1
|
Tang Y, Pu M, Lei M. Cyclopentadienone Diphosphine Ruthenium Complex: A Designed Catalyst for the Hydrogenation of Carbon Dioxide to Methanol. J Org Chem 2024; 89:2431-2439. [PMID: 38306607 DOI: 10.1021/acs.joc.3c02438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
The development of homogeneous metal catalysts for the efficient hydrogenation of carbon dioxide (CO2) into methanol (CH3OH) remains a significant challenge. In this study, a new cyclopentadienone diphosphine ligand (CPDDP ligand) was designed, which could coordinate with ruthenium to form a Ru-CPDDP complex to efficiently catalyze the CO2-to-methanol process using dihydrogen (H2) as the hydrogen resource based on density functional theory (DFT) mechanistic investigation. This process consists of three catalytic cycles, stage I (the hydrogenation of CO2 to HCOOH), stage II (the hydrogenation of HCOOH to HCHO), and stage III (the hydrogenation of HCHO to CH3OH). The calculated free energy barriers for the hydrogen transfer (HT) steps of stage I, stage II, and stage III are 7.5, 14.5, and 3.5 kcal/mol, respectively. The most favorable pathway of the dihydrogen activation (DA) steps of three stages to regenerate catalytic species is proposed to be the formate-assisted DA step with a free energy barrier of 10.4 kcal/mol. The calculated results indicate that the designed Ru-CPDDP and Ru-CPDDPEt complexes could catalyze hydrogenation of CO2 to CH3OH (HCM) under mild conditions and that the transition-metal owning designed CPDDP ligand framework be one kind of promising potential efficient catalysts for HCM.
Collapse
Affiliation(s)
- Yanhui Tang
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, P.R. China
| | - Min Pu
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|
2
|
Li X, Guan J, Shen C, Yu Z, Zheng J. Direct observation of conformations of a high-mobility n-type low-bandgap copolymer in solutions and solid films. J Chem Phys 2023; 158:064202. [PMID: 36792510 DOI: 10.1063/5.0134807] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The aggregation morphologies of conjugated polymers in solutions and solid films are important for their optoelectronic applications. Due to the amorphous state of the polymers, it remains a great challenge to determine their conformations in either liquids or solids. Herein, a ps/fs synchronized 2D IR technique is applied to investigate the molecular conformations of a high-mobility n-type low-bandgap copolymer, N2200, dissolved in CHCl3 and CCl4, and in solid films cast from both solutions by the vibrational cross-angle method. In CCl4, the polymer forms more aggregates and folds more and the backbone dihedral angle of C-C(NDI)/C-S(Thiophene) of its average conformation is about 10° more distorted than that in CHCl3 and the most stable conformation for a free molecule. Anti-intuitively, the solid films cast from both solutions have the same molecular conformation, and the conformation is similar to that of the polar CHCl3 rather than the conformation of the less polar CCl4. The results imply that the interaction between the polymer backbones is probably stronger than its interaction with CCl4, which can naturally guide the rearrangement of polymer chains during the evaporation of solvent molecules. This work also implies that the balance and competition between the polymer/polymer interaction and the polymer/solvent interaction seem to be the dominant factors responsible for what morphology can form in a solid film cast from solution. It is not always true that different molecular conformations must exist in solid films grown from different solutions with different polarity or different extents of aggregates with different conformations.
