1
|
Yang J, Ma RN, Dong JM, Hu SQ, Liu Y, Yan JZ. Phosphorylation of 4.1N by CaMKII Regulates the Trafficking of GluA1-containing AMPA Receptors During Long-term Potentiation in Acute Rat Hippocampal Brain Slices. Neuroscience 2024; 536:131-142. [PMID: 37993087 DOI: 10.1016/j.neuroscience.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
OBJECTIVE GluA1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (AMPARs) inserted into postsynaptic membranes are key to the process of long-term potentiation (LTP). Some evidence has shown that 4.1N plays a critical role in the membrane trafficking of AMPARs. However, the underlying mechanism behind this is still unclear. We investigated the role of 4.1N-mediated membrane trafficking of AMPARs during theta-burst stimulation long-term potentiation (TBS-LTP), to illustrate the molecular mechanism behind LTP. METHODS LTP was induced by TBS in rat hippocampal CA1 neuron. Tat-GluA1 (MPR), which disrupts the association of 4.1N-GluA1, and autocamtide-2-inhibitory peptide, myristoylated (Myr-AIP), a CaMKII antagonist, were used to explore the role of 4.1N in the AMPARs trafficking during TBS-induced LTP. Immunoprecipitation (IP) and immunoblotting (IB)were used to detect protein expression, phosphorylation, and the interaction of p-CaMKII-4.1N-GluA1. RESULTS We found that Myr-AIP attenuated increases of p-CaMKII (T286), p-GluA1 (ser831), and 4.1N phosphorylation after TBS-LTP, and decreased the association of p-CaMKII-4.1N-GluA1, along with the expression of GluA1, at postsynaptic densities during TBS-LTP. We also designed interfering peptides to disrupt the interaction between 4.1N and GluA1, which showed that Tat-GluA1 (MPR) or Myr-AIP inhibited TBS-LTP and attenuated increases of GluA1 at postsynaptic sites, while Tat-GluA1 (MPR) or Myr-AIP had no effects on miniature excitatory postsynaptic currents (mEPSCs) in non-stimulated hippocampal CA1 neurons. CONCLUSION Active CaMKII enhanced the phosphorylation of 4.1N and facilitated the association of p-CaMKII with 4.1N-GluA1, which in turn resulted in GluA1 trafficking during TBS-LTP. The association of 4.1N-GluA1 is required for LTP, but not for basal synaptic transmission.
Collapse
Affiliation(s)
- Jun Yang
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Jiangsu 221004, China
| | - Rui-Ning Ma
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Jiangsu 221004, China
| | - Jia-Min Dong
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Jiangsu 221004, China
| | - Shu-Qun Hu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Jiangsu 221004, China
| | - Yong Liu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Jiangsu 221004, China
| | - Jing-Zhi Yan
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Jiangsu 221004, China.
| |
Collapse
|
2
|
Toader C, Eva L, Covache-Busuioc RA, Costin HP, Glavan LA, Corlatescu AD, Ciurea AV. Unraveling the Multifaceted Role of the Golgi Apparatus: Insights into Neuronal Plasticity, Development, Neurogenesis, Alzheimer's Disease, and SARS-CoV-2 Interactions. Brain Sci 2023; 13:1363. [PMID: 37891732 PMCID: PMC10605100 DOI: 10.3390/brainsci13101363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
This article critically evaluates the multifunctional role of the Golgi apparatus within neurological paradigms. We succinctly highlight its influence on neuronal plasticity, development, and the vital trafficking and sorting mechanisms for proteins and lipids. The discourse further navigates to its regulatory prominence in neurogenesis and its implications in Alzheimer's Disease pathogenesis. The emerging nexus between the Golgi apparatus and SARS-CoV-2 underscores its potential in viral replication processes. This consolidation accentuates the Golgi apparatus's centrality in neurobiology and its intersections with both neurodegenerative and viral pathologies. In essence, understanding the Golgi's multifaceted functions harbors profound implications for future therapeutic innovations in neurological and viral afflictions.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (H.P.C.); (L.-A.G.); (A.D.C.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Lucian Eva
- Faculty of Medicine, “Dunarea de Jos” University of Galati, 800201 Galați, Romania
- Emergency Clinical Hospital “Prof. dr. N. Oblu”, 700309 Iasi, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (H.P.C.); (L.-A.G.); (A.D.C.); (A.V.C.)
| | - Horia Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (H.P.C.); (L.-A.G.); (A.D.C.); (A.V.C.)
| | - Luca-Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (H.P.C.); (L.-A.G.); (A.D.C.); (A.V.C.)
