1
|
Zhao C, Jia B, Jiang Y, Shike H, Annageldiyev C, Cioccio J, Minagawa K, Mineishi S, Ehmann WC, Schell TD, Cheng H, Zheng H. Cytotoxic lymphocytes induced by engineered human dendritic cells mediate potent anti-leukemia activity. Cancer Immunol Immunother 2025; 74:117. [PMID: 39998689 PMCID: PMC11861774 DOI: 10.1007/s00262-025-03971-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
Effective treatment of acute myeloid leukemia (AML) remains an urgent unmet need. Adoptive transfer of cytotoxic T cells (CTLs) against leukemia-associated antigen (LAA) has strong potential to improve AML treatment. However, the clinical translation of this therapeutic modality is hindered by the difficulty of obtaining large quantities of LAA-specific CTLs. Stimulating naïve T cells using monocyte-derived dendritic cells (MoDCs) loaded with LAA is commonly used for the generation of CTLs. This approach has drawbacks as MoDCs loaded with desired antigen need to be developed repeatedly with multiple steps and have limited growth potential. We have established immortalized human dendritic cells (DC) lines (termed ihv-DCs). Here, we report the successful generation of CTLs by culturing AML patient-derived T cells with our off-the-shelf ihv-DCs that carry HLA-A2-restricted human telomerase reverse transcriptase (hTERT), a known LAA. These CTLs exert a potent cytotoxic activity against leukemia cell lines and primary AML blasts in vitro. Importantly, using a highly clinically relevant PDX model where CTLs (derived from clinical donors) were adoptively transferred into NSG mice bearing patient-derived AML cells (that were partial or full HLA match with the donors), we showed that the CTLs effectively reduced leukemia growth in vivo. Our results are highly translational and provide proof of concept using the novel DC methodology to improve the strategy of adoptive T cell transfer for AML treatment.
Collapse
Affiliation(s)
- Chenchen Zhao
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Bei Jia
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Yixing Jiang
- Department of Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland, Baltimore, MD, 21201, USA
| | - Hiroko Shike
- Department of Pathology, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Charyguly Annageldiyev
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Joseph Cioccio
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Kentaro Minagawa
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Shin Mineishi
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - WChristopher Ehmann
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Todd D Schell
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, 17033, USA
- Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Hua Cheng
- ImmuCision Biotherapeutics, LLC, 801W Baltimore Street, Baltimore, MD, 21201, USA
| | - Hong Zheng
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
2
|
Chen Y, Zheng L, Hua W, Wang J, Chen L, Huang A, Zhang W. Fusion of NY-ESO-1 epitope with heat shock protein 70 enhances its induced immune responses and antitumor activity against glioma in vitro. Transl Cancer Res 2024; 13:191-201. [PMID: 38410235 PMCID: PMC10894325 DOI: 10.21037/tcr-23-1476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/29/2023] [Indexed: 02/28/2024]
Abstract
Background Glioma is the most common tumor originating in the brain and is difficult to cure. New York esophageal squamous cell carcinoma 1 (NY-ESO-1) is a promising cancer testis antigen (CTA) for tumor immunotherapy, and heat shock proteins (HSPs) can promote the antigen presentation of chaperoned peptides. This study investigates the therapeutic potential of HSP70 and NY-ESO-1 epitope fusion protein for glioma. Methods Recombinant HSP70 protein was purified and fused to NY-ESO-1 epitope to generate HSP70/NY-ESO-1 p86-94. NY-ESO-1 expression was induced in U251 glioma cells via 5-Aza-2'-deoxycytidine (5-Aza-CdR) treatment. Dendritic cells (DCs) loaded with HSP70/NY-ESO-1 p86-94 or NY-ESO-1 protein stimulated NY-ESO-1-specific cytotoxic T lymphocytes (CTLs). The killing effect of NY-ESO-1 specific CTLs on U251 cells was detected by lactate dehydrogenase (LDH). Results 5-Aza-CdR successfully induced NY-ESO-1 expression in U251 cells. NY-ESO-1-stimulated CTLs lysed more significantly with NY-ESO-1-positive U251 cells than with NY-ESO-1-negative cells. The immune response stimulated by a DC-based vaccine of HSP70/NY-ESO-1 p86-94 fusion protein was significantly enhanced compared with that induced by NY-ESO-1 alone. Conclusions These findings indicate that the HSP70/NY-ESO-1 p86-94 may significantly enhance CTLs-mediated cytotoxicity and targeting ability against NY-ESO-1-expressing tumors in vitro. 5-Aza-CdR treatment with HSP70 binding to tumor antigen is a new strategy for immunotherapy of the tumors with poor CTA expression.
