative feedback of defense-related gene expression during PTI. Taken together, this study outlines the basic framework of LysM-mediated PTI in M. polymorpha and highlights conserved elements and new aspects of pattern-triggered immunity in land plants.
Collapse
Affiliation(s)
- Izumi Yotsui
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Kanagawa, Japan; Department of BioScience, Tokyo University of Agriculture, Setagaya, Tokyo 156-8502, Japan
| | - Hidenori Matsui
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Kanagawa, Japan; Graduate School of Environmental and Life Sciences, Okayama University, Okayama 700-8530, Japan
| | - Shingo Miyauchi
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany; Okinawa Institute of Science and Technology Graduate University, Onna 904-0495, Okinawa, Japan
| | - Hidekazu Iwakawa
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany; School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Ishikawa, Japan
| | | | - Titus Schlüter
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Santiago Michavila
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Takehiko Kanazawa
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Aichi, Japan; Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki 444-8585, Aichi, Japan
| | - Yuko Nomura
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Kanagawa, Japan
| | | | - Hyung-Woo Jeon
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Yijia Yan
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Anne Harzen
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Shigeo S Sugano
- Bioproduction Research Institute, The National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Ibaraki, Japan
| | - Makoto Shirakawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma 630-0192, Nara, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda 278-8510, Chiba, Japan
| | - Yasunori Ichihashi
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Kanagawa, Japan; RIKEN BioResource Research Center, Tsukuba 305-0074, Ibaraki, Japan
| | - Selena Gimenez Ibanez
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Kanagawa, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Aichi, Japan; Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki 444-8585, Aichi, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Hirofumi Nakagami
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Kanagawa, Japan; Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany.
| |
Collapse
|
15
|
Wahab A, Muhammad M, Munir A, Abdi G, Zaman W, Ayaz A, Khizar C, Reddy SPP. Role of Arbuscular Mycorrhizal Fungi in Regulating Growth, Enhancing Productivity, and Potentially Influencing Ecosystems under Abiotic and Biotic Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:3102. [PMID: 37687353 PMCID: PMC10489935 DOI: 10.3390/plants12173102] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) form symbiotic relationships with the roots of nearly all land-dwelling plants, increasing growth and productivity, especially during abiotic stress. AMF improves plant development by improving nutrient acquisition, such as phosphorus, water, and mineral uptake. AMF improves plant tolerance and resilience to abiotic stressors such as drought, salt, and heavy metal toxicity. These benefits come from the arbuscular mycorrhizal interface, which lets fungal and plant partners exchange nutrients, signalling molecules, and protective chemical compounds. Plants' antioxidant defence systems, osmotic adjustment, and hormone regulation are also affected by AMF infestation. These responses promote plant performance, photosynthetic efficiency, and biomass production in abiotic stress conditions. As a result of its positive effects on soil structure, nutrient cycling, and carbon sequestration, AMF contributes to the maintenance of resilient ecosystems. The effects of AMFs on plant growth and ecological stability are species- and environment-specific. AMF's growth-regulating, productivity-enhancing role in abiotic stress alleviation under abiotic stress is reviewed. More research is needed to understand the molecular mechanisms that drive AMF-plant interactions and their responses to abiotic stresses. AMF triggers plants' morphological, physiological, and molecular responses to abiotic stress. Water and nutrient acquisition, plant development, and abiotic stress tolerance are improved by arbuscular mycorrhizal symbiosis. In plants, AMF colonization modulates antioxidant defense mechanisms, osmotic adjustment, and hormonal regulation. These responses promote plant performance, photosynthetic efficiency, and biomass production in abiotic stress circumstances. AMF-mediated effects are also enhanced by essential oils (EOs), superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), hydrogen peroxide (H2O2), malondialdehyde (MDA), and phosphorus (P). Understanding how AMF increases plant adaptation and reduces abiotic stress will help sustain agriculture, ecosystem management, and climate change mitigation. Arbuscular mycorrhizal fungi (AMF) have gained prominence in agriculture due to their multifaceted roles in promoting plant health and productivity. This review delves into how AMF influences plant growth and nutrient absorption, especially under challenging environmental conditions. We further explore the extent to which AMF bolsters plant resilience and growth during stress.
Collapse
Affiliation(s)
- Abdul Wahab
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Murad Muhammad
- University of Chinese Academy of Sciences, Beijing 100049, China;
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Asma Munir
- Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan;
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr 75169, Iran;
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Asma Ayaz
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China;
| | - Chandni Khizar
- Institute of Molecular Biology and Biochemistry, University of the Lahore, Lahore 51000, Pakistan;
| | | |
Collapse
|
16
|
Kobayashi H, Murakami K, Sugano SS, Tamura K, Oka Y, Matsushita T, Shimada T. Comprehensive analysis of peptide-coding genes and initial characterization of an LRR-only microprotein in Marchantia polymorpha. FRONTIERS IN PLANT SCIENCE 2023; 13:1051017. [PMID: 36756228 PMCID: PMC9901580 DOI: 10.3389/fpls.2022.1051017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
In the past two decades, many plant peptides have been found to play crucial roles in various biological events by mediating cell-to-cell communications. However, a large number of small open reading frames (sORFs) or short genes capable of encoding peptides remain uncharacterized. In this study, we examined several candidate genes for peptides conserved between two model plants: Arabidopsis thaliana and Marchantia polymorpha. We examined their expression pattern in M. polymorpha and subcellular localization using a transient assay with Nicotiana benthamiana. We found that one candidate, MpSGF10B, was expressed in meristems, gemma cups, and male reproductive organs called antheridiophores. MpSGF10B has an N-terminal signal peptide followed by two leucine-rich repeat (LRR) domains and was secreted to the extracellular region in N. benthamiana and M. polymorpha. Compared with the wild type, two independent Mpsgf10b mutants had a slightly increased number of antheridiophores. It was revealed in gene ontology enrichment analysis that MpSGF10B was significantly co-expressed with genes related to cell cycle and development. These results suggest that MpSGF10B may be involved in the reproductive development of M. polymorpha. Our research should shed light on the unknown role of LRR-only proteins in land plants.
