1
|
Lai M, Pichardo-Almarza C, Verma M, Shahinuzzaman M, Zhu X, Kimko H. T-cell engagers: model interrogation as a tool to quantify the interplay of relative affinity and target expression on trimer formation. Front Pharmacol 2024; 15:1470595. [PMID: 39439898 PMCID: PMC11493665 DOI: 10.3389/fphar.2024.1470595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024] Open
Abstract
T-cell engagers (TCEs) represent a promising therapeutic strategy for various cancers and autoimmune disorders. These bispecific antibodies act as bridges, connecting T-cell receptors (TCRs) to target cells (either malignant or autoreactive) via interactions with specific tumour-associated antigens (TAAs) or autoantigens to form trimeric synapses, or trimers, that co-localise T-cells with target cells and stimulate their cytotoxic function. Bispecific TCEs are expected to exhibit a bell-shaped dose-response curve, with a defined optimal TCE exposure for maximizing trimer formation. The shape of the dose-response is determined by a non-trivial interplay of binding affinities, exposure and antigens expression levels. Furthermore, excessively low binding to the TCR may reduce efficacy, but mitigate risk of over-stimulating cytokine secretion or induce effector cell exhaustion. These inevitable trade-off highlights the importance of quantitatively understanding the relationship between TCE concentration, target expression, binding affinities, and trimer formation. We utilized a mechanistic target engagement model to show that, if the TCE design parameters are close to the recommended ranges found in the literature, relative affinities for TCR, TAA and target expression levels have qualitatively different, but predictable, effects on the resulting dose-response curve: higher expression levels shift the curve upwards, higher antigen affinity shifts the curve to the left, and higher TCR affinity shifts the curve upwards and to the left.
Collapse
Affiliation(s)
- Massimo Lai
- Clinical Pharmacology and Quantitative Pharmacology, R&D Biopharmaceuticals, AstraZeneca plc, Cambridge, United Kingdom
| | - Cesar Pichardo-Almarza
- Clinical Pharmacology and Quantitative Pharmacology, R&D Biopharmaceuticals, AstraZeneca plc, Cambridge, United Kingdom
| | - Meghna Verma
- Clinical Pharmacology and Quantitative Pharmacology, R&D Biopharmaceuticals, AstraZeneca Plc, Gaithersburg, MD, United States
| | - Md Shahinuzzaman
- Clinical Pharmacology and Quantitative Pharmacology, R&D Biopharmaceuticals, AstraZeneca Plc, Gaithersburg, MD, United States
| | - Xu Zhu
- Clinical Pharmacology and Quantitative Pharmacology, R&D Biopharmaceuticals, AstraZeneca Plc, Waltham, MA, United States
| | - Holly Kimko
- Clinical Pharmacology and Quantitative Pharmacology, R&D Biopharmaceuticals, AstraZeneca Plc, Gaithersburg, MD, United States
| |
Collapse
|
2
|
Zhang Y, Fan Y, Liu S, Guan Y, Wan J, Ren Q, Wang J, Zhong L, Hu Z, Shi W, Qian H. Development of Peptide Paratope Mimics Derived from the Anti-ROR1 Antibody and Long-Acting Peptide-Drug Conjugates for Targeted Cancer Therapy. J Med Chem 2024; 67:10967-10985. [PMID: 38943600 DOI: 10.1021/acs.jmedchem.4c00511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Antibody-based targeted therapy in cancer faces a challenge due to uneven antibody distribution in solid tumors, hindering effective drug delivery. We addressed this by developing peptide mimetics with nanomolar-range affinity for Receptor Tyrosine Kinase-Like Orphan Receptor 1 (ROR1) using computational methods. These peptides showed both specific targeting and deep penetration in vitro and in vivo. Additionally, we created peptide-drug conjugates (PDCs) by linking targeting peptides to toxin drugs via various linkers and enhancing their in vivo half-life with fatty side chains for albumin binding. The antitumor candidate II-3 displayed exceptional affinity (KD = 1.72 × 10-9 M), internalization efficiency, anticancer potency (IC50 = 0.015 ± 0.002 μM), and pharmacokinetics (t1/2 = 2.6 h), showcasing a rational approach for designing PDCs with favorable tissue distribution and strong tumor penetration.
Collapse
Affiliation(s)
- Yang Zhang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
- Department of Life Sciences, Changzhi University, Changzhi, Shanxi 046011, PR China
| | - Yiqing Fan
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Shuyu Liu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yonghui Guan
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jiale Wan
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Qiang Ren
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jialing Wang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Li Zhong
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zhipeng Hu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wei Shi
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, PR China
| |
Collapse
|
3
|
Wang J, Li Z, Zhao Q. Receptor tyrosine kinase-like orphan receptor serves as a potential target in cancer immunotherapy. J Leukoc Biol 2024:qiae141. [PMID: 38973261 DOI: 10.1093/jleuko/qiae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/16/2024] [Indexed: 07/09/2024] Open
Abstract
Receptor tyrosine kinase-like orphan receptor (ROR), consisting of ROR1 and ROR2, is a conserved family of receptor tyrosine kinase superfamily that plays crucial roles during embryonic development with limited expression in adult normal tissues. However, it is overexpressed in a range of hematological malignancies and solid tumors and functions in cellular processes including cell survival, polarity, and migration, serving as a potential target in cancer immunotherapy. This review summarizes the expression and structure of ROR in developmental morphogenesis and its function in cancers associated with Wnt5a signaling and highlights the cancer immunotherapy strategies targeting ROR.
Collapse
Affiliation(s)
- Jiaqi Wang
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Zhoufang Li
- Core Research Facilities, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qi Zhao
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR 999078, China
| |
Collapse
|
4
|
Wu ZL, Wang Y, Jia XY, Wang YG, Wang H. Receptor tyrosine kinase-like orphan receptor 1: A novel antitumor target in gastrointestinal cancers. World J Clin Oncol 2024; 15:603-613. [PMID: 38835843 PMCID: PMC11145958 DOI: 10.5306/wjco.v15.i5.603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/20/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024] Open
Abstract
Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is a member of the type I receptor tyrosine kinase family. ROR1 is pivotal in embryonic development and cancer, and serves as a biomarker and therapeutic target. It has soluble and membrane-bound subtypes, with the latter highly expressed in tumors. ROR1 is conserved throughout evolution and may play a role in the development of gastrointestinal cancer through multiple signaling pathways and molecular mechanisms. Studies suggest that overexpression of ROR1 may increase tumor invasiveness and metastasis. Additionally, ROR1 may regulate the cell cycle, stem cell characteristics, and interact with other signaling pathways to affect cancer progression. This review explores the structure, expression and role of ROR1 in the development of gastrointestinal cancers. It discusses current antitumor strategies, outlining challenges and prospects for treatment.
Collapse
Affiliation(s)
- Zheng-Long Wu
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
- Department of Oncology, Zhejiang Xiaoshan Hospital, Hangzhou 311201, Zhejiang Province, China
| | - Ying Wang
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Xiao-Yuan Jia
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Yi-Gang Wang
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Hui Wang
- Department of Oncology, Zhejiang Xiaoshan Hospital, Hangzhou 311201, Zhejiang Province, China
| |
Collapse
|
5
|
Wasik MA, Kim PM, Nejati R. Diverse and reprogrammable mechanisms of malignant cell transformation in lymphocytes: pathogenetic insights and translational implications. Front Oncol 2024; 14:1383741. [PMID: 38638855 PMCID: PMC11024630 DOI: 10.3389/fonc.2024.1383741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/18/2024] [Indexed: 04/20/2024] Open
Abstract
While normal B- and T-lymphocytes require antigenic ligands to become activated via their B- and T-cell receptors (BCR and TCR, respectively), B- and T-cell lymphomas show the broad spectrum of cell activation mechanisms regarding their dependence on BCR or TCR signaling, including loss of such dependence. These mechanisms are generally better understood and characterized for B-cell than for T-cell lymphomas. While some lymphomas, particularly the indolent, low-grade ones remain antigen-driven, other retain dependence on activation of their antigen receptors seemingly in an antigen-independent manner with activating mutations of the receptors playing a role. A large group of lymphomas, however, displays complete antigen receptor independence, which can develop gradually, in a stepwise manner or abruptly, through involvement of powerful oncogenes. Whereas some of the lymphomas undergo activating mutations of genes encoding proteins involved in signaling cascades downstream of the antigen-receptors, others employ activation mechanisms capable of substituting for these BCR- or TCR-dependent signaling pathways, including reliance on signaling pathways physiologically activated by cytokines. Finally, lymphomas can develop cell-lineage infidelity and in the extreme cases drastically rewire their cell activation mechanisms and engage receptors and signaling pathways physiologically active in hematopoietic stem cells or non-lymphoid cells. Such profound reprograming may involve partial cell dedifferentiation or transdifferentiation towards histocytes, dendritic, or mesodermal cells with various degree of cell maturation along these lineages. In this review, we elaborate on these diverse pathogenic mechanisms underlying cell plasticity and signaling reprogramming as well as discuss the related diagnostic and therapeutic implications and challenges.
Collapse
Affiliation(s)
- Mariusz A. Wasik
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Patricia M. Kim
- Department of Pathology and Laboratory Medicine, Penn State College of Medicine, Hershey, PA, United States
| | - Reza Nejati
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, United States
| |
Collapse
|
6
|
Mouawad N, Ruggeri E, Capasso G, Martinello L, Visentin A, Frezzato F, Trentin L. How receptor tyrosine kinase-like orphan receptor 1 meets its partners in chronic lymphocytic leukemia. Hematol Oncol 2024; 42:e3250. [PMID: 38949887 DOI: 10.1002/hon.3250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 07/03/2024]
Abstract
Chronic lymphocytic leukemia (CLL) is the most common leukemia in western societies, recognized by clinical and molecular heterogeneity. Despite the success of targeted therapies, acquired resistance remains a challenge for relapsed and refractory CLL, as a consequence of mutations in the target or the upregulation of other survival pathways leading to the progression of the disease. Research on proteins that can trigger such pathways may define novel therapies for a successful outcome in CLL such as the receptor tyrosine kinase-like orphan receptor 1 (ROR1). ROR1 is a signaling receptor for Wnt5a, with an important role during embryogenesis. The aberrant expression on CLL cells and several types of tumors, is involved in cell proliferation, survival, migration as well as drug resistance. Antibody-based immunotherapies and small-molecule compounds emerged to target ROR1 in preclinical and clinical studies. Efforts have been made to identify new prognostic markers having predictive value to refine and increase the detection and management of CLL. ROR1 can be considered as an attractive target for CLL diagnosis, prognosis, and treatment. It can be clinically effective alone and/or in combination with current approved agents. In this review, we summarize the scientific achievements in targeting ROR1 for CLL diagnosis, prognosis, and treatment.
Collapse
MESH Headings
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Humans
- Receptor Tyrosine Kinase-like Orphan Receptors/metabolism
- Prognosis
- Molecular Targeted Therapy
- Animals
- Biomarkers, Tumor/metabolism
Collapse
Affiliation(s)
- Nayla Mouawad
- Hematology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Edoardo Ruggeri
- Hematology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Guido Capasso
- Hematology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Leonardo Martinello
- Hematology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Andrea Visentin
- Hematology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Federica Frezzato
- Hematology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Livio Trentin
- Hematology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| |
Collapse
|
7
|
Zhou X, Geyer FK, Happel D, Takimoto J, Kolmar H, Rabinovich B. Using protein geometry to optimize cytotoxicity and the cytokine window of a ROR1 specific T cell engager. Front Immunol 2024; 15:1323049. [PMID: 38455046 PMCID: PMC10917902 DOI: 10.3389/fimmu.2024.1323049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
T cell engaging bispecific antibodies have shown clinical proof of concept for hematologic malignancies. Still, cytokine release syndrome, neurotoxicity, and on-target-off-tumor toxicity, especially in the solid tumor setting, represent major obstacles. Second generation TCEs have been described that decouple cytotoxicity from cytokine release by reducing the apparent binding affinity for CD3 and/or the TAA but the results of such engineering have generally led only to reduced maximum induction of cytokine release and often at the expense of maximum cytotoxicity. Using ROR1 as our model TAA and highly modular camelid nanobodies, we describe the engineering of a next generation decoupled TCE that incorporates a "cytokine window" defined as a dose range in which maximal killing is reached but cytokine release may be modulated from very low for safety to nearly that induced by first generation TCEs. This latter attribute supports pro-inflammatory anti-tumor activity including bystander killing and can potentially be used by clinicians to safely titrate patient dose to that which mediates maximum efficacy that is postulated as greater than that possible using standard second generation approaches. We used a combined method of optimizing TCE mediated synaptic distance and apparent affinity tuning of the TAA binding arms to generate a relatively long but persistent synapse that supports a wide cytokine window, potent killing and a reduced propensity towards immune exhaustion. Importantly, this next generation TCE induced significant tumor growth inhibition in vivo but unlike a first-generation non-decoupled benchmark TCE that induced lethal CRS, no signs of adverse events were observed.