Collapse
Affiliation(s)
- Yuqing Chen
- Department of Pathology and Institute of Oncology, School of Basic Medical Science, Fujian Medical University, Fuzhou, China
- Diagnostical Pathology Center, Fujian Medical University, Fuzhou, China
| | - Lin Zheng
- Department of Pathology and Institute of Oncology, School of Basic Medical Science, Fujian Medical University, Fuzhou, China
- Diagnostical Pathology Center, Fujian Medical University, Fuzhou, China
| | - Wenxi Hua
- Department of Pathology and Institute of Oncology, School of Basic Medical Science, Fujian Medical University, Fuzhou, China
- Diagnostical Pathology Center, Fujian Medical University, Fuzhou, China
| | - Jie Wang
- Department of Pathology and Institute of Oncology, School of Basic Medical Science, Fujian Medical University, Fuzhou, China
- Diagnostical Pathology Center, Fujian Medical University, Fuzhou, China
| | - Lihong Chen
- Department of Pathology and Institute of Oncology, School of Basic Medical Science, Fujian Medical University, Fuzhou, China
- Diagnostical Pathology Center, Fujian Medical University, Fuzhou, China
| | - Aimin Huang
- Department of Pathology and Institute of Oncology, School of Basic Medical Science, Fujian Medical University, Fuzhou, China
- Diagnostical Pathology Center, Fujian Medical University, Fuzhou, China
| | - Wenmin Zhang
- Department of Pathology and Institute of Oncology, School of Basic Medical Science, Fujian Medical University, Fuzhou, China
- Diagnostical Pathology Center, Fujian Medical University, Fuzhou, China
| |
Collapse
|
3
|
Zhao Z, Wang D, Li Y. Versatile biomimetic nanomedicine for treating cancer and inflammation disease. MEDICAL REVIEW (2021) 2023; 3:123-151. [PMID: 37724085 PMCID: PMC10471090 DOI: 10.1515/mr-2022-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/11/2023] [Indexed: 09/20/2023]
Abstract
Nanosized drug delivery systems (NDDSs) have emerged as a powerful tool to optimize drug delivery in complex diseases, including cancer and inflammation. However, the therapeutic effect of NDDSs is still far from satisfactory due to their poor circulation time, low delivery efficiency, and innate toxicity. Fortunately, biomimetic approaches offer new opportunities to develop nanomedicine, which is derived from a variety of native biomolecules including cells, exosomes, bacteria, and so on. Since inheriting the superior biocompatibility and versatile functions of natural materials, biomimetic nanomedicine can mimic biological processes, prolong blood circulation, and lower immunogenicity, serving as a desired platform for precise drug delivery for treating cancer and inflammatory disease. In this review, we outline recent advances in biomimetic NDDSs, which consist of two concepts: biomimetic exterior camouflage and bioidentical molecule construction. We summarize engineering strategies that further functionalized current biomimetic NDDSs. A series of functional biomimetic NDDSs created by our group are introduced. We conclude with an outlook on remaining challenges and possible directions for biomimetic NDDSs. We hope that better technologies can be inspired and invented to advance drug delivery systems for cancer and inflammation therapy.
Collapse
Affiliation(s)
- Zhiwen Zhao
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dangge Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
| |
Collapse
|
4
|
Zhu Y, Meng M, Hou Z, Wang W, Li L, Guan A, Wang R, Tang W, Yang F, Zhao Y, Gao H, Xie H, Li R, Tan J. Impact of cytotoxic T lymphocytes immunotherapy on prognosis of colorectal cancer patients. Front Oncol 2023; 13:1122669. [PMID: 36726382 PMCID: PMC9885253 DOI: 10.3389/fonc.2023.1122669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
Background Expansion and activation of cytotoxic T lymphocytes (CTLs) in vitro represents a promising immunotherapeutic strategy, and CTLs can be primed by dendritic cells (DCs) loaded with tumor-associated antigens (TAAs) transformed by recombinant adeno-associated virus (rAAV). This study aimed to explore the impact of rAAV-DC-induced CTLs on prognosis of CRC and to explore factors associated with prognosis. Methods This prospective observational study included patients operated for CRC at Yan'an Hospital Affiliated to Kunming Medical University between 2016 and 2019. The primary outcome was progression-free survival (PFS), secondary outcomes were overall survival (OS) and adverse events. Totally 49 cases were included, with 29 and 20 administered rAAV-DC-induced CTL and chemotherapy, respectively. Results After 37-69 months of follow-up (median, 54 months), OS (P=0.0596) and PFS (P=0.0788) were comparable between two groups. Mild fever occurred in 2 (6.9%) patients administered CTL infusion. All the chemotherapy group experienced mild-to-moderate adverse effects, including vasculitis (n=20, 100%), vomiting (n=5, 25%), nausea (n=17, 85%) and fatigue (n=17, 85%). Conclusions Lymphatic metastasis (hazard ratio [HR]=4.498, 95% confidence interval [CI]: 1.290-15.676; P=0.018) and lower HLA-I expression (HR=0.294, 95%CI: 0.089-0.965; P=0.044) were associated with poor OS in the CTL group. CTLs induced by rAAV-DCs might achieve comparable effectiveness in CRC patients compare to chemotherapy, cases with high tumor-associated HLA-I expression and no lymphatic metastasis were more likely to benefit from CTLs.
