1
|
The structure of N184K amyloidogenic variant of gelsolin highlights the role of the H-bond network for protein stability and aggregation properties. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2019; 49:11-19. [PMID: 31724080 DOI: 10.1007/s00249-019-01409-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/25/2019] [Accepted: 11/03/2019] [Indexed: 10/25/2022]
Abstract
Mutations in the gelsolin protein are responsible for a rare conformational disease known as AGel amyloidosis. Four of these mutations are hosted by the second domain of the protein (G2): D187N/Y, G167R and N184K. The impact of the latter has been so far evaluated only by studies on the isolated G2. Here we report the characterization of full-length gelsolin carrying the N184K mutation and compare the findings with those obtained on the wild type and the other variants. The crystallographic structure of the N184K variant in the Ca2+-free conformation shows remarkable similarities with the wild type protein. Only minimal local rearrangements can be observed and the mutant is as efficient as the wild type in severing filamentous actin. However, the thermal stability of the pathological variant is compromised in the Ca2+-free conditions. These data suggest that the N to K substitution causes a local disruption of the H-bond network in the core of the G2 domain. Such a subtle rearrangement of the connections does not lead to significant conformational changes but severely affects the stability of the protein.
Collapse
|
2
|
Bollati M, Scalone E, Bonì F, Mastrangelo E, Giorgino T, Milani M, de Rosa M. High-resolution crystal structure of gelsolin domain 2 in complex with the physiological calcium ion. Biochem Biophys Res Commun 2019; 518:94-99. [PMID: 31416615 DOI: 10.1016/j.bbrc.2019.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/05/2019] [Indexed: 12/30/2022]
Abstract
The second domain of gelsolin (G2) hosts mutations responsible for a hereditary form of amyloidosis. The active form of gelsolin is Ca2+-bound; it is also a dynamic protein, hence structural biologists often rely on the study of the isolated G2. However, the wild type G2 structure that have been used so far in comparative studies is bound to a crystallographic Cd2+, in lieu of the physiological calcium. Here, we report the wild type structure of G2 in complex with Ca2+ highlighting subtle ion-dependent differences. Previous findings on different G2 mutations are also briefly revised in light of these results.
Collapse
Affiliation(s)
- Michela Bollati
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via Celoria 26, 20133, Milano, Italy; Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Emanuele Scalone
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via Celoria 26, 20133, Milano, Italy; Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Francesco Bonì
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via Celoria 26, 20133, Milano, Italy; Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Eloise Mastrangelo
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via Celoria 26, 20133, Milano, Italy; Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Toni Giorgino
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via Celoria 26, 20133, Milano, Italy; Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Mario Milani
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via Celoria 26, 20133, Milano, Italy; Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Matteo de Rosa
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via Celoria 26, 20133, Milano, Italy; Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy.
| |
Collapse
|
3
|
Giorgino T, Mattioni D, Hassan A, Milani M, Mastrangelo E, Barbiroli A, Verhelle A, Gettemans J, Barzago MM, Diomede L, de Rosa M. Nanobody interaction unveils structure, dynamics and proteotoxicity of the Finnish-type amyloidogenic gelsolin variant. Biochim Biophys Acta Mol Basis Dis 2019; 1865:648-660. [DOI: 10.1016/j.bbadis.2019.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/11/2018] [Accepted: 01/04/2019] [Indexed: 02/06/2023]
|
4
|