Collapse
Affiliation(s)
- Xueyuan Zhou
- Drug Discovery and Development, Fuse Biotherapeutics, Woburn, MA, United States
| | - Felix Klaus Geyer
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Dominic Happel
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Jeffrey Takimoto
- Drug Discovery and Development, Fuse Biotherapeutics, Woburn, MA, United States
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Brian Rabinovich
- Drug Discovery and Development, Fuse Biotherapeutics, Woburn, MA, United States
| |
Collapse
|
8
|
Li J, Liu H, Xiao S, Fan S, Cheng X, Wu C. De Novo Discovery of Cysteine Frameworks for Developing Multicyclic Peptide Libraries for Ligand Discovery. J Am Chem Soc 2023; 145:28264-28275. [PMID: 38092662 DOI: 10.1021/jacs.3c11856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Conserved cysteine frameworks are essential components of disulfide-rich peptides (DRPs), which dominantly define the structural diversity of both naturally occurring and de novo-designed DRPs. However, there are only very limited numbers of conserved cysteine frameworks, and general methods enabling de novo discovery of cysteine frameworks with robust foldability are still not available. Here, we devised a "touchstone"-based strategy that relies on chasing oxidative foldability between two individual disulfide-rich folds on the phage surface to discover new cysteine frameworks from random sequences. Unique cysteine frameworks with a high degree of compatibility with phage display systems and broad sequence tolerance were successfully identified, which were subsequently exploited for the development of multicyclic DRP libraries, enabling the rapid discovery of new peptide ligands with low-nanomolar and picomolar binding affinity. This study provides an unprecedented method for exploring and exploiting the sequence and structure space of DRPs that is not readily accessible by existing strategies, holding the potential to revolutionize the study of DRPs and significantly advance the design and discovery of multicyclic peptide ligands and drugs.
Collapse
Affiliation(s)
- Jinjing Li
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Hongtan Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Shuling Xiao
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Shihui Fan
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Xueting Cheng
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Chuanliu Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
9
|
Wang Y, Zhang Y, Sun H, Chen J, Yang H, Zhong Z, Xiao X, Li Y, Tang Y, Lu H, Tang X, Zhang M, Wu W, Zhou S, Yang J. Antitumor activity of a ROR1 × CD3 bispecific antibody in non-small cell lung cancer. Int Immunopharmacol 2023; 123:110686. [PMID: 37499397 DOI: 10.1016/j.intimp.2023.110686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/20/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Over the last decade, immuno-oncologic drugs especially CD3-engaging bispecific antibodies (biAbs) are experiencing fast-paced evolution, but big challenges still exist in the clinical development of biAbs in solid tumors, especially non-small cell lung cancer (NSCLC). In this study, we choose a ROR1 × CD3 biAb in scFv-Fc format, named R11 × v9 biAb, to investigate its tumor-inhibiting role in NSCLC. Notably, the ROR1-engaging arm binds both human and mouse ROR1. We found that R11 × v9 biAb specifically binds T cells and tumor cells simultaneously, and dose-dependent cytotoxicity was detected for various ROR1+ NSCLC cell lines. Further, R11 × v9 biAb mediated T-cell derived proinflammatory cytokine secretion, boosted granzyme B and perforin production from CD8+ T cells, and recruited more CD4+ T cells and CD8+ T cells into the tumor tissues. The antitumor activity of R11 × v9 biAb was confirmed in two xenograft mouse models of ROR1+ NSCLC. Importantly, no harmful side effects were observed in these in vivo studies, warranting further preclinical and clinical studies of R11 × v9 biAb in NSCLC.
Collapse
Affiliation(s)
- Yi Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuxi Zhang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Haoyi Sun
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jilan Chen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hui Yang
- Department of Pathology, the First People's Hospital of Yunnan Province, Kunming 650034, China
| | - Zhanqiong Zhong
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaoqian Xiao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yanping Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yibei Tang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Haolan Lu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xinzhi Tang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mengyang Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wenjun Wu
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China.
| | - Shiyi Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jiahui Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
10
|
Kim JH, Kim DS, Park HS, Kim YS. Engineering bispecific T-cell engagers to deplete eosinophils for the treatment of severe eosinophilic asthma. Clin Immunol 2023; 255:109755. [PMID: 37673224 DOI: 10.1016/j.clim.2023.109755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/15/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Severe eosinophilic asthma (SEA) is characterized by elevated eosinophil counts in the blood and airway mucosa. While monoclonal antibody therapies targeting interleukin-5 (IL-5) and its receptor (IL-5Rα) have improved treatment, some patients remain unresponsive. We propose an alternative approach to eliminate eosinophils using T cells by engineering IL-5Rα × CD3 bispecific T-cell engagers (bsTCEs) that target both IL-5Rα on eosinophils and CD3 on T cells. We designed different formats of IL-5Rα × CD3 bsTCEs, incorporating variations in valency, geometry, and affinity for the target antigen binding. We identified the single-chain variable fragment (scFv)-Fc format with the highest affinity toward the membrane-proximal domain of IL-5Rα in the IL-5Rα-binding arm showed the most potent cytotoxicity against IL-5Rα-expressing peripheral eosinophils by activating autologous primary T cells from healthy donors. This study proposes IL-5Rα × CD3 bsTCEs as potential alternatives for SEA treatment. Importantly, it demonstrates the first application of bsTCEs in eliminating disease-associated cells, including eosinophils, beyond cancer cells.
Collapse
Affiliation(s)
- Jun-Ho Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Dae-Seong Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University Medical School, Suwon 16499, Republic of Korea
| | - Yong-Sung Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; Department of Allergy and Clinical Immunology, Ajou University Medical School, Suwon 16499, Republic of Korea.
| |
Collapse
|
11
|
Rui W, Quanquan G, Meimei M, Xiaohong S. Targeting ROR1 Inhibits Glucocorticoid-induced Gastric Cancer Metastasis. Steroids 2023; 195:109239. [PMID: 37068700 DOI: 10.1016/j.steroids.2023.109239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/23/2023] [Accepted: 04/10/2023] [Indexed: 04/19/2023]
Abstract
Glucocorticoids are commonly used in clinic but are also a double-edged sword. While treating tumors, they are reported to promote tumor growth and metastasis. To explore the role and elucidate the mechanism of dexamethasone in promoting tumor growth and metastasis, we detected the levels of cortisol and adrenocorticotropic hormone (ACTH) in peripheral blood of patients with gastric cancer, and immunohistochemical staining was used to detect the expression of GR and ROR1 in the surgically resected gastric cancer samples. The levels of cortisol and ACTH in peripheral blood of patients with stage III and IV gastric cancer were higher than those of patients with stage I/II gastric cancer. Dexamethasone up-regulated the ROR1 level on gastric cancer cell lines in a concentration-dependent manner. Gastric cancer specimen with high ROR1 had higher rates of relapse and metastasis than gastric adenocarcinomas expressing low levels of ROR1.Gastric cancer patients with high expression of ROR1 had a short survival time. ROR1 was expressed by gastric cancer cell lines, but not on normal gastric epithelial cell line. Suppressing ROR1 in gastric cancer cell lines impaired their invasion, migration, scratch healing and clone formation ability in vitro and slowed down the tumor growth of MKN-45 cells in immunodeficient mice in vivo. Collectively, our study indicated that dexamethasone up-regulated ROR1 levels on gastric cancer cells. ROR1 participated in and mediated the role of dexamethasone in promoting gastric tumor growth, and blocking ROR1 can prevent the tumor growth.
Collapse
Affiliation(s)
- Wang Rui
- Department of Oncology, Suqian Affiliated Hospital of Xuzhou Medical University, No. 138, Huanghe Road, Su Cheng District, Suqian City, China; Department of Oncology, Suqian Affiliated Hospital of Xuzhou Medical University, No. 138, Huanghe Road, Su Cheng District, Suqian City, China; Department of Oncology, Suqian Affiliated Hospital of Xuzhou Medical University, No. 138, Huanghe Road, Su Cheng District, Suqian City, China.
| | - Guo Quanquan
- Department of Oncology, Suqian Affiliated Hospital of Xuzhou Medical University, No. 138, Huanghe Road, Su Cheng District, Suqian City, China; Department of Oncology, Suqian Affiliated Hospital of Xuzhou Medical University, No. 138, Huanghe Road, Su Cheng District, Suqian City, China; Department of Oncology, Suqian Affiliated Hospital of Xuzhou Medical University, No. 138, Huanghe Road, Su Cheng District, Suqian City, China
| | - Ma Meimei
- Department of Pathology, Suqian Affiliated Hospital of Xuzhou Medical University, No. 138, Huanghe Road, Su Cheng District, Suqian City, China
| | - Shi Xiaohong
- Department of Pathology, Suqian Affiliated Hospital of Xuzhou Medical University, No. 138, Huanghe Road, Su Cheng District, Suqian City, China
| |
Collapse
|
12
|
Segaliny AI, Jayaraman J, Chen X, Chong J, Luxon R, Fung A, Fu Q, Jiang X, Rivera R, Ma X, Ren C, Zimak J, Hedde PN, Shang Y, Wu G, Zhao W. A high throughput bispecific antibody discovery pipeline. Commun Biol 2023; 6:380. [PMID: 37029216 PMCID: PMC10082157 DOI: 10.1038/s42003-023-04746-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/22/2023] [Indexed: 04/09/2023] Open
Abstract
Bispecific antibodies (BsAbs) represent an emerging class of immunotherapy, but inefficiency in the current discovery has limited their broad clinical availability. Here we report a high throughput, agnostic, single-cell-based functional screening pipeline, comprising molecular and cell engineering for efficient generation of BsAb library cells, followed by functional interrogation at the single-cell level to identify and sort positive clones and downstream sequence identification and functionality characterization. Using a CD19xCD3 bispecific T cell engager (BiTE) as a model, we demonstrate that our single-cell platform possesses a high throughput screening efficiency of up to one and a half million variant library cells per run and can isolate rare functional clones at a low abundance of 0.008%. Using a complex CD19xCD3 BiTE-expressing cell library with approximately 22,300 unique variants comprising combinatorially varied scFvs, connecting linkers and VL/VH orientations, we have identified 98 unique clones, including extremely rare ones (~ 0.001% abundance). We also discovered BiTEs that exhibit novel properties and insights to design variable preferences for functionality. We expect our single-cell platform to not only increase the discovery efficiency of new immunotherapeutics, but also enable identifying generalizable design principles based on an in-depth understanding of the inter-relationships between sequence, structure, and function.
Collapse
Affiliation(s)
| | - Jayapriya Jayaraman
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA
| | - Xiaoming Chen
- Amberstone Biosciences, Inc., Irvine, CA, 92618, USA
| | | | - Ryan Luxon
- Amberstone Biosciences, Inc., Irvine, CA, 92618, USA
| | - Audrey Fung
- Amberstone Biosciences, Inc., Irvine, CA, 92618, USA
| | - Qiwei Fu
- Amberstone Biosciences, Inc., Irvine, CA, 92618, USA
| | - Xianzhi Jiang
- Amberstone Biosciences, Inc., Irvine, CA, 92618, USA
| | | | - Xiaoya Ma
- Amberstone Biosciences, Inc., Irvine, CA, 92618, USA
| | - Ci Ren
- Amberstone Biosciences, Inc., Irvine, CA, 92618, USA
| | - Jan Zimak
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, 92697, USA
| | - Per Niklas Hedde
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA
| | - Yonglei Shang
- Amberstone Biosciences, Inc., Irvine, CA, 92618, USA
| | - George Wu
- Amberstone Biosciences, Inc., Irvine, CA, 92618, USA.
| | - Weian Zhao
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA.
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, 92697, USA.
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, 92697, USA.
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, 92697, USA.
- Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA, 92697, USA.
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, 92697, USA.
- Institute for Immunology, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
13
|
Aigbogun OP, Phenix CP, Krol ES, Price EW. The Chemistry of Creating Chemically Programmed Antibodies (cPAbs): Site-Specific Bioconjugation of Small Molecules. Mol Pharm 2023; 20:853-874. [PMID: 36696533 DOI: 10.1021/acs.molpharmaceut.2c00821] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Small-molecule drugs have been employed for years as therapeutics in the pharmaceutical industry. However, small-molecule drugs typically have short in vivo half-lives which is one of the largest impediments to the success of many potentially valuable pharmacologically active small molecules. The undesirable pharmacokinetics and pharmacology associated with some small molecules have led to the development of a new class of bioconjugates known as chemically programmed antibodies (cPAbs). cPAbs are bioconjugates in which antibodies are used to augment small molecules with effector functions and prolonged pharmacokinetic profiles, where the pharmacophore of the small molecule is harnessed for target binding and therefore biological targeting. Many different small molecules can be conjugated to large proteins such as full monoclonal antibodies (IgG), fragment crystallizable regions (Fc), or fragment antigen binding regions (Fab). In order to successfully and site-specifically conjugate small molecules to any class of antibodies (IgG, Fc, or Fab), the molecules must be derivatized with a functional group for ease of conjugation without altering the pharmacology of the small molecules. In this Review, we summarize the different synthetic or biological methods that have been employed to produce cPAbs. These unique chemistries have potential to be applied to other fields of antibody modification such as antibody drug conjugates, radioimmunoconjugates, and fluorophore-tagged antibodies.