| | - Antonio Daniel Corlatescu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (H.P.C.); (L.-A.G.); (A.D.C.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (H.P.C.); (L.-A.G.); (A.D.C.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
3
|
Choi W, Kang S, Kim J. New insights into the role of the Golgi apparatus in the pathogenesis and therapeutics of human diseases. Arch Pharm Res 2022; 45:671-692. [PMID: 36178581 DOI: 10.1007/s12272-022-01408-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022]
Abstract
The Golgi apparatus is an essential cellular organelle that mediates homeostatic functions, including vesicle trafficking and the post-translational modification of macromolecules. Its unique stacked structure and dynamic functions are tightly regulated, and several Golgi proteins play key roles in the functioning of unconventional protein secretory pathways triggered by cellular stress responses. Recently, an increasing number of studies have implicated defects in Golgi functioning in human diseases such as cancer, neurodegenerative, and immunological disorders. Understanding the extraordinary characteristics of Golgi proteins is important for elucidating its associated intracellular signaling mechanisms and has important ramifications for human health. Therefore, analyzing the mechanisms by which the Golgi participates in disease pathogenesis may be useful for developing novel therapeutic strategies. This review articulates the structural features and abnormalities of the Golgi apparatus reported in various diseases and the suspected mechanisms underlying the Golgi-associated pathologies. Furthermore, we review the potential therapeutic strategies based on Golgi function.
Collapse
Affiliation(s)
- Wooseon Choi
- Department of Pharmacology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Shinwon Kang
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Jiyoon Kim
- Department of Pharmacology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
| |
Collapse
|
4
|
Cognitive Sequelae and Hippocampal Dysfunction in Chronic Kidney Disease following 5/6 Nephrectomy. Brain Sci 2022; 12:brainsci12070905. [PMID: 35884712 PMCID: PMC9321175 DOI: 10.3390/brainsci12070905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 01/18/2023] Open
Abstract
Neurological disorders are prevalent in patients with chronic kidney disease (CKD). Vascular factors and uremic toxins are involved with cognitive impairment in CKD. In addition, vascular dementia-induced alterations in the structure and function of the hippocampus can lead to deficits in hippocampal synaptic plasticity and cognitive function. However, regardless of this clinical evidence, the pathophysiology of cognitive impairment in patients with CKD is not fully understood. We used male Sprague Dawley rats and performed 5/6 nephrectomy to observe the changes in behavior, field excitatory postsynaptic potential, and immunostaining of the hippocampus following CKD progression. We measured the hippocampus volume on magnetic resonance imaging scans in the controls (n = 34) and end-stage renal disease (ESRD) hemodialysis patients (n = 42). In four cognition-related behavior assays, including novel object recognition, Y-maze, Barnes maze, and classical contextual fear conditioning, we identified deficits in spatial working memory, learning and memory, and contextual memory, as well as the ability to distinguish familiar and new objects, in the rats with CKD. Immunohistochemical staining of Na+/H+ exchanger1 was increased in the hippocampus of the CKD rat models. We performed double immunofluorescent staining for aquaporin-4 and glial fibrillary acidic protein and then verified the high coexpression in the hippocampus of the CKD rat model. Furthermore, results from recoding of the field excitatory postsynaptic potential (fEPSP) in the hippocampus showed the reduced amplitude and slope of fEPSP in the CKD rats. ESRD patients with cognitive impairment showed a significant decrease in the hippocampus volume compared with ESRD patients without cognitive impairment or the controls. Our findings suggest that uremia resulting from decreased kidney function may cause the destruction of the blood–brain barrier and hippocampus-related cognitive impairment in CKD.
Collapse
|
5
|
Mohamadian M, Rastegar M, Pasamanesh N, Ghadiri A, Ghandil P, Naseri M. Clinical and Molecular Spectrum of Muscular Dystrophies (MDs) with Intellectual Disability (ID): a Comprehensive Overview. J Mol Neurosci 2021; 72:9-23. [PMID: 34727324 DOI: 10.1007/s12031-021-01933-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 10/18/2021] [Indexed: 12/22/2022]
Abstract
Muscular dystrophies encompass a wide and heterogeneous subset of hereditary myopathies that manifest by the structural or functional abnormalities in the skeletal muscle. Some pathogenic mutations induce a dysfunction or loss of proteins that are critical for the stability of muscle cells, leading to progressive muscle degradation and weakening. Several studies have well-established cognitive deficits in muscular dystrophies which are mainly due to the disruption of brain-specific expression of affected muscle proteins. We provide a comprehensive overview of the types of muscular dystrophies that are accompanied by intellectual disability by detailed consulting of the main libraries. The current paper focuses on the clinical and molecular evidence about Duchenne, congenital, limb-girdle, and facioscapulohumeral muscular dystrophies as well as myotonic dystrophies. Because these syndromes impose a heavy burden of psychological and financial problems on patients, their families, and the health care community, a thorough examination is necessary to perform timely psychological and medical interventions and thus improve the quality of life.
