1
|
Adhikari P, Jawad B, Ching WY. Mechanical Properties of a Solvated Biomolecule: RGD (1FUV) Peptide. Int J Mol Sci 2024; 25:10164. [PMID: 39337648 PMCID: PMC11432424 DOI: 10.3390/ijms251810164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
The mechanical properties of proteins/peptides play an essential role in their functionalities and implications, as well as their structure and dynamic properties. Understanding mechanical properties is pivotal to our knowledge of protein folding and the molecular basis of diverse cellular processes. Herein, we present a computational approach using ab initio quantum mechanical calculations to determine the mechanical properties-such as bulk modulus, shear modulus, Young's modulus, and Poisson's ratio-of a solvated Arg-Gly-Asp (RGD) peptide model. Since this peptide serves as the RGD-directed integrin recognition site and may participate in cellular adhesion, it is considered a promising small peptide for medicinal applications. This successful approach paves the way for investigating larger and more complex biomolecules.
Collapse
Affiliation(s)
- Puja Adhikari
- Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, MO 64110, USA; (P.A.); (B.J.)
| | - Bahaa Jawad
- Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, MO 64110, USA; (P.A.); (B.J.)
- Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq
| | - Wai-Yim Ching
- Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, MO 64110, USA; (P.A.); (B.J.)
| |
Collapse
|
2
|
Liu Y, Wang R, Chen Q, Chang Y, Chen Q, Fukumoto K, Wang B, Yu J, Luo C, Ma J, Chen X, Murayama Y, Umeda K, Kodera N, Harada Y, Sekine SI, Li J, Tadakuma H. Organ-Specific Gene Expression Control Using DNA Origami-Based Nanodevices. NANO LETTERS 2024; 24:8410-8417. [PMID: 38920331 PMCID: PMC11249008 DOI: 10.1021/acs.nanolett.4c02104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
Nanodevices that function in specific organs or cells are one of the ultimate goals of synthetic biology. The recent progress in DNA nanotechnology such as DNA origami has allowed us to construct nanodevices to deliver a payload (e.g., drug) to the tumor. However, delivery to specific organs remains difficult due to the fragility of the DNA nanostructure and the low targeting capability of the DNA nanostructure. Here, we constructed tough DNA origami that allowed us to encapsulate the DNA origami into lipid-based nanoparticles (LNPs) under harsh conditions (low pH), harnessing organ-specific delivery of the gene of interest (GOI). We found that DNA origami-encapsulated LNPs can increase the functionality of payload GOIs (mRNA and siRNA) inside mouse organs through the contribution from different LNP structures revealed by cryogenic electron microscope (Cryo-EM). These data should be the basis for future organ-specific gene expression control using DNA origami nanodevices.
Collapse
Affiliation(s)
- Yuxiang Liu
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Ruixuan Wang
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Qimingxing Chen
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Yan Chang
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Qi Chen
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Kodai Fukumoto
- Institute
for Protein Research, Osaka University, Osaka 565-0871, Japan
- RIKEN
Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | - Bingxun Wang
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Jianchen Yu
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Changfeng Luo
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Jiayuan Ma
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Xiaoxia Chen
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
- Zhejiang
Provincial Key Laboratory of Pancreatic Disease Hangzhou, Zhejiang University School of Medicine First Affiliated
Hospital, Zhejiang 310009, People’s Republic
of China
| | - Yuko Murayama
- RIKEN
Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | - Kenichi Umeda
- Nano
Life Science Institute (WPI-NanoLSI), Kanazawa
University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Noriyuki Kodera
- Nano
Life Science Institute (WPI-NanoLSI), Kanazawa
University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yoshie Harada
- Institute
for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Shun-ichi Sekine
- RIKEN
Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | - Jianfeng Li
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
- Gene Editing
Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, People’s
Republic of China
| | - Hisashi Tadakuma
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
- Gene Editing
Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, People’s
Republic of China
| |
Collapse
|
3
|
Víšková P, Ištvánková E, Ryneš J, Džatko Š, Loja T, Živković ML, Rigo R, El-Khoury R, Serrano-Chacón I, Damha MJ, González C, Mergny JL, Foldynová-Trantírková S, Trantírek L. In-cell NMR suggests that DNA i-motif levels are strongly depleted in living human cells. Nat Commun 2024; 15:1992. [PMID: 38443388 PMCID: PMC10914786 DOI: 10.1038/s41467-024-46221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/13/2024] [Indexed: 03/07/2024] Open
Abstract
I-Motifs (iM) are non-canonical DNA structures potentially forming in the accessible, single-stranded, cytosine-rich genomic regions with regulatory roles. Chromatin, protein interactions, and intracellular properties seem to govern iM formation at sites with i-motif formation propensity (iMFPS) in human cells, yet their specific contributions remain unclear. Using in-cell NMR with oligonucleotide iMFPS models, we monitor iM-associated structural equilibria in asynchronous and cell cycle-synchronized HeLa cells at 37 °C. Our findings show that iMFPS displaying pHT < 7 under reference in vitro conditions occur predominantly in unfolded states in cells, while those with pHT > 7 appear as a mix of folded and unfolded states depending on the cell cycle phase. Comparing these results with previous data obtained using an iM-specific antibody (iMab) reveals that cell cycle-dependent iM formation has a dual origin, and iM formation concerns only a tiny fraction (possibly 1%) of genomic sites with iM formation propensity. We propose a comprehensive model aligning observations from iMab and in-cell NMR and enabling the identification of iMFPS capable of adopting iM structures under physiological conditions in living human cells. Our results suggest that many iMFPS may have biological roles linked to their unfolded states.
Collapse
Affiliation(s)
- Pavlína Víšková
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Masaryk University, 625 00, Brno, Czech Republic
| | - Eva Ištvánková
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Masaryk University, 625 00, Brno, Czech Republic
| | - Jan Ryneš
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Šimon Džatko
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
- Centre for Advanced Materials Application, Slovak Academy of Sciences, 845 11, Bratislava, Slovakia
| | - Tomáš Loja
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Martina Lenarčič Živković
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
- Slovenian NMR Centre, National Institute of Chemistry, SI-1000, Ljubljana, Slovenia
| | - Riccardo Rigo
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
- Pharmaceutical and Pharmacological Sciences Department, University of Padova, 35131, Padova, Italy
| | - Roberto El-Khoury
- Department of Chemistry, McGill University, Montreal, QC, H3A0B8, Canada
| | - Israel Serrano-Chacón
- Instituto de Química Física 'Blas Cabrera', CSIC, C/Serrano 119, 28006, Madrid, Spain
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, QC, H3A0B8, Canada
| | - Carlos González
- Instituto de Química Física 'Blas Cabrera', CSIC, C/Serrano 119, 28006, Madrid, Spain
| | - Jean-Louis Mergny
- Institute of Biophysics, Czech Academy of Sciences, Brno, 612 00, Czech Republic
- Laboratoire d'Optique & Biosciences, Institut Polytechnique de Paris, Inserm, CNRS, Ecole Polytechnique, Palaiseau, 91120, France
| | - Silvie Foldynová-Trantírková
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.