Collapse
Affiliation(s)
- Yankun Zhu
- Department of General Surgery, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Mingyao Meng
- Key Laboratory of Tumor Immunological Prevention and Treatment in Yunnan Province, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Zongliu Hou
- Key Laboratory of Tumor Immunological Prevention and Treatment in Yunnan Province, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Wenju Wang
- Key Laboratory of Tumor Immunological Prevention and Treatment in Yunnan Province, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Lin Li
- Key Laboratory of Tumor Immunological Prevention and Treatment in Yunnan Province, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Aoran Guan
- Department of General Surgery, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Ruotian Wang
- Department of General Surgery, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Weiwei Tang
- Key Laboratory of Tumor Immunological Prevention and Treatment in Yunnan Province, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Fang Yang
- Department of Pathology, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Yiyi Zhao
- Key Laboratory of Tumor Immunological Prevention and Treatment in Yunnan Province, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Hui Gao
- Key Laboratory of Tumor Immunological Prevention and Treatment in Yunnan Province, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Hui Xie
- Department of General Surgery, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Ruhong Li
- Department of General Surgery, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, China,*Correspondence: Ruhong Li, ; Jing Tan,
| | - Jing Tan
- Department of General Surgery, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, China,*Correspondence: Ruhong Li, ; Jing Tan,
| |
Collapse
|
5
|
Yang P, Qiao Y, Meng M, Zhou Q. Cancer/Testis Antigens as Biomarker and Target for the Diagnosis, Prognosis, and Therapy of Lung Cancer. Front Oncol 2022; 12:864159. [PMID: 35574342 PMCID: PMC9092596 DOI: 10.3389/fonc.2022.864159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/17/2022] [Indexed: 11/15/2022] Open
Abstract
Lung cancer is the leading type of malignant tumour among cancer-caused death worldwide, and the 5-year survival rate of lung cancer patients is only 18%. Various oncogenes are abnormally overexpressed in lung cancer, including cancer/testis antigens (CTAs), which are restrictively expressed in the male testis but are hardly expressed in other normal tissues, if at all. CTAs are aberrantly overexpressed in various types of cancer, with more than 60 CTAs abnormally overexpressed in lung cancer. Overexpression of oncogenic CTAs drives the initiation, metastasis and progression of lung cancer, and is closely associated with poor prognosis in cancer patients. Several CTAs, such as XAGE, SPAG9 and AKAP4, have been considered as biomarkers for the diagnosis and prognostic prediction of lung cancer. More interestingly, due to the high immunogenicity and specificity of CTAs in cancer, several CTAs, including CT45, BCAP31 and ACTL8, have been targeted for developing novel therapeutics against cancer. CTA-based vaccines, chimeric antigen receptor-modified T cells (CAR-T) and small molecules have been used in lung cancer treatment in pre-clinical and early clinical trials, with encouraging results being obtained. However, there are still many hurdles to be overcome before these therapeutics can be routinely used in clinical lung cancer therapy. This review summarises the recent rapid progress in oncogenic CTAs, focusing on CTAs as biomarkers for lung cancer diagnosis and prognostic prediction, and as targets for novel anti-cancer drug discovery and lung cancer therapy. We also identify challenges and opportunities in CTA-based cancer diagnosis and treatment. Finally, we provide perspectives on the mechanisms of oncogenic CTAs in lung cancer development, and we also suggest CTAs as a new platform for lung cancer diagnosis, prognostic prediction, and novel anti-cancer drug discovery.