Collapse
Affiliation(s)
| | | | - Shigeo S. Sugano
- Bioproduction Research Institute, The National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Kentaro Tamura
- Department of Environmental and Life Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka, Japan
| | - Yoshito Oka
- Graduate School of Science, Kyoto University, Kyoto, Japan
| | | | - Tomoo Shimada
- Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
17
|
Bowman JL, Arteaga-Vazquez M, Berger F, Briginshaw LN, Carella P, Aguilar-Cruz A, Davies KM, Dierschke T, Dolan L, Dorantes-Acosta AE, Fisher TJ, Flores-Sandoval E, Futagami K, Ishizaki K, Jibran R, Kanazawa T, Kato H, Kohchi T, Levins J, Lin SS, Nakagami H, Nishihama R, Romani F, Schornack S, Tanizawa Y, Tsuzuki M, Ueda T, Watanabe Y, Yamato KT, Zachgo S. The renaissance and enlightenment of Marchantia as a model system. THE PLANT CELL 2022; 34:3512-3542. [PMID: 35976122 PMCID: PMC9516144 DOI: 10.1093/plcell/koac219] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/21/2022] [Indexed: 05/07/2023]
Abstract
The liverwort Marchantia polymorpha has been utilized as a model for biological studies since the 18th century. In the past few decades, there has been a Renaissance in its utilization in genomic and genetic approaches to investigating physiological, developmental, and evolutionary aspects of land plant biology. The reasons for its adoption are similar to those of other genetic models, e.g. simple cultivation, ready access via its worldwide distribution, ease of crossing, facile genetics, and more recently, efficient transformation, genome editing, and genomic resources. The haploid gametophyte dominant life cycle of M. polymorpha is conducive to forward genetic approaches. The lack of ancient whole-genome duplications within liverworts facilitates reverse genetic approaches, and possibly related to this genomic stability, liverworts possess sex chromosomes that evolved in the ancestral liverwort. As a representative of one of the three bryophyte lineages, its phylogenetic position allows comparative approaches to provide insights into ancestral land plants. Given the karyotype and genome stability within liverworts, the resources developed for M. polymorpha have facilitated the development of related species as models for biological processes lacking in M. polymorpha.
Collapse
Affiliation(s)
| | - Mario Arteaga-Vazquez
- Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana, Xalapa VER 91090, México
| | - Frederic Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Liam N Briginshaw
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne VIC 3800, Australia
| | - Philip Carella
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Adolfo Aguilar-Cruz
- Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana, Xalapa VER 91090, México
| | - Kevin M Davies
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4442, New Zealand
| | - Tom Dierschke
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
| | - Liam Dolan
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Ana E Dorantes-Acosta
- Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana, Xalapa VER 91090, México
| | - Tom J Fisher
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne VIC 3800, Australia
| | - Eduardo Flores-Sandoval
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne VIC 3800, Australia
| | - Kazutaka Futagami
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | | | - Rubina Jibran
- The New Zealand Institute for Plant & Food Research Limited, Auckland 1142, New Zealand
| | - Takehiko Kanazawa
- Division of Cellular Dynamics, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi 444-8585, Japan
- The Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Hirotaka Kato
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Jonathan Levins
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | - Hirofumi Nakagami
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Ryuichi Nishihama
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Facundo Romani
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | | | - Yasuhiro Tanizawa
- Department of Informatics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Masayuki Tsuzuki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi 444-8585, Japan
- The Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Yuichiro Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama 649-6493, Japan
| | - Sabine Zachgo
- Division of Botany, School of Biology and Chemistry, Osnabrück University, Osnabrück 49076, Germany
| |
Collapse
|
18
|
Redkar A, Sabale M, Schudoma C, Zechmann B, Gupta YK, López-Berges MS, Venturini G, Gimenez-Ibanez S, Turrà D, Solano R, Di Pietro A. Conserved secreted effectors contribute to endophytic growth and multihost plant compatibility in a vascular wilt fungus. THE PLANT CELL 2022; 34:3214-3232. [PMID: 35689625 PMCID: PMC9421472 DOI: 10.1093/plcell/koac174] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/03/2022] [Indexed: 05/04/2023]
Abstract
Fungal interactions with plant roots, either beneficial or detrimental, have a crucial impact on agriculture and ecosystems. The cosmopolitan plant pathogen Fusarium oxysporum (Fo) provokes vascular wilts in more than a hundred different crops. Isolates of this fungus exhibit host-specific pathogenicity, which is conferred by lineage-specific Secreted In Xylem (SIX) effectors encoded on accessory genomic regions. However, such isolates also can colonize the roots of other plants asymptomatically as endophytes or even protect them against pathogenic strains. The molecular determinants of endophytic multihost compatibility are largely unknown. Here, we characterized a set of Fo candidate effectors from tomato (Solanum lycopersicum) root apoplastic fluid; these early root colonization (ERC) effectors are secreted during early biotrophic growth on main and alternative plant hosts. In contrast to SIX effectors, ERCs have homologs across the entire Fo species complex as well as in other plant-interacting fungi, suggesting a conserved role in fungus-plant associations. Targeted deletion of ERC genes in a pathogenic Fo isolate resulted in reduced virulence and rapid activation of plant immune responses, while ERC deletion in a nonpathogenic isolate led to impaired root colonization and biocontrol ability. Strikingly, some ERCs contribute to Fo infection on the nonvascular land plant Marchantia polymorpha, revealing an evolutionarily conserved mechanism for multihost colonization by root infecting fungi.
Collapse
Affiliation(s)
| | - Mugdha Sabale
- Departamento de Genética, Universidad de Córdoba, 14071 Córdoba, Spain
| | | | - Bernd Zechmann
- Baylor University, Center for Microscopy and Imaging, Waco, Texas 76798, USA
| | - Yogesh K Gupta
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | | | | | - Selena Gimenez-Ibanez
- Plant Molecular Genetics Department, Centro Nacional de Biotecnologıa-CSIC (CNB-CSIC), 28049 Madrid, Spain
| | - David Turrà
- Department of Agriculture and Center for Studies on Bioinspired Agro-enviromental Technology, Università di Napoli Federico II, 80055 Portici, Italy
| | - Roberto Solano
- Plant Molecular Genetics Department, Centro Nacional de Biotecnologıa-CSIC (CNB-CSIC), 28049 Madrid, Spain
| | | |
Collapse
|
19
|
Chen KH, Nelson J. A scoping review of bryophyte microbiota: diverse microbial communities in small plant packages. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4496-4513. [PMID: 35536989 DOI: 10.1093/jxb/erac191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/05/2022] [Indexed: 06/14/2023]
Abstract
Plant health depends not only on the condition of the plant itself but also on its diverse community of microbes, or microbiota. Just like the better-studied angiosperms, bryophytes (mosses, liverworts, and hornworts) harbor diverse communities of bacteria, archaea, fungi, and other microbial eukaryotes. Bryophytes are increasingly recognized as important model systems for understanding plant evolution, development, physiology, and symbiotic interactions. Much of the work on bryophyte microbiota in the past focused on specific symbiont types for each bryophyte group, but more recent studies are taking a broader view acknowledging the coexistence of diverse microbial communities in bryophytes. Therefore, this review integrates studies of bryophyte microbes from both perspectives to provide a holistic view of the existing research for each bryophyte group and on key themes. The systematic search also reveals the taxonomic and geographic biases in this field, including a severe under-representation of the tropics, very few studies on viruses or eukaryotic microbes beyond fungi, and a focus on mycorrhizal fungi studies in liverworts. Such gaps may have led to errors in conclusions about evolutionary patterns in symbiosis. This analysis points to a wealth of future research directions that promise to reveal how the distinct life cycles and physiology of bryophytes interact with their microbiota.