- Institute of Biophysics, Czech Academy of Sciences, Brno, 612 00, Czech Republic.
| | - Lukáš Trantírek
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
4
|
Choi J, Kim J, Park JY, Hyun JK, Park SJ. Domain-Selective Enzymatic Cross-linking and Etching for Shape-Morphing DNA-Linked Nanoparticle Films. NANO LETTERS 2024; 24:2574-2580. [PMID: 38349338 DOI: 10.1021/acs.nanolett.3c04637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The highly programmable and responsive molecular recognition properties of DNA provide unparalleled opportunities for fabricating dynamic nanostructures capable of structural transformation in response to various external stimuli. However, they typically operate in tightly controlled environments because certain conditions (ionic strength, pH, temperature, etc.) must be met for DNA duplex formation. In this study, we adopted site-specific enzymatic ligation and DNA-based layer-by-layer thin film fabrication to build shape-morphing DNA-linked nanoparticle films operational in a broad range of environments. The ligated films remained intact in unusual conditions such as pure water and high temperature causing dissociation of DNA duplexes and showed predictable and reversible shape morphing in response to various environmental changes and DNA exchange reactions. Furthermore, domain-selective ligation combined with photoinduced interlayer mixing allowed for the fabrication of unusual edge-sealed double-layered films through midlayer etching, which is difficult to realize by other methods.
Collapse
Affiliation(s)
- Jisu Choi
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Jongwook Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Jin-Young Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Jerome Kartham Hyun
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| |
Collapse
|
5
|
Szpotkowski K, Wójcik K, Kurzyńska-Kokorniak A. Structural studies of protein-nucleic acid complexes: A brief overview of the selected techniques. Comput Struct Biotechnol J 2023; 21:2858-2872. [PMID: 37216015 PMCID: PMC10195699 DOI: 10.1016/j.csbj.2023.04.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
Protein-nucleic acid complexes are involved in all vital processes, including replication, transcription, translation, regulation of gene expression and cell metabolism. Knowledge of the biological functions and molecular mechanisms beyond the activity of the macromolecular complexes can be determined from their tertiary structures. Undoubtably, performing structural studies of protein-nucleic acid complexes is challenging, mainly because these types of complexes are often unstable. In addition, their individual components may display extremely different surface charges, causing the complexes to precipitate at higher concentrations used in many structural studies. Due to the variety of protein-nucleic acid complexes and their different biophysical properties, no simple and universal guideline exists that helps scientists chose a method to successfully determine the structure of a specific protein-nucleic acid complex. In this review, we provide a summary of the following experimental methods, which can be applied to study the structures of protein-nucleic acid complexes: X-ray and neutron crystallography, nuclear magnetic resonance (NMR) spectroscopy, cryogenic electron microscopy (cryo-EM), atomic force microscopy (AFM), small angle scattering (SAS) methods, circular dichroism (CD) and infrared (IR) spectroscopy. Each method is discussed regarding its historical context, advancements over the past decades and recent years, and weaknesses and strengths. When a single method does not provide satisfactory data on the selected protein-nucleic acid complex, a combination of several methods should be considered as a hybrid approach; thus, specific structural problems can be solved when studying protein-nucleic acid complexes.
Collapse
Affiliation(s)
- Kamil Szpotkowski
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Klaudia Wójcik
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Anna Kurzyńska-Kokorniak
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland
| |
Collapse
|
6
|
de Herrera AG, Markert T, Trixler F. Temporal nanofluid environments induce prebiotic condensation in water. Commun Chem 2023; 6:69. [PMID: 37059805 PMCID: PMC10104841 DOI: 10.1038/s42004-023-00872-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 03/31/2023] [Indexed: 04/16/2023] Open
Abstract
Water is a problem in understanding chemical evolution towards life's origins on Earth. Although all known life is being based on water key prebiotic reactions are inhibited by it. The prebiotic plausibility of current strategies to circumvent this paradox is questionable regarding the principle that evolution builds on existing pathways. Here, we report a straightforward way to overcome the water paradox in line with evolutionary conservatism. By utilising a molecular deposition method as a physicochemical probe, we uncovered a synergy between biomolecule assembly and temporal nanofluid conditions that emerge within transient nanoconfinements of water between suspended particles. Results from fluorometry, quantitative PCR, melting curve analysis, gel electrophoresis and computational modelling reveal that such conditions induce nonenzymatic polymerisation of nucleotides and promote basic cooperation between nucleotides and amino acids for RNA formation. Aqueous particle suspensions are a geochemical ubiquitous and thus prebiotic highly plausible setting. Harnessing nanofluid conditions in this setting for prebiotic syntheses is consistent with evolutionary conservatism, as living cells also work with temporal nanoconfined water for biosynthesis. Our findings add key insights required to understand the transition from geochemistry to biochemistry and open up systematic pathways to water-based green chemistry approaches in materials science and nanotechnology.
Collapse
Affiliation(s)
- Andrea Greiner de Herrera
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Theresienstraße 41, 80333, Munich, Germany
- Center for Neuropathology and Prion Research (ZNP), Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 23, 81377, Munich, Germany
- School of Education, Technical University of Munich and Deutsches Museum, Museumsinsel 1, 80538, Munich, Germany
| | - Thomas Markert
- Institute of Theoretical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Frank Trixler
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Theresienstraße 41, 80333, Munich, Germany.
- School of Education, Technical University of Munich and Deutsches Museum, Museumsinsel 1, 80538, Munich, Germany.
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Schellingtr. 4, 80799, Munich, Germany.
| |
Collapse
|
7
|
Huang J, Gambietz S, Saccà B. Self-Assembled Artificial DNA Nanocompartments and Their Bioapplications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2202253. [PMID: 35775957 DOI: 10.1002/smll.202202253] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Compartmentalization is the strategy evolved by nature to control reactions in space and time. The ability to emulate this strategy through synthetic compartmentalization systems has rapidly evolved in the past years, accompanied by an increasing understanding of the effects of spatial confinement on the thermodynamic and kinetic properties of the guest molecules. DNA nanotechnology has played a pivotal role in this scientific endeavor and is still one of the most promising approaches for the construction of nanocompartments with programmable structural features and nanometer-scaled addressability. In this review, the design approaches, bioapplications, and theoretical frameworks of self-assembled DNA nanocompartments are surveyed. From DNA polyhedral cages to virus-like capsules, the construction principles of such intriguing architectures are illustrated. Various applications of DNA nanocompartments, including their use for programmable enzyme scaffolding, single-molecule studies, biosensing, and as artificial nanofactories, ending with an ample description of DNA nanocages for biomedical purposes, are then reported. Finally, the theoretical hypotheses that make DNA nanocompartments, and nanosystems in general, a topic of great interest in modern science, are described and the progresses that have been done until now in the comprehension of the peculiar phenomena that occur within nanosized environments are summarized.