Collapse
Affiliation(s)
- Ping Yang
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, China
| | - Yingnan Qiao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, China
| | - Mei Meng
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, China
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,National Clinical Research Center for Hematologic Diseases, The Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
6
|
Engineering a Human Plasmacytoid Dendritic Cell-Based Vaccine to Prime and Expand Multispecific Viral and Tumor Antigen-Specific T-Cells. Vaccines (Basel) 2021; 9:vaccines9020141. [PMID: 33578850 PMCID: PMC7916617 DOI: 10.3390/vaccines9020141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 11/17/2022] Open
Abstract
Because dendritic cells are crucial to prime and expand antigen-specific CD8+ T-cells, several strategies are designed to use them in therapeutic vaccines against infectious diseases or cancer. In this context, off-the-shelf allogeneic dendritic cell-based platforms are more attractive than individualized autologous vaccines tailored to each patient. In the present study, a unique dendritic cell line (PDC*line) platform of plasmacytoid origin, already used to prime and expand antitumor immunity in melanoma patients, was improved thanks to retroviral engineering. We demonstrated that the clinical-grade PDC*line, transduced with genes encoding viral or tumoral whole proteins, efficiently processed and stably presented the transduced antigens in different human leukocyte antigen (HLA) class I contexts. Moreover, the use of polyepitope constructs allowed the presentation of immunogenic peptides and the expansion of specific cytotoxic effectors. We also demonstrated that the addition of the Lysosome-associated membrane protein-1 (LAMP-1) sequence greatly improved the presentation of some peptides. Lastly, thanks to transduction of new HLA molecules, the PDC platform can benefit many patients through the easy addition of matched HLA-I molecules. The demonstration of the effective retroviral transduction of PDC*line cells strengthens and broadens the scope of the PDC*line platform, which can be used in adoptive or active immunotherapy for the treatment of infectious diseases or cancer.
Collapse
|
7
|
Wang Y, Zhang P, Wei Y, Shen K, Xiao L, Miron RJ, Zhang Y. Cell-Membrane-Display Nanotechnology. Adv Healthc Mater 2021; 10:e2001014. [PMID: 33000917 DOI: 10.1002/adhm.202001014] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/13/2020] [Indexed: 12/19/2022]
Abstract
Advances in material science have set the stage for nanoparticle-based research with potent applications for the diagnosis, bioimaging, and precise treatment of diseases. Despite the wide range of biomaterials developed, the rational design of biomaterials with predictable bioactivity and safety remains a critical challenge. In recent years, the field of cell-membrane-based therapeutics has emerged as a promising platform for addressing unmet medical needs. The utilization of natural cell membranes endows biomaterials with a remarkable ability to serve as biointerfaces that interact with the host environment. To improve the function and efficacy of cell-membrane-based therapeutics, a series of novel strategies is developed as cell-membrane-display nanotechnology, which utilizes various methods to selectively display therapeutic molecules of cell membranes on nanoparticles. Although cell-membrane-display nanotechnology remains in the early phases, considerable work is currently being conducted in the field. This review discusses details of innovative strategies for displaying cell-membrane molecules, including the following: 1) displaying molecules of cell membranes on biomaterials, 2) pretreating cell membranes to induce increased expression of inherent molecules of cell membranes and enhance their function, and 3) inserting additional functional molecules on cell membranes. For each area, the theoretical basis, application scenarios, and potential development are highlighted.