Collapse
Affiliation(s)
- Ko-Hsuan Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Jessica Nelson
- Maastricht Science Programme, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
20
|
Melkonian K, Stolze SC, Harzen A, Nakagami H. miniTurbo-based interactomics of two plasma membrane-localized SNARE proteins in Marchantia polymorpha. THE NEW PHYTOLOGIST 2022; 235:786-800. [PMID: 35396742 DOI: 10.1111/nph.18151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Marchantia polymorpha is a model liverwort and its overall low genetic redundancy is advantageous for dissecting complex pathways. Proximity-dependent in vivo biotin-labelling methods have emerged as powerful interactomics tools in recent years. However, interactomics studies applying proximity labelling are currently limited to angiosperm species in plants. Here, we established and evaluated a miniTurbo-based interactomics method in M. polymorpha using MpSYP12A and MpSYP13B, two plasma membrane-localized SNARE proteins, as baits. We show that our method yields a manifold of potential interactors of MpSYP12A and MpSYP13B compared to a coimmunoprecipitation approach. Our method could capture specific candidates for each SNARE. We conclude that a miniTurbo-based method is a feasible tool for interactomics in M. polymorpha and potentially applicable to other model bryophytes. Our interactome dataset on MpSYP12A and MpSYP13B will be a useful resource to elucidate the evolution of SNARE functions.
Collapse
Affiliation(s)
- Katharina Melkonian
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Sara Christina Stolze
- Protein Mass Spectrometry, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Anne Harzen
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
- Protein Mass Spectrometry, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Hirofumi Nakagami
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
- Protein Mass Spectrometry, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| |
Collapse
|
21
|
Redkar A, Gimenez Ibanez S, Sabale M, Zechmann B, Solano R, Di Pietro A. Marchantia polymorpha model reveals conserved infection mechanisms in the vascular wilt fungal pathogen Fusarium oxysporum. THE NEW PHYTOLOGIST 2022; 234:227-241. [PMID: 34877655 DOI: 10.1111/nph.17909] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
Root-infecting vascular fungi cause wilt diseases and provoke devastating losses in hundreds of crops. It is currently unknown how these pathogens evolved and whether they can also infect nonvascular plants, which diverged from vascular plants over 450 million years ago. We established a pathosystem between the nonvascular plant Marchantia polymorpha (Mp) and the root-infecting vascular wilt fungus Fusarium oxysporum (Fo). On angiosperms, Fo exhibits exquisite adaptation to the plant xylem niche as well as host-specific pathogenicity, both of which are conferred by effectors encoded on lineage-specific chromosomes. Fo isolates displaying contrasting lifestyles on angiosperms - pathogenic vs endophytic - are able to infect Mp and cause tissue maceration and host cell killing. Using isogenic fungal mutants we define a set of conserved fungal pathogenicity factors, including mitogen activated protein kinases, transcriptional regulators and cell wall remodelling enzymes, that are required for infection of both vascular and nonvascular plants. Markedly, two host-specific effectors and a morphogenetic regulator, which contribute to vascular colonisation and virulence on tomato plants are dispensable on Mp. Collectively, these findings suggest that vascular wilt fungi employ conserved infection strategies on nonvascular and vascular plant lineages but also have specific mechanisms to access the vascular niche of angiosperms.
Collapse
Affiliation(s)
- Amey Redkar
- Departamento de Genética, Universidad de Córdoba, Córdoba, 14071, Spain
| | - Selena Gimenez Ibanez
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología CSIC, Campus Universidad Autónoma, Madrid, 28049, Spain
| | - Mugdha Sabale
- Departamento de Genética, Universidad de Córdoba, Córdoba, 14071, Spain
| | - Bernd Zechmann
- Center for Microscopy and Imaging, Baylor University, Waco, TX, 76798, USA
| | - Roberto Solano
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología CSIC, Campus Universidad Autónoma, Madrid, 28049, Spain
| | - Antonio Di Pietro
- Departamento de Genética, Universidad de Córdoba, Córdoba, 14071, Spain
| |
Collapse
|
22
|
Molinelli HR, Liu M, O'Connell RJ, Nielsen ME. Plant SYP12 syntaxins mediate an evolutionarily conserved general immunity to filamentous pathogens. eLife 2022; 11:73487. [PMID: 35119361 PMCID: PMC8865848 DOI: 10.7554/elife.73487] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/30/2022] [Indexed: 12/03/2022] Open
Abstract
Filamentous fungal and oomycete plant pathogens that invade by direct penetration through the leaf epidermal cell wall cause devastating plant diseases. Plant preinvasive immunity toward nonadapted filamentous pathogens is highly effective and durable. Pre- and postinvasive immunity correlates with the formation of evolutionarily conserved and cell-autonomous cell wall structures, named papillae and encasements, respectively. Yet, it is still unresolved how papillae/encasements are formed and whether these defense structures prevent pathogen ingress. Here, we show that in Arabidopsis the two closely related members of the SYP12 clade of syntaxins (PEN1 and SYP122) are indispensable for the formation of papillae and encasements. Moreover, loss-of-function mutants were hampered in preinvasive immunity toward a range of phylogenetically distant nonadapted filamentous pathogens, underlining the versatility and efficacy of this defense. Complementation studies using SYP12s from the early diverging land plant, Marchantia polymorpha, showed that the SYP12 clade immunity function has survived 470 million years of independent evolution. These results suggest that ancestral land plants evolved the SYP12 clade to provide a broad and durable preinvasive immunity to facilitate their life on land and pave the way to a better understanding of how adapted pathogens overcome this ubiquitous plant defense strategy.
Collapse
Affiliation(s)
| | - Mengqi Liu
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Mads Eggert Nielsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Iwakawa H, Melkonian K, Schlüter T, Jeon HW, Nishihama R, Motose H, Nakagami H. Agrobacterium-Mediated Transient Transformation of Marchantia Liverworts. PLANT & CELL PHYSIOLOGY 2021; 62:1718-1727. [PMID: 34383076 DOI: 10.1093/pcp/pcab126] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Agrobacterium-mediated transient gene expression is a rapid and useful approach for characterizing functions of gene products in planta. However, the practicability of the method in the model liverwort Marchantia polymorpha has not yet been thoroughly described. Here we report a simple and robust method for Agrobacterium-mediated transient transformation of Marchantia thalli and its applicability. When thalli of M. polymorpha were co-cultured with Agrobacterium tumefaciens carrying β-glucuronidase (GUS) genes, GUS staining was observed primarily in assimilatory filaments and rhizoids. GUS activity was detected 2 days after infection and saturated 3 days after infection. We were able to transiently co-express fluorescently tagged proteins with proper localizations. Furthermore, we demonstrate that our method can be used as a novel pathosystem to study liverwort-bacteria interactions. We also provide evidence that air chambers support bacterial colonization.