Srivastava A, Singh J, Singh Yadav SP, Arya P, Kalim F, Rose P, Ashish, Kundu B. The Gelsolin Pathogenic D187N Mutant Exhibits Altered Conformational Stability and Forms Amyloidogenic Oligomers. Biochemistry 2018; 57:2359-2372. [DOI: 10.1021/acs.biochem.8b00039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ankit Srivastava
- Kusuma School of Biological Sciences, IIT Delhi, New Delhi 110016, India
| | - Jasdeep Singh
- Kusuma School of Biological Sciences, IIT Delhi, New Delhi 110016, India
| | | | - Prabha Arya
- Kusuma School of Biological Sciences, IIT Delhi, New Delhi 110016, India
| | - Fouzia Kalim
- Kusuma School of Biological Sciences, IIT Delhi, New Delhi 110016, India
| | - Pooja Rose
- Kusuma School of Biological Sciences, IIT Delhi, New Delhi 110016, India
| | - Ashish
- CSIR-Institute of Microbial Technology, Chandigarh 160036, India
| | - Bishwajit Kundu
- Kusuma School of Biological Sciences, IIT Delhi, New Delhi 110016, India
| |
Collapse
|
5
|
Molecular basis of a novel renal amyloidosis due to N184K gelsolin variant. Sci Rep 2016; 6:33463. [PMID: 27633054 PMCID: PMC5025852 DOI: 10.1038/srep33463] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/16/2016] [Indexed: 12/23/2022] Open
Abstract
Mutations in gelsolin are responsible for a systemic amyloidosis first described in 1969. Until recently, the disease was associated with two substitutions of the same residue, leading to the loss of the calcium binding site. Novel interest arose in 2014 when the N184K variant of the protein was identified as the etiological agent of a novel kidney-localized amyloidosis. Here we provide a first rationale for N184K pathogenicity. We show that the mutation induces a destabilization of gelsolin second domain, without compromising its calcium binding capacity. X-ray data combined with molecular dynamics simulations demonstrates that the primary source of the destabilization is a loss of connectivity in proximity of the metal. Such rearrangement of the H-bond network does not have a major impact on the overall fold of the domain, nevertheless, it increases the flexibility of a stretch of the protein, which is consequently processed by furin protease. Overall our data suggest that the N184K variant is subjected to the same aberrant proteolytic events responsible for the formation of amyloidogenic fragments in the previously characterized mutants. At the same time our data suggest that a broader number of mutations, unrelated to the metal binding site, can lead to a pathogenic phenotype.
Collapse
|
6
|
Rowczenio D, Tennent GA, Gilbertson J, Lachmann HJ, Hutt DF, Bybee A, Hawkins PN, Gillmore JD. Clinical characteristics and SAP scintigraphic findings in 10 patients with AGel amyloidosis. Amyloid 2014; 21:276-81. [PMID: 25342098 DOI: 10.3109/13506129.2014.973105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The clinical features of hereditary gelsolin (AGel) amyloidosis include corneal lattice dystrophy, distal sensorimotor, cranial neuropathy and cutis laxa. To date, four mutations of the gelsolin (GSN) gene encoding the following variants have been identified as the cause of this malady; p.D214N, p.D214Y, p.G194R and p.N211K (this nomenclature includes the 27-residue signal peptide). Interestingly, the latter two variants are associated exclusively with a renal amyloidosis phenotype. Here we report the clinical features in 10 patients with AGel amyloidosis associated with the p.D214N mutation, all of whom underwent whole body (123)I-SAP scintigraphy and were followed up in a single UK Centre for a prolonged period. Two patients, from the same kindred presented with proteinuria; eight subjects had a characteristic AGel amyloidosis phenotype including cranial neuropathy and/or corneal lattice dystrophy. (123)I-SAP scintigraphy revealed substantial renal amyloid deposits in all 10 patients, including those with preserved renal function, and usually without tracer uptake into other visceral organs. (123)I-SAP scintigraphy is a non-invasive technique that aids early diagnosis of patients with this rare disease, especially those who lack a family history and/or present with an unusual clinical phenotype.