Collapse
Affiliation(s)
- Yulan Wang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan 430079 China
- Medical Research Institute School of Medicine Wuhan University Wuhan 430071 China
| | - Peng Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan 430079 China
- Medical Research Institute School of Medicine Wuhan University Wuhan 430071 China
| | - Yan Wei
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan 430079 China
- Medical Research Institute School of Medicine Wuhan University Wuhan 430071 China
| | - Kailun Shen
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan 430079 China
- Medical Research Institute School of Medicine Wuhan University Wuhan 430071 China
| | - Leyi Xiao
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan 430079 China
- Medical Research Institute School of Medicine Wuhan University Wuhan 430071 China
| | - Richard J Miron
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan 430079 China
- Medical Research Institute School of Medicine Wuhan University Wuhan 430071 China
| | - Yufeng Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan 430079 China
- Medical Research Institute School of Medicine Wuhan University Wuhan 430071 China
| |
Collapse
|
8
|
Yan Y, Zeng S, Gong Z, Xu Z. Clinical implication of cellular vaccine in glioma: current advances and future prospects. J Exp Clin Cancer Res 2020; 39:257. [PMID: 33228738 PMCID: PMC7685666 DOI: 10.1186/s13046-020-01778-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/12/2020] [Indexed: 02/08/2023] Open
Abstract
Gliomas, especially glioblastomas, represent one of the most aggressive and difficult-to-treat human brain tumors. In the last few decades, clinical immunotherapy has been developed and has provided exceptional achievements in checkpoint inhibitors and vaccines for cancer treatment. Immunization with cellular vaccines has the advantage of containing specific antigens and acceptable safety to potentially improve cancer therapy. Based on T cells, dendritic cells (DC), tumor cells and natural killer cells, the safety and feasibility of cellular vaccines have been validated in clinical trials for glioma treatment. For TAA engineered T cells, therapy mainly uses chimeric antigen receptors (IL13Rα2, EGFRvIII and HER2) and DNA methylation-induced technology (CT antigen) to activate the immune response. Autologous dendritic cells/tumor antigen vaccine (ADCTA) pulsed with tumor lysate and peptides elicit antigen-specific and cytotoxic T cell responses in patients with malignant gliomas, while its pro-survival effect is biased. Vaccinations using autologous tumor cells modified with TAAs or fusion with fibroblast cells are characterized by both effective humoral and cell-mediated immunity. Even though few therapeutic effects have been observed, most of this therapy showed safety and feasibility, asking for larger cohort studies and better guidelines to optimize cellular vaccine efficiency in anti-glioma therapy.
Collapse
Affiliation(s)
- Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, 87 Xiangya Road, Hunan, 410008, Changsha, China.
| |
Collapse
|
9
|
Das B, Senapati S. Immunological and functional aspects of MAGEA3 cancer/testis antigen. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 125:121-147. [PMID: 33931137 DOI: 10.1016/bs.apcsb.2020.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Identification of ectopic gene activation in cancer cells serves as a basis for both gene signature-guided tumor targeting and unearthing of oncogenic mechanisms to expand the understanding of tumor biology/oncogenic process. Proteins expressed only in germ cells of testis and/or placenta (immunoprivileged organs) and in malignancies are called cancer testis antigens; they are antigenic because of the lack of antigen presentation by those specific cell types (germ cells), which limits the exposure of the proteins to the immune cells. Since the Cancer Testis Antigens (CTAs) are immunogenic and expressed in a wide variety of cancer types, CT antigens have become interesting target for immunotherapy against cancer. Among CT antigens MAGEA family is reported to have 12 members (MAGEA1 to MAGEA12). The current review highlights the studies on MAGEA3 which is a CT antigen and reported in almost all types of cancer. MAGEA3 is well tried for cancer immunotherapy. Recent advances on its functional and immunological aspect warranted much deliberation on effective therapeutic approach, thus making it a more interesting target for cancer therapy.
Collapse
Affiliation(s)
- Biswajit Das
- Tumor Microenvironment and Animal Models Lab, Department of Cancer Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India; Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shantibhusan Senapati
- Tumor Microenvironment and Animal Models Lab, Department of Cancer Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India.
| |
Collapse
|
10
|
Saito Y, Shultz LD, Ishikawa F. Understanding Normal and Malignant Human Hematopoiesis Using Next-Generation Humanized Mice. Trends Immunol 2020; 41:706-720. [PMID: 32631635 DOI: 10.1016/j.it.2020.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 12/11/2022]
Abstract
Rodent models for human diseases contribute significantly to understanding human physiology and pathophysiology. However, given the accelerating pace of drug development, there is a crucial need for in vivo preclinical models of human biology and pathology. The humanized mouse is one tool to bridge the gap between traditional animal models and the clinic. The development of immunodeficient mouse strains with high-level engraftment of normal and diseased human immune/hematopoietic cells has made in vivo functional characterization possible. As a patient-derived xenograft (PDX) model, humanized mice functionally correlate putative mechanisms with in vivo behavior and help to reveal pathogenic mechanisms. Combined with single-cell genomics, humanized mice can facilitate functional precision medicine such as risk stratification and individually optimized therapeutic approaches.