Collapse
Affiliation(s)
- Hidekazu Iwakawa
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne 50829, Germany
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Katharina Melkonian
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne 50829, Germany
| | - Titus Schlüter
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne 50829, Germany
| | - Hyung-Woo Jeon
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne 50829, Germany
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hiroyasu Motose
- Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| | - Hirofumi Nakagami
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne 50829, Germany
| |
Collapse
|
24
|
Guo Y, Sakalidis ML, Torres-Londono GA, Hausbeck MK. Population Structure of a Worldwide Phytophthora palmivora Collection Suggests Lack of Host Specificity and Reduced Genetic Diversity in South America and the Caribbean. PLANT DISEASE 2021; 105:4031-4041. [PMID: 33983798 DOI: 10.1094/pdis-05-20-1055-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Phytophthora palmivora (Butler) is a highly destructive plant pathogen that infects tropical hosts worldwide, many of which are economically important crops. Despite the broad host range and wide distribution, the pathogen has displayed a considerable amount of variation in morphological characters, including virulence. However, the genetic variability at a global level, which is critical to understand the center of origin and the potential pathway(s) of introduction, was unclear. Here, we mapped the genetic variation of P. palmivora using isolates representing four regions, 15 countries, and 14 host species. We designed a large set of simple sequence repeat markers from the P. palmivora genome and picked 17 selectively neutral markers to screen 98 P. palmivora isolates. We found that P. palmivora populations from our collection generally did not cluster according to host; rather, some isolates from North America were generally distinct from all other populations. Isolates from South America and the Caribbean clustered and appeared to share ancestry with isolates from Asia. Populations from North America and Asia were the most genetically diverse, while the South American and Caribbean populations exhibited similar reduced genetic diversity. The isolates collected in various plantations in Colombia did not show host or geographic specificity. Our study brought a further understanding of this important plant pathogen, although the determination for hypothesized source of origin, spread, and evolution would need further sampling. The genomic resources developed in this study would facilitate further studies on P. palmivora diagnostics and management.
Collapse
Affiliation(s)
- Yufang Guo
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| | - Monique L Sakalidis
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824
- Department of Forestry, Michigan State University, East Lansing, MI 48824
| | | | - Mary K Hausbeck
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
25
|
Reboledo G, Agorio AD, Vignale L, Batista-García RA, Ponce De León I. Transcriptional profiling reveals conserved and species-specific plant defense responses during the interaction of Physcomitrium patens with Botrytis cinerea. PLANT MOLECULAR BIOLOGY 2021; 107:365-385. [PMID: 33521880 DOI: 10.1007/s11103-021-01116-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
Evolutionary conserved defense mechanisms present in extant bryophytes and angiosperms, as well as moss-specific defenses are part of the immune response of Physcomitrium patens. Bryophytes and tracheophytes are descendants of early land plants that evolved adaptation mechanisms to cope with different kinds of terrestrial stresses, including drought, variations in temperature and UV radiation, as well as defense mechanisms against microorganisms present in the air and soil. Although great advances have been made on pathogen perception and subsequent defense activation in angiosperms, limited information is available in bryophytes. In this study, a transcriptomic approach uncovered the molecular mechanisms underlying the defense response of the bryophyte Physcomitrium patens (previously Physcomitrella patens) against the important plant pathogen Botrytis cinerea. A total of 3.072 differentially expressed genes were significantly affected during B. cinerea infection, including genes encoding proteins with known functions in angiosperm immunity and involved in pathogen perception, signaling, transcription, hormonal signaling, metabolic pathways such as shikimate and phenylpropanoid, and proteins with diverse role in defense against biotic stress. Similarly as in other plants, B. cinerea infection leads to downregulation of genes involved in photosynthesis and cell cycle progression. These results highlight the existence of evolutionary conserved defense responses to pathogens throughout the green plant lineage, suggesting that they were probably present in the common ancestors of land plants. Moreover, several genes acquired by horizontal transfer from prokaryotes and fungi, and a high number of P. patens-specific orphan genes were differentially expressed during B. cinerea infection, suggesting that they are important players in the moss immune response.
Collapse
Affiliation(s)
- Guillermo Reboledo
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Astri D Agorio
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Lucía Vignale
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | | | - Inés Ponce De León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| |
Collapse
|
26
|
Nave C, Schwan J, Werres S, Riebesehl J. Alnus glutinosa Threatened by Alder Phytophthora: A Histological Study of Roots. Pathogens 2021; 10:977. [PMID: 34451441 PMCID: PMC8401901 DOI: 10.3390/pathogens10080977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/10/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
Alder dieback remains a major problem in European alder stands and its spread continues to threaten their existence. The causal agent of this disease is the so-called alder Phytophthora species complex, which includes the hybrid Phytophthora ×alni and its parental species P. uniformis and P. ×multiformis. Little is known about the survival of these Phytophthora species in alder. The aim of our investigations was to find out whether, and if so where, the pathogen survives. The subject of these studies was alder roots. Therefore, artificial infection studies and histological studies with P. ×alni and P. uniformis were carried out on seedlings of black alder (Alnus glutinosa). These histological studies revealed oogonia and oospores of P. ×alni and P. uniformis in different parts of the root tissue.
Collapse
Affiliation(s)
- Corina Nave
- Julius Kühn Institute (JKI)–Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Messeweg 11/12, 38104 Braunschweig, Germany; (C.N.); (S.W.)
| | - Juliette Schwan
- Julius Kühn Institute (JKI)–Federal Research Centre for Cultivated Plants, Institute for National and International Plant Health, Messeweg 11/12, 38104 Braunschweig, Germany;
| | - Sabine Werres
- Julius Kühn Institute (JKI)–Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Messeweg 11/12, 38104 Braunschweig, Germany; (C.N.); (S.W.)
| | - Janett Riebesehl
- Julius Kühn Institute (JKI)–Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Messeweg 11/12, 38104 Braunschweig, Germany; (C.N.); (S.W.)
| |
Collapse
|
27
|
Engelbrecht J, Duong TA, Prabhu SA, Seedat M, van den Berg N. Genome of the destructive oomycete Phytophthora cinnamomi provides insights into its pathogenicity and adaptive potential. BMC Genomics 2021; 22:302. [PMID: 33902447 PMCID: PMC8074420 DOI: 10.1186/s12864-021-07552-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/24/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Phytophthora cinnamomi is an oomycete pathogen of global relevance. It is considered as one of the most invasive species, which has caused irreversible damage to natural ecosystems and horticultural crops. There is currently a lack of a high-quality reference genome for this species despite several attempts that have been made towards sequencing its genome. The lack of a good quality genome sequence has been a setback for various genetic and genomic research to be done on this species. As a consequence, little is known regarding its genome characteristics and how these contribute to its pathogenicity and invasiveness. RESULTS In this work we generated a high-quality genome sequence and annotation for P. cinnamomi using a combination of Oxford Nanopore and Illumina sequencing technologies. The annotation was done using RNA-Seq data as supporting gene evidence. The final assembly consisted of 133 scaffolds, with an estimated genome size of 109.7 Mb, N50 of 1.18 Mb, and BUSCO completeness score of 97.5%. Genome partitioning analysis revealed that P. cinnamomi has a two-speed genome characteristic, similar to that of other oomycetes and fungal plant pathogens. In planta gene expression analysis revealed up-regulation of pathogenicity-related genes, suggesting their important roles during infection and host degradation. CONCLUSION This study has provided a high-quality reference genome and annotation for P. cinnamomi. This is among the best assembled genomes for any Phytophthora species assembled to date and thus resulted in improved identification and characterization of pathogenicity-related genes, some of which were undetected in previous versions of genome assemblies. Phytophthora cinnamomi harbours a large number of effector genes which are located in the gene-poor regions of the genome. This unique genomic partitioning provides P. cinnamomi with a high level of adaptability and could contribute to its success as a highly invasive species. Finally, the genome sequence, its annotation and the pathogenicity effectors identified in this study will serve as an important resource that will enable future studies to better understand and mitigate the impact of this important pathogen.