Collapse
Affiliation(s)
- Malihe Mohamadian
- Cancer Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran, 616476515.
| | - Mandana Rastegar
- Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Negin Pasamanesh
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ata Ghadiri
- Department of Immunology, Medical School, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Pegah Ghandil
- Diabetes Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohsen Naseri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
6
|
Seo BA, Kim D, Hwang H, Kim MS, Ma SX, Kwon SH, Kweon SH, Wang H, Yoo JM, Choi S, Kwon SH, Kang SU, Kam TI, Kim K, Karuppagounder SS, Kang BG, Lee S, Park H, Kim S, Yan W, Li YS, Kuo SH, Redding-Ochoa J, Pletnikova O, Troncoso JC, Lee G, Mao X, Dawson VL, Dawson TM, Ko HS. TRIP12 ubiquitination of glucocerebrosidase contributes to neurodegeneration in Parkinson's disease. Neuron 2021; 109:3758-3774.e11. [PMID: 34644545 DOI: 10.1016/j.neuron.2021.09.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 06/09/2021] [Accepted: 09/14/2021] [Indexed: 11/25/2022]
Abstract
Impairment in glucocerebrosidase (GCase) is strongly associated with the development of Parkinson's disease (PD), yet the regulators responsible for its impairment remain elusive. In this paper, we identify the E3 ligase Thyroid Hormone Receptor Interacting Protein 12 (TRIP12) as a key regulator of GCase. TRIP12 interacts with and ubiquitinates GCase at lysine 293 to control its degradation via ubiquitin proteasomal degradation. Ubiquitinated GCase by TRIP12 leads to its functional impairment through premature degradation and subsequent accumulation of α-synuclein. TRIP12 overexpression causes mitochondrial dysfunction, which is ameliorated by GCase overexpression. Further, conditional TRIP12 knockout in vitro and knockdown in vivo promotes the expression of GCase, which blocks α-synuclein preformed fibrils (α-syn PFFs)-provoked dopaminergic neurodegeneration. Moreover, TRIP12 accumulates in human PD brain and α-synuclein-based mouse models. The identification of TRIP12 as a regulator of GCase provides a new perspective on the molecular mechanisms underlying dysfunctional GCase-driven neurodegeneration in PD.
Collapse
Affiliation(s)
- Bo Am Seo
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Donghoon Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pharmacology, Peripheral Neuropathy Research Center (PNRC), Dong-A University College of Medicine, Busan, Republic of Korea.
| | - Heehong Hwang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Min Seong Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shi-Xun Ma
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Seung-Hwan Kwon
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sin Ho Kweon
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hu Wang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Je Min Yoo
- Department of Chemistry, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA; Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seulah Choi
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sang Ho Kwon
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sung-Ung Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA
| | - Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, USA
| | - Kwangsoo Kim
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Senthilkumar S Karuppagounder
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bong Gu Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Saebom Lee
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hyejin Park
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA
| | - Sangjune Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biology, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Wei Yan
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yong-Shi Li
- Department of Neurology, Columbia University, New York, NY, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University, New York, NY, USA
| | - Javier Redding-Ochoa
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Olga Pletnikova
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Juan C Troncoso
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gabsang Lee
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaobo Mao
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, USA; Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA.
| | - Han Seok Ko
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, USA; Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA.
| |
Collapse
|
7
|
Verma DK, Seo BA, Ghosh A, Ma SX, Hernandez-Quijada K, Andersen JK, Ko HS, Kim YH. Alpha-Synuclein Preformed Fibrils Induce Cellular Senescence in Parkinson's Disease Models. Cells 2021; 10:1694. [PMID: 34359864 PMCID: PMC8304385 DOI: 10.3390/cells10071694] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence indicates that cellular senescence could be a critical inducing factor for aging-associated neurodegenerative disorders. However, the involvement of cellular senescence remains unclear in Parkinson's disease (PD). To determine this, we assessed the effects of α-synuclein preformed fibrils (α-syn PFF) or 1-methyl-4-phenylpyridinium (MPP+) on changes in cellular senescence markers, employing α-syn PFF treated-dopaminergic N27 cells, primary cortical neurons, astrocytes and microglia and α-syn PFF-injected mouse brain tissues, as well as human PD patient brains. Our results demonstrate that α-syn PFF-induced toxicity reduces the levels of Lamin B1 and HMGB1, both established markers of cellular senescence, in correlation with an increase in the levels of p21, a cell cycle-arrester and senescence marker, in both reactive astrocytes and microglia in mouse brains. Using Western blot and immunohistochemistry, we found these cellular senescence markers in reactive astrocytes as indicated by enlarged cell bodies within GFAP-positive cells and Iba1-positive activated microglia in α-syn PFF injected mouse brains. These results indicate that PFF-induced pathology could lead to astrocyte and/or microglia senescence in PD brains, which may contribute to neuropathology in this model. Targeting senescent cells using senolytics could therefore constitute a viable therapeutic option for the treatment of PD.