Collapse
Affiliation(s)
- Jing Huang
- ZMB, Faculty of Biology, University Duisburg-Essen, 45141, Essen, Germany
| | - Sabrina Gambietz
- ZMB, Faculty of Biology, University Duisburg-Essen, 45141, Essen, Germany
| | - Barbara Saccà
- ZMB, Faculty of Biology, University Duisburg-Essen, 45141, Essen, Germany
| |
Collapse
|
8
|
Knop JM, Mukherjee S, Jaworek MW, Kriegler S, Manisegaran M, Fetahaj Z, Ostermeier L, Oliva R, Gault S, Cockell CS, Winter R. Life in Multi-Extreme Environments: Brines, Osmotic and Hydrostatic Pressure─A Physicochemical View. Chem Rev 2023; 123:73-104. [PMID: 36260784 DOI: 10.1021/acs.chemrev.2c00491] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Elucidating the details of the formation, stability, interactions, and reactivity of biomolecular systems under extreme environmental conditions, including high salt concentrations in brines and high osmotic and high hydrostatic pressures, is of fundamental biological, astrobiological, and biotechnological importance. Bacteria and archaea are able to survive in the deep ocean or subsurface of Earth, where pressures of up to 1 kbar are reached. The deep subsurface of Mars may host high concentrations of ions in brines, such as perchlorates, but we know little about how these conditions and the resulting osmotic stress conditions would affect the habitability of such environments for cellular life. We discuss the combined effects of osmotic (salts, organic cosolvents) and hydrostatic pressures on the structure, stability, and reactivity of biomolecular systems, including membranes, proteins, and nucleic acids. To this end, a variety of biophysical techniques have been applied, including calorimetry, UV/vis, FTIR and fluorescence spectroscopy, and neutron and X-ray scattering, in conjunction with high pressure techniques. Knowledge of these effects is essential to our understanding of life exposed to such harsh conditions, and of the physical limits of life in general. Finally, we discuss strategies that not only help us understand the adaptive mechanisms of organisms that thrive in such harsh geological settings but could also have important ramifications in biotechnological and pharmaceutical applications.
Collapse
Affiliation(s)
- Jim-Marcel Knop
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Sanjib Mukherjee
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Michel W Jaworek
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Simon Kriegler
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Magiliny Manisegaran
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Zamira Fetahaj
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Lena Ostermeier
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Rosario Oliva
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany.,Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126Naples, Italy
| | - Stewart Gault
- UK Centre for Astrobiology, SUPA School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, EH9 3FDEdinburgh, United Kingdom
| | - Charles S Cockell
- UK Centre for Astrobiology, SUPA School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, EH9 3FDEdinburgh, United Kingdom
| | - Roland Winter
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| |
Collapse
|
9
|
Pandey S, Jonchhe S, Mishra S, Emura T, Sugiyama H, Endo M, Mao H. Zeptoliter DNA Origami Reactor to Reveal Cosolute Effects on Nanoconfined G-Quadruplexes. J Phys Chem Lett 2022; 13:8692-8698. [PMID: 36094396 PMCID: PMC10323737 DOI: 10.1021/acs.jpclett.2c02253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cellular environments such as nanoconfinement and molecular crowding can change biomolecular properties. However, in nanoconfinement, it is extremely challenging to investigate effects of crowding cosolutes on macromolecules. By using optical tweezers, here, we elucidated the effects of hexaethylene glycol (HEG) on the mechanical stability of a telomeric G-quadruplex (GQ) in a zeptoliter DNA origami reactor (zepto-reactor). When HEG molecules were introduced in the GQ-containing zepto-reactor at different positions, we found that the GQ species split into two equilibrated populations, reflecting diverse effects of the oligoethylene glycol on the GQ via either a long-range dehydration effect or direct interactions. When the number of HEG molecules was increased, the stability of the GQ unexpectedly decreased, suggesting that the direct destabilizing interaction between the GQ and HEG is dominating over the long-range stabilizing dehydration effects of the HEG in hydrophilic nanocavities. These findings indicate that a nanoconfined environment can alter regular effects of cosolutes on biomacromolecules.
Collapse
Affiliation(s)
- Shankar Pandey
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Sagun Jonchhe
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Shubham Mishra
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Tomoko Emura
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell–Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Masayuki Endo
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell–Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
- Organization for Research and Development of Innovative Science and Technology, Kansai University, Suita, Osaka 564-8680, Japan1
| | - Hanbin Mao
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
10
|
Mustafa G, Gyawali P, Taylor JA, Maleki P, Nunez MV, Guntrum MC, Shiekh S, Balci H. A single molecule investigation of i-motif stability, folding intermediates, and potential as in-situ pH sensor. Front Mol Biosci 2022; 9:977113. [PMID: 36072435 PMCID: PMC9441956 DOI: 10.3389/fmolb.2022.977113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
We present a collection of single molecule work on the i-motif structure formed by the human telomeric sequence. Even though it was largely ignored in earlier years of its discovery due to its modest stability and requirement for low pH levels (pH < 6.5), the i-motif has been attracting more attention recently as both a physiologically relevant structure and as a potent pH sensor. In this manuscript, we establish single molecule Förster resonance energy transfer (smFRET) as a tool to study the i-motif over a broad pH and ionic conditions. We demonstrate pH and salt dependence of i-motif formation under steady state conditions and illustrate the intermediate states visited during i-motif folding in real time at the single molecule level. We also show the prominence of intermediate folding states and reversible folding/unfolding transitions. We present an example of using the i-motif as an in-situ pH sensor and use this sensor to establish the time scale for the pH drop in a commonly used oxygen scavenging system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hamza Balci
- Department of Physics, Kent State University, Kent, OH, United States
| |
Collapse
|
11
|
Suzuki Y, Kawamata I, Watanabe K, Mano E. Lipid bilayer-assisted dynamic self-assembly of hexagonal DNA origami blocks into monolayer crystalline structures with designed geometries. iScience 2022; 25:104292. [PMID: 35573202 PMCID: PMC9097702 DOI: 10.1016/j.isci.2022.104292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/18/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022] Open
Abstract
The DNA origami technique is used to construct custom-shaped nanostructures that can be used as components of two-dimensional crystalline structures with user-defined structural patterns. Here, we designed an Mg2+-responsive hexagonal 3D DNA origami block with self-shape-complementary ruggedness on the sides. Hexagonal DNA origami blocks were electrostatically adsorbed onto a fluidic lipid bilayer membrane surface to ensure lateral diffusion. A subsequent increase in the Mg2+ concentration in the surrounding environment induced the self-assembly of the origami blocks into lattices with prescribed geometries based on a self-complementary shape fit. High-speed atomic force microscopy (HS-AFM) images revealed dynamic events involved in the self-assembly process, including edge reorganization, defect splitting, diffusion, and filling, which provide a glimpse into how the lattice structures are self-improved. Lipid bilayer-assisted self-assembly of 3D DNA origami blocks was achieved Time-lapse AFM imaging of the self-assembly processes was performed Different assembly patterns were achieved from a single DNA origami design
Collapse
Affiliation(s)
- Yuki Suzuki
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8578, Japan
- Corresponding author
| | - Ibuki Kawamata
- Department of Robotics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Kotaro Watanabe
- Department of Robotics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Eriko Mano
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
12
|
Jonchhe S, Pandey S, Beneze C, Emura T, Sugiyama H, Endo M, Mao H. Dissection of nanoconfinement and proximity effects on the binding events in DNA origami nanocavity. Nucleic Acids Res 2022; 50:697-703. [PMID: 35037040 PMCID: PMC8789071 DOI: 10.1093/nar/gkab1298] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/06/2021] [Accepted: 01/09/2022] [Indexed: 12/02/2022] Open
Abstract
Both ligand binding and nanocavity can increase the stability of a biomolecular structure. Using mechanical unfolding in optical tweezers, here we found that a DNA origami nanobowl drastically increased the stability of a human telomeric G-quadruplex bound with a pyridostatin (PDS) ligand. Such a stability change is equivalent to >4 orders of magnitude increase (upper limit) in binding affinity (Kd: 490 nM → 10 pM (lower limit)). Since confined space can assist the binding through a proximity effect between the ligand-receptor pair and a nanoconfinement effect that is mediated by water molecules, we named such a binding as mechanochemical binding. After minimizing the proximity effect by using PDS that can enter or leave the DNA nanobowl freely, we attributed the increased affinity to the nanoconfinement effect (22%) and the proximity effect (78%). This represents the first quantification to dissect the effects of proximity and nanoconfinement on binding events in nanocavities. We anticipate these DNA nanoassemblies can deliver both chemical (i.e. ligand) and mechanical (i.e. nanocavity) milieus to facilitate robust mechanochemical binding in various biological systems.