Collapse
Affiliation(s)
- Omozojie P Aigbogun
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, S7N-5C9 Saskatchewan, Canada
| | - Christopher P Phenix
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, S7N-5C9 Saskatchewan, Canada
| | - Ed S Krol
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, S7N-5E5 Saskatchewan, Canada
| | - Eric W Price
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, S7N-5C9 Saskatchewan, Canada
| |
Collapse
|
14
|
Kühl L, Schäfer AK, Kraft S, Aschmoneit N, Kontermann RE, Seifert O. eIg-based bispecific T-cell engagers targeting EGFR: Format matters. MAbs 2023; 15:2183540. [PMID: 36864566 PMCID: PMC9988351 DOI: 10.1080/19420862.2023.2183540] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Bispecific antibodies are molecules with versatile modes of action and applications for therapy. They are commonly developed as T-cell engagers (TCE), which simultaneously target an antigen expressed by tumor cells and CD3 expressed by T-cells, thereby inducing T-cell-mediated target cell killing. There is growing evidence that the molecular composition and valency for the target antigen influence the activity of TCEs. Here, the eIg platform technology was used to generate a set of bispecific TCEs targeting epidermal growth factor receptors (EGFR) and CD3. These molecules either included or lacked an Fc region and exhibited one binding site for CD3 and either one or two binding sites for EGFR (1 + 1 or 2 + 1 formats) utilizing different molecular arrangements of the binding sites. In total, 11 different TCE formats were analyzed for binding to target cells and T cells, T cell-mediated killing of tumor cells, and for the activation of T cells (release of cytokines and proliferation of T-cells). Bivalent binding to EGFR strongly increased binding and T cell-mediated killing. However, the molecular composition and position of the CD3-binding arm also affected target cell killing, cytokine release, and T-cell proliferation. Our findings support that screening of a panel of formats is beneficial to identify the most potent bispecific TCE, and that format matters.
Collapse
Affiliation(s)
- Lennart Kühl
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Annelie K Schäfer
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Sebastian Kraft
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Nadine Aschmoneit
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Oliver Seifert
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
15
|
Cyr MG, Mhibik M, Qi J, Peng H, Chang J, Gaglione EM, Eik D, Herrick J, Venables T, Novick SJ, Courouble VV, Griffin PR, Wiestner A, Rader C. Patient-derived Siglec-6-targeting antibodies engineered for T-cell recruitment have potential therapeutic utility in chronic lymphocytic leukemia. J Immunother Cancer 2022; 10:e004850. [PMID: 36442911 PMCID: PMC9710465 DOI: 10.1136/jitc-2022-004850] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Despite numerous therapeutic options, safe and curative therapy is unavailable for most patients with chronic lymphocytic leukemia (CLL). A drawback of current therapies such as the anti-CD20 monoclonal antibody (mAb) rituximab is the elimination of all healthy B cells, resulting in impaired humoral immunity. We previously reported the identification of a patient-derived, CLL-binding mAb, JML-1, and identified sialic acid-binding immunoglobulin-like lectin-6 (Siglec-6) as the target of JML-1. Although little is known about Siglec-6, it appears to be an attractive target for cancer immunotherapy due to its absence on most healthy cells and tissues. METHODS We used a target-specific approach to mine for additional patient-derived anti-Siglec-6 mAbs. To assess the therapeutic utility of targeting Siglec-6 in the context of CLL, T cell-recruiting bispecific antibodies (T-biAbs) that bind to Siglec-6 and CD3 were engineered into single-chain variable fragment-Fc and dual-affinity retargeting (DART)-Fc constructs. T-biAbs were evaluated for their activity in vitro, ex vivo, and in vivo. RESULTS We discovered the anti-Siglec-6 mAbs RC-1 and RC-2, which bind with higher affinity than JML-1 yet maintain similar specificity. Both JML-1 and RC-1 T-biAbs were effective at activating T cells and killing Siglec-6+ target cells. The RC-1 clone in the DART-Fc format was the most potent T-biAb tested and was the only anti-Siglec-6 T-biAb that eliminated Siglec-6+ primary CLL cells via autologous T cells at pathological T-to-CLL cell ratios. Tested at healthy T-to-B cell ratios, it also eliminated a Siglec-6+ fraction of primary B cells from healthy donors. The subpicomolar potency of the DART-Fc format was attributed to the reduction in the length and flexibility of the cytolytic synapse. Furthermore, the RC-1 T-biAb was effective at clearing MEC1 CLL cells in vivo and demonstrated a circulatory half-life of over 7 days. CONCLUSION Siglec-6-targeting T-biAbs are highly potent and specific for eliminating Siglec-6+ leukemic and healthy B cells while sparing Siglec-6- healthy B cells, suggesting a unique treatment strategy for CLL with diminished suppression of humoral immunity. Our data corroborate reports that T-biAb efficacy is dependent on synapse geometry and reveal that synapse architecture can be tuned via antibody engineering. Our fully human anti-Siglec-6 antibodies and T-biAbs have potential for cancer immunotherapy. TRIAL REGISTRATION NUMBER NCT00923507.
Collapse
Affiliation(s)
- Matthew G Cyr
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida, USA
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, Florida, USA
| | - Maissa Mhibik
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Junpeng Qi
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida, USA
| | - Haiyong Peng
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida, USA
| | - Jing Chang
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida, USA
| | - Erika M Gaglione
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - David Eik
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - John Herrick
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Thomas Venables
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida, USA
| | - Scott J Novick
- Department of Molecular Medicine, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida, USA
| | - Valentine V Courouble
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, Florida, USA
- Department of Molecular Medicine, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida, USA
| | - Patrick R Griffin
- Department of Molecular Medicine, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida, USA
| | - Adrian Wiestner
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Christoph Rader
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida, USA
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, Florida, USA
| |
Collapse
|
16
|
Abstract
Since its initial identification in 1992 as a possible class 1 cell-surface receptor without a known parent ligand, receptor tyrosine kinase-like orphan receptor 1 (ROR1) has stimulated research, which has made apparent its significance in embryonic development and cancer. Chronic lymphocytic leukemia (CLL) was the first malignancy found to have distinctive expression of ROR1, which can help distinguish leukemia cells from most noncancer cells. Aside from its potential utility as a diagnostic marker or target for therapy, ROR1 also factors in the pathophysiology of CLL. This review is a report of the studies that have elucidated the expression, biology, and evolving strategies for targeting ROR1 that hold promise for improving the therapy of patients with CLL or other ROR1-expressing malignancies.
Collapse
Affiliation(s)
- Thomas J. Kipps
- Center for Novel Therapeutics, Moores Cancer Center, Department of Medicine, University of California, San Diego, La Jolla, CA
| |
Collapse
|
17
|
Huang S, Segués A, Waterfall M, Wright D, Vayssiere C, van Duijnhoven SMJ, van Elsas A, Sijts AJAM, Zaiss DM. Shortened Hinge Design of Fab x sdAb-Fc Bispecific Antibodies Enhances Redirected T-Cell Killing of Tumor Cells. Biomolecules 2022; 12:1331. [PMID: 36291540 PMCID: PMC9599842 DOI: 10.3390/biom12101331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 05/26/2024] Open
Abstract
T cell engager (TCE) antibodies have emerged as promising cancer therapeutics that link cytotoxic T-cells to tumor cells by simultaneously binding to CD3E on T-cells and to a tumor-associated antigen (TAA) expressed by tumor cells. We previously reported a novel bispecific format, the IgG-like Fab x sdAb-Fc (also known as half-IG_VH-h-CH2-CH3), combining a conventional antigen-binding fragment (Fab) with a single domain antibody (sdAb). Here, we evaluated this Fab x sdAb-Fc format as a T-cell redirecting bispecific antibody (TbsAbs) by targeting mEGFR on tumor cells and mCD3E on T cells. We focused our attention specifically on the hinge design of the sdAb arm of the bispecific antibody. Our data show that a TbsAb with a shorter hinge of 23 amino acids (TbsAb.short) showed a significantly better T cell redirected tumor cell elimination than the TbsAb with a longer, classical antibody hinge of 39 amino acids (TbsAb.long). Moreover, the TbsAb.short form mediated better T cell-tumor cell aggregation and increased CD69 and CD25 expression levels on T cells more than the TbsAb.long form. Taken together, our results indicate that already minor changes in the hinge design of TbsAbs can have significant impact on the anti-tumor activity of TbsAbs and may provide a new means to improve their potency.
Collapse
Affiliation(s)
- Shuyu Huang
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Aina Segués
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Martin Waterfall
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - David Wright
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Charlotte Vayssiere
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | | | | | - Alice J. A. M. Sijts
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Dietmar M. Zaiss
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
- Department of Immune Medicine, University Regensburg, 93053 Regensburg, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
18
|
Peng H, Nerreter T, Mestermann K, Wachter J, Chang J, Hudecek M, Rader C. ROR1-targeting switchable CAR-T cells for cancer therapy. Oncogene 2022; 41:4104-4114. [PMID: 35859167 PMCID: PMC9398970 DOI: 10.1038/s41388-022-02416-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 02/03/2023]
Abstract
The success of chimeric antigen receptor T cell (CAR-T) therapy in the treatment of hematologic malignancies has prompted the development of numerous CAR-T technologies, including switchable CAR-T (sCAR-T) systems that combine a universal CAR-T with bispecific adapter proteins. Owing to their controllability and versatility, sCAR-Ts have received considerable attention. To explore the therapeutic utility of sCAR-Ts targeting the receptor tyrosine kinase ROR1, which is expressed in hematologic and solid malignancies, and to identify bispecific adaptor proteins that efficiently mediate universal CAR-T engagement, a panel of switches based on ROR1-targeting Fabs with different epitopes and affinities was compared in in vitro and in vivo models of ROR1-expressing cancers. For switches targeting overlapping or identical epitopes, potency correlated with affinity. Surprisingly, however, we identified a switch targeting a unique epitope with low affinity but mediating potent and selective antitumor activity in vitro and in vivo. Converted to a conventional CAR-T, the same anti-ROR1 mAb (324) outperformed a clinically investigated conventional CAR-T that is based on an anti-ROR1 mAb (R12) with ~200-fold higher affinity. Thus, demonstrating therapeutic utility on their own, sCAR-Ts also facilitate higher throughput screening for the identification of conventional CAR-T candidates for preclinical and clinical studies.
Collapse
Affiliation(s)
- Haiyong Peng
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, FL, 33458, USA.
| | - Thomas Nerreter
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Katrin Mestermann
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Jakob Wachter
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Jing Chang
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, FL, 33458, USA
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Christoph Rader
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, FL, 33458, USA.
| |
Collapse
|
19
|
Hassan R, Tomar S, Zhang J, Khanal M, Hong J, Venugopalan A, Jiang Q, Sengupta M, Miettinen M, Li N, Pastan I, Ho M. Development of highly effective anti-mesothelin hYP218 Chimeric Antigen Receptor T cells with increased tumor infiltration and persistence for treating solid tumors. Mol Cancer Ther 2022; 21:1195-1206. [DOI: 10.1158/1535-7163.mct-22-0073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/09/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022]
Abstract
Abstract
Mesothelin targeting CAR T cells have limited activity in patients. In this study, we sought to determine if efficacy of anti-mesothelin CAR T cells is dependent on the mesothelin epitopes that are recognized by them. To do so, we developed hYP218 (against membrane-proximal epitope) and SS1 (against membrane-distal epitope) CAR T cells. Their efficacy was assessed in vitro using mesothelin positive tumor cell lines and in vivo in NSG mice with mesothelin expressing ovarian cancer (OVCAR-8), pancreatic cancer (KLM-1) and mesothelioma patient-derived (NCI-Meso63) tumor xenografts. Persistence and tumor infiltration of CAR T cells was determined using flow cytometry. hYP218 CAR T cells killed cancer cells more efficiently than SS1 CAR T cells, with 2-4-fold lower ET50 value (Effector to Target ratio for 50% killing of tumor cells). In mice with established tumors, single intravenous administration of hYP218 CAR T cells lead to improved tumor response and survival compared to SS1 CAR T cells, with complete regression of OVCAR-8 and NCI-Meso63 tumors. Compared to SS1 CAR T cells, there was increased peripheral blood expansion, persistence, and tumor infiltration of hYP218 CAR T cells in the KLM-1 tumor model. Persistence of hYP218 CAR T cells in treated mice led to anti-tumor immunity when rechallenged with KLM-1 tumor cells. Our results demonstrate that hYP218 CAR T cells, targeting mesothelin epitope close to cell membrane, are very effective against mesothelin positive tumors and are associated with increased persistence and tumor infiltration. These results support its clinical development to treat patients with mesothelin expressing cancers.