Collapse
Affiliation(s)
- Xinmao Li
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Jianxin Guan
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Chengzhen Shen
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Zhihao Yu
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Junrong Zheng
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Yaacoub L, Dutta I, Werghi B, Chen BWJ, Zhang J, Hamad EA, Ling Ang EP, Pump E, Sedjerari AB, Huang KW, Basset JM. Formic Acid Dehydrogenation via an Active Ruthenium Pincer Catalyst Immobilized on Tetra-Coordinated Aluminum Hydride Species Supported on Fibrous Silica Nanospheres. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Layal Yaacoub
- Division of Physical Science and Engineering and KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Indranil Dutta
- Division of Physical Science and Engineering and KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Baraa Werghi
- Division of Physical Science and Engineering and KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Benjamin W. J. Chen
- Agency for Science, Technology, and Research, Institute of High Performance Computing, 1 Fusionopolis Way, #16−16 Connexis, Singapore 138632, Singapore
| | - Jia Zhang
- Agency for Science, Technology, and Research, Institute of High Performance Computing, 1 Fusionopolis Way, #16−16 Connexis, Singapore 138632, Singapore
| | - Edy Abou Hamad
- Imaging and Characterization Department, KAUST Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Eleanor Pei Ling Ang
- Division of Physical Science and Engineering and KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Eva Pump
- Division of Physical Science and Engineering and KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Anissa Bendjeriou Sedjerari
- Division of Physical Science and Engineering and KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Kuo-Wei Huang
- Division of Physical Science and Engineering and KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Agency for Science, Technology, and Research, Institute of Materials Research and Engineering and Institute of Sustainability for Chemicals, Energy and Environment, Singapore 138634, Singapore
| | - Jean-Marie Basset
- Division of Physical Science and Engineering and KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Institut de Recherche de Chimie Paris, 11 Rue Pierre et Marie Curie, Cedex 05 75231, Paris
| |
Collapse
|
4
|
Panaitescu DM, Stoian S, Frone AN, Vlăsceanu GM, Baciu DD, Gabor AR, Nicolae CA, Radiţoiu V, Alexandrescu E, Căşărică A, Damian C, Stanescu P. Nanofibrous scaffolds based on bacterial cellulose crosslinked with oxidized sucrose. Int J Biol Macromol 2022; 221:381-397. [PMID: 36058396 DOI: 10.1016/j.ijbiomac.2022.08.189] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022]
Abstract
In this work, oxidized sucrose (OS), which is a safe bio-based and non-toxic polyaldehyde, was used as a crosslinker in defibrillated bacterial cellulose (BC) sponges obtained by freeze-drying. For mimicking the proteins' crosslinking, BC was first modified with an aminosilane to partially replace the OH groups on the BC surface with more reactive amino groups. Further, the aminosilane-grafted bacterial cellulose (BCA) was crosslinked with OS in different concentrations and thermally cured. Functionalized bacterial celluloses showed a good thermal stability, comparable to that of unmodified cellulose and much improved mechanical properties. A threefold increase in the compression strength was obtained for the BCA scaffold after crosslinking and curing. This was correlated with the uniform pore structure emphasized by the micro-CT and SEM analyses. The OS-crosslinked BCA scaffolds were not cytotoxic and showed a porosity of around 80 %, which was almost 100 % open porosity. This study shows that the crosslinking of aminated BC scaffolds with OS allows the obtaining of 3D cellulose structures with good mechanical properties and high porosity, suitable for soft tissue engineering. The results recommend this new method as an innovative approach to obtaining biomaterial scaffolds that mimic the natural extracellular matrix.
Collapse
Affiliation(s)
- Denis Mihaela Panaitescu
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, 060021 Bucharest, Romania.
| | - Sergiu Stoian
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Adriana Nicoleta Frone
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | | | - Dora Domnica Baciu
- Cantacuzino National Medical-Military Institute for Research and Development, 103 Spl. Independentei, 050096 Bucharest, Romania
| | - Augusta Raluca Gabor
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Cristian Andi Nicolae
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Valentin Radiţoiu
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Elvira Alexandrescu
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Angela Căşărică
- National Institute for Chemical - Pharmaceutical Research and Development, 112 Calea Vitan, 031299 Bucharest, Romania
| | - Celina Damian
- University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Paul Stanescu
- University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| |
Collapse
|
5
|
Fan C, Jiang X, Mostafavi A. A network percolation-based contagion model of flood propagation and recession in urban road networks. Sci Rep 2020; 10:13481. [PMID: 32778733 PMCID: PMC7417581 DOI: 10.1038/s41598-020-70524-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/30/2020] [Indexed: 11/20/2022] Open
Abstract
In this study, we propose a contagion model as a simple and powerful mathematical approach for predicting the spatial spread and temporal evolution of the onset and recession of floodwaters in urban road networks. A network of urban roads resilient to flooding events is essential for the provision of public services and for emergency response. The spread of floodwaters in urban networks is a complex spatial-temporal phenomenon. This study presents a mathematical contagion model to describe the spatial-temporal spread and recession process of floodwaters in urban road networks. The evolution of floods within networks can be captured based on three macroscopic characteristics-flood propagation rate ([Formula: see text]), flood incubation rate ([Formula: see text]), and recovery rate ([Formula: see text])-in a system of ordinary differential equations analogous to the Susceptible-Exposed-Infected-Recovered (SEIR) model. We integrated the flood contagion model with the network percolation process in which the probability of flooding of a road segment depends on the degree to which the nearby road segments are flooded. The application of the proposed model is verified using high-resolution historical data of road flooding in Harris County during Hurricane Harvey in 2017. The results show that the model can monitor and predict the fraction of flooded roads over time. Additionally, the proposed model can achieve 90% precision and recall for the spatial spread of the flooded roads at the majority of tested time intervals. The findings suggest that the proposed mathematical contagion model offers great potential to support emergency managers, public officials, citizens, first responders, and other decision-makers for flood forecast in road networks.