Collapse
Affiliation(s)
- Sagun Jonchhe
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Shankar Pandey
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Christian Beneze
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Tomoko Emura
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan.,Institute for Integrated Cell-Material Science (iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Masayuki Endo
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan.,Institute for Integrated Cell-Material Science (iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan.,Organization for Research and Development of Innovative Science and Technology, Kansai University, Suita, Osaka 564-8680, Japan
| | - Hanbin Mao
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
13
|
Fan S, Ji B, Liu Y, Zou K, Tian Z, Dai B, Cui D, Zhang P, Ke Y, Song J. Spatiotemporal Control of Molecular Cascade Reactions by a Reconfigurable DNA Origami Domino Array. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sisi Fan
- Institute of Nano Biomedicine and Engineering Department of Instrument Science and Engineering School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Bin Ji
- Institute of Nano Biomedicine and Engineering Department of Instrument Science and Engineering School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Yan Liu
- Institute of Nano Biomedicine and Engineering Department of Instrument Science and Engineering School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Kexuan Zou
- Institute of Nano Biomedicine and Engineering Department of Instrument Science and Engineering School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Zhijin Tian
- Department of Chemistry University of Science & Technology of China 230026, Anhui Hefei China
- Institute of Cancer and Basic Medicine (IBMC) Chinese Academy of Sciences The Cancer Hospital of the University of Chinese Academy of Sciences 310022, Zhejiang Hangzhou China
| | - Bin Dai
- Institute of Nano Biomedicine and Engineering Department of Instrument Science and Engineering School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering Department of Instrument Science and Engineering School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Pengfei Zhang
- Institute of Cancer and Basic Medicine (IBMC) Chinese Academy of Sciences The Cancer Hospital of the University of Chinese Academy of Sciences 310022, Zhejiang Hangzhou China
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30322 USA
| | - Jie Song
- Institute of Nano Biomedicine and Engineering Department of Instrument Science and Engineering School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China
- Institute of Cancer and Basic Medicine (IBMC) Chinese Academy of Sciences The Cancer Hospital of the University of Chinese Academy of Sciences 310022, Zhejiang Hangzhou China
| |
Collapse
|
14
|
Fan S, Ji B, Liu Y, Zou K, Tian Z, Dai B, Cui D, Zhang P, Ke Y, Song J. Spatiotemporal Control of Molecular Cascade Reactions by a Reconfigurable DNA Origami Domino Array. Angew Chem Int Ed Engl 2021; 61:e202116324. [PMID: 34931420 DOI: 10.1002/anie.202116324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 11/07/2022]
Abstract
Inspired by efficient biomolecular reactions in the cell, versatile DNA nanostructures have been explored for manipulating the spatial position and regulating reactions at the molecular level. Spatially controlled arrangement of molecules on the artificial scaffolds generally leads to enhanced reaction activities. Especially, the rich toolset of dynamic DNA nanostructures provides a potential route towards more sophisticated and vigorous regulation of molecular reactions. Herein, reconfigurable DNA origami domino array (DODA) as dynamic scaffolds was adopted in this work for temporal-controlled and switchable molecular cascade reactions. Dynamic regulation of the assembly of G-quadruplex, hybridization of parallel-stranded duplex and assembly of binary DNAzyme were demonstrated. Molecular cascade reactions proceed on the triggered reconfiguration of DODAs were realized, resulting in more complex, dynamic, and switchable control over the reactions.
Collapse
Affiliation(s)
- Sisi Fan
- shang hai jiao tong da xue min hang xiao qu: Shanghai Jiao Tong University, School of Electronic Information and Electrical Engineering, CHINA
| | - Bin Ji
- shang hai jiao tong da xue min hang xiao qu: Shanghai Jiao Tong University, School of Electronic Information and Electrical Engineering, CHINA
| | - Yan Liu
- shang hai jiao tong da xue min hang xiao qu: Shanghai Jiao Tong University, School of Electronic Information and Electrical Engineering, CHINA
| | - Kexuan Zou
- shang hai jiao tong da xue min hang xiao qu: Shanghai Jiao Tong University, School of Electronic Information and Electrical Engineering, CHINA
| | - Zhijin Tian
- University of Science and Technology of China, Department of Chemistry, CHINA
| | - Bin Dai
- shang hai jiao tong da xue min hang xiao qu: Shanghai Jiao Tong University, School of Electronic Information and Electrical Engineering, CHINA
| | - Daxiang Cui
- shang hai jiao tong da xue min hang xiao qu: Shanghai Jiao Tong University, School of Electronic Information and Electrical Engineering, CHINA
| | - Pengfei Zhang
- Chinese Academy of Sciences, Institute of Chemistry, CHINA
| | | | - Jie Song
- Shanghai Jiao Tong University, 800, Dongchuan Road, Minhang, 200240, Shanghai, CHINA
| |
Collapse
|
15
|
Abstract
Invention of DNA origami has transformed the fabrication and application of biological nanomaterials. In this review, we discuss DNA origami nanoassemblies according to their four fundamental mechanical properties in response to external forces: elasticity, pliability, plasticity and stability. While elasticity and pliability refer to reversible changes in structures and associated properties, plasticity shows irreversible variation in topologies. The irreversible property is also inherent in the disintegration of DNA nanoassemblies, which is manifested by its mechanical stability. Disparate DNA origami devices in the past decade have exploited the mechanical regimes of pliability, elasticity, and plasticity, among which plasticity has shown its dominating potential in biomechanical and physiochemical applications. On the other hand, the mechanical stability of the DNA origami has been used to understand the mechanics of the assembly and disassembly of DNA nano-devices. At the end of this review, we discuss the challenges and future development of DNA origami nanoassemblies, again, from these fundamental mechanical perspectives.