Collapse
Affiliation(s)
- Raffit Hassan
- National Cancer Institute, Bethesda, Maryland, United States
| | - Sakshi Tomar
- National Cancer Institute, Bethesda, Maryland, United States
| | - Jingli Zhang
- National Cancer Institute, Bethesda, Maryland, United States
| | | | - Jessica Hong
- National Cancer Institute, Bethesda, Maryland, United States
| | | | - Qun Jiang
- NCI-NIH, Bethesda, MD, United States
| | | | | | - Nan Li
- National Cancer Institute, Bethesda, Maryland, United States
| | - Ira Pastan
- National Cancer Institute, Bethesda, MD, United States
| | - Mitchell Ho
- National Cancer Institute, Bethesda, Maryland, United States
| |
Collapse
|
20
|
Chen RP, Shinoda K, Rampuria P, Jin F, Bartholomew T, Zhao C, Yang F, Chaparro-Riggers J. Bispecific antibodies for immune cell retargeting against cancer. Expert Opin Biol Ther 2022; 22:965-982. [PMID: 35485219 DOI: 10.1080/14712598.2022.2072209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Following the approval of the T-cell engaging bispecific antibody blinatumomab, immune cell retargeting with bispecific or multispecific antibodies has emerged as a promising cancer immunotherapy strategy, offering alternative mechanisms compared to immune checkpoint blockade. As we gain more understanding of the complex tumor microenvironment, rules and design principles have started to take shape on how to best harness the immune system to achieve optimal anti-tumor activities. AREAS COVERED In the present review, we aim to summarize the most recent advances and challenges in using bispecific antibodies for immune cell retargeting and to provide insights into various aspects of antibody engineering. Discussed herein are studies that highlight the importance of considering antibody engineering parameters, such as binding epitope, affinity, valency, and geometry to maximize the potency and mitigate the toxicity of T cell engagers. Beyond T cell engaging bispecifics, other bispecifics designed to recruit the innate immune system are also covered. EXPERT OPINION Diverse and innovative molecular designs of bispecific/multispecific antibodies have the potential to enhance the efficacy and safety of immune cell retargeting for the treatment of cancer. Whether or not clinical data support these different hypotheses, especially in solid tumor settings, remains to be seen.
Collapse
Affiliation(s)
- Rebecca P Chen
- Pfizer BioMedicine Design, Pfizer Inc, San Diego, CA, USA
| | - Kenta Shinoda
- Pfizer BioMedicine Design, Pfizer Inc, Cambridge, MA, USA
| | | | - Fang Jin
- Pfizer BioMedicine Design, Pfizer Inc, Cambridge, MA, USA
| | | | - Chunxia Zhao
- Pfizer BioMedicine Design, Pfizer Inc, Cambridge, MA, USA
| | - Fan Yang
- Pfizer BioMedicine Design, Pfizer Inc, San Diego, CA, USA
| | | |
Collapse
|
21
|
Dave Z, Vondálová Blanářová O, Čada Š, Janovská P, Zezula N, Běhal M, Hanáková K, Ganji SR, Krejci P, Gömöryová K, Peschelová H, Šmída M, Zdráhal Z, Pavlová Š, Kotašková J, Pospíšilová Š, Bryja V. Lyn Phosphorylates and Controls ROR1 Surface Dynamics During Chemotaxis of CLL Cells. Front Cell Dev Biol 2022; 10:838871. [PMID: 35295854 PMCID: PMC8918536 DOI: 10.3389/fcell.2022.838871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/09/2022] [Indexed: 11/29/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) are malignancies characterized by the dependence on B-cell receptor (BCR) signaling and by the high expression of ROR1, the cell surface receptor for Wnt-5a. Both, BCR and ROR1 are therapeutic targets in these diseases and the understanding of their mutual cross talk is thus of direct therapeutic relevance. In this study we analyzed the role of Lyn, a kinase from the Src family participating in BCR signaling, as a mediator of the BCR-ROR1 crosstalk. We confirm the functional interaction between Lyn and ROR1 and demonstrate that Lyn kinase efficiently phosphorylates ROR1 in its kinase domain and aids the recruitment of the E3 ligase c-CBL. We show that ROR1 surface dynamics in migrating primary CLL cells as well as chemotactic properties of CLL cells were inhibited by Lyn inhibitor dasatinib. Our data establish Lyn-mediated phosphorylation of ROR1 as a point of crosstalk between BCR and ROR1 signaling pathways.
Collapse
Affiliation(s)
- Zankruti Dave
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Olga Vondálová Blanářová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Štěpán Čada
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavlína Janovská
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Nikodém Zezula
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martin Běhal
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Kateřina Hanáková
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Sri Ranjani Ganji
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Kristína Gömöryová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Helena Peschelová
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Michal Šmída
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Department of Internal Medicine—Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zbyněk Zdráhal
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Šárka Pavlová
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Department of Internal Medicine—Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jana Kotašková
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Department of Internal Medicine—Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Šárka Pospíšilová
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Department of Internal Medicine—Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Brno, Czech Republic
- *Correspondence: Vítězslav Bryja,
| |
Collapse
|
22
|
Tavarozzi R, Manzato E. The Role of Bispecific Antibodies in Non-Hodgkin's Lymphoma: From Structure to Prospective Clinical Use. Antibodies (Basel) 2022; 11:16. [PMID: 35225874 PMCID: PMC8883977 DOI: 10.3390/antib11010016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 11/16/2022] Open
Abstract
Bispecific antibodies (bsAbs) are molecules that simultaneously bind two different antigens (Ags). bsAbs represent a very active field in tumor immunotherapy with more than one hundred molecules currently being tested. More specifically, they have elicited a great interest in the setting of non-Hodgkin's lymphoma (NHLs), where they could represent a viable option for more fragile patients or those resistant to other conventional therapies. This review aims to give a brief overview of the different available bsAb formats and their mechanisms of action, pinpointing the differences between IgG-like and non-IgG-like classes and will then focus on those in advanced clinical development for NHLs.
Collapse
Affiliation(s)
- Rita Tavarozzi
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy
- SCDU of Hematology, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Enrica Manzato
- Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy;
| |
Collapse
|
23
|
Aschmoneit N, Kühl L, Seifert O, Kontermann RE. Fc-comprising scDb-based trivalent, bispecific T-cell engagers for selective killing of HER3-expressing cancer cells independent of cytokine release. J Immunother Cancer 2021; 9:jitc-2021-003616. [PMID: 34782429 PMCID: PMC8593740 DOI: 10.1136/jitc-2021-003616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2021] [Indexed: 11/10/2022] Open
Abstract
Background Bispecific T-cell engagers are an established therapeutic strategy for the treatment of hematologic malignancies but face several challenges when it comes to their application for the treatment of solid tumors, including on-target off-tumor adverse events. Employing an avidity-mediated specificity gain by introducing an additional binding moiety for the tumor-associated antigen can be achieved using formats with a 2+1 stoichiometry. Methods Besides biochemical characterization and validation of target cell binding to cancer cells with different HER3 expression, we used in vitro co-culture assays with human peripheral blood mononuclear cells (PBMCs) and HER3-expressing target cells to determine T-cell activation, T-cell proliferation and PBMC-mediated cancer cell lysis of HER3-positive cell lines by the trivalent, bispecific antibodies. Results In this study, we developed trivalent, bispecific antibodies comprising a silenced Fc region for T-cell retargeting to HER3-expressing tumor cells, combining a bivalent single-chain diabody (scDb) fused to a first heterodimerizing Fc chain with either an Fab or scFv fused to a second heterodimerizing Fc chain. All these HER3-targeting T-cell engagers comprising two binding sites for HER3 and one binding site for CD3 mediated target cell killing. However, format and orientation of binding sites influenced efficacy of target cell binding, target cell-dependent T-cell activation and T-cell-mediated target cell killing. Beneficial effects were seen when the CD3 binding site was located in the scDb moiety. These molecules showed efficient killing of medium HER3-expressing cancer cells with very low induction of cytokine release, while sparing target cells with low or undetectable HER3 expression. Conclusion Our study demonstrates that these trivalent, bispecific antibodies represent formats with superior interdomain spacing resulting in efficient target cell killing and a potential advantageous safety profile due to very low cytokine release.
Collapse
Affiliation(s)
- Nadine Aschmoneit
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Lennart Kühl
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Oliver Seifert
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany .,Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
24
|
Mhibik M, Gaglione EM, Eik D, Kendall EK, Blackburn A, Keyvanfar K, Baptista MJ, Ahn IE, Sun C, Qi J, Rader C, Wiestner A. BTK inhibitors, irrespective of ITK inhibition, increase efficacy of a CD19/CD3-bispecific antibody in CLL. Blood 2021; 138:1843-1854. [PMID: 34046681 PMCID: PMC8586964 DOI: 10.1182/blood.2020009686] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/20/2021] [Indexed: 11/20/2022] Open
Abstract
Bruton tyrosine kinase inhibitors (BTKis) are a preferred treatment of patients with chronic lymphocytic leukemia (CLL). Indefinite therapy with BTKis, although effective, presents clinical challenges. Combination therapy can deepen responses, shorten treatment duration, and possibly prevent or overcome drug resistance. We previously reported on a CD19/CD3-bispecific antibody (bsAb) that recruits autologous T-cell cytotoxicity against CLL cells in vitro. Compared with observations with samples from treatment-naïve patients, T cells from patients being treated with ibrutinib expanded more rapidly and exerted superior cytotoxic activity in response to the bsAb. In addition to BTK, ibrutinib also inhibits interleukin-2 inducible T-cell kinase (ITK). In contrast, acalabrutinib, does not inhibit ITK. Whether ITK inhibition contributes to the observed immune effects is unknown. To better understand how BTKis modulate T-cell function and cytotoxic activity, we cultured peripheral blood mononuclear cells (PBMCs) from BTKi-naive and ibrutinib- or acalabrutinib-treated CLL patients with CD19/CD3 bsAb in vitro. T-cell expansion, activation, differentiation, and cytotoxicity were increased in PBMCs from patients on treatment with either BTKi compared with that observed for BKTi-naïve patients. BTKi therapy transcriptionally downregulated immunosuppressive effectors expressed by CLL cells, including cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and CD200. CTLA-4 blockade with ipilimumab in vitro increased the cytotoxic activity of the bsAb in BTKi-naïve but not BTKi-treated PBMCS. Taken together, BTKis enhance bsAb-induced cytotoxicity by relieving T cells of immunosuppressive restraints imposed by CLL cells. The benefit of combining bsAb immunotherapy with BTKis needs to be confirmed in clinical trials.
Collapse
MESH Headings
- Adenine/analogs & derivatives
- Adenine/therapeutic use
- Adult
- Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors
- Aged
- Aged, 80 and over
- Antibodies, Bispecific/therapeutic use
- Antigens, CD19/immunology
- Antineoplastic Agents, Immunological/therapeutic use
- Benzamides/therapeutic use
- CD3 Complex/immunology
- Female
- Humans
- Immune Checkpoint Inhibitors/therapeutic use
- Ipilimumab/therapeutic use
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Male
- Middle Aged
- Piperidines/therapeutic use
- Protein Kinase Inhibitors/therapeutic use
- Pyrazines/therapeutic use
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Maissa Mhibik
- Laboratory of Lymphoid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Erika M Gaglione
- Laboratory of Lymphoid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - David Eik
- Laboratory of Lymphoid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Ellen K Kendall
- Laboratory of Lymphoid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Amy Blackburn
- Laboratory of Lymphoid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Keyvan Keyvanfar
- Laboratory of Lymphoid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Maria Joao Baptista
- Laboratory of Lymphoid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
- Lymphoid Neoplasms, Josep Carreras Leukaemia Research Institute, Badalona, Spain; and
| | - Inhye E Ahn
- Laboratory of Lymphoid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Clare Sun
- Laboratory of Lymphoid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Junpeng Qi
- The Scripps Research Institute, Jupiter, FL
| | | | - Adrian Wiestner
- Laboratory of Lymphoid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
25
|
Mary YS, Sheena Mary Y, Thomas R, Narayana B. Detailed Study of Three Halogenated Benzylpyrazole Acetamide Compounds with Potential Anticancer Properties. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1988997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | - Renjith Thomas
- Deparment of Chemistry, St Berchmans College (Autonomous), Mahatma Gandhi University, Changanassery, Kerala, India
| | - B. Narayana
- Department of Chemistry, Mangalore University, Mangaluru, Karnataka, India
| |
Collapse
|
26
|
Chen X, Chen Y, Liang R, Xiang L, Li J, Zhu Y, He H, Huang L, Zuo D, Li W, Liang X, Dong S, Hu S, Ho M, Feng M. Combination Therapy of Hepatocellular Carcinoma by GPC3-Targeted Bispecific Antibody and Irinotecan is Potent in Suppressing Tumor Growth in Mice. Mol Cancer Ther 2021; 21:149-158. [PMID: 34725191 DOI: 10.1158/1535-7163.mct-20-1025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/26/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is a world leading cause of cancer-related mortality, and currently no curative treatment for advanced HCC is available. Glypican-3 (GPC3) is an attractive target for HCC immunotherapy. This study explored the efficacy of six GPC3-targeted bispecific antibodies, alone or in combination with chemotherapeutic drug Irinotecan, for the treatment of HCC. The bispecific antibodies were constructed using three different structures, knob-into-hole (KH), scFv-scFv-hFc, and scFv-hFc-scFv, where CD3-targeting mAb OKT3 (scFv) was paired with two representative GPC3 mAbs hYP7 (scFv) and HN3 (VH only) that target different epitopes. The In vitro cell killing assay revealed that all bispecific antibodies efficiently killed GPC3 positive cancer cells, with hYP7-KH, hYP7-OKT3-hFc, and HN3-KH being most potent. In vivo xenograft mouse studies demonstrated that all bispecific antibodies suppressed tumor growth similarly, with hYP7-OKT3-hFc performing slightly better. Combination of hYP7-OKT3-hFc with Irinotecan dramatically improved the efficacy and arrested tumor growth of HepG2, Hep3B, and G1 in xenograft mice. Our results demonstrated that the cell surface proximal bispecific antibody hYP7-OKT3-hFc was superior in terms of potency and the GPC3-targeted bispecific antibody combined with Irinotecan was much potent to control HCC growth.