Collapse
Affiliation(s)
- Juanita Engelbrecht
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa.
| | - Tuan A Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - S Ashok Prabhu
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Mohamed Seedat
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Noëlani van den Berg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
28
|
Delaux PM, Schornack S. Plant evolution driven by interactions with symbiotic and pathogenic microbes. Science 2021; 371:371/6531/eaba6605. [PMID: 33602828 DOI: 10.1126/science.aba6605] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022]
Abstract
During 450 million years of diversification on land, plants and microbes have evolved together. This is reflected in today's continuum of associations, ranging from parasitism to mutualism. Through phylogenetics, cell biology, and reverse genetics extending beyond flowering plants into bryophytes, scientists have started to unravel the genetic basis and evolutionary trajectories of plant-microbe associations. Protection against pathogens and support of beneficial, symbiotic, microorganisms are sustained by a blend of conserved and clade-specific plant mechanisms evolving at different speeds. We propose that symbiosis consistently emerges from the co-option of protection mechanisms and general cell biology principles. Exploring and harnessing the diversity of molecular mechanisms used in nonflowering plant-microbe interactions may extend the possibilities for engineering symbiosis-competent and pathogen-resilient crops.
Collapse
Affiliation(s)
- Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Castanet Tolosan, France.
| | - Sebastian Schornack
- University of Cambridge, Sainsbury Laboratory, 47 Bateman Street, Cambridge CB2 1LR, UK.
| |
Collapse
|
29
|
Lacaze A, Joly DL. Structural specificity in plant-filamentous pathogen interactions. MOLECULAR PLANT PATHOLOGY 2020; 21:1513-1525. [PMID: 32889752 PMCID: PMC7548998 DOI: 10.1111/mpp.12983] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/06/2020] [Accepted: 07/26/2020] [Indexed: 05/07/2023]
Abstract
Plant diseases bear names such as leaf blights, root rots, sheath blights, tuber scabs, and stem cankers, indicating that symptoms occur preferentially on specific parts of host plants. Accordingly, many plant pathogens are specialized to infect and cause disease in specific tissues and organs. Conversely, others are able to infect a range of tissues, albeit often disease symptoms fluctuate in different organs infected by the same pathogen. The structural specificity of a pathogen defines the degree to which it is reliant on a given tissue, organ, or host developmental stage. It is influenced by both the microbe and the host but the processes shaping it are not well established. Here we review the current status on structural specificity of plant-filamentous pathogen interactions and highlight important research questions. Notably, this review addresses how constitutive defence and induced immunity as well as virulence processes vary across plant organs, tissues, and even cells. A better understanding of the mechanisms underlying structural specificity will aid targeted approaches for plant health, for instance by considering the variation in the nature and the amplitude of defence responses across distinct plant organs and tissues when performing selective breeding.
Collapse
Affiliation(s)
- Aline Lacaze
- Department of BiologyUniversité de MonctonMonctonCanada
| | - David L. Joly
- Department of BiologyUniversité de MonctonMonctonCanada
| |
Collapse
|
30
|
Perrine-Walker F. Phytophthora palmivora-Cocoa Interaction. J Fungi (Basel) 2020; 6:jof6030167. [PMID: 32916858 PMCID: PMC7558484 DOI: 10.3390/jof6030167] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/28/2020] [Accepted: 09/07/2020] [Indexed: 12/21/2022] Open
Abstract
Phytophthora palmivora (Butler) is an hemibiotrophic oomycete capable of infecting over 200 plant species including one of the most economically important crops, Theobroma cacao L. commonly known as cocoa. It infects many parts of the cocoa plant including the pods, causing black pod rot disease. This review will focus on P. palmivora’s ability to infect a plant host to cause disease. We highlight some current findings in other Phytophthora sp. plant model systems demonstrating how the germ tube, the appressorium and the haustorium enable the plant pathogen to penetrate a plant cell and how they contribute to the disease development in planta. This review explores the molecular exchange between the oomycete and the plant host, and the role of plant immunity during the development of such structures, to understand the infection of cocoa pods by P. palmivora isolates from Papua New Guinea.
Collapse
Affiliation(s)
- Francine Perrine-Walker
- School of Life and Environmental Sciences, The University of Sydney, LEES Building (F22), Camperdown, NSW 2006, Australia;
- The University of Sydney Institute of Agriculture, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW 2015, Australia
| |
Collapse
|
31
|
Gavrin A, Rey T, Torode TA, Toulotte J, Chatterjee A, Kaplan JL, Evangelisti E, Takagi H, Charoensawan V, Rengel D, Journet EP, Debellé F, de Carvalho-Niebel F, Terauchi R, Braybrook S, Schornack S. Developmental Modulation of Root Cell Wall Architecture Confers Resistance to an Oomycete Pathogen. Curr Biol 2020; 30:4165-4176.e5. [PMID: 32888486 PMCID: PMC7658807 DOI: 10.1016/j.cub.2020.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Accepted: 08/04/2020] [Indexed: 11/26/2022]
Abstract
The cell wall is the primary interface between plant cells and their immediate environment and must balance multiple functionalities, including the regulation of growth, the entry of beneficial microbes, and protection against pathogens. Here, we demonstrate how API, a SCAR2 protein component of the SCAR/WAVE complex, controls the root cell wall architecture important for pathogenic oomycete and symbiotic bacterial interactions in legumes. A mutation in API results in root resistance to the pathogen Phytophthora palmivora and colonization defects by symbiotic rhizobia. Although api mutant plants do not exhibit significant overall growth and development defects, their root cells display delayed actin and endomembrane trafficking dynamics and selectively secrete less of the cell wall polysaccharide xyloglucan. Changes associated with a loss of API establish a cell wall architecture with altered biochemical properties that hinder P. palmivora infection progress. Thus, developmental stage-dependent modifications of the cell wall, driven by SCAR/WAVE, are important in balancing cell wall developmental functions and microbial invasion. The SCAR protein API controls actin and endomembrane trafficking dynamics SCAR proteins of several plant species can support symbiosis and pathogen infection A mutation in API affects specific biochemical properties of plant cell walls An altered wall architecture results in root resistance to Phytophthora palmivora
Collapse
Affiliation(s)
- Aleksandr Gavrin
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Thomas Rey
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Thomas A Torode
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Justine Toulotte
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Abhishek Chatterjee
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Jonathan Louis Kaplan
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Edouard Evangelisti
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Hiroki Takagi
- Iwate Biotechnology Institute, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Varodom Charoensawan
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK; Department of Biochemistry, Faculty of Science, and Integrative Computational BioScience (ICBS) Center, Mahidol University, Bangkok 10400, Thailand
| | - David Rengel
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan 31326, France; GeT-PlaGe, Genotoul, INRA US1426, Castanet-Tolosan Cedex, France
| | - Etienne-Pascal Journet
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan 31326, France; AGIR, Université de Toulouse, INRA, ENSFEA, Castanet-Tolosan 31326, France
| | - Frédéric Debellé
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan 31326, France
| | | | - Ryohei Terauchi
- Iwate Biotechnology Institute, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Siobhan Braybrook
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK; Department of Molecular, Cell, and Developmental Biology, 610 Charles E Young Drive South, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sebastian Schornack
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK.
