1
|
Jemouai Z, Sverzhinsky A, Sygusch J, Pascal J, Baron C. Inner membrane components of the plasmid pKM101 type IV secretion system TraE and TraD are DNA-binding proteins. Sci Rep 2025; 15:7530. [PMID: 40032854 DOI: 10.1038/s41598-025-85446-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/02/2025] [Indexed: 03/05/2025] Open
Abstract
The increase of antimicrobial resistance constitutes a significant threat to human health. One of the mechanisms responsible for the spread of resistance to antimicrobials is the transfer of plasmids between bacteria by conjugation. This process is mediated by type IV secretion systems (T4SS) and previous studies have provided in vivo evidence for interactions between DNA and components of the T4SS. Here, we purified TraD and TraE, two inner membrane proteins from the Escherichia coli pKM101 T4SS. Using electrophoretic mobility shift assays and fluorescence polarization we showed that the purified proteins both bind single-stranded and double-stranded DNA in the nanomolar affinity range. The previously identified conjugation inhibitor BAR-072 inhibits TraE DNA binding in vitro, providing evidence for its mechanism of action. Site-directed mutagenesis identified conserved amino acids that are required for conjugation that may be targets for the development of more potent conjugation inhibitors.
Collapse
Affiliation(s)
- Zakaria Jemouai
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Québec, Canada
| | - Aleksandr Sverzhinsky
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Québec, Canada
| | - Jurgen Sygusch
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Québec, Canada
| | - John Pascal
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Québec, Canada
| | - Christian Baron
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Québec, Canada.
| |
Collapse
|
2
|
Breidenstein A, Svedberg D, Ter Beek J, Berntsson RPA. Advances in Protein Structure Prediction Highlight Unexpected Commonalities Between Gram-positive and Gram-negative Conjugative T4SSs. J Mol Biol 2025; 437:168924. [PMID: 39746464 DOI: 10.1016/j.jmb.2024.168924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025]
Abstract
Despite recent advances in our understanding of the structure and function of conjugative Type 4 Secretion Systems (T4SSs), there is still only very scarce data available for the ones from Gram-positive (G+) bacteria. This is a problem, as conjugative T4SSs are main drivers for the spread of antibiotic resistance genes and virulence factors. Here, we aim to increase our understanding of G+ systems, by using bioinformatic approaches to identify proteins that are conserved in all conjugative T4SS machineries and reviewing the current knowledge available for these components. We then combine this information with the most recent advances in structure prediction technologies to propose a structural model for a G+ T4SS from the model system encoded on pCF10. By doing so, we show that conjugative G+ T4SSs likely have more in common with their Gram-negative counterparts than previously expected, and we highlight the potential of predicted structural models to serve as a starting point for experimental design.
Collapse
Affiliation(s)
- Annika Breidenstein
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden; Wallenberg Centre for Molecular Medicine & Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Dennis Svedberg
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden; Wallenberg Centre for Molecular Medicine & Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Josy Ter Beek
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden; Wallenberg Centre for Molecular Medicine & Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.
| | - Ronnie P-A Berntsson
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden; Wallenberg Centre for Molecular Medicine & Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.
| |
Collapse
|
3
|
Zhang G, Li C, Li Y, Chen D, Li Z, Ouyang G, Wang Z. Discovery and Mechanism of Azatryptanthrin Derivatives as Novel Anti-Phytopathogenic Bacterial Agents for Potent Bactericide Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6288-6300. [PMID: 37040536 DOI: 10.1021/acs.jafc.3c01120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The natural alkaloids of tryptanthrin and their derivatives have a wide range of biological activities. In this research, four series of azatryptanthrin derivatives containing 4-aza/3-aza/2-aza/1-aza tryptanthrin were prepared by condensation cyclization reaction against plant pathogens to develop a new natural product-based bacterial pesticide. Compound 4Aza-8 displayed a remarkable growth inhibitory effect on pathogenic bacteria of Xanthomonas axonopodis pv. citri (Xac), Xanthomonas oryzae pv. Oryzae (Xoo), and Pseudomonas syringae pv. actinidiae (Psa) with the final corrected EC50 values of 0.312, 1.91, and 18.0 μg/mL, respectively, which were greatly superior than that of tryptanthrin (Tryp). Moreover, 4Aza-8 also showed effective therapeutic and protective activities in vivo on citrus canker. Further mechanism studies on Xac elucidated that compound 4Aza-8 was able to affect the growth curve of Xac and the formation of biofilm, cause severe shrinkage in bacterial morphology, increase reactive oxygen species levels, and induce apoptosis in bacterial cells. Quantitative analysis of differential protein profiles found that the major differences were mainly concentrated on the endometrial protein in the bacterial secretion system pathway, which blocked the membrane transport and affected the transfer of DNA to the host cell. In summary, these research results suggest that 4Aza-8 represents a promising anti-phytopathogenic-bacteria agent, which is worth being further investigated as a bactericide candidate.
Collapse
Affiliation(s)
- Guanglong Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Chengpeng Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yan Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, Guizhou 550025, China
| | - Danping Chen
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, Guizhou 550025, China
| | - Zhuirui Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, Guizhou 550025, China
| | - Guiping Ouyang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, Guizhou 550025, China
| | - Zhenchao Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, Guizhou 550025, China
| |
Collapse
|
4
|
Daveri A, Benigno V, van der Meer JR. Characterization of an atypical but widespread type IV secretion system for transfer of the integrative and conjugative element (ICEclc) in Pseudomonas putida. Nucleic Acids Res 2023; 51:2345-2362. [PMID: 36727472 PMCID: PMC10018362 DOI: 10.1093/nar/gkad024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/23/2022] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Conjugation of DNA relies on multicomponent protein complexes bridging two bacterial cytoplasmic compartments. Whereas plasmid conjugation systems have been well documented, those of integrative and conjugative elements (ICEs) have remained poorly studied. We characterize here the conjugation system of the ICEclc element in Pseudomonas putida UWC1 that is a model for a widely distributed family of ICEs. By in frame deletion and complementation, we show the importance on ICE transfer of 22 genes in a 20-kb conserved ICE region. Protein comparisons recognized seven homologs to plasmid type IV secretion system components, another six homologs to frequent accessory proteins, and the rest without detectable counterparts. Stationary phase imaging of P. putida ICEclc with in-frame fluorescent protein fusions to predicted type IV components showed transfer-competent cell subpopulations with multiple fluorescent foci, largely overlapping in dual-labeled subcomponents, which is suggestive for multiple conjugation complexes per cell. Cross-dependencies between subcomponents in ICE-type IV secretion system assembly were revealed by quantitative foci image analysis in a variety of ICEclc mutant backgrounds. In conclusion, the ICEclc family presents an evolutionary distinct type IV conjugative system with transfer competent cells specialized in efficient transfer.
Collapse
Affiliation(s)
- Andrea Daveri
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Valentina Benigno
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | | |
Collapse
|
5
|
Xiong X, Li B, Zhou Z, Gu G, Li M, Liu J, Jiao H. The VirB System Plays a Crucial Role in Brucella Intracellular Infection. Int J Mol Sci 2021; 22:ijms222413637. [PMID: 34948430 PMCID: PMC8707931 DOI: 10.3390/ijms222413637] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is a highly prevalent zoonotic disease caused by Brucella. Brucella spp. are gram-negative facultative intracellular parasitic bacteria. Its intracellular survival and replication depend on a functional virB system, an operon encoded by VirB1–VirB12. Type IV secretion system (T4SS) encoded by the virB operon is an important virulence factor of Brucella. It can subvert cellular pathway and induce host immune response by secreting effectors, which promotes Brucella replication in host cells and induce persistent infection. Therefore, this paper summarizes the function and significance of the VirB system, focusing on the structure of the VirB system where VirB T4SS mediates biogenesis of the endoplasmic reticulum (ER)-derived replicative Brucella-containing vacuole (rBCV), the effectors of T4SS and the cellular pathways it subverts, which will help better understand the pathogenic mechanism of Brucella and provide new ideas for clinical vaccine research and development.
Collapse
Affiliation(s)
- Xue Xiong
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (X.X.); (B.L.); (Z.Z.); (G.G.); (M.L.)
| | - Bowen Li
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (X.X.); (B.L.); (Z.Z.); (G.G.); (M.L.)
| | - Zhixiong Zhou
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (X.X.); (B.L.); (Z.Z.); (G.G.); (M.L.)
| | - Guojing Gu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (X.X.); (B.L.); (Z.Z.); (G.G.); (M.L.)
| | - Mengjuan Li
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (X.X.); (B.L.); (Z.Z.); (G.G.); (M.L.)
| | - Jun Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Yujinxiang Street 573, Changchun 130122, China
- Correspondence: (J.L.); (H.J.)
| | - Hanwei Jiao
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (X.X.); (B.L.); (Z.Z.); (G.G.); (M.L.)
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
- Veterinary Scientific Engineering Research Center, Chongqing 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
- Correspondence: (J.L.); (H.J.)
| |
Collapse
|
6
|
Modulation of the enzymatic activity of the flagellar lytic transglycosylase SltF by rod components, and the scaffolding protein FlgJ in Rhodobacter sphaeroides. J Bacteriol 2021; 203:e0037221. [PMID: 34309398 DOI: 10.1128/jb.00372-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Macromolecular cell-envelope-spanning structures such as the bacterial flagellum must traverse the cell wall. Lytic transglycosylases enzymes are capable of enlarging gaps in the peptidoglycan meshwork to allow the efficient assembly of supramolecular complexes. In the periplasmic space, the assembly of the flagellar rod requires the scaffold protein FlgJ, which includes a muramidase domain in the canonical models Salmonella enterica and Escherichia coli. In contrast, in Rhodobacter sphaeroides, FlgJ and the dedicated flagellar lytic transglycosylase SltF are separate entities that interact in the periplasm. In this study we show that sltF is expressed along with the genes encoding the early components of the flagellar hierarchy that include the hook-basal body proteins, making SltF available during the rod assembly. Protein-protein interaction experiments demonstrated that SltF interacts with the rod proteins FliE, FlgB, FlgC, FlgF and FlgG through its C-terminal region. A deletion analysis that divides the C-terminus in two halves revealed that the interacting regions for most of the rod proteins are not redundant. Our results also show that the presence of the rod proteins FliE, FlgB, FlgC, and FlgF displace the previously reported SltF-FlgJ interaction. In addition, we observed modulation of the transglycosylase activity of SltF mediated by FlgB and FlgJ that could be relevant to coordinate rod assembly with cell wall remodeling. In summary, different mechanisms regulate the flagellar lytic transglycosylase, SltF ensuring a timely transcription, a proper localization and a controlled enzymatic activity. Importance Several mechanisms participate in the assembly of cell-envelope-spanning macromolecular structures. The sequential expression of substrates to be exported, selective export, and a specific order of incorporation are some of the mechanisms that stand out to drive an efficient assembly process. In this work we analyze how the structural rod proteins, the scaffold protein FlgJ and the flagellar lytic enzyme SltF, interact in an orderly fashion to assemble the flagellar rod into the periplasmic space. A complex arrangement of transient interactions directs a dedicated flagellar muramidase towards the flagellar rod. All these interactions bring this protein to the proximity of the peptidoglycan wall while also modulating its enzymatic activity. This study suggests how a dynamic network of interactions participates in controlling SltF, a prominent component for flagellar formation.