Collapse
Affiliation(s)
- Dorota Rowczenio
- Department of Medicine, National Amyloidosis Centre, Centre for Amyloidosis and Acute Phase Proteins, Hampstead Campus, Royal Free Campus, UCL Medical School , London , UK
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Liu Z, Ono S. Regulatory role of the second gelsolin-like domain of Caenorhabditis elegans gelsolin-like protein 1 (GSNL-1) in its calcium-dependent conformation and actin-regulatory activities. Cytoskeleton (Hoboken) 2013; 70:228-39. [PMID: 23475707 DOI: 10.1002/cm.21103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/23/2013] [Accepted: 02/25/2013] [Indexed: 12/22/2022]
Abstract
Caenorhabditis elegans gelsolin-like protein-1 (GSNL-1) is an unconventional member of the gelsolin family of actin-regulatory proteins. Unlike typical gelsolin-related proteins with three or six G domains, GSNL-1 has four gelsolin-like (G) domains (G1-G4) and exhibits calcium-dependent actin filament severing and capping activities. The first G domain (G1) of GSNL-1 is necessary for its actin-regulatory activities. However, how other domains in GSNL-1 participate in regulation of its functions is not understood. Here, we report biochemical evidence that the second G domain (G2) of GSNL-1 has a regulatory role in its calcium-dependent conformation and actin-regulatory activities. Comparison of the sequences of gelsolin-related proteins from various species indicates that sequences of G2 are highly conserved. Among the conserved residues in G2, we focused on D162 of GSNL-1, since equivalent residues in gelsolin and severin are part of the calcium-binding sites and is a pathogenic mutation site in human gelsolin causing familial amyloidosis, Finish-type. The D162N mutation does not alter the inactive and fully calcium-activated states of GSNL-1 for actin filament severing (at 20 nM GSNL-1) and capping activities (at 50 nM GSNL-1). However, under these conditions, the mutant shows reduced calcium sensitivity for activation. By contrast, the D162N mutation strongly enhances susceptibility of GSNL-1 to chymotrypsin digestion only at high calcium concentrations but not at low calcium concentrations. The mutation also reduces affinity of GSNL-1 with actin monomers. These results suggest that G2 of GSNL-1 functions as a regulatory domain for its calcium-dependent actin-regulatory activities by mediating conformational changes of the GSNL-1 molecule.
Collapse
Affiliation(s)
- Zhongmei Liu
- Department of Pathology, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
8
|
Gelsolin Amyloidosis as a Cause of Early Aging and Progressive Bilateral Facial Paralysis. Plast Reconstr Surg 2011; 127:2342-2351. [PMID: 21617468 DOI: 10.1097/prs.0b013e318213a0a2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
9
|
Vincent AL, Patel DV, McGhee CNJ. Inherited corneal disease: the evolving molecular, genetic and imaging revolution. Clin Exp Ophthalmol 2005; 33:303-16. [PMID: 15932539 DOI: 10.1111/j.1442-9071.2005.01011.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Advances in molecular genetics and in vivo ocular imaging modalities have enhanced our understanding of the corneal dystrophies. To date at least 11 genes have been identified, in which mutations manifest in corneal disease. In addition there are at least eight other loci identified to which corneal dystrophies have been linked. The information gained from the knowledge of gene function, aberrant protein production, or altered enzyme activity in the cornea, has resulted in greater knowledge of the pathophysiological mechanisms in these disorders. In vivo confocal microscopy has recently enabled microstructural study of dystrophic corneas throughout the disease course, rather than being limited to histopathological analysis of tissue removed at corneal transplantation. This perspective article summarizes the current knowledge, with emphasis on the genes, mutant proteins and resultant mechanisms that lead to manifestations of disease, along with characteristic findings with in vivo confocal microscopy.