| |
Collapse
|
32
|
|
33
|
Abstract
Many filamentous pathogens invade plant cells through specialized hyphae called haustoria. These infection structures are enveloped by a newly synthesized plant-derived membrane called the extrahaustorial membrane (EHM). This specialized membrane is the ultimate interface between the plant and pathogen, and is key to the success or failure of infection. Strikingly, the EHM is reminiscent of host-derived membrane interfaces that engulf intracellular metazoan parasites. These perimicrobial interfaces are critical sites where pathogens facilitate nutrient uptake and deploy virulence factors to disarm cellular defenses mounted by their hosts. Although the mechanisms underlying the biogenesis and functions of these host-microbe interfaces are poorly understood, recent studies have provided new insights into the cellular and molecular mechanisms involved. In this Cell Science at a Glance and the accompanying poster, we summarize these recent advances with a specific focus on the haustorial interfaces associated with filamentous plant pathogens. We highlight the progress in the field that fundamentally underpin this research topic. Furthermore, we relate our knowledge of plant-filamentous pathogen interfaces to those generated by other plant-associated organisms. Finally, we compare the similarities between host-pathogen interfaces in plants and animals, and emphasize the key questions in this research area.
Collapse
Affiliation(s)
- Tolga O Bozkurt
- Imperial College London, Department of Life Sciences, London, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
34
|
Pettongkhao S, Navet N, Schornack S, Tian M, Churngchow N. A secreted protein of 15 kDa plays an important role in Phytophthora palmivora development and pathogenicity. Sci Rep 2020; 10:2319. [PMID: 32047196 PMCID: PMC7012922 DOI: 10.1038/s41598-020-59007-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/16/2020] [Indexed: 01/03/2023] Open
Abstract
Phytophthora palmivora is a destructive oomycete plant pathogen with a wide host range. So far, little is known about the factors governing its infection structure development and pathogenicity. From the culture filtrate of a P. palmivora strain isolated from papaya, we identified a secreted glycoprotein of 15 kDa, designated as Ppal15kDa, using liquid chromatography tandem mass spectrometry. Two gene variants, Ppal15kDaA and Ppal15kDaB were amplified from a P. palmivora papaya isolate. Transient expression of both variants in Nicotiana benthamiana by agroinfiltration enhanced P. palmivora infection. Six Ppal15kDa mutants with diverse mutations were generated via CRISPR/Cas9-mediated gene editing. All mutants were compromised in infectivity on N. benthamiana and papaya. Two mutants with all Ppal15kDa copies mutated almost completely lost pathogenicity. The pathogenicity of the other four containing at least one wild-type copy of Ppal15kDa was compromised at varying levels. The mutants were also affected in development as they produced smaller sporangia, shorter germ tubes, and fewer appressoria. The affected levels in development corresponded to the levels of reduction in pathogenicity, suggesting that Ppal15kDa plays an important role in normal development of P. palmivora infection structures. Consistent with its role in infection structure development and pathogenicity, Ppal15kDa was found to be highly induced during appressorium formation. In addition, Ppal15kDa homologs are broadly present in Phytophthora spp., but none were characterized. Altogether, this study identified a novel component involved in development and pathogenicity of P. palmivora and possibly other Phytophthora spp. known to contain a Ppal15kDa homolog.
Collapse
Affiliation(s)
- Sittiporn Pettongkhao
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla, 90112, Thailand.,Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.,East-West Center, Honolulu, Hawaii, USA
| | - Natasha Navet
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | | | - Miaoying Tian
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| | - Nunta Churngchow
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla, 90112, Thailand.
| |
Collapse
|
35
|
Matsui H, Iwakawa H, Hyon GS, Yotsui I, Katou S, Monte I, Nishihama R, Franzen R, Solano R, Nakagami H. Isolation of Natural Fungal Pathogens from Marchantia polymorpha Reveals Antagonism between Salicylic Acid and Jasmonate during Liverwort-Fungus Interactions. PLANT & CELL PHYSIOLOGY 2020; 61:265-275. [PMID: 31560390 DOI: 10.1093/pcp/pcz187] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/15/2019] [Indexed: 05/16/2023]
Abstract
The evolution of adaptive interactions with beneficial, neutral and detrimental microbes was one of the key features enabling plant terrestrialization. Extensive studies have revealed conserved and unique molecular mechanisms underlying plant-microbe interactions across different plant species; however, most insights gleaned to date have been limited to seed plants. The liverwort Marchantia polymorpha, a descendant of early diverging land plants, is gaining in popularity as an advantageous model system to understand land plant evolution. However, studying evolutionary molecular plant-microbe interactions in this model is hampered by the small number of pathogens known to infect M. polymorpha. Here, we describe four pathogenic fungal strains, Irpex lacteus Marchantia-infectious (MI)1, Phaeophlebiopsis peniophoroides MI2, Bjerkandera adusta MI3 and B. adusta MI4, isolated from diseased M. polymorpha. We demonstrate that salicylic acid (SA) treatment of M. polymorpha promotes infection of the I. lacteus MI1 that is likely to adopt a necrotrophic lifestyle, while this effect is suppressed by co-treatment with the bioactive jasmonate in M. polymorpha, dinor-cis-12-oxo-phytodienoic acid (dn-OPDA), suggesting that antagonistic interactions between SA and oxylipin pathways during plant-fungus interactions are ancient and were established already in liverworts.