Collapse
|
7
|
Wu X, Zhao Y, Sun L, Jiang M, Wang Q, Wang Q, Yang W, Wu Y. Crystal structure of CagV, the Helicobacter pylori homologue of the T4SS protein VirB8. FEBS J 2019; 286:4294-4309. [PMID: 31230405 DOI: 10.1111/febs.14971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/13/2019] [Accepted: 06/21/2019] [Indexed: 12/15/2022]
Abstract
The VirB/D type IV secretion system (T4SS) plays an essential role in materials transport between host cells and pathogenic Helicobacter pylori and is considered the major pathogenic mediator of H. pylori-associated gastric disease. VirB8, an inner membrane protein that interacts with many other proteins, is a crucial component for secretory function. Here, we present a crystal structure of the periplasmic domain of CagV, the VirB8 counterpart in the H. pylori Cag-T4SS. The structure reveals a fold similar to that of other VirB8 members except for the absence of the α5 helix, a discontinuous β1 strand, a larger angle between the α2 and α3 helices, a more hydrophobic surface groove, but exhibits a different dimer interface. Whether the dimerization occurs in solution was proved by mutagenesis, size-exclusion chromatography and cross-linking assays. Unlike the classical dimerization mode, the interface of the CagV dimer is principally formed by several hydrogen bonds, which indicates instability of dimerization. The structure here demonstrates the difference in dimerization among VirB8 homologues and indicates the considerable compositional and functional diversity of them in T4SS. DATABASE: Coordinates and structure factors have been deposited in the Protein Data Bank under accession codes 6IQT.
Collapse
Affiliation(s)
- Xiuling Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Yanhe Zhao
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lifang Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Meiqin Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Qin Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - QianChao Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Wendi Yang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Yunkun Wu
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, China
| |
Collapse
|
8
|
Genomic Analysis of Emerging Florfenicol-Resistant Campylobacter coli Isolated from the Cecal Contents of Cattle in the United States. mSphere 2019; 4:4/3/e00367-19. [PMID: 31243079 PMCID: PMC6595150 DOI: 10.1128/msphere.00367-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Campylobacter is a leading cause of foodborne diarrheal illness worldwide, with more than one million cases each year in the United States alone. The global emergence of antimicrobial resistance in this pathogen has become a growing public health concern. Florfenicol-resistant (FFNr) Campylobacter has been very rare in the United States. In this study, we employed whole-genome sequencing to characterize 16 multidrug-resistant Campylobacter coli isolates recovered from cattle in the United States. A gene [cfr(C)] was found to be responsible for resistance not only to florfenicol but also to several other antimicrobials, including linezolid, a critical drug for treating infections by Gram-positive bacteria in humans. The results showed that cfr(C) is located in a conjugative pTet MDR/virulence plasmid. This report highlights the power of antimicrobial resistance surveillance to uncover the intricacies of transmissible coresistance and provides information that is needed for accurate risk assessment and mitigation strategies. Genomic analyses were performed on florfenicol-resistant (FFNr) Campylobacter coli isolates recovered from cattle, and the cfr(C) gene-associated multidrug resistance (MDR) plasmid was characterized. Sixteen FFNrC. coli isolates recovered between 2013 and 2018 from beef cattle were sequenced using MiSeq. Genomes and plasmids were found to be closed for three of the isolates using the PacBio system. Single nucleotide polymorphisms (SNPs) across the genome and the structures of MDR plasmids were investigated. Conjugation experiments were performed to determine the transferability of cfr(C)-associated MDR plasmids. The spectrum of resistance encoded by the cfr(C) gene was further investigated by agar dilution antimicrobial susceptibility testing. All 16 FFNr isolates were MDR and exhibited coresistance to ciprofloxacin, nalidixic acid, clindamycin, and tetracycline. All isolates shared the same resistance genotype, carrying aph (3′)-III, hph, ΔaadE (truncated), blaOXA-61, cfr(C), and tet(O) genes plus a mutation of GyrA (T86I). The cfr(C), aph (3′)-III, hph, ΔaadE, and tet(O) genes were colocated on transferable MDR plasmids ranging in size from 48 to 50 kb. These plasmids showed high sequence homology with the pTet plasmid and carried several Campylobacter virulence genes, including virB2, virB4, virB5, VirB6, virB7, virB8, virb9, virB10, virB11, and virD4. The cfr(C) gene conferred resistance to florfenicol (8 to 32 μg/ml), clindamycin (512 to 1,024 μg/ml), linezolid (128 to 512 μg/ml), and tiamulin (1,024 μg/ml). Phylogenetic analysis showed SNP differences ranging from 11 to 2,248 SNPs among the 16 isolates. The results showed that the cfr(C) gene located in the conjugative pTet MDR/virulence plasmid is present in diverse strains, where it confers high levels of resistance to several antimicrobials, including linezolid, a critical drug for treating infections by Gram-positive bacteria in humans. This report highlights the power of genomic antimicrobial resistance surveillance to uncover the intricacies of transmissible coresistance and provides information that is needed for accurate risk assessment and mitigation strategies. IMPORTANCECampylobacter is a leading cause of foodborne diarrheal illness worldwide, with more than one million cases each year in the United States alone. The global emergence of antimicrobial resistance in this pathogen has become a growing public health concern. Florfenicol-resistant (FFNr) Campylobacter has been very rare in the United States. In this study, we employed whole-genome sequencing to characterize 16 multidrug-resistant Campylobacter coli isolates recovered from cattle in the United States. A gene [cfr(C)] was found to be responsible for resistance not only to florfenicol but also to several other antimicrobials, including linezolid, a critical drug for treating infections by Gram-positive bacteria in humans. The results showed that cfr(C) is located in a conjugative pTet MDR/virulence plasmid. This report highlights the power of antimicrobial resistance surveillance to uncover the intricacies of transmissible coresistance and provides information that is needed for accurate risk assessment and mitigation strategies.
Collapse
|
9
|
Abstract
Type IV secretion systems (T4SSs) are nanomachines that Gram-negative, Gram-positive bacteria, and some archaea use to transport macromolecules across their membranes into bacterial or eukaryotic host targets or into the extracellular milieu. They are the most versatile secretion systems, being able to deliver both proteins and nucleoprotein complexes into targeted cells. By mediating conjugation and/or competence, T4SSs play important roles in determining bacterial genome plasticity and diversity; they also play a pivotal role in the spread of antibiotic resistance within bacterial populations. T4SSs are also used by human pathogens such as Legionella pneumophila, Bordetella pertussis, Brucella sp., or Helicobacter pylori to sustain infection. Since they are essential virulence factors for these important pathogens, T4SSs might represent attractive targets for vaccines and therapeutics. The best-characterized conjugative T4SSs of Gram-negative bacteria are composed of twelve components that are conserved across many T4SSs. In this chapter, we will review our current structural knowledge on the T4SSs by describing the structures of the individual components and how they assemble into large macromolecular assemblies. With the combined efforts of X-ray crystallography, nuclear magnetic resonance (NMR), and more recently electron microscopy, structural biology of the T4SS has made spectacular progress during the past fifteen years and has unraveled the properties of unique proteins and complexes that assemble dynamically in a highly sophisticated manner.
Collapse
|
10
|
Wang X, Zhang L, Ji H, Mo X, Li P, Wang J, Dong H. Hpa1 is a type III translocator in Xanthomonas oryzae pv. oryzae. BMC Microbiol 2018; 18:105. [PMID: 30180793 PMCID: PMC6123991 DOI: 10.1186/s12866-018-1251-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 08/27/2018] [Indexed: 11/29/2022] Open
Abstract
Background Pathogenic Gram-negative bacteria interact with their eukaryotic hosts by deploying the type III translocon to inject effector proteins into the cytosol of eukaryotic cells. The translocon compositions, the number and biochemical characteristics of type III translocators in animal-pathogenic bacteria have been well elucidated, but information is lacking for plant-pathogenic bacteria. With extensive studies on biological functions of the Hpa1 protein secreted by the type III secretion system in Xanthomonas oryzae pv. oryzae (Xoo), we show here that Hpa1 is a type III translocator based on measurements of two proteins categorized as transcription activator-like (TAL) effector. Results Hpa1 was functionally associated with the TAL effector PthXo1 or AvrXa10 by genetic analysis of the wild-type Xoo strain and related mutants or recombinant strains. Inoculation experiments suggested that Hpa1 is required not only for the virulent role of PthXo1 in the susceptible rice variety Nipponbare, but also for the avirulent function of AvrXa10 on the resistant rice variety IRBB10. Hpa1 is unrelated to the secretion of PthXo1 and AvrXa10 out of bacterial cells. However, Hpa1 is critical for both TAL effectors to be translocated from bacterial cells into the cytosol of rice cells based on replicate experiments performed on the susceptible and resistant varieties, respectively. Hpa1-mediated translocation of PthXo1 is coincident with induced expression of rice SWEET11 gene, which is the regulatory target of PthXo1, resulting in the occurrence of the bacterial blight disease in the susceptible rice variety. By contrast, the immune hypersensitive response is induced in agreement with induced expression of rice Xa10 gene, which is the target of AvrXa10, only when AvrXa10 is translocated from bacteria into cells of the resistant rice variety. All the virulent or avirulent performances of the TAL effectors are nullified by directed mutation that removes the α-helix motif from the Hpa1 sequence. Conclusions The genetic and biochemical data demonstrate that Hap1 is a type III translocator at least for TAL effectors PthXo1 and AvrXa10. The effect of the directed mutation suggests that Hpa1 depends on its α-helical motif to fulfil the translocator function. Electronic supplementary material The online version of this article (10.1186/s12866-018-1251-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Liyuan Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Hongtao Ji
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.,Present address: Department of Biology, College of Life Sciences, Jiangsu Formal University, Xuzhou, 221116, Jiangsu Province, China
| | - Xuyan Mo
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Ping Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Junzhi Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Hansong Dong
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
11
|
Willig CJ, Duan K, Zhang ZJ. Transcriptome Profiling of Plant Genes in Response to Agrobacterium tumefaciens-Mediated Transformation. Curr Top Microbiol Immunol 2018; 418:319-348. [PMID: 30062593 DOI: 10.1007/82_2018_115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Agrobacterium tumefaciens is a plant pathogen that causes crown gall disease. During infection of the host plant, Agrobacterium transfers T-DNA from its Ti plasmid into the host cell, which can then be integrated into the host genome. This unique genetic transformation capability has been employed as the dominant technology for producing genetically modified plants for both basic research and biotechnological applications. Agrobacterium has been well studied as a disease-causing agent. The Agrobacterium-mediated transformation process involves early attachment of the bacterium to the host's surface, followed by transfer of T-DNA and virulence proteins into the plant cell. Throughout this process, the host plants exhibit dynamic gene expression patterns at each infection stage or in response to Agrobacterium strains with varying pathogenic capabilities. Shifting host gene expression patterns throughout the transformation process have effects on transformation frequency, host morphology, and metabolism. Thus, gene expression profiling during the Agrobacterium infection process can be an important approach to help elucidate the interaction between Agrobacterium and plants. This review highlights recent findings on host plant differential gene expression patterns in response to A. tumefaciens or related elicitor molecules.