Collapse
Affiliation(s)
- Andrea L Vincent
- Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | | | | |
Collapse
|
10
|
Abstract
BACKGROUND Hereditary gelsolin amyloidosis (AGel amyloidosis) is an age-associated systemic disease with global distribution, caused by a G654A or G654T gelsolin gene mutation. Cutis laxa is a principal clinical manifestation of this disease. However, only few data on the dermatological involvement are available, and the pathogenesis of this amyloidosis-associated form of cutis laxa has remained unknown. OBJECTIVES To elucidate the pathomechanism of this less well-known genodermatosis. METHODS We performed systematic clinical, histological, immunohistochemical and ultrastructural skin biopsy studies in 12 patients with a G654A gelsolin gene mutation. For comparison, skin specimens from 10 control subjects were analysed. RESULTS All patients had clinically characteristic cutis laxa, and frequently other signs of symptomatic skin disease such as increased fragility and risk for intracutaneous bleeding. All patients showed cutaneous deposition of gelsolin amyloid (AGel), mainly attached to basement membranes or basal laminae of various cutaneous structures, dermal nerves and blood vessel walls, and elastic fibres, particularly in the lower reticular dermis. AGel often encircled the elastic fibres, and colocalized with amyloid P component (AP), an elastic fibre microfibrillar sheath-associated protein. Fragmentation and loss of elastic fibres, epidermal atrophy, and reduction of dermal appendages were also common. Antibodies to wild-type gelsolin bound to S-100-positive epidermal dendritic cells, a previously unrecognized immunoreaction. Patients had fewer gelsolin-positive dendritic cells than controls. CONCLUSIONS Widespread skin involvement with AGel deposition and elastic fibre involvement are essential pathological features in AGel amyloidosis, and contribute to the characteristic cutis laxa, dramatic in old age. Codistribution of AGel and AP, with demonstrated specific binding affinity for amyloid fibrils, suggests that elastic fibre-associated AP acts as a matrix for cutaneous amyloid deposition in AGel amyloidosis.
Collapse
Affiliation(s)
- S Kiuru-Enari
- Department of Neurology, Helsinki University Central Hospital, Haartmaninkatu 4, FIN-00290 Helsinki, Finland.
| | | | | |
Collapse
|
11
|
Abstract
Amyloid diseases result from protein misfolding and aggregation into fibrils. Some features of gelsolin amyloidogenic fragments comprised of residues 173-243 (G173-243) and residues 173-202 (G173-202) were investigated by the method of molecular dynamics (MD). The alpha-helical structure of G173-243 present in the whole protein unwinds during the course of MD simulation of the fragment G173-243, suggesting that the G173-243 structure is not stable and could unfold before becoming involved in gelsolin amyloid fibril formation. Twelve fragments of G173-202 were used to build a possible beta-fibril. During the course of the simulation, G173-202 fragments formed hydrogen bonds and tended to turn by an angle of 10 degrees -20 degrees towards each other.
Collapse
Affiliation(s)
- Inta Liepina
- Latvian Institute of Organic Synthesis, Aizkraukles str. 21, Riga, LV1006, Latvia.
| | | | | | | |
Collapse
|
12
|
Chastan N, Baert-Desurmont S, Saugier-Veber P, Dérumeaux G, Cabot A, Frébourg T, Hannequin D. Cardiac conduction alterations in a French family with amyloidosis of the finnish type with the p.Asp187Tyr mutation in theGSN gene. Muscle Nerve 2005; 33:113-9. [PMID: 16258946 DOI: 10.1002/mus.20448] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Familial amyloidosis of the Finnish type (FAF) is a rare autosomal-dominant disorder caused by the accumulation of a 71-amino acid amyloidogenic fragment of mutant gelsolin, an actin-modulating protein. The main symptoms include corneal lattice dystrophy, progressive cranial and peripheral neuropathy, and skin changes. To date, only two mutations in the GSN gene have been described: the p.Asp187Asn mutation in most patients and the p.Asp187Tyr mutation in a Danish and Czech family. We report on the third family with the p.Asp187Tyr mutation and the first French FAF family. Severe cardiac conduction alterations in three patients were mainly caused by cardiac sympathetic denervation. These findings demonstrate the cardiological involvement of the FAF phenotype and suggest that cardiological follow-up is required in FAF patients.
Collapse
|
13
|
Page LJ, Huff ME, Kelly JW, Balch WE. Ca2+ binding protects against gelsolin amyloidosis. Biochem Biophys Res Commun 2004; 322:1105-10. [PMID: 15336957 DOI: 10.1016/j.bbrc.2004.07.125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Indexed: 10/26/2022]
Abstract
Amyloid diseases occur when native or mutant polypeptides misfold and aggregate to form deposits in the extracellular space. There are at least 20 proteins associated with amyloid diseases, including the well-known amyloid-beta peptide that is the causative agent for Alzheimer's disease (AD). This review describes familial amyloidosis of Finnish type (FAF), an amyloid disease caused by mutations in plasma gelsolin, a secreted protein that contains multiple Ca2+-binding domains. The FAF mutations result in a loss of the Ca2+-binding site in domain 2 of plasma gelsolin. The resulting decreased stability gives rise to susceptibility to the protease furin in the Golgi. Furin cleavage generates a secreted fragment that undergoes a second proteolytic event in the extracellular matrix to produce a peptide that self-assembles into amyloid plaques. Thus, Ca2+ binding in native plasma gelsolin protects against amyloid disease.