Collapse
Affiliation(s)
- Hidenori Matsui
- Plant Proteomics Research Unit, RIKEN CSRS, Yokohama, Kanagawa, 230-0045 Japan
| | - Hidekazu Iwakawa
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Gang-Su Hyon
- Plant Proteomics Research Unit, RIKEN CSRS, Yokohama, Kanagawa, 230-0045 Japan
| | - Izumi Yotsui
- Plant Proteomics Research Unit, RIKEN CSRS, Yokohama, Kanagawa, 230-0045 Japan
| | - Shinpei Katou
- Faculty of Agriculture, Shinshu University, Minamiminowa 8304, Nagano, 399-4598 Japan
| | - Isabel Monte
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Rainer Franzen
- Central Microscopy, Max-Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Roberto Solano
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Hirofumi Nakagami
- Plant Proteomics Research Unit, RIKEN CSRS, Yokohama, Kanagawa, 230-0045 Japan
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| |
Collapse
|
36
|
Betsuyaku S. The Rise of Evolutionary Molecular Plant-Microbe Interactions (EvoMPMI). PLANT & CELL PHYSIOLOGY 2020; 61:223-224. [PMID: 32061130 PMCID: PMC7049911 DOI: 10.1093/pcp/pcaa007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 01/23/2020] [Indexed: 05/04/2023]
Affiliation(s)
- Shigeyuki Betsuyaku
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577 Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572 Japan
- Corresponding author: E-mail, ; Fax, + 81-29-853-6110
| |
Collapse
|
37
|
Westermann J, Streubel S, Franck CM, Lentz R, Dolan L, Boisson-Dernier A. An Evolutionarily Conserved Receptor-like Kinases Signaling Module Controls Cell Wall Integrity During Tip Growth. Curr Biol 2019; 29:3899-3908.e3. [PMID: 31679933 DOI: 10.1016/j.cub.2019.09.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/29/2019] [Accepted: 09/26/2019] [Indexed: 02/02/2023]
Abstract
Rooting cells and pollen tubes-key adaptative innovations that evolved during the colonization and subsequent radiation of plants on land-expand by tip growth. Tip growth relies on a tight coordination between the protoplast growth and the synthesis/remodeling of the external cell wall. In root hairs and pollen tubes of the seed plant Arabidopsis thaliana, cell wall integrity (CWI) mechanisms monitor this coordination through the Malectin-like receptor kinases (MLRs), such as AtANXUR1 and AtFERONIA, that act upstream of the AtMARIS PTI1-like kinase. Here, we show that rhizoid growth in the early diverging plant, Marchantia polymorpha, is also controlled by an MLR and PTI1-like signaling module. Rhizoids, root hairs, and pollen tubes respond similarly to disruption of MLR and PTI1-like encoding genes. Thus, the MLR and PTI1-like signaling module that controls CWI during tip growth is conserved between M. polymorpha and A. thaliana, suggesting that it was active in the common ancestor of land plants.
Collapse
Affiliation(s)
| | - Susanna Streubel
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | | - Roswitha Lentz
- University of Cologne, Biocenter, 50674 Cologne, Germany
| | - Liam Dolan
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | |
Collapse
|
38
|
Thines M. An evolutionary framework for host shifts - jumping ships for survival. THE NEW PHYTOLOGIST 2019; 224:605-617. [PMID: 31381166 DOI: 10.1111/nph.16092] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Host jumping is a process by which pathogens settle in new host groups. It is a cornerstone in the evolution of pathogens, as it leads to pathogen diversification. It is unsurprising that host jumping is observed in facultative pathogens, as they can reproduce even if they kill their hosts. However, host jumps were thought to be rare in obligate biotrophic pathogens, but molecular phylogenetics has revealed that the opposite is true. Here, I review some concepts and recent findings and present several hypotheses on the matter. In short, pathogens evolve and diversify via host jumps, followed by radiation, specialisation and speciation. Host jumps are facilitated by, for example, effector innovations, stress, compatible pathogens and physiological similarities. Host jumping, subsequent establishment, and speciation takes place rapidly - within centuries and millennia rather than over millions of years. If pathogens are unable to evolve into neutral or mutualistic interactions with their hosts, they will eventually be removed from the host population, despite balancing trade-offs. Thus, generally, plant pathogens only survive in the course of evolution if they jump hosts. This is also reflected by the diversity patterns observed in many genera of plant pathogens, where it leads to a mosaic pattern of host groups over time, in which the original host group becomes increasingly obscure.
Collapse
Affiliation(s)
- Marco Thines
- Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 13, D-60486, Frankfurt am Main, Germany
- Senckenberg Gesellschaft für Naturforschung, Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, D-60325, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany
| |
Collapse
|
39
|
Carella P, Gogleva A, Hoey DJ, Bridgen AJ, Stolze SC, Nakagami H, Schornack S. Conserved Biochemical Defenses Underpin Host Responses to Oomycete Infection in an Early-Divergent Land Plant Lineage. Curr Biol 2019; 29:2282-2294.e5. [PMID: 31303485 DOI: 10.1016/j.cub.2019.05.078] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/28/2019] [Accepted: 05/31/2019] [Indexed: 12/20/2022]
Abstract
The expansion of plants onto land necessitated the evolution of robust defense strategies to protect against a wide array of microbial invaders. Whereas host responses to microbial colonization are extensively explored in evolutionarily young land plant lineages such as angiosperms, we know relatively little about plant-pathogen interactions in early-diverging land plants thought to better represent the ancestral state. Here, we define the transcriptional and proteomic response of the early-divergent liverwort Marchantia polymorpha to infection with the oomycete pathogen Phytophthora palmivora. We uncover a robust molecular response to oomycete colonization in Marchantia that consists of conserved land plant gene families. Direct macroevolutionary comparisons of host infection responses in Marchantia and the model angiosperm Nicotiana benthamiana further reveal a shared set of orthologous microbe-responsive genes that include members of the phenylpropanoid metabolic pathway. In addition, we identify a role for the Marchantia R2R3-MYB transcription factor MpMyb14 in activating phenylpropanoid (flavonoid) biosynthesis during oomycete infection. Mpmyb14 mutants infected with P. palmivora fail to activate phenylpropanoid biosynthesis gene expression and display enhanced disease susceptibility compared to wild-type plants. Conversely, the ectopic induction of MpMyb14 led to the accumulation of anthocyanin-like pigments and dramatically enhanced liverwort resistance to P. palmivora infection. Collectively, our results demonstrate that the Marchantia response to oomycete infection displays evolutionarily conserved features indicative of an ancestral pathogen deterrence strategy centered on phenylpropanoid-mediated biochemical defenses.
Collapse
Affiliation(s)
- Philip Carella
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Anna Gogleva
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - David John Hoey
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Anthony John Bridgen
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Sara Christina Stolze
- Protein Mass Spectrometry Group, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg, Cologne 50829, Germany
| | - Hirofumi Nakagami
- Protein Mass Spectrometry Group, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg, Cologne 50829, Germany
| | - Sebastian Schornack
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK; Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 EA3, UK.
| |
Collapse
|
40
|
Gimenez-Ibanez S, Zamarreño AM, García-Mina JM, Solano R. An Evolutionarily Ancient Immune System Governs the Interactions between Pseudomonas syringae and an Early-Diverging Land Plant Lineage. Curr Biol 2019; 29:2270-2281.e4. [PMID: 31303486 DOI: 10.1016/j.cub.2019.05.079] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/15/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023]
Abstract
Evolutionary molecular plant-microbe interactions (EvoMPMI) is an emerging field bridging the gap between molecular phytopathology and evolutionary studies. EvoMPMI research is currently challenging due to the scarcity of pathogenic model systems in early-diverging land plants. Liverworts are among the earliest diverging land-plant lineages, and Marchantia polymorpha has emerged as a liverwort model for evolutionary studies. However, bacterial pathogens of Marchantia have not yet been discovered, and the molecular mechanisms controlling plant-pathogen interactions in this early-diverging land plant remain unknown. Here, we describe a robust experimental plant-bacterial pathosystem for EvoMPMI studies and discover that an ancient immune system governs plant-microbe interactions between M. polymorpha and the hemi-biotrophic pathogenic bacteria Pseudomonas syringae. We show that P. syringae pv tomato (Pto) DC3000, causal agent of tomato bacterial speck disease, colonizes M. polymorpha and activates typical hallmarks of plant innate immunity. Virulence of Pto DC3000 on M. polymorpha relies on effector activities inside liverwort cells, including conserved AvrPto and AvrPtoB functions. Host specificity analyses uncovered pathogenic differences among P. syringae strains, suggesting that M. polymorpha-P. syringae interactions are controlled by the genetic backgrounds of both host and pathogen. Finally, we show that ancient phytohormone defensive networks govern M. polymorpha-P. syringae interactions. Altogether, our results demonstrate that the basic structure of the plant immune system of extant angiosperms is evolutionarily ancient and conserved in early-diverging land plants. This basic immune system may have been instrumental for land colonization by the common ancestor of land plants.