Collapse
Affiliation(s)
| | - Kaixuan Duan
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - Zhanyuan J Zhang
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
12
|
Dik DA, Marous DR, Fisher JF, Mobashery S. Lytic transglycosylases: concinnity in concision of the bacterial cell wall. Crit Rev Biochem Mol Biol 2017. [PMID: 28644060 DOI: 10.1080/10409238.2017.1337705] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The lytic transglycosylases (LTs) are bacterial enzymes that catalyze the non-hydrolytic cleavage of the peptidoglycan structures of the bacterial cell wall. They are not catalysts of glycan synthesis as might be surmised from their name. Notwithstanding the seemingly mundane reaction catalyzed by the LTs, their lytic reactions serve bacteria for a series of astonishingly diverse purposes. These purposes include cell-wall synthesis, remodeling, and degradation; for the detection of cell-wall-acting antibiotics; for the expression of the mechanism of cell-wall-acting antibiotics; for the insertion of secretion systems and flagellar assemblies into the cell wall; as a virulence mechanism during infection by certain Gram-negative bacteria; and in the sporulation and germination of Gram-positive spores. Significant advances in the mechanistic understanding of each of these processes have coincided with the successive discovery of new LTs structures. In this review, we provide a systematic perspective on what is known on the structure-function correlations for the LTs, while simultaneously identifying numerous opportunities for the future study of these enigmatic enzymes.
Collapse
Affiliation(s)
- David A Dik
- a Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN , USA
| | - Daniel R Marous
- a Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN , USA
| | - Jed F Fisher
- a Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN , USA
| | - Shahriar Mobashery
- a Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN , USA
| |
Collapse
|
13
|
Gunasinghe SD, Webb CT, Elgass KD, Hay ID, Lithgow T. Super-Resolution Imaging of Protein Secretion Systems and the Cell Surface of Gram-Negative Bacteria. Front Cell Infect Microbiol 2017; 7:220. [PMID: 28611954 PMCID: PMC5447050 DOI: 10.3389/fcimb.2017.00220] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/12/2017] [Indexed: 12/28/2022] Open
Abstract
Gram-negative bacteria have a highly evolved cell wall with two membranes composed of complex arrays of integral and peripheral proteins, as well as phospholipids and glycolipids. In order to sense changes in, respond to, and exploit their environmental niches, bacteria rely on structures assembled into or onto the outer membrane. Protein secretion across the cell wall is a key process in virulence and other fundamental aspects of bacterial cell biology. The final stage of protein secretion in Gram-negative bacteria, translocation across the outer membrane, is energetically challenging so sophisticated nanomachines have evolved to meet this challenge. Advances in fluorescence microscopy now allow for the direct visualization of the protein secretion process, detailing the dynamics of (i) outer membrane biogenesis and the assembly of protein secretion systems into the outer membrane, (ii) the spatial distribution of these and other membrane proteins on the bacterial cell surface, and (iii) translocation of effector proteins, toxins and enzymes by these protein secretion systems. Here we review the frontier research imaging the process of secretion, particularly new studies that are applying various modes of super-resolution microscopy.
Collapse
Affiliation(s)
- Sachith D Gunasinghe
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash UniversityClayton, VIC, Australia
| | - Chaille T Webb
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash UniversityClayton, VIC, Australia
| | | | - Iain D Hay
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash UniversityClayton, VIC, Australia
| | - Trevor Lithgow
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash UniversityClayton, VIC, Australia
| |
Collapse
|
14
|
Kumar N, Shariq M, Kumar A, Kumari R, Subbarao N, Tyagi RK, Mukhopadhyay G. Analyzing the role of CagV, a VirB8 homolog of the type IV secretion system of Helicobacter pylori. FEBS Open Bio 2017; 7:915-933. [PMID: 28680806 PMCID: PMC5494299 DOI: 10.1002/2211-5463.12225] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 12/13/2022] Open
Abstract
The type IV secretion system of Helicobacter pylori (Cag‐T4SS) is composed of ~ 27 components including a VirB8 homolog, CagV. We have characterized CagV and reported that it is an inner membrane protein and, like VirB8, forms a homodimer. Its stability is not dependent on the other Cag components and the absence of cagV affects the stability of only CagI, a protein involved in pilus formation. CagV is not required for the stability and localization of outer membrane subcomplex proteins, but interacts with them through CagX. It also interacts with the inner membrane‐associated components, CagF and CagZ, and is required for the surface localization of CagA. The results of this study might help in deciphering the mechanistic contributions of CagV in the Cag‐T4SS biogenesis and function.
Collapse
Affiliation(s)
- Navin Kumar
- Special Centre for Molecular Medicine Jawaharlal Nehru University New Delhi India.,Present address: School of Biotechnology Gautam Buddha University Yamuna Expressway Greater Noida Gautam Budh Nagar Uttar Pradesh India
| | - Mohd Shariq
- Special Centre for Molecular Medicine Jawaharlal Nehru University New Delhi India.,Present address: School of Life Sciences Jawaharlal Nehru University New Delhi India
| | - Amarjeet Kumar
- School of Computational and Integrative Sciences Jawaharlal Nehru University New Delhi India
| | - Rajesh Kumari
- Special Centre for Molecular Medicine Jawaharlal Nehru University New Delhi India
| | - Naidu Subbarao
- School of Computational and Integrative Sciences Jawaharlal Nehru University New Delhi India
| | - Rakesh K Tyagi
- Special Centre for Molecular Medicine Jawaharlal Nehru University New Delhi India
| | | |
Collapse
|
15
|
Abstract
All plasmids that spread by conjugative transfer encode a relaxase. That includes plasmids that encode the type IV secretion machinery necessary to mediate cell to cell transfer, as well as mobilizable plasmids that exploit the existence of other plasmids' type IV secretion machinery to enable their own lateral spread. Relaxases perform key functions in plasmid transfer by first binding to their cognate plasmid as part of a multiprotein complex called the relaxosome, which is then specifically recognized by a receptor protein at the opening of the secretion channel. Relaxases catalyze a site- and DNA-strand-specific cleavage reaction on the plasmid then pilot the single strand of plasmid DNA through the membrane-spanning type IV secretion channel as a nucleoprotein complex. In the recipient cell, relaxases help terminate the transfer process efficiently and stabilize the incoming plasmid DNA. Here, we review the well-studied MOBF family of relaxases to describe the biochemistry of these versatile enzymes and integrate current knowledge into a mechanistic model of plasmid transfer in Gram-negative bacteria.
Collapse
|
16
|
Sharifahmadian M, Baron C. Type IV Secretion in Agrobacterium tumefaciens and Development of Specific Inhibitors. Curr Top Microbiol Immunol 2017. [PMID: 29536359 DOI: 10.1007/978-3-319-75241-9_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The Agrobacterium tumefaciens VirB/D4 type IV secretion system (T4SS) comprises 12 membrane-bound proteins, and it assembles a surface-exposed T-pilus. It is considered to be the archetypical system that is generally used to orient the nomenclature of other T4SS. Whereas the sequence similarities between T4SSs from different organisms are often limited, the general mechanism of action appears to be conserved, and the evolutionary relationship to bacterial conjugation systems and to T4SSs from animal pathogens is well established. Agrobacterium is a natural genetic engineer that is extensively used for the generation of transgenic plants for research and for agro-biotechnological applications. It also served as an early model for the understanding of pathogen-host interactions and for the transfer of macromolecular virulence factors into host cells. The knowledge on the mechanism of its T4SS inspired the search for small molecules that inhibit the virulence of bacterial pathogens and of bacterial conjugation. Inhibitors of bacterial virulence and of conjugation have interesting potential as alternatives to antibiotics and as inhibitors of antimicrobial resistance gene transfer. Mechanistic work on the Agrobacterium T4SS will continue to inspire the search for inhibitor target sites and drug design.
Collapse
Affiliation(s)
- Mahzad Sharifahmadian
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Christian Baron
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, Canada.
| |
Collapse
|
17
|
Santin YG, Cascales E. Domestication of a housekeeping transglycosylase for assembly of a Type VI secretion system. EMBO Rep 2016; 18:138-149. [PMID: 27920034 DOI: 10.15252/embr.201643206] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 01/06/2023] Open
Abstract
The type VI secretion system (T6SS) is an anti-bacterial weapon comprising a contractile tail anchored to the cell envelope by a membrane complex. The TssJ, TssL, and TssM proteins assemble a 1.7-MDa channel complex that spans the cell envelope, including the peptidoglycan layer. The electron microscopy structure of the TssJLM complex revealed that it has a diameter of ~18 nm in the periplasm, which is larger than the size of peptidoglycan pores (~2 nm), hence questioning how the T6SS membrane complex crosses the peptidoglycan layer. Here, we report that the MltE housekeeping lytic transglycosylase (LTG) is required for T6SS assembly in enteroaggregative Escherichia coli Protein-protein interaction studies further demonstrated that MltE is recruited to the periplasmic domain of TssM. In addition, we show that TssM significantly stimulates MltE activity in vitro and that MltE is required for the late stages of T6SS membrane complex assembly. Collectively, our data provide the first example of domestication and activation of a LTG encoded within the core genome for the assembly of a secretion system.
Collapse
Affiliation(s)
- Yoann G Santin
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), UMR 7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ - CNRS, Marseille Cedex 20, France
| | - Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), UMR 7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ - CNRS, Marseille Cedex 20, France
| |
Collapse
|
18
|
Abstract
Type IV secretion systems (T4SSs) are large multisubunit translocons, found in both gram-negative and gram-positive bacteria and in some archaea. These systems transport a diverse array of substrates from DNA and protein-DNA complexes to proteins, and play fundamental roles in both bacterial pathogenesis and bacterial adaptation to the cellular milieu in which bacteria live. This review describes the various biochemical and structural advances made toward understanding the biogenesis, architecture, and function of T4SSs.