Collapse
Affiliation(s)
- Yoriko Saito
- RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, 230-0045, Japan
| | | | - Fumihiko Ishikawa
- RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, 230-0045, Japan.
| |
Collapse
|
11
|
Luo XL, Dalod M. The quest for faithful in vitro models of human dendritic cells types. Mol Immunol 2020; 123:40-59. [PMID: 32413788 DOI: 10.1016/j.molimm.2020.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/06/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022]
Abstract
Dendritic cells (DCs) are mononuclear phagocytes that are specialized in the induction and functional polarization of effector lymphocytes, thus orchestrating immune defenses against infections and cancer. The population of DC encompasses distinct cell types that vary in their efficacy for complementary functions and are thus likely involved in defending the body against different threats. Plasmacytoid DCs specialize in the production of high levels of the antiviral cytokines type I interferons. Type 1 conventional DCs (cDC1s) excel in the activation of cytotoxic CD8+ T cells (CTLs) which are critical for defense against cancer and infections by intracellular pathogens. Type 2 conventional DCs (cDC2s) prime helper CD4+ T cells for the production of type 2 cytokines underpinning immune defenses against worms or of IL-17 promoting control of infections by extracellular bacteria or fungi. Hence, clinically manipulating the development and functions of DC types could have a major impact for improving treatments against many diseases. However, the rarity and fragility of human DC types is impeding advancement towards this goal. To overcome this roadblock, major efforts are ongoing to generate in vitro large numbers of distinct human DC types. We review here the current state of this research field, emphasizing recent breakthrough and proposing future priorities. We also pinpoint the necessity to develop a consensus nomenclature and rigorous methodologies to ensure proper identification and characterization of human DC types. Finally, we elaborate on how faithful in vitro models of human DC types can accelerate our understanding of the biology of these cells and the engineering of next generation vaccines or immunotherapies against viral infections or cancer.
Collapse
Affiliation(s)
- Xin-Long Luo
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Marc Dalod
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France.
| |
Collapse
|
12
|
Baldin AV, Savvateeva LV, Bazhin AV, Zamyatnin AA. Dendritic Cells in Anticancer Vaccination: Rationale for Ex Vivo Loading or In Vivo Targeting. Cancers (Basel) 2020; 12:cancers12030590. [PMID: 32150821 PMCID: PMC7139354 DOI: 10.3390/cancers12030590] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/16/2022] Open
Abstract
Dendritic cells (DCs) have shown great potential as a component or target in the landscape of cancer immunotherapy. Different in vivo and ex vivo strategies of DC vaccine generation with different outcomes have been proposed. Numerous clinical trials have demonstrated their efficacy and safety in cancer patients. However, there is no consensus regarding which DC-based vaccine generation method is preferable. A problem of result comparison between trials in which different DC-loading or -targeting approaches have been applied remains. The employment of different DC generation and maturation methods, antigens and administration routes from trial to trial also limits the objective comparison of DC vaccines. In the present review, we discuss different methods of DC vaccine generation. We conclude that standardized trial designs, treatment settings and outcome assessment criteria will help to determine which DC vaccine generation approach should be applied in certain cancer cases. This will result in a reduction in alternatives in the selection of preferable DC-based vaccine tactics in patient. Moreover, it has become clear that the application of a DC vaccine alone is not sufficient and combination immunotherapy with recent advances, such as immune checkpoint inhibitors, should be employed to achieve a better clinical response and outcome.
Collapse
Affiliation(s)
- Alexey V. Baldin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.V.B.); (L.V.S.)
| | - Lyudmila V. Savvateeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.V.B.); (L.V.S.)
| | - Alexandr V. Bazhin
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University of Munich, 81377 Munich, Germany;
- German Cancer Consortium (DKTK), Partner Site Munich, 80336 Munich, Germany
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.V.B.); (L.V.S.)
- Belozersky Institute of Physico-Chemical Biology, Department of Cell Signaling, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence: ; Tel.: +74-956-229-843
| |
Collapse
|
13
|
Liu WL, Zou MZ, Liu T, Zeng JY, Li X, Yu WY, Li CX, Ye JJ, Song W, Feng J, Zhang XZ. Cytomembrane nanovaccines show therapeutic effects by mimicking tumor cells and antigen presenting cells. Nat Commun 2019; 10:3199. [PMID: 31324770 PMCID: PMC6642123 DOI: 10.1038/s41467-019-11157-1] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/26/2019] [Indexed: 01/08/2023] Open
Abstract
Most cancer vaccines are unsuccessful in eliciting clinically relevant effects. Without using exogenous antigens and adoptive cells, we show a concept of utilizing biologically reprogrammed cytomembranes of the fused cells (FCs) derived from dendritic cells (DCs) and cancer cells as tumor vaccines. The fusion of immunologically interrelated two types of cells results in strong expression of the whole tumor antigen complexes and the immunological co-stimulatory molecules on cytomembranes (FMs), allowing the nanoparticle-supported FM (NP@FM) to function like antigen presenting cells (APCs) for T cell immunoactivation. Moreover, tumor-antigen bearing NP@FM can be bio-recognized by DCs to induce DC-mediated T cell immunoactivation. The combination of these two immunoactivation pathways offers powerful antitumor immunoresponse. Through mimicking both APCs and cancer cells, this cytomembrane vaccine strategy can develop various vaccines toward multiple tumor types and provide chances for accommodating diverse functions originating from the supporters.