Collapse
Affiliation(s)
- Xin Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yanmin Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Rong Liang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lanxin Xiang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jingwen Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuankui Zhu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huixia He
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Le Huang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dianbao Zuo
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Weihang Li
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Xinjun Liang
- Department of Internal Medicine-Oncology, Hubei Cancer Hospital, Wuhan, Hubei, China
| | - Shuang Dong
- Department of Internal Medicine-Oncology, Hubei Cancer Hospital, Wuhan, Hubei, China
| | - Sheng Hu
- Department of Internal Medicine-Oncology, Hubei Cancer Hospital, Wuhan, Hubei, China
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| | - Mingqian Feng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China. .,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
27
|
Shi F, Mendrola JM, Sheetz JB, Wu N, Sommer A, Speer KF, Noordermeer JN, Kan ZY, Perry K, Englander SW, Stayrook SE, Fradkin LG, Lemmon MA. ROR and RYK extracellular region structures suggest that receptor tyrosine kinases have distinct WNT-recognition modes. Cell Rep 2021; 37:109834. [PMID: 34686333 PMCID: PMC8650758 DOI: 10.1016/j.celrep.2021.109834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/06/2021] [Accepted: 09/22/2021] [Indexed: 01/08/2023] Open
Abstract
WNTs play key roles in development and disease, signaling through Frizzled (FZD) seven-pass transmembrane receptors and numerous co-receptors including ROR and RYK family receptor tyrosine kinases (RTKs). We describe crystal structures and WNT-binding characteristics of extracellular regions from the Drosophila ROR and RYK orthologs Nrk (neurospecific receptor tyrosine kinase) and Derailed-2 (Drl-2), which bind WNTs though a FZD-related cysteine-rich domain (CRD) and WNT-inhibitory factor (WIF) domain respectively. Our crystal structures suggest that neither Nrk nor Drl-2 can accommodate the acyl chain typically attached to WNTs. The Nrk CRD contains a deeply buried bound fatty acid, unlikely to be exchangeable. The Drl-2 WIF domain lacks the lipid-binding site seen in WIF-1. We also find that recombinant DWnt-5 can bind Drosophila ROR and RYK orthologs despite lacking an acyl chain. Alongside analyses of WNT/receptor interaction sites, our structures provide further insight into how WNTs may recruit RTK co-receptors into signaling complexes.
Collapse
Affiliation(s)
- Fumin Shi
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jeannine M Mendrola
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Joshua B Sheetz
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Neo Wu
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Anselm Sommer
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Kelsey F Speer
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Medicine (Hematology-Oncology), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jasprina N Noordermeer
- Molecular Cell Biology, Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
| | - Zhong-Yuan Kan
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kay Perry
- NE-CAT, Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL 60439, USA
| | - S Walter Englander
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Steven E Stayrook
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Lee G Fradkin
- Molecular Cell Biology, Leiden University Medical Center, Leiden 2333 ZC, the Netherlands; Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Mark A Lemmon
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA; Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
28
|
The ROR1 antibody-drug conjugate huXBR1-402-G5-PNU effectively targets ROR1+ leukemia. Blood Adv 2021; 5:3152-3162. [PMID: 34424320 DOI: 10.1182/bloodadvances.2020003276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 04/18/2021] [Indexed: 11/20/2022] Open
Abstract
Antibody-drug conjugates directed against tumor-specific targets have allowed targeted delivery of highly potent chemotherapy to malignant cells while sparing normal cells. Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is an oncofetal protein with limited expression on normal adult tissues and is overexpressed on the surface of malignant cells in mantle cell lymphoma, acute lymphocytic leukemia with t(1;19)(q23;p13) translocation, and chronic lymphocytic leukemia. This differential expression makes ROR1 an attractive target for antibody-drug conjugate therapy, especially in malignancies such as mantle cell lymphoma and acute lymphocytic leukemia, in which systemic chemotherapy remains the gold standard. Several preclinical and phase 1 clinical studies have established the safety and effectiveness of anti-ROR1 monoclonal antibody-based therapies. Herein we describe a humanized, first-in-class anti-ROR1 antibody-drug conjugate, huXBR1-402-G5-PNU, which links a novel anti-ROR1 antibody (huXBR1-402) to a highly potent anthracycline derivative (PNU). We found that huXBR1-402-G5-PNU is cytotoxic to proliferating ROR1+ malignant cells in vitro and suppressed leukemia proliferation and extended survival in multiple models of mice engrafted with human ROR1+ leukemia. Lastly, we show that the B-cell lymphoma 2 (BCL2)-dependent cytotoxicity of huXBR1-402-G5-PNU can be leveraged by combined treatment strategies with the BCL2 inhibitor venetoclax. Together, our data present compelling preclinical evidence for the efficacy of huXBR1-402-G5-PNU in treating ROR1+ hematologic malignancies.
Collapse
|
29
|
Fierle JK, Brioschi M, de Tiani M, Wetterwald L, Atsaves V, Abram-Saliba J, Petrova TV, Coukos G, Dunn SM. Soluble trivalent engagers redirect cytolytic T cell activity toward tumor endothelial marker 1. CELL REPORTS MEDICINE 2021; 2:100362. [PMID: 34467246 PMCID: PMC8385295 DOI: 10.1016/j.xcrm.2021.100362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/17/2021] [Accepted: 07/08/2021] [Indexed: 01/07/2023]
Abstract
Tumor endothelial marker 1 (TEM1) is an emerging cancer target with a unique dual expression profile. First, TEM1 is expressed in the stroma and neo-vasculature of many human carcinomas but is largely absent from healthy adult tissues. Second, TEM1 is expressed by tumor cells of mesenchymal origin, notably sarcoma. Here, we present two fully human anti-TEM1 single-chain variable fragment (scFv) reagents, namely, 1C1m and 7G22, that recognize distinct regions of the extracellular domain and possess substantially different affinities. In contrast to other, well-described anti-TEM1 binders, these fragments confer cytolytic activity when expressed as 2nd generation chimeric antigen receptors (CARs). Moreover, both molecules selectively redirect human T cell effector functions toward TEM1+ tumor cells when incorporated into experimental soluble bispecific trivalent engagers that we term TriloBiTEs (tBs). Furthermore, systemic delivery of 1C1m-tB prevents the establishment of Ewing sarcoma tumors in a xenograft model. Our observations confirm TEM1 as a promising target for cancer immunotherapy and illustrate the prospective translational potential of certain scFv-based reagents.
Collapse
Affiliation(s)
- Julie K Fierle
- LAbCore Immunoglobulin Discovery Platform, Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, 1066 Epalinges, Switzerland
| | - Matteo Brioschi
- LAbCore Immunoglobulin Discovery Platform, Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, 1066 Epalinges, Switzerland
| | - Mariastella de Tiani
- LAbCore Immunoglobulin Discovery Platform, Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, 1066 Epalinges, Switzerland
| | - Laureline Wetterwald
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, 1066 Epalinges, Switzerland
| | - Vasileios Atsaves
- LAbCore Immunoglobulin Discovery Platform, Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, 1066 Epalinges, Switzerland
| | - Johan Abram-Saliba
- LAbCore Immunoglobulin Discovery Platform, Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, 1066 Epalinges, Switzerland
| | - Tatiana V Petrova
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, 1066 Epalinges, Switzerland
| | - George Coukos
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, 1005 Lausanne, Switzerland.,Department of Oncology, Centre hospitalier universitaire vaudois (CHUV), 1011 Lausanne, Switzerland
| | - Steven M Dunn
- LAbCore Immunoglobulin Discovery Platform, Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, 1066 Epalinges, Switzerland.,Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, 1066 Epalinges, Switzerland
| |
Collapse
|
30
|
A scDb-based trivalent bispecific antibody for T-cell-mediated killing of HER3-expressing cancer cells. Sci Rep 2021; 11:13880. [PMID: 34230555 PMCID: PMC8260734 DOI: 10.1038/s41598-021-93351-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/23/2021] [Indexed: 01/12/2023] Open
Abstract
HER3 is a member of the EGF receptor family and elevated expression is associated with cancer progression and therapy resistance. HER3-specific T-cell engagers might be a suitable treatment option to circumvent the limited efficacy observed for HER3-blocking antibodies in clinical trials. In this study, we developed bispecific antibodies for T-cell retargeting to HER3-expressing tumor cells, utilizing either a single-chain diabody format (scDb) with one binding site for HER3 and one for CD3 on T-cells or a trivalent bispecific scDb-scFv fusion protein exhibiting an additional binding site for HER3. The scDb-scFv showed increased binding to HER3-expressing cancer cell lines compared to the scDb and consequently more effective T-cell activation and T-cell proliferation. Furthermore, the bivalent binding mode of the scDb-scFv for HER3 translated into more potent T-cell mediated cancer cell killing, and allowed to discriminate between moderate and low HER3-expressing target cells. Thus, our study demonstrated the applicability of HER3 for T-cell retargeting with bispecific antibodies, even at moderate expression levels, and the increased potency of an avidity-mediated specificity gain, potentially resulting in a wider safety window of bispecific T-cell engaging antibodies targeting HER3.
Collapse
|
31
|
Chen X, Amar N, Zhu Y, Wang C, Xia C, Yang X, Wu D, Feng M. Combined DLL3-targeted bispecific antibody with PD-1 inhibition is efficient to suppress small cell lung cancer growth. J Immunother Cancer 2021; 8:jitc-2020-000785. [PMID: 32554616 PMCID: PMC7304844 DOI: 10.1136/jitc-2020-000785] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
Background Small cell lung cancer (SCLC) accounts for 15% of lung cancers, and the primary treatment of this malignancy is chemotherapy and radiotherapy. Delta-like 3 (DLL3) is an attractive target for SCLC immunotherapy since its expression is highly restricted to SCLC with a neglectable appearance on normal adult tissues. In the current study, we aimed to explore the efficacy of DLL3-targeted SCLC immunotherapy via the engagement of T cell. Methods As a proof of concept, we constructed DLL3-targeted bispecific antibody and chimeric antigen receptor (CAR)-modified T cells. In vitro and in vivo tumor-suppression activity of these treatments alone or in combination with a Program Death-1 (PD-1) inhibitory antibody was evaluated. Results In vitro studies showed that both DLL3 bispecific antibody and CAR-T efficiently killed DLL3-positive cancer cells, including the native SCLC cell lines H446, H196, H82, and the artificial A431 cells that were forcefully overexpressing DLL3. In vivo studies in xenograft mouse models demonstrated that both bispecific antibody and CAR-T suppressed the tumor growth, and combination therapy with PD-1 inhibitory antibody dramatically improved the efficacy of the DLL3 bispecific antibody, but not the CAR-T cells. Conclusions Our results demonstrated that DLL3-targeted bispecific antibody plus PD-1 inhibition was effective in controlling SCLC growth.