Collapse
Affiliation(s)
- Vidya Chandran Darbari
- Section of Structural Biology, Department of Medicine, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | | |
Collapse
|
19
|
Labra Á, Arredondo-Zelada O, Flores-Herrera P, Marshall SH, Gómez FA. In sílico identification and characterization of putative Dot/Icm secreted virulence effectors in the fish pathogen Piscirickettsia salmonis. Microb Pathog 2015; 92:11-18. [PMID: 26706346 DOI: 10.1016/j.micpath.2015.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/26/2015] [Accepted: 12/01/2015] [Indexed: 11/25/2022]
Abstract
Piscirickettsia salmonis seriously affects the Chilean salmon industry. The bacterium is phylogenetically related to Legionella pneumophila and Coxiella burnetii, sharing a Dot/Icm secretion system with them. Although it is well documented that L. pneumophila and C. burnetii secrete different virulence effectors via this Dot/Icm system in order to attenuate host cell responses, to date there have been no reported virulence effectors secreted by the Dot/Icm system of P. salmonis. Using several annotations of P. salmonis genome, here we report an in silico analyses of 4 putative Dot/Icm effectors. Three of them contain ankyrin repeat domains and the typical conserved 3D structures of this protein family. The fourth one is highly similar to one of the Dot/Icm-dependent effectors of L. pneumophila. Additionally, all the potential P. salmonis effectors contain a classical Dot/Icm secretion signal in their C-terminus, consisting of: an E-Block, a hydrophobic residue in -3 or -4 and an electronegative charge. Finally, qPCR analysis demonstrated that these proteins are overexpressed early in infection, perhaps contributing to the generation of a replicative vacuole, a key step in the neutralizing strategy proposed for the Dot/Icm system. In summary, this report identifies four Dot/Icm-dependent effectors in P. salmonis.
Collapse
Affiliation(s)
- Álvaro Labra
- Laboratorio de Patógenos Acuícolas, Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Chile; Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Valparaíso, Chile.
| | - Oscar Arredondo-Zelada
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Valparaíso, Chile.
| | - Patricio Flores-Herrera
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Valparaíso, Chile.
| | - Sergio H Marshall
- Laboratorio de Patógenos Acuícolas, Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Chile; Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Valparaíso, Chile; Fraunhofer Chile Research Foundation, Center for Systems Biotechnology, Santiago, Chile.
| | - Fernando A Gómez
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Valparaíso, Chile.
| |
Collapse
|
20
|
Shariq M, Kumar N, Kumari R, Kumar A, Subbarao N, Mukhopadhyay G. Biochemical Analysis of CagE: A VirB4 Homologue of Helicobacter pylori Cag-T4SS. PLoS One 2015; 10:e0142606. [PMID: 26565397 PMCID: PMC4643968 DOI: 10.1371/journal.pone.0142606] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/23/2015] [Indexed: 12/30/2022] Open
Abstract
Helicobacter pylori are among the most successful human pathogens that harbour a distinct genomic segment called cag Pathogenicity Island (cag-PAI). This genomic segment codes for a type IV secretion system (Cag-T4SS) related to the prototypical VirB/D4 system of Agrobacterium tumefaciens (Ag), a plant pathogen. Some of the components of Cag-T4SS share homology to that of VirB proteins including putative energy providing CagE (HP0544), the largest VirB4 homologue. In Ag, VirB4 is required for the assembly of the system, substrate translocation and pilus formation, however, very little is known about CagE. Here we have characterised the protein biochemically, genetically, and microscopically and report that CagE is an inner membrane associated active NTPase and has multiple interacting partners including the inner membrane proteins CagV and Cagβ. Through CagV it is connected to the outer membrane sub-complex proteins. Stability of CagE is not dependent on several of the cag-PAI proteins tested. However, localisation and stability of the pilus associated CagI, CagL and surface associated CagH are affected in its absence. Stability of the inner membrane associated energetic component Cagβ, a VirD4 homologue seems to be partially affected in its absence. Additionally, CagA failed to cross the membrane barriers in its absence and no IL-8 induction is observed under infection condition. These results thus suggest the importance of CagE in Cag-T4SS functions. In future it may help in deciphering the mechanism of substrate translocation by the system.
Collapse
Affiliation(s)
- Mohd Shariq
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail: (MS); (GM)
| | - Navin Kumar
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Rajesh Kumari
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Amarjeet Kumar
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Gauranga Mukhopadhyay
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- * E-mail: (MS); (GM)
| |
Collapse
|
21
|
Ji H, Dong H. Key steps in type III secretion system (T3SS) towards translocon assembly with potential sensor at plant plasma membrane. MOLECULAR PLANT PATHOLOGY 2015; 16:762-73. [PMID: 25469869 PMCID: PMC6638502 DOI: 10.1111/mpp.12223] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Many plant- and animal-pathogenic Gram-negative bacteria employ the type III secretion system (T3SS) to translocate effector proteins from bacterial cells into the cytosol of eukaryotic host cells. The effector translocation occurs through an integral component of T3SS, the channel-like translocon, assembled by hydrophilic and hydrophobic proteinaceous translocators in a two-step process. In the first, hydrophilic translocators localize to the tip of a proteinaceous needle in animal pathogens, or a proteinaceous pilus in plant pathogens, and associate with hydrophobic translocators, which insert into host plasma membranes in the second step. However, the pilus needs to penetrate plant cell walls in advance. All hydrophilic translocators so far identified in plant pathogens are characteristic of harpins: T3SS accessory proteins containing a unitary hydrophilic domain or an additional enzymatic domain. Two-domain harpins carrying a pectate lyase domain potentially target plant cell walls and facilitate the penetration of the pectin-rich middle lamella by the bacterial pilus. One-domain harpins target plant plasma membranes and may play a crucial role in translocon assembly, which may also involve contrapuntal associations of hydrophobic translocators. In all cases, sensory components in the target plasma membrane are indispensable for the membrane recognition of translocators and the functionality of the translocon. The conjectural sensors point to membrane lipids and proteins, and a phosphatidic acid and an aquaporin are able to interact with selected harpin-type translocators. Interactions between translocators and their sensors at the target plasma membrane are assumed to be critical for translocon assembly.
Collapse
Affiliation(s)
- Hongtao Ji
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Hansong Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| |
Collapse
|
22
|
Moumène A, Marcelino I, Ventosa M, Gros O, Lefrançois T, Vachiéry N, Meyer DF, Coelho AV. Proteomic profiling of the outer membrane fraction of the obligate intracellular bacterial pathogen Ehrlichia ruminantium. PLoS One 2015; 10:e0116758. [PMID: 25710494 PMCID: PMC4339577 DOI: 10.1371/journal.pone.0116758] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 12/13/2014] [Indexed: 01/27/2023] Open
Abstract
The outer membrane proteins (OMPs) of Gram-negative bacteria play a crucial role in virulence and pathogenesis. Identification of these proteins represents an important goal for bacterial proteomics, because it aids in vaccine development. Here, we have developed such an approach for Ehrlichia ruminantium, the obligate intracellular bacterium that causes heartwater. A preliminary whole proteome analysis of elementary bodies, the extracellular infectious form of the bacterium, had been performed previously, but information is limited about OMPs in this organism and about their role in the protective immune response. Identification of OMPs is also essential for understanding Ehrlichia's OM architecture, and how the bacterium interacts with the host cell environment. First, we developed an OMP extraction method using the ionic detergent sarkosyl, which enriched the OM fraction. Second, proteins were separated via one-dimensional electrophoresis, and digested peptides were analyzed via nano-liquid chromatographic separation coupled with mass spectrometry (LC-MALDI-TOF/TOF). Of 46 unique proteins identified in the OM fraction, 18 (39%) were OMPs, including 8 proteins involved in cell structure and biogenesis, 4 in transport/virulence, 1 porin, and 5 proteins of unknown function. These experimental data were compared to the predicted subcellular localization of the entire E. ruminantium proteome, using three different algorithms. This work represents the most complete proteome characterization of the OM fraction in Ehrlichia spp. The study indicates that suitable subcellular fractionation experiments combined with straightforward computational analysis approaches are powerful for determining the predominant subcellular localization of the experimentally observed proteins. We identified proteins potentially involved in E. ruminantium pathogenesis, which are good novel targets for candidate vaccines. Thus, combining bioinformatics and proteomics, we discovered new OMPs for E. ruminantium that are valuable data for those investigating new vaccines against this organism. In summary, we provide both pioneering data and novel insights into the pathogenesis of this obligate intracellular bacterium.
Collapse
Affiliation(s)
- Amal Moumène
- CIRAD, UMR CMAEE, Site de Duclos, Prise d’eau, F-97170, Petit-Bourg, Guadeloupe, France
- INRA, UMR1309 CMAEE, F-34398, Montpellier, France
- Université des Antilles et de la Guyane, 97159, Pointe-à-Pitre cedex, Guadeloupe, France
| | - Isabel Marcelino
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Miguel Ventosa
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Olivier Gros
- Université des Antilles et de la Guyane, Institut de Biologie Paris Seine, UMR7138 UPMC-CNRS, Equipe Biologie de la Mangrove, UFR des Sciences Exactes et Naturelles, Département de Biologie, BP 592, 97159, Pointe-à-Pitre cedex, Guadeloupe, France
| | | | - Nathalie Vachiéry
- CIRAD, UMR CMAEE, Site de Duclos, Prise d’eau, F-97170, Petit-Bourg, Guadeloupe, France
- INRA, UMR1309 CMAEE, F-34398, Montpellier, France
| | - Damien F. Meyer
- CIRAD, UMR CMAEE, Site de Duclos, Prise d’eau, F-97170, Petit-Bourg, Guadeloupe, France
- INRA, UMR1309 CMAEE, F-34398, Montpellier, France
- * E-mail:
| | - Ana V. Coelho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| |
Collapse
|
23
|
Hwang HH, Liu YT, Huang SC, Tung CY, Huang FC, Tsai YL, Cheng TF, Lai EM. Overexpression of the HspL Promotes Agrobacterium tumefaciens Virulence in Arabidopsis Under Heat Shock Conditions. PHYTOPATHOLOGY 2015; 105:160-168. [PMID: 25163013 DOI: 10.1094/phyto-05-14-0133-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Agrobacterium tumefaciens transfers a specific DNA fragment from the resident tumor-inducing (Ti) plasmid and effector virulence (Vir) proteins to plant cells during infection. A. tumefaciens VirB1-11 and VirD4 proteins assemble as the type IV secretion system (T4SS), which mediates transfer of the T-DNA and effector Vir protein into plant cells, thus resulting in crown gall disease in plants. Previous studies revealed that an α-crystallin-type, small heat-shock protein (HspL) is a more effective VirB8 chaperone than three other small heat-shock proteins (HspC, HspAT1, and HspAT2). Additionally, HspL contributes to efficient T4SS-mediated DNA transfer and tumorigenesis under room-temperature growth. In this study, we aimed to characterize the impact of HspL on Agrobacterium-mediated transformation efficiency under heat-shock treatment. During heat shock, transient transformation efficiency and VirB8 protein accumulation were lower in the hspL deletion mutant than in the wild type. Overexpression of HspL in A. tumefaciens enhanced the transient transformation efficiency in root explants of both susceptible and recalcitrant Arabidopsis ecotypes. In addition, the reduced transient transformation efficiency during heat stress was recovered by overexpression of HspL in A. tumefaciens. HspL may help maintain VirB8 homeostasis and elevate Agrobacterium-mediated transformation efficiency under both heat-shock and nonheat-shock growth.