Collapse
Affiliation(s)
- Wen-Long Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P.R. China
| | - Mei-Zhen Zou
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P.R. China
| | - Tao Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P.R. China
| | - Jin-Yue Zeng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P.R. China
| | - Xue Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P.R. China
| | - Wu-Yang Yu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P.R. China
| | - Chu-Xin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P.R. China
| | - Jing-Jie Ye
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P.R. China
| | - Wen Song
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P.R. China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P.R. China.
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P.R. China. .,The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P.R. China.
| |
Collapse
|
14
|
Das B, Senapati S. Functional and mechanistic studies reveal MAGEA3 as a pro-survival factor in pancreatic cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:294. [PMID: 31287009 PMCID: PMC6615156 DOI: 10.1186/s13046-019-1272-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/10/2019] [Indexed: 12/17/2022]
Abstract
Background In the era of personalized therapy, functional annotation of less frequent genetic aberrations will be instrumental in adapting effective therapeutic in clinic. Overexpression of Melanoma associated antigen A3 (MAGEA3) is reported in certain pancreatic cancer (PCA) patients. The major objective of the current study was to investigate the functional role of MAGEA3 in pancreatic cancer cells (PCCs) growth and survival. Methods Using overexpression (tet-on regulated system and constitutive expression system) and knockdown (by siRNA and shRNA) approach, we dissected the mechanistic role of MAGEA3 in pancreatic cancer pathogenesis. We generated MAGEA3 expressing stable PCA cell lines and mouse primary pancreatic epithelial cells. MAGEA3 was also depleted in certain MAGEA3 positive PCCs by siRNA or shRNA. The stable cells were subjected to in vitro assays like proliferation and survival assays under growth factor deprivation or in the presence of cytotoxic drugs. The MAGEA3 overexpressing or depleted stable PCCs were evaluated in vivo using xenograft model to check the role of MAGEA3 in tumor progression. We also dissected the mechanism behind the MAGEA3 role in tumor progression using western blot analysis and CCL2 neutralization. Results MAGEA3 overexpression in PCA cells did not alter the cell proliferation but protected the cells during growth factor deprivation and also in the presence of cytotoxic drugs. However, depletion of MAGEA3 in MAGEA3 positive cells resulted in reduced cell proliferation and increased apoptosis upon growth factor deprivation and also in response to cytotoxic drugs. The in vivo xenograft study revealed that overexpression of MAGEA3 promoted tumor growth however depleting the same hindered the tumor progression. Mechanistically, our in vitro and in vivo study revealed that MAGEA3 has tumor-promoting role by reducing macro-autophagy and overexpressing pro-survival molecules like CCL2 and survivin. Conclusion Our data proves tumor-promoting role of MAGEA3 and provides the rationale to target MAGEA3 and/or its functional mediators like CCL2 for PCA, which may have a better impact in PCA therapy. Electronic supplementary material The online version of this article (10.1186/s13046-019-1272-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Biswajit Das
- Tumor Microenvironment and Animal Models Lab, Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India.,Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shantibhusan Senapati
- Tumor Microenvironment and Animal Models Lab, Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India.
| |
Collapse
|
15
|
He W, Wang S, Yan J, Qu Y, Jin L, Sui F, Li Y, You W, Yang G, Yang Q, Ji M, Shao Y, Ma PX, Lu W, Hou P. Self-Assembly of Therapeutic Peptide into Stimuli-Responsive Clustered Nanohybrids for Cancer-Targeted Therapy. ADVANCED FUNCTIONAL MATERIALS 2019; 29:1807736. [PMID: 32982625 PMCID: PMC7518326 DOI: 10.1002/adfm.201807736] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Indexed: 05/08/2023]
Abstract
Clinical translation of therapeutic peptides, particularly those targeting intracellular protein-protein interactions (PPIs), has been hampered by their inefficacious cellular internalization in diseased tissue. Therapeutic peptides engineered into nanostructures with stable spatial architectures and smart disease targeting ability may provide a viable strategy to overcome the pharmaceutical obstacles of peptides. This study describes a strategy to assemble therapeutic peptides into a stable peptide-Au nanohybrid, followed by further self-assembling into higher-order nanoclusters with responsiveness to tumor microenvironment. As a proof of concept, an anticancer peptide termed β-catenin/Bcl9 inhibitors is copolymerized with gold ion and assembled into a cluster of nanohybrids (pCluster). Through a battery of in vitro and in vivo tests, it is demonstrated that pClusters potently inhibit tumor growth and metastasis in several animal models through the impairment of the Wnt/β-catenin pathway, while maintaining a highly favorable biosafety profile. In addition, it is also found that pClusters synergize with the PD1/PD-L1 checkpoint blockade immunotherapy. This new strategy of peptide delivery will likely have a broad impact on the development of peptide-derived therapeutic nanomedicine and reinvigorate efforts to discover peptide drugs that target intracellular PPIs in a great variety of human diseases, including cancer.