Collapse
Affiliation(s)
- Dinesh Kumar Verma
- Neuroscience Program, Department of Biological Sciences, Delaware State University, Dover, DE 19901, USA; (D.K.V.); (A.G.); (K.H.-Q.)
| | - Bo Am Seo
- Department of Neurology, School of Medicine, The Johns Hopkins University, Baltimore, MD 21205, USA; (B.A.S.); (S.-X.M.)
- Neuroregeneration & Stem Cell Program, Institute for Cell Engineering, School of Medicine, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Anurupa Ghosh
- Neuroscience Program, Department of Biological Sciences, Delaware State University, Dover, DE 19901, USA; (D.K.V.); (A.G.); (K.H.-Q.)
| | - Shi-Xun Ma
- Department of Neurology, School of Medicine, The Johns Hopkins University, Baltimore, MD 21205, USA; (B.A.S.); (S.-X.M.)
- Neuroregeneration & Stem Cell Program, Institute for Cell Engineering, School of Medicine, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Karina Hernandez-Quijada
- Neuroscience Program, Department of Biological Sciences, Delaware State University, Dover, DE 19901, USA; (D.K.V.); (A.G.); (K.H.-Q.)
| | | | - Han Seok Ko
- Department of Neurology, School of Medicine, The Johns Hopkins University, Baltimore, MD 21205, USA; (B.A.S.); (S.-X.M.)
- Neuroregeneration & Stem Cell Program, Institute for Cell Engineering, School of Medicine, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yong-Hwan Kim
- Neuroscience Program, Department of Biological Sciences, Delaware State University, Dover, DE 19901, USA; (D.K.V.); (A.G.); (K.H.-Q.)
| |
Collapse
|
8
|
Ma SX, Seo BA, Kim D, Xiong Y, Kwon SH, Brahmachari S, Kim S, Kam TI, Nirujogi RS, Kwon SH, Dawson VL, Dawson TM, Pandey A, Na CH, Ko HS. Complement and Coagulation Cascades are Potentially Involved in Dopaminergic Neurodegeneration in α-Synuclein-Based Mouse Models of Parkinson's Disease. J Proteome Res 2021; 20:3428-3443. [PMID: 34061533 PMCID: PMC8628316 DOI: 10.1021/acs.jproteome.0c01002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder that results in motor dysfunction and, eventually, cognitive impairment. α-Synuclein protein is known as a central protein to the pathophysiology of PD, but the underlying pathological mechanism still remains to be elucidated. In an effort to understand how α-synuclein underlies the pathology of PD, various PD mouse models with α-synuclein overexpression have been developed. However, systemic analysis of the brain proteome of those mouse models is lacking. In this study, we established two mouse models of PD by injecting α-synuclein preformed fibrils (PFF) or by inducing overexpression of human A53T α-synuclein to investigate common pathways in the two different types of the PD mouse models. For more accurate quantification of mouse brain proteome, the proteins were quantified using the method of stable isotope labeling with amino acids in mammals . We identified a total of 8355 proteins from the two mouse models; ∼6800 and ∼7200 proteins from α-synuclein PFF-injected mice and human A53T α-synuclein transgenic mice, respectively. Through pathway analysis of the differentially expressed proteins common to both PD mouse models, it was discovered that the complement and coagulation cascade pathways were enriched in the PD mice compared to control animals. Notably, a validation study demonstrated that complement component 3 (C3)-positive astrocytes were increased in the ventral midbrain of the intrastriatal α-synuclein PFF-injected mice and C3 secreted from astrocytes could induce the degeneration of dopaminergic neurons. This is the first study that highlights the significance of the complement and coagulation pathways in the pathogenesis of PD through proteome analyses with two sophisticated mouse models of PD.