Collapse
Affiliation(s)
- Xin Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Norhan Amar
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuankui Zhu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chunguang Wang
- Department of Thoracic Surgery, Jilin University Second Hospital, Changchun, Jilin, China
| | - Chunjiao Xia
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaoqing Yang
- Hospital of Huazhong Agricultural University, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dongde Wu
- Department of Hepatobiliary and Pancreatic Surgery, Hubei Cancer Hospital, Wuhan, Hubei, China
| | - Mingqian Feng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
32
|
Mandrup OA, Ong SC, Lykkemark S, Dinesen A, Rudnik-Jansen I, Dagnæs-Hansen NF, Andersen JT, Alvarez-Vallina L, Howard KA. Programmable half-life and anti-tumour effects of bispecific T-cell engager-albumin fusions with tuned FcRn affinity. Commun Biol 2021; 4:310. [PMID: 33686177 PMCID: PMC7940400 DOI: 10.1038/s42003-021-01790-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/01/2021] [Indexed: 01/05/2023] Open
Abstract
Fc-less bispecific T-cell engagers have reached the immuno-oncology market but necessitate continual infusion due to rapid clearance from the circulation. This work introduces a programmable serum half-life extension platform based on fusion of human albumin sequences engineered with either null (NB), wild type (WT) or high binding (HB) FcRn affinity combined with a bispecific T-cell engager. We demonstrate in a humanised FcRn/albumin double transgenic mouse model (AlbuMus) the ability to tune half-life based on the albumin sequence fused with a BiTE-like bispecific (anti-EGFR nanobody x anti-CD3 scFv) light T-cell engager (LiTE) construct [(t½ 0.6 h (Fc-less LiTE), t½ 19 hours (Albu-LiTE-NB), t½ 26 hours (Albu-LiTE-WT), t½ 37 hours (Albu-LiTE-HB)]. We show in vitro cognate target engagement, T-cell activation and discrimination in cellular cytotoxicity dependent on EGFR expression levels. Furthermore, greater growth inhibition of EGFR-positive BRAF mutated tumours was measured following a single dose of Albu-LiTE-HB construct compared to the Fc-less LiTE format and a full-length anti-EGFR monoclonal antibody in a new AlbuMus RAG1 knockout model introduced in this work. Programmable half-life extension facilitated by this albumin platform potentially offers long-lasting effects, better patient compliance and a method to tailor pharmacokinetics to maximise therapeutic efficacy and safety of immuno-oncology targeted biologics.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Antibodies, Bispecific/metabolism
- Antibodies, Bispecific/pharmacokinetics
- Antineoplastic Agents, Immunological/metabolism
- Antineoplastic Agents, Immunological/pharmacokinetics
- CHO Cells
- Cricetulus
- Drug Compounding
- Female
- HEK293 Cells
- HT29 Cells
- Half-Life
- Histocompatibility Antigens Class I/metabolism
- Homeodomain Proteins/genetics
- Humans
- Jurkat Cells
- Lymphocyte Activation/drug effects
- MCF-7 Cells
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neoplasms/drug therapy
- Neoplasms/immunology
- Neoplasms/pathology
- Proof of Concept Study
- Protein Binding
- Receptors, Fc/metabolism
- Recombinant Fusion Proteins/metabolism
- Recombinant Fusion Proteins/pharmacokinetics
- Serum Albumin, Human/genetics
- Serum Albumin, Human/metabolism
- Serum Albumin, Human/pharmacokinetics
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ole A Mandrup
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Sui Ching Ong
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Simon Lykkemark
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Anders Dinesen
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Imke Rudnik-Jansen
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | | | - Jan Terje Andersen
- Department of Immunology, University of Oslo, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo, Oslo, Norway
| | - Luis Alvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (i + mas12), Madrid, Spain
| | - Kenneth A Howard
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
33
|
Brouillard A, Deshpande N, Kulkarni AA. Engineered Multifunctional Nano- and Biological Materials for Cancer Immunotherapy. Adv Healthc Mater 2021; 10:e2001680. [PMID: 33448159 DOI: 10.1002/adhm.202001680] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/21/2020] [Indexed: 12/19/2022]
Abstract
Cancer immunotherapy is set to emerge as the future of cancer therapy. However, recent immunotherapy trials in different cancers have yielded sub-optimal results, with durable responses seen in only a small fraction of patients. Engineered multifunctional nanomaterials and biological materials are versatile platforms that can elicit strong immune responses and improve anti-cancer efficacy when applied to cancer immunotherapy. While there are traditional systems such as polymer- and lipid-based nanoparticles, there is a wide variety of other materials with inherent and additive properties that can allow for more potent activation of the immune system. By synthesizing and applying multifunctional strategies, it allows for a more extensive and more effective repertoire of tools to use in the wide variety of situations that cancer presents itself. Here, several types of nanoscale and biological material strategies and platforms that provide their inherent benefits for targeting and activating multiple aspects of the immune system are discussed. Overall, this review aims to provide a comprehensive understanding of recent advances in the field of multifunctional cancer immunotherapy and trends that pave the way for more diverse and tactical regression of tumors through soliciting responses by either the adaptive or innate immune system, and even both simultaneously.
Collapse
Affiliation(s)
- Anthony Brouillard
- Department of Chemical Engineering University of Massachusetts Amherst MA 01003 USA
| | - Nilesh Deshpande
- Department of Chemical Engineering University of Massachusetts Amherst MA 01003 USA
| | - Ashish A. Kulkarni
- Department of Chemical Engineering University of Massachusetts Amherst MA 01003 USA
- Center for Bioactive Delivery Institute for Applied Life Sciences University of Massachusetts Amherst MA 01003 USA
| |
Collapse
|
34
|
Hatterer E, Chauchet X, Richard F, Barba L, Moine V, Chatel L, Broyer L, Pontini G, Bautzova T, Juan F, Calloud S, Bosson N, Charreton M, Masternak K, Buatois V, Shang L. Targeting a membrane-proximal epitope on mesothelin increases the tumoricidal activity of a bispecific antibody blocking CD47 on mesothelin-positive tumors. MAbs 2021; 12:1739408. [PMID: 32191151 PMCID: PMC7153835 DOI: 10.1080/19420862.2020.1739408] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mesothelin (MSLN) is a cell surface glycoprotein overexpressed in several solid malignancies, including gastric, lung, mesothelioma, pancreatic and ovarian cancers. While several MSLN-targeting therapeutic approaches are in development, only limited efficacy has been achieved in patients. A potential shortcoming of several described antibody-based approaches is that they target the membrane distal region of MSLN and, additionally, are known to be handicapped by the high levels of circulating soluble MSLN in patients. We show here, using monoclonal antibodies (mAbs) targeting different MSLN-spanning epitopes, that the membrane-proximal region resulted in more efficient killing of MSLN-positive tumor cells in antibody-dependent cell-mediated cytotoxicity (ADCC) assays. Surprisingly, no augmented killing was observed in antibody-dependent cellular phagocytosis (ADCP) by mAbs targeting this membrane-proximal region. To further increase the ADCP potential, we, therefore, generated bispecific antibodies (bsAbs) coupling a high-affinity MSLN binding arm to a blocking CD47 arm. Here, targeting the membrane-proximal domain of MSLN demonstrated enhanced ADCP activity compared to membrane-distal domains when the bsAbs were used in in vitro phagocytosis killing assays. Importantly, the superior anti-tumor activity was also translated in xenograft tumor models. Furthermore, we show that the bsAb approach targeting the membrane-proximal epitope of MSLN optimized ADCC activity by augmenting FcγR-IIIA activation and enhanced ADCP via a more efficient blockade of the CD47/SIRPα axis.
Collapse
Affiliation(s)
- Eric Hatterer
- Light Chain Bioscience, Novimmune S.A., Plan-les-Ouates, Switzerland
| | - Xavier Chauchet
- Light Chain Bioscience, Novimmune S.A., Plan-les-Ouates, Switzerland
| | - Françoise Richard
- Light Chain Bioscience, Novimmune S.A., Plan-les-Ouates, Switzerland
| | - Leticia Barba
- Light Chain Bioscience, Novimmune S.A., Plan-les-Ouates, Switzerland
| | - Valéry Moine
- Light Chain Bioscience, Novimmune S.A., Plan-les-Ouates, Switzerland
| | - Laurence Chatel
- Light Chain Bioscience, Novimmune S.A., Plan-les-Ouates, Switzerland
| | - Lucile Broyer
- Light Chain Bioscience, Novimmune S.A., Plan-les-Ouates, Switzerland
| | | | - Tereza Bautzova
- Light Chain Bioscience, Novimmune S.A., Plan-les-Ouates, Switzerland
| | - Flora Juan
- Light Chain Bioscience, Novimmune S.A., Plan-les-Ouates, Switzerland
| | - Sebastien Calloud
- Light Chain Bioscience, Novimmune S.A., Plan-les-Ouates, Switzerland
| | - Nicolas Bosson
- Light Chain Bioscience, Novimmune S.A., Plan-les-Ouates, Switzerland
| | - Maud Charreton
- Light Chain Bioscience, Novimmune S.A., Plan-les-Ouates, Switzerland
| | | | - Vanessa Buatois
- Light Chain Bioscience, Novimmune S.A., Plan-les-Ouates, Switzerland
| | - Limin Shang
- Light Chain Bioscience, Novimmune S.A., Plan-les-Ouates, Switzerland
| |
Collapse
|
35
|
Chen W, Yang F, Wang C, Narula J, Pascua E, Ni I, Ding S, Deng X, Chu MLH, Pham A, Jiang X, Lindquist KC, Doonan PJ, Van Blarcom T, Yeung YA, Chaparro-Riggers J. One size does not fit all: navigating the multi-dimensional space to optimize T-cell engaging protein therapeutics. MAbs 2021; 13:1871171. [PMID: 33557687 PMCID: PMC7889206 DOI: 10.1080/19420862.2020.1871171] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
T-cell engaging biologics is a class of novel and promising immune-oncology compounds that leverage the immune system to eradicate cancer. Here, we compared and contrasted a bispecific diabody-Fc format, which displays a relatively short antigen-binding arm distance, with our bispecific IgG platform. By generating diverse panels of antigen-expressing cells where B cell maturation antigen is either tethered to the cell membrane or located to the juxtamembrane region and masked by elongated structural spacer units, we presented a systematic approach to investigate the role of antigen epitope location and molecular formats in immunological synapse formation and cytotoxicity. We demonstrated that diabody-Fc is more potent for antigen epitopes located in the membrane distal region, while bispecific IgG is more efficient for membrane-proximal epitopes. Additionally, we explored other parameters, including receptor density, antigen-binding affinity, and kinetics. Our results show that molecular format and antigen epitope location, which jointly determine the intermembrane distance between target cells and T cells, allow decoupling of cytotoxicity and cytokine release, while antigen-binding affinities appear to be positively correlated with both readouts. Our work offers new insight that could potentially lead to a wider therapeutic window for T-cell engaging biologics in general.
Collapse
Affiliation(s)
- Wei Chen
- Pfizer Worldwide R&D , BioMedicine Design, CA, USA.,Asher Bio, Protein Sciences , San Carlos, CA, USA
| | - Fan Yang
- Pfizer Worldwide R&D , BioMedicine Design, CA, USA
| | - Carole Wang
- Pfizer Worldwide R&D , BioMedicine Design, CA, USA
| | - Jatin Narula
- Pfizer Worldwide R&D , BioMedicine Design, CA, USA
| | | | - Irene Ni
- Pfizer Worldwide R&D , BioMedicine Design, CA, USA.,Asher Bio, Protein Sciences , San Carlos, CA, USA
| | - Sheng Ding
- Pfizer Worldwide R&D , BioMedicine Design, CA, USA.,Gilead Sciences, Biology Department , Foster City, CA, USA
| | - Xiaodi Deng
- Pfizer Worldwide R&D , BioMedicine Design, CA, USA.,Dren Bio, Biologics Department , San Carlos, CA, USA
| | - Matthew Ling-Hon Chu
- Pfizer Worldwide R&D , BioMedicine Design, CA, USA.,Tizona Therapeutics, Protein Sciences , Antibody Development & Technical Operations, South San Francisco, CA, USA
| | - Amber Pham
- Pfizer Worldwide R&D , BioMedicine Design, CA, USA.,Arcus Biosciences, Protein Sciences , Hayward, CA, USA
| | - Xiaoyue Jiang
- Pfizer Worldwide R&D , BioMedicine Design, CA, USA.,Nektar Therapeutics, Biologics Analytical Development , San Francisco, CA, USA
| | | | - Patrick J Doonan
- Pfizer Worldwide R&D , BioMedicine Design, CA, USA.,Janssen BioTherapeutics, Janssen Research & Development, LLC , Spring House, PA, USA
| | - Tom Van Blarcom
- Pfizer Worldwide R&D , BioMedicine Design, CA, USA.,Allogene Therapeutics, Protein Engineering , South San Francisco, CA, USA
| | - Yik Andy Yeung
- Pfizer Worldwide R&D , BioMedicine Design, CA, USA.,Asher Bio, Protein Sciences , San Carlos, CA, USA
| | | |
Collapse
|
36
|
Middelburg J, Kemper K, Engelberts P, Labrijn AF, Schuurman J, van Hall T. Overcoming Challenges for CD3-Bispecific Antibody Therapy in Solid Tumors. Cancers (Basel) 2021; 13:287. [PMID: 33466732 PMCID: PMC7829968 DOI: 10.3390/cancers13020287] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy of cancer with CD3-bispecific antibodies is an approved therapeutic option for some hematological malignancies and is under clinical investigation for solid cancers. However, the treatment of solid tumors faces more pronounced hurdles, such as increased on-target off-tumor toxicities, sparse T-cell infiltration and impaired T-cell quality due to the presence of an immunosuppressive tumor microenvironment, which affect the safety and limit efficacy of CD3-bispecific antibody therapy. In this review, we provide a brief status update of the CD3-bispecific antibody therapy field and identify intrinsic hurdles in solid cancers. Furthermore, we describe potential combinatorial approaches to overcome these challenges in order to generate selective and more effective responses.