Collapse
Affiliation(s)
- Jiahao Ji
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44240, USA.
| | - Deepak Karna
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44240, USA.
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44240, USA.
| |
Collapse
|
16
|
Cheng Y, Zhang Y, You H. Characterization of G-Quadruplexes Folding/Unfolding Dynamics and Interactions with Proteins from Single-Molecule Force Spectroscopy. Biomolecules 2021; 11:1579. [PMID: 34827577 PMCID: PMC8615981 DOI: 10.3390/biom11111579] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022] Open
Abstract
G-quadruplexes (G4s) are stable secondary nucleic acid structures that play crucial roles in many fundamental biological processes. The folding/unfolding dynamics of G4 structures are associated with the replication and transcription regulation functions of G4s. However, many DNA G4 sequences can adopt a variety of topologies and have complex folding/unfolding dynamics. Determining the dynamics of G4s and their regulation by proteins remains challenging due to the coexistence of multiple structures in a heterogeneous sample. Here, in this mini-review, we introduce the application of single-molecule force-spectroscopy methods, such as magnetic tweezers, optical tweezers, and atomic force microscopy, to characterize the polymorphism and folding/unfolding dynamics of G4s. We also briefly introduce recent studies using single-molecule force spectroscopy to study the molecular mechanisms of G4-interacting proteins.
Collapse
Affiliation(s)
| | | | - Huijuan You
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.C.); (Y.Z.)
| |
Collapse
|
17
|
Revikumar A, Kashyap V, Palollathil A, Aravind A, Raguraman R, Kumar KMK, Vijayakumar M, Prasad TSK, Raju R. Multiple G-quadruplex binding ligand induced transcriptomic map of cancer cell lines. J Cell Commun Signal 2021; 16:129-135. [PMID: 34309794 DOI: 10.1007/s12079-021-00637-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022] Open
Abstract
The G-quadruplexes (G4s) are a class of DNA secondary structures with guanine rich DNA sequences that can fold into four stranded non-canonical structures. At the genomic level, their pivotal role is well established in DNA replication, telomerase functions, constitution of topologically associating domains, and the regulation of gene expression. Genome instability mediated by altered G4 formation and assembly has been associated with multiple disorders including cancers and neurodegenerative disorders. Multiple tools have also been developed to predict the potential G4 regions in genomes and the whole genome G4 maps are also being derived through sequencing approaches. Enrichment of G4s in the cis-regulatory elements of genes associated with tumorigenesis has accelerated the quest for identification of G4-DNA binding ligands (G4DBLs) that can selectively bind and regulate the expression of such specific genes. In this context, the analysis of G4DBL responsive transcriptome in diverse cancer cell lines is inevitable for assessment of the specificity of novel G4DBLs. Towards this, we assembled the transcripts differentially regulated by different G4DBLs and have also identified a core set of genes regulated in diverse cancer cell lines in response to 3 or more of these ligands. With the mode of action of G4DBLs towards topology shifts, folding, or disruption of G4 structure being currently visualized, we believe that this dataset will serve as a platform for assembly of G4DBL responsive transcriptome for comparative analysis of G4DBLs in multiple cancer cells based on the expression of specific cis-regulatory G4 associated genes in the future.
Collapse
Affiliation(s)
- Amjesh Revikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, India.
| | - Vivek Kashyap
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, 575018, India
| | - Akhina Palollathil
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, 575018, India
| | - Anjana Aravind
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, 575018, India
| | - Rajeswari Raguraman
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, India.,Health Science Centre, University of Oklahoma, Oklahoma City, USA
| | | | - Manavalan Vijayakumar
- Department of Surgical Oncology, Yenepoya Medical College, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | | | - Rajesh Raju
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, India. .,Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, 575018, India.
| |
Collapse
|
18
|
Karna D, Pan W, Pandey S, Suzuki Y, Mao H. Mechanochemical properties of DNA origami nanosprings revealed by force jumps in optical tweezers. NANOSCALE 2021; 13:8425-8430. [PMID: 33908965 PMCID: PMC8170849 DOI: 10.1039/d0nr08605c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
By incorporating pH responsive i-motif elements, we have constructed DNA origami nanosprings that respond to pH changes in the environment. Using an innovative force jump approach in optical tweezers, we have directly measured the spring constants and dynamic recoiling responses of the DNA nanosprings under different forces. These DNA nanosprings exhibited 3 times slower recoiling rates compared to duplex DNA backbones. In addition, we observed two distinct force regions which show different spring constants. In the entropic region below 2 pN, a spring constant of ∼0.03 pN nm-1 was obtained, whereas in the enthalpic region above 2 pN, the nanospring was 17 times stronger (0.5 pN nm-1). The force jump gave a more accurate measurement on nanospring constants compared to regular force ramping approaches, which only yielded an average spring constant in a specific force range. Compared to the reported DNA origami nanosprings with a completely different design, our nanospring is up to 50 times stiffer. The drastic increase in the spring constant and the pH responsive feature allow more robust applications of these nanosprings in many mechanobiological processes.
Collapse
Affiliation(s)
- Deepak Karna
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, USA.
| | | | | | | | | |
Collapse
|
19
|
Das P, Winnerdy FR, Maity A, Mechulam Y, Phan AT. A novel minimal motif for left-handed G-quadruplex formation. Chem Commun (Camb) 2021; 57:2527-2530. [PMID: 33690751 DOI: 10.1039/d0cc08146a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A recent study on the left-handed G-quadruplex (LHG4) DNA revealed a 12-nt minimal motif GTGGTGGTGGTG with the ability to independently form an LHG4 and to drive an adjacent sequence to LHG4 formation. Here we have identified a second LHG4-forming motif, GGTGGTGGTGTG, and determined the X-ray crystal structure of an LHG4 involving this motif. Our structural analysis indicated the role of split guanines and single thymine loops in promoting LHG4 formation.