Collapse
Affiliation(s)
- Wangxiao He
- Key Laboratory for Tumor Precision Medicine of Shaanxi, Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Simeng Wang
- Key Laboratory for Tumor Precision Medicine of Shaanxi, Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Jin Yan
- Department of Biologic and Materials Sciences, Department of Biomedical Engineering, Macromolecular, Science and Engineering Center, Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yiping Qu
- Key Laboratory for Tumor Precision Medicine of Shaanxi, Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Liang Jin
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Fang Sui
- Key Laboratory for Tumor Precision Medicine of Shaanxi, Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Yujun Li
- Key Laboratory for Tumor Precision Medicine of Shaanxi, Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Weiming You
- Department of Oncology, BenQ Medical Center, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Guang Yang
- Department of Oncology, BenQ Medical Center, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Qi Yang
- Key Laboratory for Tumor Precision Medicine of Shaanxi, Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Meiju Ji
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Yongping Shao
- Center for Translational Medicine, Key Laboratory of Biomedical Information, Engineering of Ministry of Education, School of Life Science and Technology, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Peter X Ma
- Department of Biologic and Materials Sciences, Department of Biomedical Engineering, Macromolecular, Science and Engineering Center, Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wuyuan Lu
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Peng Hou
- Key Laboratory for Tumor Precision Medicine of Shaanxi, Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| |
Collapse
|
16
|
Abstract
It has been nearly 40 years since human T-cell leukemia virus-1 (HTLV-1), the first oncogenic retrovirus in humans and the first demonstrable cause of cancer by an infectious agent, was discovered. Studies indicate that HTLV-1 is arguably one of the most carcinogenic agents to humans. In addition, HTLV-1 causes a diverse array of diseases, including myelopathy and immunodeficiency, which cause morbidity and mortality to many people in the world, including the indigenous population in Australia, a fact that was emphasized only recently. HTLV-1 can be transmitted by infected lymphocytes, from mother to child via breast feeding, by sex, by blood transfusion, and by organ transplant. Therefore, the prevention of HTLV-1 infection is possible but such action has been taken in only a limited part of the world. However, until now it has not been listed by the World Health Organization as a sexually transmitted organism nor, oddly, recognized as an oncogenic virus by the recent list of the National Cancer Institute/National Institutes of Health. Such underestimation of HTLV-1 by health agencies has led to a remarkable lack of funding supporting research and development of treatments and vaccines, causing HTLV-1 to remain a global threat. Nonetheless, there are emerging novel therapeutic and prevention strategies which will help people who have diseases caused by HTLV-1. In this review, we present a brief historic overview of the key events in HTLV-1 research, including its pivotal role in generating ideas of a retrovirus cause of AIDS and in several essential technologies applicable to the discovery of HIV and the unraveling of its genes and their function. This is followed by the status of HTLV-1 research and the preventive and therapeutic developments of today. We also discuss pending issues and remaining challenges to enable the eradication of HTLV-1 in the future.
Collapse
Affiliation(s)
- Yutaka Tagaya
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Masao Matsuoka
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Robert Gallo
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
17
|
Hu Y, Zhang F, Zhong W, Liu Y, He Q, Yang M, Chen H, Xu X, Bian K, Xu J, Li J, Shen Y, Zhang H. Transplantation of neural scaffolds consisting of dermal fibroblast-reprogrammed neurons and 3D silk fibrous materials promotes the repair of spinal cord injury. J Mater Chem B 2019; 7:7525-7539. [PMID: 31720683 DOI: 10.1039/c9tb01929d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neural scaffolds consisting of dermal fibroblast-reprogrammed neurons and 3D silk fibrous materials promote repair of spinal cord injury.
Collapse
|