Collapse
|
24
|
Interplay between two bacterial actin homologs, MamK and MamK-Like, is required for the alignment of magnetosome organelles in Magnetospirillum magneticum AMB-1. J Bacteriol 2014; 196:3111-21. [PMID: 24957623 DOI: 10.1128/jb.01674-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many bacterial species contain multiple actin-like proteins tasked with the execution of crucial cell biological functions. MamK, an actin-like protein found in magnetotactic bacteria, is important in organizing magnetosome organelles into chains that are used for navigation along geomagnetic fields. MamK and numerous other magnetosome formation factors are encoded by a genetic island termed the magnetosome island. Unlike most magnetotactic bacteria, Magnetospirillum magneticum AMB-1 (AMB-1) contains a second island of magnetosome-related genes that was named the magnetosome islet. A homologous copy of mamK, mamK-like, resides within this islet and encodes a protein capable of filament formation in vitro. Previous work had shown that mamK-like is expressed in vivo, but its function, if any, had remained unknown. Though MamK-like is highly similar to MamK, it contains a mutation that in MamK and other actins blocks ATPase activity in vitro and filament dynamics in vivo. Here, using genetic analysis, we demonstrate that mamK-like has an in vivo role in assisting organelle alignment. In addition, MamK-like forms filaments in vivo in a manner that is dependent on the presence of MamK and the two proteins interact in a yeast two-hybrid assay. Surprisingly, despite the ATPase active-site mutation, MamK-like is capable of ATP hydrolysis in vitro and promotes MamK filament turnover in vivo. Taken together, these experiments suggest that direct interactions between MamK and MamK-like contribute to magnetosome alignment in AMB-1.
Collapse
|
25
|
Common requirement for the relaxosome of plasmid R1 in multiple activities of the conjugative type IV secretion system. J Bacteriol 2014; 196:2108-21. [PMID: 24682328 DOI: 10.1128/jb.00045-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Macromolecular transport by bacterial type IV secretion systems involves regulated uptake of (nucleo)protein complexes by the cell envelope-spanning transport channel. A coupling protein receptor is believed to recognize the specific proteins destined for transfer, but the steps initiating their translocation remain unknown. Here, we investigate the contribution of a complex of transfer initiation proteins, the relaxosome, of plasmid R1 to translocation of competing transferable substrates from mobilizable plasmids ColE1 and CloDF13 or the bacteriophage R17. We found that not only does the R1 translocation machinery engage the R1 relaxosome during conjugative self-transfer and during infection by R17 phage but it is also activated by its cognate relaxosome to mediate the export of an alternative plasmid. Transporter activity was optimized by the R1 relaxosome even when this complex itself could not be transferred, i.e., when the N-terminal activation domain (amino acids 1 to 992 [N1-992]) of TraI was present without the C-terminal conjugative helicase domain. We propose that the functional dependence of the transfer machinery on the R1 relaxosome for initiating translocation ensures that dissemination of heterologous plasmids does not occur at the expense of self-transfer.
Collapse
|
26
|
Gohlke J, Deeken R. Plant responses to Agrobacterium tumefaciens and crown gall development. FRONTIERS IN PLANT SCIENCE 2014; 5:155. [PMID: 24795740 PMCID: PMC4006022 DOI: 10.3389/fpls.2014.00155] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 04/02/2014] [Indexed: 05/17/2023]
Abstract
Agrobacterium tumefaciens causes crown gall disease on various plant species by introducing its T-DNA into the genome. Therefore, Agrobacterium has been extensively studied both as a pathogen and an important biotechnological tool. The infection process involves the transfer of T-DNA and virulence proteins into the plant cell. At that time the gene expression patterns of host plants differ depending on the Agrobacterium strain, plant species and cell-type used. Later on, integration of the T-DNA into the plant host genome, expression of the encoded oncogenes, and increase in phytohormone levels induce a fundamental reprogramming of the transformed cells. This results in their proliferation and finally formation of plant tumors. The process of reprogramming is accompanied by altered gene expression, morphology and metabolism. In addition to changes in the transcriptome and metabolome, further genome-wide ("omic") approaches have recently deepened our understanding of the genetic and epigenetic basis of crown gall tumor formation. This review summarizes the current knowledge about plant responses in the course of tumor development. Special emphasis is placed on the connection between epigenetic, transcriptomic, metabolomic, and morphological changes in the developing tumor. These changes not only result in abnormally proliferating host cells with a heterotrophic and transport-dependent metabolism, but also cause differentiation and serve as mechanisms to balance pathogen defense and adapt to abiotic stress conditions, thereby allowing the coexistence of the crown gall and host plant.
Collapse
Affiliation(s)
- Jochen Gohlke
- School of Plant Sciences, University of ArizonaTucson, AZ, USA
| | - Rosalia Deeken
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of WuerzburgWuerzburg, Germany
- *Correspondence: Rosalia Deeken, Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Wuerzburg, Julius-von-Sachs-Platz 2, 97082 Wuerzburg, Germany e-mail:
| |
Collapse
|
27
|
Functional interactions of VirB11 traffic ATPases with VirB4 and VirD4 molecular motors in type IV secretion systems. J Bacteriol 2013; 195:4195-201. [PMID: 23852869 DOI: 10.1128/jb.00437-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pilus biogenesis and substrate transport by type IV secretion systems require energy, which is provided by three molecular motors localized at the base of the secretion channel. One of these motors, VirB11, belongs to the superfamily of traffic ATPases, which includes members of the type II secretion system and the type IV pilus and archaeal flagellar assembly apparatus. Here, we report the functional interactions between TrwD, the VirB11 homolog of the conjugative plasmid R388, and TrwK and TrwB, the motors involved in pilus biogenesis and DNA transport, respectively. Although these interactions remained standing upon replacement of the traffic ATPase by a homolog from a phylogenetically related conjugative system, namely, TraG of plasmid pKM101, this homolog could not replace the TrwD function for DNA transfer. This result suggests that VirB11 works as a switch between pilus biogenesis and DNA transport and reinforces a mechanistic model in which VirB11 proteins act as traffic ATPases by regulating both events in type IV secretion systems.
Collapse
|
28
|
Abstract
Bacteria have evolved several secretion machineries to bring about transport of various virulence factors, nutrients, nucleic acids and cell-surface appendages that are essential for their pathogenesis. T4S (Type IV secretion) systems are versatile secretion systems found in various Gram-negative and Gram-positive bacteria and in few archaea. They are large multisubunit translocons secreting a diverse array of substrates varying in size and nature from monomeric proteins to nucleoprotein complexes. T4S systems have evolved from conjugation machineries and are implicated in antibiotic resistance gene transfer and transport of virulence factors in Legionella pneumophila causing Legionnaires’ disease, Brucella suis causing brucellosis and Helicobacter pylori causing gastroduodenal diseases. The best-studied are the Agrobacterium tumefaciens VirB/D4 and the Escherichia coli plasmid pKM101 T4S systems. Recent structural advances revealing the cryo-EM (electron microscopy) structure of the core translocation assembly and high-resolution structure of the outer-membrane pore of T4S systems have made paradigm shifts in the understanding of T4S systems. The present paper reviews the advances made in biochemical and structural studies and summarizes our current understanding of the molecular architecture of this mega-assembly.
Collapse
|
29
|
Abstract
With common bacterial pathogens becoming increasingly resistant to the current therapeutic arsenal, there is a growing need to utilize alternative strategies when developing new antibacterial drugs. In this issue of Chemistry & Biology, Smith et al. explore the idea of antivirulence drugs by developing inhibitors of the type IV secretion system in Brucella.
Collapse
|
30
|
Protein export according to schedule: architecture, assembly, and regulation of type III secretion systems from plant- and animal-pathogenic bacteria. Microbiol Mol Biol Rev 2012; 76:262-310. [PMID: 22688814 DOI: 10.1128/mmbr.05017-11] [Citation(s) in RCA: 307] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Flagellar and translocation-associated type III secretion (T3S) systems are present in most gram-negative plant- and animal-pathogenic bacteria and are often essential for bacterial motility or pathogenicity. The architectures of the complex membrane-spanning secretion apparatuses of both systems are similar, but they are associated with different extracellular appendages, including the flagellar hook and filament or the needle/pilus structures of translocation-associated T3S systems. The needle/pilus is connected to a bacterial translocon that is inserted into the host plasma membrane and mediates the transkingdom transport of bacterial effector proteins into eukaryotic cells. During the last 3 to 5 years, significant progress has been made in the characterization of membrane-associated core components and extracellular structures of T3S systems. Furthermore, transcriptional and posttranscriptional regulators that control T3S gene expression and substrate specificity have been described. Given the architecture of the T3S system, it is assumed that extracellular components of the secretion apparatus are secreted prior to effector proteins, suggesting that there is a hierarchy in T3S. The aim of this review is to summarize our current knowledge of T3S system components and associated control proteins from both plant- and animal-pathogenic bacteria.
Collapse
|
31
|
Morrison SS, Williams T, Cain A, Froelich B, Taylor C, Baker-Austin C, Verner-Jeffreys D, Hartnell R, Oliver JD, Gibas CJ. Pyrosequencing-based comparative genome analysis of Vibrio vulnificus environmental isolates. PLoS One 2012; 7:e37553. [PMID: 22662170 PMCID: PMC3360785 DOI: 10.1371/journal.pone.0037553] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 04/25/2012] [Indexed: 01/22/2023] Open
Abstract
Between 1996 and 2006, the US Centers for Disease Control reported that the only category of food-borne infections increasing in frequency were those caused by members of the genus Vibrio. The Gram-negative bacterium Vibrio vulnificus is a ubiquitous inhabitant of estuarine waters, and is the number one cause of seafood-related deaths in the US. Many V. vulnificus isolates have been studied, and it has been shown that two genetically distinct subtypes, distinguished by 16S rDNA and other gene polymorphisms, are associated predominantly with either environmental or clinical isolation. While local genetic differences between the subtypes have been probed, only the genomes of clinical isolates have so far been completely sequenced. In order to better understand V. vulnificus as an agent of disease and to identify the molecular components of its virulence mechanisms, we have completed whole genome shotgun sequencing of three diverse environmental genotypes using a pyrosequencing approach. V. vulnificus strain JY1305 was sequenced to a depth of 33×, and strains E64MW and JY1701 were sequenced to lesser depth, covering approximately 99.9% of each genome. We have performed a comparative analysis of these sequences against the previously published sequences of three V. vulnificus clinical isolates. We find that the genome of V. vulnificus is dynamic, with 1.27% of genes in the C-genotype genomes not found in the E- genotype genomes. We identified key genes that differentiate between the genomes of the clinical and environmental genotypes. 167 genes were found to be specifically associated with environmental genotypes and 278 genes with clinical genotypes. Genes specific to the clinical strains include components of sialic acid catabolism, mannitol fermentation, and a component of a Type IV secretory pathway VirB4, as well as several other genes with potential significance for human virulence. Genes specific to environmental strains included several that may have implications for the balance between self-preservation under stress and nutritional competence.