Collapse
Affiliation(s)
- Poulomi Das
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.
| | - Fernaldo Richtia Winnerdy
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore. and NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| | - Arijit Maity
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.
| | - Yves Mechulam
- Laboratoire de Biologie Structurale de la Cellule (BIOC), Ecole Polytechnique, CNRS-UMR7654, Institut Polytechnique de Paris, Palaiseau 91128, France
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore. and NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| |
Collapse
|
20
|
Megalathan A, Wijesinghe KM, Ranson L, Dhakal S. Single-Molecule Analysis of Nanocircle-Embedded I-Motifs under Crowding. J Phys Chem B 2021; 125:2193-2201. [PMID: 33629846 DOI: 10.1021/acs.jpcb.0c09640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytosine (C)-rich regions of single-stranded DNA or RNA can fold into a tetraplex structure called i-motifs, which are typically stable under acidic pHs due to the need for protons to stabilize C-C interactions. While new studies have shown evidence for the formation of i-motifs at neutral and even physiological pH, it is not clear whether i-motifs can stably form in cells where DNA experiences topological constraint and crowding. Similarly, several studies have shown that a molecularly crowded environment promotes the formation of i-motifs at physiological pH; however, whether the intracellular crowding counteracts the topological destabilization of i-motifs is yet to be investigated. In this manuscript, using fluorescence resonance energy transfer (FRET)-based single-molecule analyses of human telomeric (hTel) i-motifs embedded in nanocircles as a proof-of-concept platform, we investigated the overall effects of crowding and topological constraint on the i-motif behavior. The smFRET analysis of the nanoassembly showed that the i-motif remains folded at pH 5.5 but unfolds at higher pHs. However, in the presence of a crowder (30% PEG 6000), i-motifs are formed at physiological pH overcoming the topological constraint imposed by the DNA nanocircles. Analysis of FRET-time traces show that the hTel sequence primarily assumes the folded state at pH ≤7.0 under crowding, but it undergoes slow conformational transitions between the folded and unfolded states at physiological pH. Our demonstration that the i-motif can form under cell-mimic crowding and topologically constrained environments may provide new insights into the potential biological roles of i-motifs and also into the design and development of i-motif-based biosensors, therapy, and other nanotechnological applications.
Collapse
Affiliation(s)
- Anoja Megalathan
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Kalani M Wijesinghe
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Leslie Ranson
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Soma Dhakal
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
21
|
Sengupta P, Bose D, Chatterjee S. The Molecular Tête-à-Tête between G-Quadruplexes and the i-motif in the Human Genome. Chembiochem 2021; 22:1517-1537. [PMID: 33355980 DOI: 10.1002/cbic.202000703] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/16/2020] [Indexed: 12/22/2022]
Abstract
G-Quadruplex (GQ) and i-motif structures are the paradigmatic examples of nonclassical tetrastranded nucleic acids having multifarious biological functions and widespread applications in therapeutics and material science. Recently, tetraplexes emerged as promising anticancer targets due to their structural robustness, gene-regulatory roles, and predominant distribution at specific loci of oncogenes. However, it is arguable whether the i-motif evolves in the complementary single-stranded region after GQ formation in its opposite strand and vice versa. In this review, we address the prerequisites and significance of the simultaneous and/or mutually exclusive formation of GQ and i-motif structures at complementary and sequential positions in duplexes in the cellular milieu. We discussed how their dynamic interplay Sets up cellular homeostasis and exacerbates carcinogenesis. The review gives insights into the spatiotemporal formation of GQ and i-motifs that could be harnessed to design different types of reporter systems and diagnostic platforms for potential bioanalytical and therapeutic intervention.
Collapse
Affiliation(s)
- Pallabi Sengupta
- Department of Biophysics, Bose Institute, Centenary Campus, P-1/12, C.I.T. Scheme VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
| | - Debopriya Bose
- Department of Biophysics, Bose Institute, Centenary Campus, P-1/12, C.I.T. Scheme VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
| | - Subhrangsu Chatterjee
- Department of Biophysics, Bose Institute, Centenary Campus, P-1/12, C.I.T. Scheme VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
| |
Collapse
|
22
|
Inoguchi S, Fukami K, Amano KI, Kitada A, Murase K. Reactivity of Zinc Cations under Spontaneous Accumulation of Hydrophobic Coexisting Cations in Hydrophobic Nanoporous Silicon. ACS OMEGA 2020; 5:26894-26901. [PMID: 33111015 PMCID: PMC7581247 DOI: 10.1021/acsomega.0c04127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
The ion enrichment behavior due to surface-induced phase separation and the concomitant phase transition of electrolyte solutions between a liquid and a solid confined within nanopores of porous silicon is examined using concentrated aqueous solutions. We performed open-circuit potential measurements and differential scanning calorimetry (DSC) while varying the concentration of aqueous tetraethylammonium chloride (TEACl) solution. Open-circuit potential measurements revealed that the local OH- concentration within the nanopores increases as the bulk TEACl concentration increases. DSC measurements indicated that TEA+ cations are enriched within the nanopores and an extremely high concentration of TEA+ remarkably increases the local OH- concentration. This increase in the local pH should realize the selective precipitation of metal hydroxides within the nanopores. However, such precipitation was not observed in our investigations using aqueous solutions containing zinc cations. The experimental results suggest that ionic species within the nanopores of porous silicon are more stable than those in a bulk solution due to the formation of ion pairs with enhanced stability as well as kinetic factors that increase the activation energy for precipitation.
Collapse
Affiliation(s)
- Shota Inoguchi
- Department
of Materials Science and Engineering, Kyoto
University, Kyoto 606-8501, Japan
| | - Kazuhiro Fukami
- Department
of Materials Science and Engineering, Kyoto
University, Kyoto 606-8501, Japan
| | - Ken-ichi Amano
- Faculty
of Agriculture, Meijo University, Nagoya, Aichi 468-8502, Japan
| | - Atsushi Kitada
- Department
of Materials Science and Engineering, Kyoto
University, Kyoto 606-8501, Japan
| | - Kuniaki Murase
- Department
of Materials Science and Engineering, Kyoto
University, Kyoto 606-8501, Japan
| |
Collapse
|
23
|
Mao X, Liu M, Yan L, Deng M, Li F, Li M, Wang F, Li J, Wang L, Tian Y, Fan C, Zuo X. Programming Biomimetically Confined Aptamers with DNA Frameworks. ACS NANO 2020; 14:8776-8783. [PMID: 32484652 DOI: 10.1021/acsnano.0c03362] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Active sites of proteins are generally encapsulated within three-dimensional peptide scaffolds that provide the molecular-scale confinement microenvironment. Nevertheless, the ability to tune thermodynamic stability in biomimetic molecular confinement relies on the macromolecular crowding effect of lack of stoichiometry and reconfigurability. Here, we report a framework nucleic acid (FNA)-based strategy to increase thermodynamic stability of aptamers. We demonstrate that the molecular-scale confinement increases the thermodynamic stability of aptamers via facilitated folding kinetics, which is confirmed by the single-molecule FRET (smFRET). Unfavorable conformations of aptamers are restricted as revealed by the Monte Carlo simulation. The binding affinity of the DNA framework-confined aptamer is improved by ∼3-fold. With a similar strategy we improve the catalytic activity of hemin-binding aptamer. Our approach thus shows high potential for designing protein-mimicking DNA nanostructures with enhanced binding affinity and catalytic activity for biosensing and biomedical engineering.