Collapse
Affiliation(s)
- Lesley J Page
- Department of Cell Biology, Institute for Childhood and Neglected Diseases, The Scripps Research Institute MB6, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
14
|
Schmitt-Bernard CF, Pouliquen Y, Argilès A. [BIG-H3 protein: mutation of codon 124 and corneal amyloidosis]. J Fr Ophtalmol 2004; 27:510-22. [PMID: 15179309 DOI: 10.1016/s0181-5512(04)96173-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In 1997, a group of hereditary corneal dystrophies was related to mutations in the TGFBI (BIGH3) gene. Within this group, some corneal dystrophies present particular biochemical features in that they are characterized by corneal amyloid deposition. Contrary to clinical and genetic knowledge, the biochemical characteristics of the encoded protein (Big-h3) and the mechanisms of its amyloid conversion remain unclear. We review the current knowledge on the Big-h3 protein and focus on the behavior of the codon 124 region. We discuss this protein's mechanisms of amyloid conversion from our results and previous reports as well as from other types of amyloidosis. These data provide a better understanding of the putative processes leading to the phenotypic variations linked with their respective codon 124 mutation.
Collapse
|
15
|
Affiliation(s)
- Giampaolo Merlini
- Amyloid Center, Biotechnology Research Laboratory, University Hospital IRCCS Policlinico San Matteo, Pavia, Italy.
| | | |
Collapse
|
16
|
Choe H, Burtnick LD, Mejillano M, Yin HL, Robinson RC, Choe S. The calcium activation of gelsolin: insights from the 3A structure of the G4-G6/actin complex. J Mol Biol 2002; 324:691-702. [PMID: 12460571 DOI: 10.1016/s0022-2836(02)01131-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gelsolin participates in the reorganization of the actin cytoskeleton that is required during such phenomena as cell movement, cytokinesis, and apoptosis. It consists of six structurally similar domains, G1-G6, which are arranged at resting intracellular levels of calcium ion so as to obscure the three actin-binding surfaces. Elevation of Ca(2+) concentrations releases latches within the constrained structure and produces large shifts in the relative positioning of the domains, permitting gelsolin to bind to and sever actin filaments. How Ca(2+) is able to activate gelsolin has been a major question concerning the function of this protein. We present the improved structure of the C-terminal half of gelsolin bound to monomeric actin at 3.0 A resolution. Two classes of Ca(2+)-binding site are evident on gelsolin: type 1 sites share coordination of Ca(2+) with actin, while type 2 sites are wholly contained within gelsolin. This structure of the complex reveals the locations of two novel metal ion-binding sites in domains G5 and G6, respectively. We identify both as type 2 sites. The absolute conservation of the type 2 calcium-ligating residues across the six domains of gelsolin suggests that this site exists in each of the domains. In total, gelsolin has the potential to bind eight calcium ions, two type 1 and six type 2. The function of the type 2 sites is to facilitate structural rearrangements within gelsolin as part of the activation and actin-binding and severing processes. We propose the novel type 2 site in G6 to be the critical site that initiates overall activation of gelsolin by releasing the tail latch that locks calcium-free gelsolin in a conformation unable to bind actin.