Collapse
Affiliation(s)
- Shi-Xun Ma
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Bo Am Seo
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Donghoon Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Pharmacology, Peripheral Neuropathy Research Center, Dong-A University College of Medicine, Busan 49201, South Korea
| | - Yulan Xiong
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Seung-Hwan Kwon
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Saurav Brahmachari
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Sangjune Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Raja Sekhar Nirujogi
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Sang Ho Kwon
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Adrienne Helis Malvin Medical Research Foundation, New Orleans 70130, Louisiana, United States
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Adrienne Helis Malvin Medical Research Foundation, New Orleans 70130, Louisiana, United States
- Diana Helis Henry Medical Research Foundation, New Orleans 70130, Louisiana, United States
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Laboratory Medicine and Pathology, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, United States
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Chan Hyun Na
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Han Seok Ko
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Adrienne Helis Malvin Medical Research Foundation, New Orleans 70130, Louisiana, United States
- Diana Helis Henry Medical Research Foundation, New Orleans 70130, Louisiana, United States
| |
Collapse
|
9
|
Wang M, Tao H, Huang P. Clinical significance of LARGE1 in progression of liver cancer and the underlying mechanism. Gene 2021; 779:145493. [PMID: 33588034 DOI: 10.1016/j.gene.2021.145493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/26/2022]
Abstract
Liver cancer is a malignant disease and causes thousands of death each year. The prognosis is dismal for patients with metastasis and recurrence. It is urgent to disclose the cause and mechanism underlying liver cancer. LARGE1 encodes a glycosyltransferase and was reported to promote progression in cancer. But its role in liver cancer is unknown. In this study, LARGE1 displayed upregulated expression in liver cancer cells. When LARGE1 was knocked down in SMMC-7721 and Huh-7 cells, the ability of cell proliferation and colony formation were decreased significantly. Cell migration and invasion were suppressed. The number of cells in G1 phase increased but decreased in S phase. Cell apoptosis was not affected. Tumor growth in vivo was also inhibited. Tumor volume was decreased from 1270 mm3 to 721 mm3 (p < 0.05) and tumor weight from 0.95 g to 0.63 g (p < 0.05). Furthermore, the expression of β-catenin, TCF and Cyclin D1 was reduced when LARGE1 was knocked down but increased in LARGE1-overexpressed cells. LGK-974, a specific inhibitor in canonical Wnt signaling, inhibited cell proliferation even when LARGE1 was over-expressed. In tumor tissues, LARGE1 was increased by 4.8 folds compared to paratumoral tissues. And higher LARGE1 expression caused shorter survival. Clinicopathological analysis demonstrated that LARGE1 was associated with TNM stage (Ⅰ/Ⅱ vs III/IV, p = 0.005). Therefore, LARGE1 promotes progression and regulates Wnt/β-catenin signaling pathway in liver cancer.
Collapse
Affiliation(s)
- Min Wang
- Medical Research & Laboratory Diagnostic Center, Central Hospital affiliated to Shandong First Medical University, Jinan 250013, China
| | - Haiyan Tao
- Department of Acupuncture & Massage, Central Hospital affiliated to Shandong First Medical University, Jinan 250013, China
| | - Ping Huang
- Medical Research & Laboratory Diagnostic Center, Central Hospital affiliated to Shandong First Medical University, Jinan 250013, China.
| |
Collapse
|
10
|
Glutamatergic Receptor Trafficking and Delivery: Role of the Exocyst Complex. Cells 2020; 9:cells9112402. [PMID: 33153008 PMCID: PMC7693776 DOI: 10.3390/cells9112402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/29/2022] Open
Abstract
Cells comprise several intracellular membrane compartments that allow them to function properly. One of these functions is cargo movement, typically proteins and membranes within cells. These cargoes ride microtubules through vesicles from Golgi and recycling endosomes to the plasma membrane in order to be delivered and exocytosed. In neurons, synaptic functions employ this cargo trafficking to maintain inter-neuronal communication optimally. One of the complexes that oversee vesicle trafficking and tethering is the exocyst. The exocyst is a protein complex containing eight subunits first identified in yeast and then characterized in multicellular organisms. This complex is related to several cellular processes, including cellular growth, division, migration, and morphogenesis, among others. It has been associated with glutamatergic receptor trafficking and tethering into the synapse, providing the molecular machinery to deliver receptor-containing vesicles into the plasma membrane in a constitutive manner. In this review, we discuss the evidence so far published regarding receptor trafficking and the exocyst complex in both basal and stimulated levels, comparing constitutive trafficking and long-term potentiation-related trafficking.
Collapse
|