Collapse
Affiliation(s)
- Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Mengmeng Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Lei Yan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Mengying Deng
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Fan Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Min Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fei Wang
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University,, Shanghai 200240, China
| | - Jiang Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Chunhai Fan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University,, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University,, Shanghai 200240, China
| |
Collapse
|
24
|
Jonchhe S, Pandey S, Karna D, Pokhrel P, Cui Y, Mishra S, Sugiyama H, Endo M, Mao H. Duplex DNA Is Weakened in Nanoconfinement. J Am Chem Soc 2020; 142:10042-10049. [PMID: 32383870 PMCID: PMC7295077 DOI: 10.1021/jacs.0c01978] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
For proteins and DNA secondary structures such as G-quadruplexes and i-motifs, nanoconfinement can facilitate their folding and increase structural stabilities. However, the properties of the physiologically prevalent B-DNA duplex have not been elucidated inside the nanocavity. Using a 17-bp DNA duplex in the form of a hairpin stem, here, we probed folding and unfolding transitions of the hairpin DNA duplex inside a DNA origami nanocavity. Compared to the free solution, the DNA hairpin inside the nanocage with a 15 × 15 nm cross section showed a drastic decrease in mechanical (20 → 9 pN) and thermodynamic (25 → 6 kcal/mol) stabilities. Free energy profiles revealed that the activation energy of unzipping the hairpin DNA duplex decreased dramatically (28 → 8 kcal/mol), whereas the transition state moved closer to the unfolded state inside the nanocage. All of these indicate that nanoconfinement weakens the stability of the hairpin DNA duplex to an unexpected extent. In a DNA hairpin made of a stem that contains complementary telomeric G-quadruplex (GQ) and i-motif (iM) forming sequences, formation of the Hoogsteen base pairs underlining the GQ or iM is preferred over the Watson-Crick base pairs in the DNA hairpin. These results shed light on the behavior of DNA in nanochannels, nanopores, or nanopockets of various natural or synthetic machineries. It also elucidates an alternative pathway to populate noncanonical DNA over B-DNA in the cellular environment where the nanocavity is abundant.
Collapse
Affiliation(s)
- Sagun Jonchhe
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Shankar Pandey
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Deepak Karna
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Pravin Pokhrel
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Yunxi Cui
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Shubham Mishra
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell–Material Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell–Material Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Masayuki Endo
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell–Material Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Hanbin Mao
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
25
|
Gavriil V, Chatzichristidi M, Christofilos D, Kourouklis GA, Kollia Z, Bakalis E, Cefalas AC, Sarantopoulou E. Entropy and Random Walk Trails Water Confinement and Non-Thermal Equilibrium in Photon-Induced Nanocavities. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1101. [PMID: 32498312 PMCID: PMC7353189 DOI: 10.3390/nano10061101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 01/18/2023]
Abstract
Molecules near surfaces are regularly trapped in small cavitations. Molecular confinement, especially water confinement, shows intriguing and unexpected behavior including surface entropy adjustment; nevertheless, observations of entropic variation during molecular confinement are scarce. An experimental assessment of the correlation between surface strain and entropy during molecular confinement in tiny crevices is difficult because strain variances fall in the nanometer scale. In this work, entropic variations during water confinement in 2D nano/micro cavitations were observed. Experimental results and random walk simulations of water molecules inside different size nanocavitations show that the mean escaping time of molecular water from nanocavities largely deviates from the mean collision time of water molecules near surfaces, crafted by 157 nm vacuum ultraviolet laser light on polyacrylamide matrixes. The mean escape time distribution of a few molecules indicates a non-thermal equilibrium state inside the cavity. The time differentiation inside and outside nanocavities reveals an additional state of ordered arrangements between nanocavities and molecular water ensembles of fixed molecular length near the surface. The configured number of microstates correctly counts for the experimental surface entropy deviation during molecular water confinement. The methodology has the potential to identify confined water molecules in nanocavities with life science importance.
Collapse
Affiliation(s)
- Vassilios Gavriil
- National Hellenic Research Foundation, Theoretical and Physical Chemistry Institute, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (V.G.); (Z.K.); (E.B.); (A.-C.C.)
- School of Chemical Engineering and Physics Laboratory, Faculty of Engineering, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (D.C.); (G.A.K.)
| | - Margarita Chatzichristidi
- Department of Chemistry, Laboratory of Industrial Chemistry, Panepistimiopolis Zografou, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| | - Dimitrios Christofilos
- School of Chemical Engineering and Physics Laboratory, Faculty of Engineering, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (D.C.); (G.A.K.)
| | - Gerasimos A. Kourouklis
- School of Chemical Engineering and Physics Laboratory, Faculty of Engineering, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (D.C.); (G.A.K.)
| | - Zoe Kollia
- National Hellenic Research Foundation, Theoretical and Physical Chemistry Institute, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (V.G.); (Z.K.); (E.B.); (A.-C.C.)
| | - Evangelos Bakalis
- National Hellenic Research Foundation, Theoretical and Physical Chemistry Institute, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (V.G.); (Z.K.); (E.B.); (A.-C.C.)
- Dipartimento di Chimica “G. Giamician” University di Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Alkiviadis-Constantinos Cefalas
- National Hellenic Research Foundation, Theoretical and Physical Chemistry Institute, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (V.G.); (Z.K.); (E.B.); (A.-C.C.)
| | - Evangelia Sarantopoulou
- National Hellenic Research Foundation, Theoretical and Physical Chemistry Institute, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (V.G.); (Z.K.); (E.B.); (A.-C.C.)
| |
Collapse
|
26
|
Oliva R, Banerjee S, Cinar H, Ehrt C, Winter R. Alteration of Protein Binding Affinities by Aqueous Two-Phase Systems Revealed by Pressure Perturbation. Sci Rep 2020; 10:8074. [PMID: 32415277 PMCID: PMC7228918 DOI: 10.1038/s41598-020-65053-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/21/2020] [Indexed: 01/29/2023] Open
Abstract
Interactions between proteins and ligands, which are fundamental to many biochemical processes essential to life, are mostly studied at dilute buffer conditions. The effects of the highly crowded nature of biological cells and the effects of liquid-liquid phase separation inducing biomolecular droplet formation as a means of membrane-less compartmentalization have been largely neglected in protein binding studies. We investigated the binding of a small ligand (ANS) to one of the most multifunctional proteins, bovine serum albumin (BSA) in an aqueous two-phase system (ATPS) composed of PEG and Dextran. Also, aiming to shed more light on differences in binding mode compared to the neat buffer data, we examined the effect of high hydrostatic pressure (HHP) on the binding process. We observe a marked effect of the ATPS on the binding characteristics of BSA. Not only the binding constants change in the ATPS system, but also the integrity of binding sites is partially lost, which is most likely due to soft enthalpic interactions of the BSA with components in the dense droplet phase of the ATPS. Using pressure modulation, differences in binding sites could be unravelled by their different volumetric and hydration properties. Regarding the vital biological relevance of the study, we notice that extreme biological environments, such as HHP, can markedly affect the binding characteristics of proteins. Hence, organisms experiencing high-pressure stress in the deep sea need to finely adjust the volume changes of their biochemical reactions in cellulo.