Collapse
Affiliation(s)
- Han Choe
- Structural Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92186-5800, USA
| | | | | | | | | | | |
Collapse
|
17
|
Kiuru-Enari S, Somer H, Seppäläinen AM, Notkola IL, Haltia M. Neuromuscular pathology in hereditary gelsolin amyloidosis. J Neuropathol Exp Neurol 2002; 61:565-71. [PMID: 12071640 DOI: 10.1093/jnen/61.6.565] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Hereditary gelsolin amyloidosis (AGel amyloidosis) is a systemic disorder reported worldwide in kindreds with a G654A or G654T gelsolin gene mutation. The clinically characteristic peripheral nerve involvement has been poorly characterized morphologically, and its pathogenesis remains unknown. We studied peripheral nerve and skeletal muscle biopsy or autopsy specimens of 35 patients with a G654A gelsolin gene mutation. Histological, immunohistochemical, and electron microscopic studies showed consistent deposition of gelsolin amyloid (AGel), particularly in the vascular walls and perineurial sheaths. Nerve roots were more severely affected than distal nerves. The amyloid deposits also displayed variable immunoreactivity for apolipoprotein E, amyloid P component, cystatin C, and alpha-smooth muscle actin. Sural nerve morphometry showed preferential age-related large myelinated nerve fiber loss and reduction of myelin sheath cross-sectional area. There was evidence of denervation atrophy and fiber type grouping in skeletal muscle. Our study shows that marked proximal nerve involvement with AGel angiopathy is an essential feature of AGel amyloidosis. The preferential large fiber loss, not generally seen in amyloid neuropathy, may be caused by ischemia due to AGel angiopathy. Deficient actin modulation by variant gelsolin in neurons and Schwann cells, however, may alter axonal transport and myelination and contribute to AGel polyneuropathy.
Collapse
Affiliation(s)
- Sari Kiuru-Enari
- Department of Neurology, Helsinki University Central Hospital, Finland
| | | | | | | | | |
Collapse
|
18
|
Gilbert F, Kauff N. Disease genes and chromosomes: disease maps of the human genome. Chromosome 9. GENETIC TESTING 2002; 5:157-74. [PMID: 11551106 DOI: 10.1089/109065701753145664] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- F Gilbert
- Weill Medical College of Cornell University, New York, NY 10021, USA.
| | | |
Collapse
|
19
|
Robinson RC, Choe S, Burtnick LD. The disintegration of a molecule: the role of gelsolin in FAF, familial amyloidosis (Finnish type). Proc Natl Acad Sci U S A 2001; 98:2117-8. [PMID: 11226199 PMCID: PMC33383 DOI: 10.1073/pnas.051635098] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
20
|
Ratnaswamy G, Huff ME, Su AI, Rion S, Kelly JW. Destabilization of Ca2+-free gelsolin may not be responsible for proteolysis in Familial Amyloidosis of Finnish Type. Proc Natl Acad Sci U S A 2001; 98:2334-9. [PMID: 11226240 PMCID: PMC30139 DOI: 10.1073/pnas.041452598] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations at position 187 in secreted gelsolin enable aberrant proteolysis at the 172-173 and 243-244 amide bonds, affording the 71-residue amyloidogenic peptide deposited in Familial Amyloidosis of Finnish Type (FAF). Thermodynamic comparisons of two different domain 2 constructs were carried out to study possible effects of the mutations on proteolytic susceptibility. In the construct we consider to be most representative of domain 2 in the context of the full-length protein (134-266), the D187N FAF variant is slightly destabilized relative to wild type (WT) under the conditions of urea denaturation, but exhibits a T(m) identical to WT. The D187Y variant is less stable to intermediate urea concentrations and exhibits a T(m) that is estimated to be approximately 5 degrees C lower than WT (pH 7.4, Ca(2+)-free). Although the thermodynamic data indicate that the FAF mutations may slightly destabilize domain 2, these changes are probably not sufficient to shift the native to denatured state equilibrium enough to enable the proteolysis leading to FAF. Biophysical data indicate that these two FAF variants may have different native state structures and possibly different pathways of amyloidosis.
Collapse
Affiliation(s)
- G Ratnaswamy
- Department of Chemistry and the Skaggs Institute of Chemical Biology, Scripps Research Institute, 10550 North Torrey Pines Road (MB12), La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|