Collapse
Affiliation(s)
- Shatavia S. Morrison
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Tiffany Williams
- Department of Biology, the University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Aurora Cain
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Brett Froelich
- Department of Biology, the University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Casey Taylor
- Department of Biology, the University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Craig Baker-Austin
- Centre for Environment, Fisheries, and Aquaculture Science, Weymouth, Dorset, United Kingdom
| | - David Verner-Jeffreys
- Centre for Environment, Fisheries, and Aquaculture Science, Weymouth, Dorset, United Kingdom
| | - Rachel Hartnell
- Centre for Environment, Fisheries, and Aquaculture Science, Weymouth, Dorset, United Kingdom
| | - James D. Oliver
- Department of Biology, the University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Cynthia J. Gibas
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
32
|
Villamil Giraldo AM, Sivanesan D, Carle A, Paschos A, Smith MA, Plesa M, Coulton J, Baron C. Type IV secretion system core component VirB8 from Brucella binds to the globular domain of VirB5 and to a periplasmic domain of VirB6. Biochemistry 2012; 51:3881-90. [PMID: 22515661 DOI: 10.1021/bi300298v] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Type IV secretion systems are macromolecular assemblies in the cell envelopes of bacteria that function in macromolecular translocation. Structural biology approaches have provided insights into the interaction of core complex components, but information about proteins that undergo transient interactions with membrane components has not been forthcoming. We have pursued an unbiased approach using peptide arrays and phage display to identify interaction partners and interaction domains of type IV secretion system assembly factor VirB8. These approaches identified the globular domain from the VirB5 protein to interact with VirB8. This interaction was confirmed in cross-linking, pull-down, and fluorescence resonance energy transfer (FRET)-based interaction assays. In addition, using phage display analysis, we identified different regions of VirB6 as potential interaction partners of VirB8. Using a FRET-based interaction assay, we provide the first direct experimental evidence of the interaction of a VirB6 periplasmic domain with VirB8. These results will allow us to conduct directed structural biological work and structure-function analyses aimed at defining the molecular details and biological significance of these interactions with VirB8 in the future.
Collapse
Affiliation(s)
- Ana Maria Villamil Giraldo
- Department of Biochemistry, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Porter CJ, Bantwal R, Bannam TL, Rosado CJ, Pearce MC, Adams V, Lyras D, Whisstock JC, Rood JI. The conjugation protein TcpC from Clostridium perfringens is structurally related to the type IV secretion system protein VirB8 from Gram-negative bacteria. Mol Microbiol 2011; 83:275-88. [PMID: 22150951 DOI: 10.1111/j.1365-2958.2011.07930.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bacterial conjugation is important for the acquisition of virulence and antibiotic resistance genes. We investigated the mechanism of conjugation in Gram-positive pathogens using a model plasmid pCW3 from Clostridium perfringens. pCW3 encodes tetracycline resistance and contains the tcp locus, which is essential for conjugation. We showed that the unique TcpC protein (359 amino acids, 41 kDa) was required for efficient conjugative transfer, localized to the cell membrane independently of other conjugation proteins, and that membrane localization was important for its function, oligomerization and interaction with the conjugation proteins TcpA, TcpH and TcpG. The crystal structure of the C-terminal component of TcpC (TcpC(99-359)) was determined to 1.8-Å resolution. TcpC(99-359) contained two NTF2-like domains separated by a short linker. Unexpectedly, comparative structural analysis showed that each of these domains was structurally homologous to the periplasmic region of VirB8, a component of the type IV secretion system from Agrobacterium tumefaciens. Bacterial two-hybrid studies revealed that the C-terminal domain was critical for interactions with other conjugation proteins. The N-terminal region of TcpC was required for efficient conjugation, oligomerization and protein-protein interactions. We conclude that by forming oligomeric complexes, TcpC contributes to the stability and integrity of the conjugation apparatus, facilitating efficient pCW3 transfer.
Collapse
Affiliation(s)
- Corrine J Porter
- ARC Centre of Excellence in Structural and Functional Microbial Genomics, Clayton, Vic. 3800, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Aguilar J, Cameron TA, Zupan J, Zambryski P. Membrane and core periplasmic Agrobacterium tumefaciens virulence Type IV secretion system components localize to multiple sites around the bacterial perimeter during lateral attachment to plant cells. mBio 2011; 2:e00218-11. [PMID: 22027007 PMCID: PMC3202754 DOI: 10.1128/mbio.00218-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 09/30/2011] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Type IV secretion systems (T4SS) transfer DNA and/or proteins into recipient cells. Here we performed immunofluorescence deconvolution microscopy to localize the assembled T4SS by detection of its native components VirB1, VirB2, VirB4, VirB5, VirB7, VirB8, VirB9, VirB10, and VirB11 in the C58 nopaline strain of Agrobacterium tumefaciens, following induction of virulence (vir) gene expression. These different proteins represent T4SS components spanning the inner membrane, periplasm, or outer membrane. Native VirB2, VirB5, VirB7, and VirB8 were also localized in the A. tumefaciens octopine strain A348. Quantitative analyses of the localization of all the above Vir proteins in nopaline and octopine strains revealed multiple foci in single optical sections in over 80% and 70% of the bacterial cells, respectively. Green fluorescent protein (GFP)-VirB8 expression following vir induction was used to monitor bacterial binding to live host plant cells; bacteria bind predominantly along their lengths, with few bacteria binding via their poles or subpoles. vir-induced attachment-defective bacteria or bacteria without the Ti plasmid do not bind to plant cells. These data support a model where multiple vir-T4SS around the perimeter of the bacterium maximize effective contact with the host to facilitate efficient transfer of DNA and protein substrates. IMPORTANCE Transfer of DNA and/or proteins to host cells through multiprotein type IV secretion system (T4SS) complexes that span the bacterial cell envelope is critical to bacterial pathogenesis. Early reports suggested that T4SS components localized at the cell poles. Now, higher-resolution deconvolution fluorescence microscopy reveals that all structural components of the Agrobacterium tumefaciens vir-T4SS, as well as its transported protein substrates, localize to multiple foci around the cell perimeter. These results lead to a new model of A. tumefaciens attachment to a plant cell, where A. tumefaciens takes advantage of the multiple vir-T4SS along its length to make intimate lateral contact with plant cells and thereby effectively transfer DNA and/or proteins through the vir-T4SS. The T4SS of A. tumefaciens is among the best-studied T4SS, and the majority of its components are highly conserved in different pathogenic bacterial species. Thus, the results presented can be applied to a broad range of pathogens that utilize T4SS.
Collapse
Affiliation(s)
- Julieta Aguilar
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | | | | | | |
Collapse
|
35
|
Abstract
Conjugation is an efficient way for transfer of genetic information between bacteria, even between highly diverged species, and a major cause for the spreading of resistance genes. We have investigated the subcellular localization of several conserved conjugation proteins carried on plasmid pLS20 found in Bacillus subtilis. We show that VirB1, VirB4, VirB11, VirD2, and VirD4 homologs assemble at a single cell pole, but also at other sites along the cell membrane, in cells during the lag phase of growth. Bimolecular fluorescence complementation analyses showed that VirB4 and VirD4 interact at the cell pole and, less frequently, at other sites along the membrane. VirB1 and VirB11 also colocalized at the cell pole. Total internal reflection fluorescence microscopy showed that pLS20 is largely membrane associated and is frequently found at the cell pole, indicating that transfer takes place at the pole, which is a preferred site for the assembly of the active conjugation apparatus, but not the sole site. VirD2, VirB4, and VirD4 started to localize to the pole or the membrane in stationary-phase cells, and VirB1 and VirB11 were observed as foci in cells resuspended in fresh medium but no longer in cells that had entered exponential growth, although at least VirB4 was still expressed. These data reveal an unusual assembly/disassembly timing for the pLS20 conjugation machinery and suggest that specific localization of conjugation proteins in lag-phase cells and delocalization during growth are the reasons why pLS20 conjugation occurs only during early exponential phase.
Collapse
|
36
|
Abstract
Pertussis toxin, produced and secreted by the whooping cough agent Bordetella pertussis, is one of the most complex soluble bacterial proteins. It is actively secreted through the B. pertussis cell envelope by the Ptl secretion system, a member of the widespread type IV secretion systems. The toxin is composed of five subunits (named S1 to S5 according to their decreasing molecular weights) arranged in an A-B structure. The A protomer is composed of the enzymatically active S1 subunit, which catalyzes ADP-ribosylation of the α subunit of trimeric G proteins, thereby disturbing the metabolic functions of the target cells, leading to a variety of biological activities. The B oligomer is composed of 1S2:1S3:2S4:1S5 and is responsible for binding of the toxin to the target cell receptors and for intracellular trafficking via receptor-mediated endocytosis and retrograde transport. The toxin is one of the most important virulence factors of B. pertussis and is a component of all current vaccines against whooping cough.