Collapse
Affiliation(s)
- Chao Fan
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, 77843, USA.
| | - Xiangqi Jiang
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Ali Mostafavi
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
6
|
Guan C, Pan Y, Zhang T, Ajitha MJ, Huang K. An Update on Formic Acid Dehydrogenation by Homogeneous Catalysis. Chem Asian J 2020; 15:937-946. [DOI: 10.1002/asia.201901676] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/21/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Chao Guan
- KAUST Catalysis Center and Division of Physical Sciences and EngineeringKing Abdullah University of Science and Technology Thuwal 23955-6900 Saudi Arabia
| | - Yupeng Pan
- KAUST Catalysis Center and Division of Physical Sciences and EngineeringKing Abdullah University of Science and Technology Thuwal 23955-6900 Saudi Arabia
- Shenzhen Grubbs InstituteSouthern University of Science and Technology (SUSTech) Shenzhen 518055 P. R. China
| | - Tonghuan Zhang
- KAUST Catalysis Center and Division of Physical Sciences and EngineeringKing Abdullah University of Science and Technology Thuwal 23955-6900 Saudi Arabia
- Lab of Computational Chemistry and Drug Design State Key Laboratory of Chemical OncogenomicsPeking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Manjaly J. Ajitha
- KAUST Catalysis Center and Division of Physical Sciences and EngineeringKing Abdullah University of Science and Technology Thuwal 23955-6900 Saudi Arabia
| | - Kuo‐Wei Huang
- KAUST Catalysis Center and Division of Physical Sciences and EngineeringKing Abdullah University of Science and Technology Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
7
|
Zhuo Q, Zhang H, Ding L, Lin J, Zhou X, Hua Y, Zhu J, Xia H. Rhodapentalenes: Pincer Complexes with Internal Aromaticity. iScience 2019; 19:1214-1224. [PMID: 31551198 PMCID: PMC6831826 DOI: 10.1016/j.isci.2019.08.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/08/2019] [Accepted: 08/16/2019] [Indexed: 11/15/2022] Open
Abstract
Pincer complexes are a remarkably versatile family benefited from their stability, diversity, and tunability. Many of them contain aromatic organic rings at the periphery, and aromaticity plays an important role in their stability and properties, whereas their metallacyclic cores are not aromatic. Herein, we report rhodapentalenes, which can be viewed as pincer complexes in which the metallacyclic cores exhibit considerable aromatic character. Rhodapentalenes show good thermal stability, although the rhodium-carbon bonds in such compounds are fragile. Experimental and computational studies suggest that the stabilization of rigid CCC pincer architectures together with an intrinsic aromaticity is vital for these metallacyclic rhodium species. Dearomatization-aromatization reactions, corresponding to metal-ligand cooperation of classical aromatic pincer complexes, were observed in this system. These findings suggest a new concept for pincer chemistry, the internal aromaticity involving metal d-orbitals, which would be useful for exploiting the nature of construction motif and inspire further applications.
Collapse
Affiliation(s)
- Qingde Zhuo
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Linting Ding
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jianfeng Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaoxi Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuhui Hua
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
8
|
Kassie AA, Duan P, Gray MB, Schmidt-Rohr K, Woodward PM, Wade CR. Synthesis and Reactivity of Zr MOFs Assembled from PNNNP-Ru Pincer Complexes. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00482] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Abebu A. Kassie
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Pu Duan
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Matthew B. Gray
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Klaus Schmidt-Rohr
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Patrick M. Woodward
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Casey R. Wade
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
9
|
Li H, Gonçalves TP, Lupp D, Huang KW. PN3(P)-Pincer Complexes: Cooperative Catalysis and Beyond. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04495] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Huaifeng Li
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Théo P. Gonçalves
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Daniel Lupp
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Kuo-Wei Huang
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|