Collapse
Affiliation(s)
- Selena Gimenez-Ibanez
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC (CNB-CSIC), Madrid 28049, Spain.
| | - Angel M Zamarreño
- Environmental Biology Department, University of Navarra, Navarra 31008, Spain
| | - Jose M García-Mina
- Environmental Biology Department, University of Navarra, Navarra 31008, Spain
| | - Roberto Solano
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC (CNB-CSIC), Madrid 28049, Spain.
| |
Collapse
|
41
|
|
42
|
de Vries S, de Vries J, Rose LE. The Elaboration of miRNA Regulation and Gene Regulatory Networks in Plant⁻Microbe Interactions. Genes (Basel) 2019; 10:genes10040310. [PMID: 31010062 PMCID: PMC6523410 DOI: 10.3390/genes10040310] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 02/06/2023] Open
Abstract
Plants are exposed to diverse abiotic and biotic stimuli. These require fast and specific integrated responses. Such responses are coordinated at the protein and transcript levels and are incorporated into larger regulatory networks. Here, we focus on the evolution of transcriptional regulatory networks involved in plant–pathogen interactions. We discuss the evolution of regulatory networks and their role in fine-tuning plant defense responses. Based on the observation that many of the cornerstones of immune signaling in angiosperms are also present in streptophyte algae, it is likely that some regulatory components also predate the origin of land plants. The degree of functional conservation of many of these ancient components has not been elucidated. However, ongoing functional analyses in bryophytes show that some components are conserved. Hence, some of these regulatory components and how they are wired may also trace back to the last common ancestor of land plants or earlier. Of course, an understanding of the similarities and differences during the evolution of plant defense networks cannot ignore the lineage-specific coevolution between plants and their pathogens. In this review, we specifically focus on the small RNA regulatory networks involved in fine-tuning of the strength and timing of defense responses and highlight examples of pathogen exploitation of the host RNA silencing system. These examples illustrate well how pathogens frequently target gene regulation and thereby alter immune responses on a larger scale. That this is effective is demonstrated by the diversity of pathogens from distinct kingdoms capable of manipulating the same gene regulatory networks, such as the RNA silencing machinery.
Collapse
Affiliation(s)
- Sophie de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Jan de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, 38106 Braunschweig, Germany.
| | - Laura E Rose
- Institute of Population Genetics, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.
- CEPLAS-Cluster of Excellence in Plant Sciences, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany.
| |
Collapse
|
43
|
de Vries S, de Vries J, von Dahlen JK, Gould SB, Archibald JM, Rose LE, Slamovits CH. On plant defense signaling networks and early land plant evolution. Commun Integr Biol 2018; 11:1-14. [PMID: 30214675 PMCID: PMC6132428 DOI: 10.1080/19420889.2018.1486168] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 05/28/2018] [Indexed: 12/29/2022] Open
Abstract
All land plants must cope with phytopathogens. Algae face pathogens, too, and it is reasonable to assume that some of the strategies for dealing with pathogens evolved prior to the origin of embryophytes – plant terrestrialization simply changed the nature of the plant-pathogen interactions. Here we highlight that many potential components of the angiosperm defense toolkit are i) found in streptophyte algae and non-flowering embryophytes and ii) might be used in non-flowering plant defense as inferred from published experimental data. Nonetheless, the common signaling networks governing these defense responses appear to have become more intricate during embryophyte evolution. This includes the evolution of the antagonistic signaling pathways of jasmonic and salicylic acid, multiple independent expansions of resistance genes, and the evolution of resistance gene-regulating microRNAs. Future comparative studies will illuminate which modules of the streptophyte defense signaling network constitute the core and which constitute lineage- and/or environment-specific (peripheral) signaling circuits.
Collapse
Affiliation(s)
- Sophie de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Jan de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Janina K von Dahlen
- Institute of Population Genetics, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany.,iGRAD-Plant Graduate School, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Sven B Gould
- Institute of Molecular Evolution, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Laura E Rose
- Institute of Population Genetics, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany.,iGRAD-Plant Graduate School, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany.,Ceplas, Cluster of Excellence in Plant Sciences, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Claudio H Slamovits
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| |
Collapse
|
44
|
Ortiz D, Dodds PN. Plant NLR Origins Traced Back to Green Algae. TRENDS IN PLANT SCIENCE 2018; 23:651-654. [PMID: 29887275 DOI: 10.1016/j.tplants.2018.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
Innate immunity in land plants mostly relies on a repertoire of NLR (nucleotide-binding, leucine-rich repeat) receptors. Gao et al. show that evolutionary assembly of the core building blocks of NLRs occurred in the ancestors of early plants and trace the diversification of NLR subclasses in green algae and mosses.
Collapse
Affiliation(s)
- Diana Ortiz
- CSIRO Agriculture and Food, Black Mountain 2601, ACT, Australia.
| | - Peter N Dodds
- CSIRO Agriculture and Food, Black Mountain 2601, ACT, Australia.
| |
Collapse
|
45
|
Carella P, Evangelisti E, Schornack S. Sticking to it: phytopathogen effector molecules may converge on evolutionarily conserved host targets in green plants. CURRENT OPINION IN PLANT BIOLOGY 2018; 44:175-180. [PMID: 30071474 PMCID: PMC6119762 DOI: 10.1016/j.pbi.2018.04.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/06/2018] [Accepted: 04/28/2018] [Indexed: 05/26/2023]
Abstract
•Phytopathogen effectors converge on similar sets of host proteins in angiosperms. •Effectors may target host proteins and processes present across the green plant lineage. •Bryophyte model plants are promising systems to investigate effector–target relationships. Plant-associated microbes secrete effector proteins that subvert host cellular machinery to facilitate the colonization of plant tissues and cells. Accumulating data suggests that independently evolved effectors from bacterial, fungal, and oomycete pathogens may converge on a similar set of host proteins in certain angiosperm models, however, whether this concept is relevant throughout the green plant lineage is unknown. Here, we explore the idea that pathogen effector molecules target host proteins present across evolutionarily distant land plant lineages to promote disease. We discuss that host proteins targeted by phytopathogens or integrated into angiosperm immune receptors are likely found across green plant genomes, from early diverging non-vascular lineages (bryophytes) to flowering plants (angiosperms). This would suggest that independently evolved pathogens might manipulate their hosts by targeting `vulnerability’ hubs that are present across land plants. Future work focusing on accessible early divergent land plant model systems may therefore provide an insightful evolutionary backdrop for effector–target research.
Collapse
Affiliation(s)
- Philip Carella
- University of Cambridge, Sainsbury Laboratory, Cambridge, United Kingdom
| | | | | |
Collapse
|