Collapse
Affiliation(s)
- Jim Middelburg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Kristel Kemper
- Genmab, 3584 CT Utrecht, The Netherlands; (K.K.); (P.E.); (A.F.L.); (J.S.)
| | - Patrick Engelberts
- Genmab, 3584 CT Utrecht, The Netherlands; (K.K.); (P.E.); (A.F.L.); (J.S.)
| | - Aran F. Labrijn
- Genmab, 3584 CT Utrecht, The Netherlands; (K.K.); (P.E.); (A.F.L.); (J.S.)
| | - Janine Schuurman
- Genmab, 3584 CT Utrecht, The Netherlands; (K.K.); (P.E.); (A.F.L.); (J.S.)
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| |
Collapse
|
37
|
Menck K, Heinrichs S, Baden C, Bleckmann A. The WNT/ROR Pathway in Cancer: From Signaling to Therapeutic Intervention. Cells 2021; 10:cells10010142. [PMID: 33445713 PMCID: PMC7828172 DOI: 10.3390/cells10010142] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
The WNT pathway is one of the major signaling cascades frequently deregulated in human cancer. While research had initially focused on signal transduction centered on β-catenin as a key effector activating a pro-tumorigenic transcriptional response, nowadays it is known that WNT ligands can also induce a multitude of β-catenin-independent cellular pathways. Traditionally, these comprise WNT/planar cell polarity (PCP) and WNT/Ca2+ signaling. In addition, signaling via the receptor tyrosine kinase-like orphan receptors (RORs) has gained increasing attention in cancer research due to their overexpression in a multitude of tumor entities. Active WNT/ROR signaling has been linked to processes driving tumor development and progression, such as cell proliferation, survival, invasion, or therapy resistance. In adult tissue, the RORs are largely absent, which has spiked the interest in them for targeted cancer therapy. Promising results in preclinical and initial clinical studies are beginning to unravel the great potential of such treatment approaches. In this review, we summarize seminal findings on the structure and expression of the RORs in cancer, their downstream signaling, and its output in regard to tumor cell function. Furthermore, we present the current clinical anti-ROR treatment strategies and discuss the state-of-the-art, as well as the challenges of the different approaches.
Collapse
Affiliation(s)
- Kerstin Menck
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Münster, Germany; (K.M.); (S.H.); (C.B.)
- West German Cancer Center, University Hospital Münster, 48149 Münster, Germany
| | - Saskia Heinrichs
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Münster, Germany; (K.M.); (S.H.); (C.B.)
- West German Cancer Center, University Hospital Münster, 48149 Münster, Germany
| | - Cornelia Baden
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Münster, Germany; (K.M.); (S.H.); (C.B.)
- West German Cancer Center, University Hospital Münster, 48149 Münster, Germany
| | - Annalen Bleckmann
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Münster, Germany; (K.M.); (S.H.); (C.B.)
- West German Cancer Center, University Hospital Münster, 48149 Münster, Germany
- Department of Hematology/Medical Oncology, University Medical Center Göttingen, 37099 Göttingen, Germany
- Correspondence: ; Tel.: +49-0251-8352712
| |
Collapse
|
38
|
Agostino M, Pohl SÖG. Activation barriers in Class F G protein-coupled receptors revealed by umbrella sampling simulations. Org Biomol Chem 2020; 18:9816-9825. [PMID: 33290484 DOI: 10.1039/d0ob02175j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Class F G protein-coupled receptors (GPCRs) include Smoothened and the ten Frizzled receptors, which are major cell membrane receptors in the Hedgehog and Wnt signalling pathways respectively and of enormous interest in embryonic development and as therapeutic targets in cancer. Recent crystal structures of Smoothened provide the opportunity to investigate the structural biology of Class F GPCRs in more detail, in turn, informing the development of therapeutics. A key question in this area is how one receptor may trigger distinct pathways - particularly relevant for Wnt signalling, in which signals may be transduced from a Frizzled via Dishevelled or G proteins, depending on the context. In this study, we employ adiabatic biased molecular dynamics and umbrella sampling to investigate the activation of Smoothened and Frizzled-7 in both the native state and bound to endogenous ligands, as well as how the clinically used Smoothened antagonist vismodegib alters this signalling. The results highlight key energetic barriers in the activation of these receptors, and the molecular features of the receptors mediating these barriers, demonstrating our approach as a robust means of investigating signalling through these receptors.
Collapse
Affiliation(s)
- Mark Agostino
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute (CHIRI), and Curtin Institute for Computation, Curtin University, Bentley, Western Australia, Australia.
| | | |
Collapse
|
39
|
Bai H, Peng R, Wang D, Sawyer M, Fu T, Cui C, Tan W. A minireview on multiparameter-activated nanodevices for cancer imaging and therapy. NANOSCALE 2020; 12:21571-21582. [PMID: 33108432 DOI: 10.1039/d0nr04080k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tumor microenvironment (TME)-responsive nanodevices are essential tools for cancer imaging and therapy. Exploiting the advantages of molecular engineering, nanodevices are emerging for biomedical applications. In order to reach targeted cancer areas, activated nanodevices first respond to the TME and then serve as an actuator for sensing, imaging and therapy. Most nanodevices depend on a single parameter as an input for their downstream activation, potentially leading to inaccurate diagnostic results and poor therapeutic outcomes. However, in the TME, some biomarkers are cross-linked, and such correlated biomarkers are potentially useful for cancer imaging and theranostic applications. Based on this phenomenon, researchers have developed approaches for the construction of multiparameter-activated nanodevices (MANs) to improve accuracy. This minireview summarizes the recent advances in the development of MANs for cancer imaging including fluorescence imaging, photoacoustic (PA) imaging, magnetic resonance imaging (MRI) and computed tomography (CT) imaging, as well as cancer therapy including radiotherapy, chemotherapy, photoinduced therapy and immunotherapy. We highlight different approaches for improving the specificity and precision of cancer imaging and therapy. In the future, MANs will show promise for clinical work in multimodal diagnosis and therapeutics.
Collapse
Affiliation(s)
- Huarong Bai
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Bispecific therapeutics target two distinct antigens simultaneously and provide novel functionalities that are not attainable with single monospecific molecules or combinations of them. The unique potential of bispecific therapeutics is driving extensive efforts to discover synergistic dual targets, design molecular formats to integrate bispecific elements, and accelerate successful clinical translation. In particular, the past decade has witnessed a boom in the design and development of bispecific antibody formats with more than 100 collections to date. Despite the remarkable progress that has been made to expand the number of formats, qualitative fine-tuning of bispecific formats is needed to achieve optimal dual-target engagement based on understanding of the spatiotemporal interdependence of the two physically linked binding specificities and the complex target biology associated with bispecific approaches. This review provides insights into the design parameters - including affinity, valency, and geometry - that need to be considered at an early stage of development in order to take the best advantage of bispecific therapeutics.
Collapse
Affiliation(s)
- Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Yongso-ro 45, Nam-gu, Busan, South Korea.
| |
Collapse
|
41
|
Goydel RS, Weber J, Peng H, Qi J, Soden J, Freeth J, Park H, Rader C. Affinity maturation, humanization, and co-crystallization of a rabbit anti-human ROR2 monoclonal antibody for therapeutic applications. J Biol Chem 2020; 295:5995-6006. [PMID: 32193207 PMCID: PMC7196640 DOI: 10.1074/jbc.ra120.012791] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/17/2020] [Indexed: 01/07/2023] Open
Abstract
Antibodies are widely used as cancer therapeutics, but their current use is limited by the low number of antigens restricted to cancer cells. A receptor tyrosine kinase, receptor tyrosine kinase-like orphan receptor 2 (ROR2), is normally expressed only during embryogenesis and is tightly down-regulated in postnatal healthy tissues. However, it is up-regulated in a diverse set of hematologic and solid malignancies, thus ROR2 represents a candidate antigen for antibody-based cancer therapy. Here we describe the affinity maturation and humanization of a rabbit mAb that binds human and mouse ROR2 but not human ROR1 or other human cell-surface antigens. Co-crystallization of the parental rabbit mAb in complex with the human ROR2 kringle domain (hROR2-Kr) guided affinity maturation by heavy-chain complementarity-determining region 3 (HCDR3)-focused mutagenesis and selection. The affinity-matured rabbit mAb was then humanized by complementarity-determining region (CDR) grafting and framework fine tuning and again co-crystallized with hROR2-Kr. We show that the affinity-matured and humanized mAb retains strong affinity and specificity to ROR2 and, following conversion to a T cell-engaging bispecific antibody, has potent cytotoxicity toward ROR2-expressing cells. We anticipate that this humanized affinity-matured mAb will find application for antibody-based cancer therapy of ROR2-expressing neoplasms.
Collapse
Affiliation(s)
- Rebecca S. Goydel
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458
| | - Justus Weber
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458
| | - Haiyong Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458
| | - Junpeng Qi
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458
| | - Jo Soden
- Retrogenix Ltd., Chinley, High Peak SK23 6FJ, United Kingdom
| | - Jim Freeth
- Retrogenix Ltd., Chinley, High Peak SK23 6FJ, United Kingdom
| | - HaJeung Park
- X-Ray Crystallography Core, The Scripps Research Institute, Jupiter, Florida 33458
| | - Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458, To whom correspondence should be addressed:
Dept. of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way #2C1, Jupiter, FL 33458. Tel.:
561-228-2053; E-mail:
| |
Collapse
|
42
|
T-cell Activating Tribodies as a Novel Approach for Efficient Killing of ErbB2-positive Cancer Cells. J Immunother 2020; 42:1-10. [PMID: 30520849 DOI: 10.1097/cji.0000000000000248] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Tyrosine Kinase Receptor ErbB2 (HER2) when overexpressed in breast cancer (BC) is associated with poor prognosis. The monoclonal antibody Trastuzumab has become a standard treatment of ErbB2+BC. The antibody treatment has limited efficacy, often meets resistance and induces cardiotoxicity. T-cell recruiting bispecific antibody derivatives (TRBA) offer a more effective alternative to standard antibody therapy. We evaluated a panel of TRBAs targeting 3 different epitopes on the ErbB2 receptor either in a bivalent targeting tribody structure or as a monovalent scFv-fusion (BiTE format) for binding, cytotoxicity on Trastuzumab-resistant cell lines, and induction of cardiotoxicity. All three TRBAs bind with high affinity to the ErbB2 extracellular domain and a large panel of ErbB2-positive tumor cells. Tribodies had an increased in vitro cytotoxic potency as compared to BiTEs. It is interesting to note that, Tribodies targeting the epitopes on ErbB2 receptor domains I and II bind and activate lysis of mammary and gastric tumor cells more efficiently than a Tribody targeting the Trastuzumab epitope on domain IV. The first 2 are also active on Trastuzumab-resistant cancer cells lacking or masking the epitope recognized by Trastuzumab. None of the Tribodies studied showed significant toxicity on human cardiomyocytes. Altogether these results make these novel anti-ErbB2 bispecific Tribodies candidates for therapeutic development for treating ErbB2-positive Trastuzumab-resistant cancer patients.
Collapse
|
43
|
Nie S, Wang Z, Moscoso-Castro M, D'Souza P, Lei C, Xu J, Gu J. Biology drives the discovery of bispecific antibodies as innovative therapeutics. Antib Ther 2020; 3:18-62. [PMID: 33928225 PMCID: PMC7990219 DOI: 10.1093/abt/tbaa003] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/06/2020] [Indexed: 12/17/2022] Open
Abstract
A bispecific antibody (bsAb) is able to bind two different targets or two distinct epitopes on the same target. Broadly speaking, bsAbs can include any single molecule entity containing dual specificities with at least one being antigen-binding antibody domain. Besides additive effect or synergistic effect, the most fascinating applications of bsAbs are to enable novel and often therapeutically important concepts otherwise impossible by using monoclonal antibodies alone or their combination. This so-called obligate bsAbs could open up completely new avenue for developing novel therapeutics. With evolving understanding of structural architecture of various natural or engineered antigen-binding immunoglobulin domains and the connection of different domains of an immunoglobulin molecule, and with greatly improved understanding of molecular mechanisms of many biological processes, the landscape of therapeutic bsAbs has significantly changed in recent years. As of September 2019, over 110 bsAbs are under active clinical development, and near 180 in preclinical development. In this review article, we introduce a system that classifies bsAb formats into 30 categories based on their antigen-binding domains and the presence or absence of Fc domain. We further review the biology applications of approximately 290 bsAbs currently in preclinical and clinical development, with the attempt to illustrate the principle of selecting a bispecific format to meet biology needs and selecting a bispecific molecule as a clinical development candidate by 6 critical criteria. Given the novel mechanisms of many bsAbs, the potential unknown safety risk and risk/benefit should be evaluated carefully during preclinical and clinical development stages. Nevertheless we are optimistic that next decade will witness clinical success of bsAbs or multispecific antibodies employing some novel mechanisms of action and deliver the promise as next wave of antibody-based therapeutics.