Collapse
Affiliation(s)
- Camille Locht
- Inserm U1019, CNRS UMR8204, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Univ Lille Nord de France, France.
| | | | | |
Collapse
|
37
|
Souza DP, Andrade MO, Alvarez-Martinez CE, Arantes GM, Farah CS, Salinas RK. A component of the Xanthomonadaceae type IV secretion system combines a VirB7 motif with a N0 domain found in outer membrane transport proteins. PLoS Pathog 2011; 7:e1002031. [PMID: 21589901 PMCID: PMC3093366 DOI: 10.1371/journal.ppat.1002031] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Accepted: 03/02/2011] [Indexed: 01/28/2023] Open
Abstract
Type IV secretion systems (T4SS) are used by Gram-negative bacteria to translocate protein and DNA substrates across the cell envelope and into target cells. Translocation across the outer membrane is achieved via a ringed tetradecameric outer membrane complex made up of a small VirB7 lipoprotein (normally 30 to 45 residues in the mature form) and the C-terminal domains of the VirB9 and VirB10 subunits. Several species from the genera of Xanthomonas phytopathogens possess an uncharacterized type IV secretion system with some distinguishing features, one of which is an unusually large VirB7 subunit (118 residues in the mature form). Here, we report the NMR and 1.0 Å X-ray structures of the VirB7 subunit from Xanthomonas citri subsp. citri (VirB7XAC2622) and its interaction with VirB9. NMR solution studies show that residues 27–41 of the disordered flexible N-terminal region of VirB7XAC2622 interact specifically with the VirB9 C-terminal domain, resulting in a significant reduction in the conformational freedom of both regions. VirB7XAC2622 has a unique C-terminal domain whose topology is strikingly similar to that of N0 domains found in proteins from different systems involved in transport across the bacterial outer membrane. We show that VirB7XAC2622 oligomerizes through interactions involving conserved residues in the N0 domain and residues 42–49 within the flexible N-terminal region and that these homotropic interactions can persist in the presence of heterotropic interactions with VirB9. Finally, we propose that VirB7XAC2622 oligomerization is compatible with the core complex structure in a manner such that the N0 domains form an extra layer on the perimeter of the tetradecameric ring. Many aspects of bacterial life require that they translocate proteins to the cell exterior. To do this, different macromolecular secretion systems of varying complexity have evolved (Type I–VI secretion systems). These secretion systems are often at the front lines of pathogen-host interactions and are important for the development of disease. In this work, we have determined the structure and studied the interactions of an unusually large VirB7 subunit (VirB7XAC2622) of the outer membrane pore of the Type IV secretion system found in the Xanthomonas genera of phytopathogens. Its mosaic structure combines a canonical VirB7 N-terminal region with a C-terminal globular domain whose topology is observed in a relatively limited set of proteins, all involved in molecular transport across outer membranes. Our results lead to the hypothesis that the VirB7XAC2622 globular domains can form an extra ring around the perimeter of the outer membrane pore and reveal deeper structural and evolutionary relationships among bacterial macromolecular secretion systems that have evolved to adopt a variety of functions, including structural modules in outer membrane pores (secretins from Type II, III and IV secretion systems, Type IV pili and filamentous phages), signal-transduction modules in TonB-dependent receptors and membrane-penetrating devices in T6SS and long-tailed bacteriophages.
Collapse
Affiliation(s)
- Diorge P. Souza
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Maxuel O. Andrade
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Guilherme M. Arantes
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Chuck S. Farah
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
- * E-mail: (CSF); (RKS)
| | - Roberto K. Salinas
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
- * E-mail: (CSF); (RKS)
| |
Collapse
|
38
|
Scheurwater EM, Burrows LL. Maintaining network security: how macromolecular structures cross the peptidoglycan layer. FEMS Microbiol Lett 2011; 318:1-9. [DOI: 10.1111/j.1574-6968.2011.02228.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
39
|
The dimer interface of Agrobacterium tumefaciens VirB8 is important for type IV secretion system function, stability, and association of VirB2 with the core complex. J Bacteriol 2011; 193:2097-106. [PMID: 21398549 DOI: 10.1128/jb.00907-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Type IV secretion systems are virulence factors used by many gram-negative bacteria to translocate macromolecules across the cell envelope. VirB8 is an essential inner membrane component of type IV secretion systems, and it is believed to form a homodimer. In the absence of VirB8, the levels of several other VirB proteins were reduced (VirB1, VirB3, VirB4, VirB5, VirB6, VirB7, and VirB11) in Agrobacterium tumefaciens, underlining its importance for complex stability. To assess the importance of dimerization, we changed residues at the predicted dimer interface (V97, A100, Q93, and E94) in order to strengthen or to abolish dimerization. We verified the impact of the changes on dimerization in vitro with purified V97 variants, followed by analysis of the in vivo consequences in a complemented virB8 deletion strain. Dimer formation was observed in vivo after the introduction of a cysteine residue at the predicted interface (V97C), and this variant supported DNA transfer, but the formation of elongated T pili was not detected by the standard pilus isolation technique. Variants with changes at V97 and A100 that weaken dimerization did not support type IV secretion system functions. The T-pilus component VirB2 cofractionated with high-molecular-mass core protein complexes extracted from the membranes, and the presence of VirB8 as well as its dimer interface were important for this association. We conclude that the VirB8 dimer interface is required for T4SS function, for the stabilization of many VirB proteins, and for targeting of VirB2 to the T-pilus assembly site.
Collapse
|
40
|
Stentz R, Wegmann U, Parker M, Bongaerts R, Lesaint L, Gasson M, Shearman C. CsiA is a bacterial cell wall synthesis inhibitor contributing to DNA translocation through the cell envelope. Mol Microbiol 2010; 72:779-94. [PMID: 19400771 DOI: 10.1111/j.1365-2958.2009.06683.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Conjugation is a widely spread mechanism allowing bacteria to adapt and evolve by acquiring foreign DNA. The chromosome of Lactococcus lactis MG 1363 contains a 60 kb conjugative element called the sex factor capable of high-frequency DNA transfer. Yet, little is known about the proteins involved in this process. Comparative genomics revealed a close relationship between the sex factor and elements found in Gram-positive pathogenic cocci. Among the conserved gene products, CsiA is a large protein that contains a highly conserved domain (HCD) and a C-terminal cysteine, histidine-dependent amidohydrolases/peptidases (CHAP) domain in its C-terminal moiety. Here, we show that CsiA is required for DNA transfer. Surprisingly, increased expression of CsiA affects cell viability and the cells become susceptible to lysis. Point mutagenesis of HCD reveals that this domain is responsible for the observed phenotypes. Growth studies and electron microscope observations suggest that CsiA is acting as a cell wall synthesis inhibitor. In vitro experiments reveal the capacity of CsiA to bind d-Ala-d-Ala analogues and to prevent the action of penicillin binding proteins. Our results strongly suggest that CsiA sequesters the peptidoglycan precursor and prevents the final stage of cell wall biosynthesis to enable the localized assembly of the DNA transfer machinery through the cell wall.
Collapse
Affiliation(s)
- Régis Stentz
- Commensals and Microflora (G2), Institute of Food Research, Norwich, UK.
| | | | | | | | | | | | | |
Collapse
|
41
|
Waksman G, Fronzes R. Molecular architecture of bacterial type IV secretion systems. Trends Biochem Sci 2010; 35:691-8. [PMID: 20621482 DOI: 10.1016/j.tibs.2010.06.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 06/10/2010] [Accepted: 06/10/2010] [Indexed: 11/18/2022]
Abstract
In Gram-negative bacteria, type IV secretion (T4S) systems form ATP-powered complexes that span the entire cellular envelope and secrete a wide variety of substrates from single proteins to protein-protein and protein-DNA complexes. Recent structural data, namely the electron microscopy structure of the T4S core complex and the atomic-resolution structure of its outer-membrane pore, have profoundly altered our understanding of T4S architecture and mechanisms.
Collapse
Affiliation(s)
- Gabriel Waksman
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK.
| | | |
Collapse
|
42
|
Sivanesan D, Hancock MA, Villamil Giraldo AM, Baron C. Quantitative analysis of VirB8-VirB9-VirB10 interactions provides a dynamic model of type IV secretion system core complex assembly. Biochemistry 2010; 49:4483-93. [PMID: 20426418 DOI: 10.1021/bi902201y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Type IV secretion systems are multiprotein complexes that translocate macromolecules across the bacterial cell envelope. The type IV secretion system in Brucella species encodes 12 VirB proteins that permit this pathogen to translocate effectors into mammalian cells, where they contribute to its survival inside the host. The "core" complex proteins are conserved in all type IV secretion systems, and they are believed to form the channel for substrate translocation. We have investigated the in vitro interactions between the soluble periplasmic domains of three of these VirB components, VirB8, VirB9, and VirB10, using enzyme-linked immunosorbent assays, circular dichroism, and surface plasmon resonance techniques. The in vitro experiments helped in the quantification of the self-association and binary interactions of VirB8, VirB9, and VirB10. Individually, distinct binding properties were revealed that may explain their biological functions, and collectively, we provide direct evidence of the in vitro formation of the VirB8-VirB9-VirB10 ternary complex. To assess the dynamics of these interactions in a simplified in vivo model of complex assembly, we applied the bacterial two-hybrid system in studying interactions between the full-length proteins. This approach demonstrated that VirB9 stimulates the self-association of VirB8 but inhibits VirB10-VirB10 and VirB8-VirB10 interaction. Analysis of a dimerization site variant of VirB8 (VirB8(M102R)) suggested that the interactions with VirB9 and VirB10 are independent of its self-association, which stabilizes VirB8 in this model assay. We propose a dynamic model for secretion system assembly in which VirB8 plays a role as an assembly factor that is not closely associated with the functional core complex comprising VirB9 and VirB10.
Collapse
Affiliation(s)
- Durga Sivanesan
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | | | | | | |
Collapse
|
43
|
Tsai YL, Chiang YR, Narberhaus F, Baron C, Lai EM. The small heat-shock protein HspL is a VirB8 chaperone promoting type IV secretion-mediated DNA transfer. J Biol Chem 2010; 285:19757-66. [PMID: 20427270 DOI: 10.1074/jbc.m110.110296] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Agrobacterium tumefaciens is a plant pathogen that utilizes a type IV secretion system (T4SS) to transfer DNA and effector proteins into host cells. In this study we discovered that an alpha-crystallin type small heat-shock protein (alpha-Hsp), HspL, is a molecular chaperone for VirB8, a T4SS assembly factor. HspL is a typical alpha-Hsp capable of protecting the heat-labile model substrate citrate synthase from thermal aggregation. It forms oligomers in a concentration-dependent manner in vitro. Biochemical fractionation revealed that HspL is mainly localized in the inner membrane and formed large complexes with certain VirB protein subassemblies. Protein-protein interaction studies indicated that HspL interacts with VirB8, a bitopic integral inner membrane protein that is essential for T4SS assembly. Most importantly, HspL is able to prevent the aggregation of VirB8 fused with glutathione S-transferase in vitro, suggesting that it plays a role as VirB8 chaperone. The chaperone activity of two HspL variants with amino acid substitutions (F98A and G118A) for both citrate synthase and glutathione S-transferase-VirB8 was reduced and correlated with HspL functions in T4SS-mediated DNA transfer and virulence. This study directly links in vitro and in vivo functions of an alpha-Hsp and reveals a novel alpha-Hsp function in T4SS stability and bacterial virulence.