Collapse
Affiliation(s)
- Rosario Oliva
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany.
| | - Sudeshna Banerjee
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Hasan Cinar
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Christiane Ehrt
- Medicinal Chemistry - Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany.
| |
Collapse
|
27
|
Fu J, Wang Z, Liang XH, Oh SW, St Iago-McRae E, Zhang T. DNA-Scaffolded Proximity Assembly and Confinement of Multienzyme Reactions. Top Curr Chem (Cham) 2020; 378:38. [PMID: 32248317 PMCID: PMC7127875 DOI: 10.1007/s41061-020-0299-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/07/2020] [Indexed: 12/14/2022]
Abstract
Cellular functions rely on a series of organized and regulated multienzyme cascade reactions. The catalytic efficiencies of these cascades depend on the precise spatial organization of the constituent enzymes, which is optimized to facilitate substrate transport and regulate activities. Mimicry of this organization in a non-living, artificial system would be very useful in a broad range of applications—with impacts on both the scientific community and society at large. Self-assembled DNA nanostructures are promising applications to organize biomolecular components into prescribed, multidimensional patterns. In this review, we focus on recent progress in the field of DNA-scaffolded assembly and confinement of multienzyme reactions. DNA self-assembly is exploited to build spatially organized multienzyme cascades with control over their relative distance, substrate diffusion paths, compartmentalization and activity actuation. The combination of addressable DNA assembly and multienzyme cascades can deliver breakthroughs toward the engineering of novel synthetic and biomimetic reactors.
Collapse
Affiliation(s)
- Jinglin Fu
- Department of Chemistry, Rutgers University-Camden, Camden, NJ, 08102, USA. .,Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ, 08102, USA.
| | - Zhicheng Wang
- Department of Chemistry, Rutgers University-Camden, Camden, NJ, 08102, USA.,Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ, 08102, USA
| | - Xiao Hua Liang
- Department of Chemistry, Rutgers University-Camden, Camden, NJ, 08102, USA
| | - Sung Won Oh
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ, 08102, USA
| | - Ezry St Iago-McRae
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ, 08102, USA
| | - Ting Zhang
- Department of Chemistry, Rutgers University-Camden, Camden, NJ, 08102, USA
| |
Collapse
|
28
|
Tadakuma H, Kitagawa D. Overview of the "biophysics in nano-space" session at the 57th annual meeting of the biophysical society of Japan. Biophys Rev 2020; 12:283-285. [PMID: 32056113 PMCID: PMC7242538 DOI: 10.1007/s12551-020-00646-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Hisashi Tadakuma
- Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, People's Republic of China.
| | - Daiju Kitagawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
29
|
Polley P, Gupta S, Singh R, Pradhan A, Basu SM, V. R, Yadava SK, Giri J. Protein–Sugar-Glass Nanoparticle Platform for the Development of Sustained-Release Protein Depots by Overcoming Protein Delivery Challenges. Mol Pharm 2019; 17:284-300. [DOI: 10.1021/acs.molpharmaceut.9b01022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Poulomi Polley
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Shivam Gupta
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8654, Japan
| | - Ruby Singh
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Arpan Pradhan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Suparna Mercy Basu
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Remya V.
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Sunil Kumar Yadava
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| |
Collapse
|
30
|
Fu J, Oh SW, Monckton K, Arbuckle-Keil G, Ke Y, Zhang T. Biomimetic Compartments Scaffolded by Nucleic Acid Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900256. [PMID: 30884139 DOI: 10.1002/smll.201900256] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/19/2019] [Indexed: 05/28/2023]
Abstract
The behaviors of living cells are governed by a series of regulated and confined biochemical reactions. The design and successful construction of synthetic cellular reactors can be useful in a broad range of applications that will bring significant scientific and economic impact. Over the past few decades, DNA self-assembly has enabled the design and fabrication of sophisticated 1D, 2D, and 3D nanostructures, and is applied to organizing a variety of biomolecular components into prescribed 2D and 3D patterns. In this Concept, the recent and exciting progress in DNA-scaffolded compartmentalizations and their applications in enzyme encapsulation, lipid membrane assembly, artificial transmembrane nanopores, and smart drug delivery are in focus. Taking advantage of these features promises to deliver breakthroughs toward the attainment of new synthetic and biomimetic reactors.
Collapse
Affiliation(s)
- Jinglin Fu
- Department of Chemistry and Center for Computational and Integrative Biology, Rutgers University-Camden, 315 Penn Street, Camden, NJ, 08102, USA
| | - Sung Won Oh
- Department of Chemistry and Center for Computational and Integrative Biology, Rutgers University-Camden, 315 Penn Street, Camden, NJ, 08102, USA
| | - Kristin Monckton
- Department of Chemistry and Center for Computational and Integrative Biology, Rutgers University-Camden, 315 Penn Street, Camden, NJ, 08102, USA
| | - Georgia Arbuckle-Keil
- Department of Chemistry and Center for Computational and Integrative Biology, Rutgers University-Camden, 315 Penn Street, Camden, NJ, 08102, USA
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Ting Zhang
- Department of Chemistry and Center for Computational and Integrative Biology, Rutgers University-Camden, 315 Penn Street, Camden, NJ, 08102, USA
| |
Collapse
|
31
|
Abstract
DNA has played an early and powerful role in the development of bottom-up nanotechnologies, not least because of DNA's precise, predictable, and controllable properties of assembly on the nanometer scale. Watson-Crick complementarity has been used to build complex 2D and 3D architectures and design a number of nanometer-scale systems for molecular computing, transport, motors, and biosensing applications. Most of such devices are built with classical B-DNA helices and involve classical A-T/U and G-C base pairs. However, in addition to the above components underlying the iconic double helix, a number of alternative pairing schemes of nucleobases are known. This review focuses on two of these noncanonical classes of DNA helices: G-quadruplexes and the i-motif. The unique properties of these two classes of DNA helix have been utilized toward some remarkable constructions and applications: G-wires; nanostructures such as DNA origami; reconfigurable structures and nanodevices; the formation and utilization of hemin-utilizing DNAzymes, capable of generating varied outputs from biosensing nanostructures; composite nanostructures made up of DNA as well as inorganic materials; and the construction of nanocarriers that show promise for the therapeutics of diseases.
Collapse
Affiliation(s)
- Jean-Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China.,ARNA Laboratory , Université de Bordeaux, Inserm U 1212, CNRS UMR5320, IECB , Pessac 33600 , France.,Institute of Biophysics of the CAS , v.v.i., Královopolská 135 , 612 65 Brno , Czech Republic
| | - Dipankar Sen
- Department of Molecular Biology & Biochemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada.,Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada
| |
Collapse
|