Collapse
Affiliation(s)
- Siwei Nie
- WuXi Biologics, 299 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China and ,To whom correspondence should addressed. Jijie Guor Siwei Nie. or
| | - Zhuozhi Wang
- WuXi Biologics, 299 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China and
| | | | - Paul D'Souza
- Clarivate Analytics, Friars House, 160 Blackfriars Road, London SE1 8EZ, UK
| | - Can Lei
- Clarivate Analytics, Friars House, 160 Blackfriars Road, London SE1 8EZ, UK
| | - Jianqing Xu
- WuXi Biologics, 299 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China and
| | - Jijie Gu
- WuXi Biologics, 299 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China and ,To whom correspondence should addressed. Jijie Guor Siwei Nie. or
| |
Collapse
|
44
|
Rader C. Bispecific antibodies in cancer immunotherapy. Curr Opin Biotechnol 2019; 65:9-16. [PMID: 31841859 DOI: 10.1016/j.copbio.2019.11.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 11/14/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022]
Abstract
Among antibody-based cancer therapies, bispecific antibodies (biAbs) have gained momentum in preclinical and clinical investigations following the regulatory approvals of the trailblazing T-cell engaging biAb (T-biAb) blinatumomab. Discussed herein are recent strategies that aim at boosting the potency and mitigating the toxicity of T-biAbs, broadening their therapeutic utility from hematologic to solid malignancies, and generating T-biAbs in situ. In cancer immunotherapy, T-biAbs are facing fierce competition with chimeric antigen receptor T cells (CAR-Ts), a battle for clinical and commercial viability that will be closely watched. However, innovative combinations of T-biAbs and CAR-Ts have also transpired. NK-cell engaging biAbs (NK-biAbs) are reemerging as an alternative that addresses liabilities of T-biAbs. Beyond NK-biAbs, other biAbs designed to recruit cellular and molecular components of the innate immune system will be covered in this reflection on new tools, technologies, and targets.
Collapse
Affiliation(s)
- Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
45
|
Hofland T, Eldering E, Kater AP, Tonino SH. Engaging Cytotoxic T and NK Cells for Immunotherapy in Chronic Lymphocytic Leukemia. Int J Mol Sci 2019; 20:E4315. [PMID: 31484424 PMCID: PMC6747204 DOI: 10.3390/ijms20174315] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/23/2019] [Accepted: 09/02/2019] [Indexed: 12/16/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by an acquired immune dysfunction. CLL cells affect the phenotype and function of the entire spectrum of innate and adaptive immune cells, including monocytes, T cells, and natural killer (NK) cells, leading to a tumor-supportive environment and reduced immunosurveillance. Novel immunotherapies like immune checkpoint blockade, bi- and tri-specific antibodies, and chimeric antigen receptor (CAR) T cells use the patients' immune system to induce therapeutic responses. Although these novel immunotherapies showed impressive results in several B cell lymphomas, responses in CLL were often disappointing. The strong immunomodulatory effect of CLL is believed to play a pivotal role in the low response rates to these immunotherapeutic strategies. In this review, we summarize how CLL influences the function of non-malignant lymphocytes, with a special focus on T and NK cells, two important cellular mediators for immunotherapy. Secondly, we provide a short overview of the activity of several immunotherapeutics in CLL, and discuss how novel strategies may overcome the disappointing response rates in CLL.
Collapse
Affiliation(s)
- Tom Hofland
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Eric Eldering
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam, LYMMCARE, 1105 AZ Amsterdam, The Netherlands
| | - Arnon P Kater
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam, LYMMCARE, 1105 AZ Amsterdam, The Netherlands
| | - Sanne H Tonino
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
- Lymphoma and Myeloma Center Amsterdam, LYMMCARE, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
46
|
Qi J, Hymel D, Nelson CG, Burke TR, Rader C. Conventional and Chemically Programmed Asymmetric Bispecific Antibodies Targeting Folate Receptor 1. Front Immunol 2019; 10:1994. [PMID: 31497024 PMCID: PMC6712926 DOI: 10.3389/fimmu.2019.01994] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/07/2019] [Indexed: 12/19/2022] Open
Abstract
T-cell engaging bispecific antibodies (biAbs) can mediate potent and specific tumor cell eradication in liquid cancers. Substantial effort has been invested in expanding this concept to solid cancers. To explore their utility in the treatment of ovarian cancer, we built a set of asymmetric biAbs in IgG1-like format that bind CD3 on T cells with a conventional scFv arm and folate receptor 1 (FOLR1) on ovarian cancer cells with a conventional or a chemically programmed Fab arm. For avidity engineering, we also built an asymmetric biAb format with a tandem Fab arm. We show that both conventional and chemically programmed CD3 × FOLR1 biAbs exert specific in vitro and in vivo cytotoxicity toward FOLR1-expressing ovarian cancer cells by recruiting and activating T cells. While the conventional T-cell engaging biAb was curative in an aggressive mouse model of human ovarian cancer, the potency of the chemically programmed biAb was significantly boosted by avidity engineering. Both conventional and chemically programmed CD3 × FOLR1 biAbs warrant further investigation for ovarian cancer immunotherapy.
Collapse
Affiliation(s)
- Junpeng Qi
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, United States
| | - David Hymel
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Christopher G Nelson
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Terrence R Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, United States
| |
Collapse
|
47
|
Karvonen H, Barker H, Kaleva L, Niininen W, Ungureanu D. Molecular Mechanisms Associated with ROR1-Mediated Drug Resistance: Crosstalk with Hippo-YAP/TAZ and BMI-1 Pathways. Cells 2019; 8:cells8080812. [PMID: 31382410 PMCID: PMC6721603 DOI: 10.3390/cells8080812] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Abstract
Signaling via the Wnt-related receptor tyrosine kinase-like orphan receptor 1 (ROR1) triggers tumorigenic features associated with cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT), while aberrant expression of ROR1 is strongly linked to advanced disease progression and chemoresistance. Several recent studies have shown that Wnt5a binding to ROR1 promotes oncogenic signaling by activating multiple pathways such as RhoA/Rac1 GTPases and PI3K/AKT, which in turn could induce transcriptional coactivator YAP/TAZ or polycomb complex protein BMI-1 signaling, respectively, to sustain stemness, metastasis and ultimately drug-resistance. These data point towards a new feedback loop during cancer development, linking Wnt5a-ROR1 signaling activation to YAP/TAZ or BMI-1 upregulation that could play an important role in disease progression and treatment resistance. This review focuses on the crosstalk between Wnt5a-ROR1 and YAP/TAZ or the BMI-1 signaling network, together with the current advancements in targeted strategies for ROR1-positive cancers.
Collapse
Affiliation(s)
- Hanna Karvonen
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, 33520 Tampere, Finland
| | - Harlan Barker
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| | - Laura Kaleva
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, 33520 Tampere, Finland
| | - Wilhelmiina Niininen
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, 33520 Tampere, Finland
| | - Daniela Ungureanu
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland.
- Tays Cancer Center, Tampere University Hospital, 33520 Tampere, Finland.
| |
Collapse
|
48
|
Strohl WR, Naso M. Bispecific T-Cell Redirection versus Chimeric Antigen Receptor (CAR)-T Cells as Approaches to Kill Cancer Cells. Antibodies (Basel) 2019; 8:E41. [PMID: 31544847 PMCID: PMC6784091 DOI: 10.3390/antib8030041] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/23/2019] [Accepted: 06/24/2019] [Indexed: 12/16/2022] Open
Abstract
The concepts for T-cell redirecting bispecific antibodies (TRBAs) and chimeric antigen receptor (CAR)-T cells are both at least 30 years old but both platforms are just now coming into age. Two TRBAs and two CAR-T cell products have been approved by major regulatory agencies within the last ten years for the treatment of hematological cancers and an additional 53 TRBAs and 246 CAR cell constructs are in clinical trials today. Two major groups of TRBAs include small, short-half-life bispecific antibodies that include bispecific T-cell engagers (BiTE®s) which require continuous dosing and larger, mostly IgG-like bispecific antibodies with extended pharmacokinetics that can be dosed infrequently. Most CAR-T cells today are autologous, although significant strides are being made to develop off-the-shelf, allogeneic CAR-based products. CAR-Ts form a cytolytic synapse with target cells that is very different from the classical immune synapse both physically and mechanistically, whereas the TRBA-induced synapse is similar to the classic immune synapse. Both TRBAs and CAR-T cells are highly efficacious in clinical trials but both also present safety concerns, particularly with cytokine release syndrome and neurotoxicity. New formats and dosing paradigms for TRBAs and CAR-T cells are being developed in efforts to maximize efficacy and minimize toxicity, as well as to optimize use with both solid and hematologic tumors, both of which present significant challenges such as target heterogeneity and the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- William R Strohl
- BiStro Biotech Consulting, LLC, 1086 Tullo Farm Rd., Bridgewater, NJ 08807, USA.
| | - Michael Naso
- Century Therapeutics, 3675 Market St., Philadelphia, PA 19104, USA
| |
Collapse
|
49
|
Ma X, Liu B, Yang J, Hu K. Solution structure, dynamics and function investigation of Kringle domain of human receptor tyrosine kinase-like orphan receptor 1. J Biomol Struct Dyn 2019; 38:2229-2239. [PMID: 31232192 DOI: 10.1080/07391102.2019.1635914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Receptor tyrosine kinase-like orphan receptor 1 (ROR1) has been recently proposed as a potential target for cancer treatment. It was suggested that monoclonal antibodies (mAb) against the Kringle (KNG) domain of ROR1 could induce apoptosis of chronic lymphocytic leukemia cells. Here, we reported the determination of the solution structure of human ROR1-KNG (hROR1-KNG), investigation of its dynamic properties and potential binding interface by NMR spectroscopy. The obtained NMR structure of hROR1-KNG exhibits an open form at Asn47-His50 and shows obvious differences from other canonical KNGs at the corresponding lysine binding site, which implies that hROR1-KNG may interact with some non-canonical ligands. Dynamics analysis of hROR1-KNG reveal a faster local motion around the α-turn and 310-helix, which may provide flexibility to protect the proximal hydrophobic core in solution or facilitate the binding of other molecules. The intermediate-to-slow conformational exchange of Cys77-Ile79 may influence the conformation determination of disulfide bond Cys53-Cys77. Binding interface of hROR1-KNG for mAb R11 was analyzed and compared with the epitope for the functional mAbs. Previous study implies that hROR1-KNG may be involved in mediating the heterooligomerization between ROR1 and ROR2 in vivo. However, apparently, no direct interaction between hROR1-KNG and hROR2-KNG was observed from chemical shift perturbation experiment. Our work lays foundation to further functional study on interactions of hROR1-KNG with other biological relevant partners.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xiaofang Ma
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, People's Republic of China.,University of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Bin Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, People's Republic of China.,University of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jiahui Yang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Kaifeng Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, People's Republic of China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| |
Collapse
|
50
|
Hwang D, Nilchan N, Nanna AR, Li X, Cameron MD, Roush WR, Park H, Rader C. Site-Selective Antibody Functionalization via Orthogonally Reactive Arginine and Lysine Residues. Cell Chem Biol 2019; 26:1229-1239.e9. [PMID: 31231031 DOI: 10.1016/j.chembiol.2019.05.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/23/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023]
Abstract
Homogeneous antibody-drug conjugates (ADCs) that use a highly reactive buried lysine (Lys) residue embedded in a dual variable domain (DVD)-IgG1 format can be assembled with high precision and efficiency under mild conditions. Here we show that replacing the Lys with an arginine (Arg) residue affords an orthogonal ADC assembly that is site-selective and stable. X-ray crystallography confirmed the location of the reactive Arg residue at the bottom of a deep pocket. As the Lys-to-Arg mutation is confined to a single residue in the heavy chain of the DVD-IgG1, heterodimeric assemblies that combine a buried Lys in one arm, a buried Arg in the other arm, and identical light chains, are readily assembled. Furthermore, the orthogonal conjugation chemistry enables the loading of heterodimeric DVD-IgG1s with two different cargos in a one-pot reaction and thus affords a convenient platform for dual-warhead ADCs and other multifaceted antibody conjugates.
Collapse
Affiliation(s)
- Dobeen Hwang
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Napon Nilchan
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Alex R Nanna
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Xiaohai Li
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Michael D Cameron
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - William R Roush
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - HaJeung Park
- X-Ray Crystallography Core, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|