Collapse
Affiliation(s)
- Yun-Long Tsai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | | | |
Collapse
|
44
|
Rangrez AY, Abajy MY, Keller W, Shouche Y, Grohmann E. Biochemical characterization of three putative ATPases from a new type IV secretion system of Aeromonas veronii plasmid pAC3249A. BMC BIOCHEMISTRY 2010; 11:10. [PMID: 20144229 PMCID: PMC2831815 DOI: 10.1186/1471-2091-11-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 02/09/2010] [Indexed: 11/25/2022]
Abstract
Background Type four secretion systems (TFSS) are bacterial macromolecular transport systems responsible for transfer of various substrates such as proteins, DNA or protein-DNA complexes. TFSSs encode two or three ATPases generating energy for the secretion process. These enzymes exhibit highest sequence conservation among type four secretion components. Results Here, we report the biochemical characterization of three ATPases namely TraE, TraJ and TraK (VirB4, VirB11 and VirD4 homologs of the Agrobacterium tumefaciens transfer system, respectively) from the transfer system of Aeromonas veronii plasmid pAC3249A. ATPases were expressed as His-tag fusion proteins in E. coli and purified by affinity chromatography. ATP binding and ATP hydrolysis experiments were performed with the purified ATPases. TraE and TraK showed strong binding to TNP-ATP and TNP-CTP (fluorescent analogs of ATP and CTP respectively) whereas TraJ showed weak binding. The optimum temperature range for the three ATPases was between 42°C and 50°C. Highest ATP hydrolysis activity for all the ATPases was observed in the presence of Mg2+ and Mn2+. However, TraJ and TraK also showed activity in the presence of Co2+. TraJ exhibited the highest specific activity of all the three ATPases with vmax 118 ± 5.68 nmol/min/mg protein and KM 0.58 ± 0.10 mM. Conclusions This is the first biochemical characterization of conjugative transport ATPases encoded by a conjugative plasmid from Aeromonas. Our study demonstrated that the three ATPases of a newly reported TFSS of A. veronii plasmid pAc3249A are functional in both ATP hydrolysis and ATP binding.
Collapse
Affiliation(s)
- Ashraf Y Rangrez
- Molecular Biology Unit, National Centre for Cell Science, Pune 411007, India.
| | | | | | | | | |
Collapse
|
45
|
Agrobacterium type IV secretion system and its substrates form helical arrays around the circumference of virulence-induced cells. Proc Natl Acad Sci U S A 2010; 107:3758-63. [PMID: 20133577 DOI: 10.1073/pnas.0914940107] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The genetic transformation of plant cells by Agrobacterium tumefaciens results from the transfer of DNA and proteins via a specific virulence (vir) -induced type IV secretion system (T4SS). To better understand T4SS function, we analyzed the localization of its structural components and substrates by deconvolution fluorescence microscopy. GFP fusions to T4SS proteins with cytoplasmic tails, VirB8 and VirD4, or cytoplasmic T4SS substrate proteins, VirD2, VirE2, and VirF, localize in a helical pattern of fluorescent foci around the perimeter of the bacterial cell. All fusion proteins were expressed at native levels of vir induction. Importantly, most fusion proteins are functional and do not exhibit dominant-negative effects on DNA transfer to plant cells. Further, GFP-VirB8 complements a virB8 deletion strain. We also detect native VirB8 localization as a helical array of foci by immunofluorescence microscopy. T4SS foci likely use an existing helical scaffold during their assembly. Indeed, the bacterial cytoskeletal component MinD colocalizes with GFP-VirB8. Helical arrays of foci are found at all times investigated between 12 and 48 h post vir induction at 19 degrees C. These data lead to a model with multiple T4SSs around the bacterial cell that likely facilitate host cell attachment and DNA transfer. In support, we find multiple T pili around vir-induced bacterial cells.
Collapse
|
46
|
Two-step and one-step secretion mechanisms in Gram-negative bacteria: contrasting the type IV secretion system and the chaperone-usher pathway of pilus biogenesis. Biochem J 2010; 425:475-88. [PMID: 20070257 DOI: 10.1042/bj20091518] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Gram-negative bacteria have evolved diverse secretion systems/machineries to translocate substrates across the cell envelope. These various machineries fulfil a wide variety of functions but are also essential for pathogenic bacteria to infect human or plant cells. Secretion systems, of which there are seven, utilize one of two secretion mechanisms: (i) the one-step mechanism, whereby substrates are translocated directly from the bacterial cytoplasm to the extracellular medium or into the eukaryotic target cell; (ii) the two-step mechanism, whereby substrates are first translocated across the bacterial inner membrane; once in the periplasm, substrates are targeted to one of the secretion systems that mediate transport across the outer membrane and released outside the bacterial cell. The present review provides an example for each of these two classes of secretion systems and contrasts the various solutions evolved to secrete substrates.
Collapse
|
47
|
Alvarez-Martinez CE, Christie PJ. Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 2009; 73:775-808. [PMID: 19946141 PMCID: PMC2786583 DOI: 10.1128/mmbr.00023-09] [Citation(s) in RCA: 532] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Type IV secretion systems (T4SS) translocate DNA and protein substrates across prokaryotic cell envelopes generally by a mechanism requiring direct contact with a target cell. Three types of T4SS have been described: (i) conjugation systems, operationally defined as machines that translocate DNA substrates intercellularly by a contact-dependent process; (ii) effector translocator systems, functioning to deliver proteins or other macromolecules to eukaryotic target cells; and (iii) DNA release/uptake systems, which translocate DNA to or from the extracellular milieu. Studies of a few paradigmatic systems, notably the conjugation systems of plasmids F, R388, RP4, and pKM101 and the Agrobacterium tumefaciens VirB/VirD4 system, have supplied important insights into the structure, function, and mechanism of action of type IV secretion machines. Information on these systems is updated, with emphasis on recent exciting structural advances. An underappreciated feature of T4SS, most notably of the conjugation subfamily, is that they are widely distributed among many species of gram-negative and -positive bacteria, wall-less bacteria, and the Archaea. Conjugation-mediated lateral gene transfer has shaped the genomes of most if not all prokaryotes over evolutionary time and also contributed in the short term to the dissemination of antibiotic resistance and other virulence traits among medically important pathogens. How have these machines adapted to function across envelopes of distantly related microorganisms? A survey of T4SS functioning in phylogenetically diverse species highlights the biological complexity of these translocation systems and identifies common mechanistic themes as well as novel adaptations for specialized purposes relating to the modulation of the donor-target cell interaction.
Collapse
Affiliation(s)
- Cristina E. Alvarez-Martinez
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin, Houston, Texas 77030
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin, Houston, Texas 77030
| |
Collapse
|
48
|
Fronzes R, Christie PJ, Waksman G. The structural biology of type IV secretion systems. Nat Rev Microbiol 2009; 7:703-14. [PMID: 19756009 DOI: 10.1038/nrmicro2218] [Citation(s) in RCA: 285] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Type IV secretion systems (T4SSs) are versatile secretion systems that are found in both Gram-negative and Gram-positive bacteria and secrete a wide range of substrates, from single proteins to protein-protein and protein-DNA complexes. They usually consist of 12 components that are organized into ATP-powered, double-membrane-spanning complexes. The structures of single soluble components or domains have been solved, but an understanding of how these structures come together has only recently begun to emerge. This Review focuses on the structural advances that have been made over the past 10 years and how the corresponding structural insights have helped to elucidate many of the details of the mechanism of type IV secretion.
Collapse
Affiliation(s)
- Rémi Fronzes
- Institute of Structural and Molecular Biology, Malet Street, London WC1E 7HX, UK
| | | | | |
Collapse
|
49
|
Integrative and sequence characteristics of a novel genetic element, ICE6013, in Staphylococcus aureus. J Bacteriol 2009; 191:5964-75. [PMID: 19648240 DOI: 10.1128/jb.00352-09] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A survey of chromosomal variation in the ST239 clonal group of methicillin-resistant Staphylococcus aureus (MRSA) revealed a novel genetic element, ICE6013. The element is 13,354 bp in length, excluding a 6,551-bp Tn552 insertion. ICE6013 is flanked by 3-bp direct repeats and is demarcated by 8-bp imperfect inverted repeats. The element was present in 6 of 15 genome-sequenced S. aureus strains, and it was detected using genetic markers in 19 of 44 diverse MRSA and methicillin-susceptible strains and in all 111 ST239 strains tested. Low integration site specificity was discerned. Multiple chromosomal copies and the presence of extrachromosomal circular forms of ICE6013 were detected in various strains. The circular forms included 3-bp coupling sequences, located between the 8-bp ends of the element, that corresponded to the 3-bp direct repeats flanking the chromosomal forms. ICE6013 is predicted to encode 15 open reading frames, including an IS30-like DDE transposase in place of a Tyr/Ser recombinase and homologs of gram-positive bacterial conjugation components. Further sequence analyses indicated that ICE6013 is more closely related to ICEBs1 from Bacillus subtilis than to the only other potential integrative conjugative element known from S. aureus, Tn5801. Evidence of recombination between ICE6013 elements is also presented. In summary, ICE6013 is the first member of a new family of active, integrative genetic elements that are widely dispersed within S. aureus strains.
Collapse
|
50
|
Tsai YL, Wang MH, Gao C, Klüsener S, Baron C, Narberhaus F, Lai EM. Small heat-shock protein HspL is induced by VirB protein(s) and promotes VirB/D4-mediated DNA transfer in Agrobacterium tumefaciens. MICROBIOLOGY-SGM 2009; 155:3270-3280. [PMID: 19556291 PMCID: PMC2885654 DOI: 10.1099/mic.0.030676-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Agrobacterium tumefaciens is a Gram-negative plant-pathogenic bacterium that causes crown gall disease by transferring and integrating its transferred DNA (T-DNA) into the host genome. We characterized the chromosomally encoded alpha-crystallin-type small heat-shock protein (alpha-Hsp) HspL, which was induced by the virulence (vir) gene inducer acetosyringone (AS). The transcription of hspL but not three other alpha-Hsp genes (hspC, hspAT1, hspAT2) was upregulated by AS. Further expression analysis in various vir mutants suggested that AS-induced hspL transcription is not directly activated by the VirG response regulator but rather depends on the expression of VirG-activated virB genes encoding components of the type IV secretion system (T4SS). Among the 11 virB genes encoded by the virB operon, HspL protein levels were reduced in strains with deletions of virB6, virB8 or virB11. VirB protein accumulation but not virB transcription levels were reduced in an hspL deletion mutant early after AS induction, implying that HspL may affect the stability of individual VirB proteins or of the T4S complex directly or indirectly. Tumorigenesis efficiency and the VirB/D4-mediated conjugal transfer of an IncQ plasmid RSF1010 derivative between A. tumefaciens strains were reduced in the absence of HspL. In conclusion, increased HspL abundance is triggered in response to certain VirB protein(s) and plays a role in optimal VirB protein accumulation, VirB/D4-mediated DNA transfer and tumorigenesis.
Collapse
Affiliation(s)
- Yun-Long Tsai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Ming-Hsuan Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chan Gao
- Biology Department, McMaster University, Hamilton, ON, Canada
| | - Sonja Klüsener
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, Bochum, Germany
| | - Christian Baron
- Département de Biochimie, Université de Montréal, Montréal, QC, Canada.,Biology Department, McMaster University, Hamilton, ON, Canada
| | - Franz Narberhaus
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, Bochum, Germany
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|