1
|
Shimizu N, Shiraishi H, Hanada T. Zebrafish as a Useful Model System for Human Liver Disease. Cells 2023; 12:2246. [PMID: 37759472 PMCID: PMC10526867 DOI: 10.3390/cells12182246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Liver diseases represent a significant global health challenge, thereby necessitating extensive research to understand their intricate complexities and to develop effective treatments. In this context, zebrafish (Danio rerio) have emerged as a valuable model organism for studying various aspects of liver disease. The zebrafish liver has striking similarities to the human liver in terms of structure, function, and regenerative capacity. Researchers have successfully induced liver damage in zebrafish using chemical toxins, genetic manipulation, and other methods, thereby allowing the study of disease mechanisms and the progression of liver disease. Zebrafish embryos or larvae, with their transparency and rapid development, provide a unique opportunity for high-throughput drug screening and the identification of potential therapeutics. This review highlights how research on zebrafish has provided valuable insights into the pathological mechanisms of human liver disease.
Collapse
Affiliation(s)
- Nobuyuki Shimizu
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan;
| | | | - Toshikatsu Hanada
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan;
| |
Collapse
|
2
|
Chung C, Kudchodkar SB, Chung CN, Park YK, Xu Z, Pardi N, Abdel-Mohsen M, Muthumani K. Expanding the Reach of Monoclonal Antibodies: A Review of Synthetic Nucleic Acid Delivery in Immunotherapy. Antibodies (Basel) 2023; 12:46. [PMID: 37489368 PMCID: PMC10366852 DOI: 10.3390/antib12030046] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/26/2023] Open
Abstract
Harnessing the immune system to combat disease has revolutionized medical treatment. Monoclonal antibodies (mAbs), in particular, have emerged as important immunotherapeutic agents with clinical relevance in treating a wide range of diseases, including allergies, autoimmune diseases, neurodegenerative disorders, cancer, and infectious diseases. These mAbs are developed from naturally occurring antibodies and target specific epitopes of single molecules, minimizing off-target effects. Antibodies can also be designed to target particular pathogens or modulate immune function by activating or suppressing certain pathways. Despite their benefit for patients, the production and administration of monoclonal antibody therapeutics are laborious, costly, and time-consuming. Administration often requires inpatient stays and repeated dosing to maintain therapeutic levels, limiting their use in underserved populations and developing countries. Researchers are developing alternate methods to deliver monoclonal antibodies, including synthetic nucleic acid-based delivery, to overcome these limitations. These methods allow for in vivo production of monoclonal antibodies, which would significantly reduce costs and simplify administration logistics. This review explores new methods for monoclonal antibody delivery, including synthetic nucleic acids, and their potential to increase the accessibility and utility of life-saving treatments for several diseases.
Collapse
Affiliation(s)
| | | | - Curtis N Chung
- GeneOne Life Science, Inc., Seoul 04500, Republic of Korea
| | - Young K Park
- GeneOne Life Science, Inc., Seoul 04500, Republic of Korea
| | - Ziyang Xu
- Massachusetts General Hospital, Harvard University, Boston, MA 02114, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Kar Muthumani
- GeneOne Life Science, Inc., Seoul 04500, Republic of Korea
| |
Collapse
|
3
|
Choo JJY, McMillan CLD, Young PR, Muller DA. Microarray patches: scratching the surface of vaccine delivery. Expert Rev Vaccines 2023; 22:937-955. [PMID: 37846657 DOI: 10.1080/14760584.2023.2270598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
INTRODUCTION Microneedles are emerging as a promising technology for vaccine delivery, with numerous advantages over traditional needle and syringe methods. Preclinical studies have demonstrated the effectiveness of MAPs in inducing robust immune responses over traditional needle and syringe methods, with extensive studies using vaccines targeted against different pathogens in various animal models. Critically, the clinical trials have demonstrated safety, immunogenicity, and patient acceptance for MAP-based vaccines against influenza, measles, rubella, and SARS-CoV-2. AREAS COVERED This review provides a comprehensive overview of the different types of microarray patches (MAPs) and analyses of their applications in preclinical and clinical vaccine delivery settings. This review also covers additional considerations for microneedle-based vaccination, including adjuvants that are compatible with MAPs, patient safety and factors for global vaccination campaigns. EXPERT OPINION MAP vaccine delivery can potentially be a game-changer for vaccine distribution and coverage in both high-income and low- and middle-income countries. For MAPs to reach this full potential, many critical hurdles must be overcome, such as large-scale production, regulatory compliance, and adoption by global health authorities. However, given the considerable strides made in recent years by MAP developers, it may be possible to see the first MAP-based vaccines in use within the next 5 years.
Collapse
Affiliation(s)
- Jovin J Y Choo
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Christopher L D McMillan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Paul R Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - David A Muller
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
4
|
Cao Y, Hayashi CTH, Zavala F, Tripathi AK, Simonyan H, Young CN, Clark LC, Usuda Y, Van Parys JM, Kumar N. Effective Functional Immunogenicity of a DNA Vaccine Combination Delivered via In Vivo Electroporation Targeting Malaria Infection and Transmission. Vaccines (Basel) 2022; 10:1134. [PMID: 35891298 PMCID: PMC9323668 DOI: 10.3390/vaccines10071134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Plasmodium falciparum circumsporozoite protein (PfCSP) and Pfs25 are leading candidates for the development of pre-erythrocytic and transmission-blocking vaccines (TBV), respectively. Although considerable progress has been made in developing PfCSP- and Pfs25-based vaccines, neither have elicited complete protection or transmission blocking in clinical trials. The combination of antigens targeting various life stages is an alternative strategy to develop a more efficacious malaria vaccine. In this study, female and male mice were immunized with DNA plasmids encoding PfCSP and Pfs25, administered alone or in combination via intramuscular in vivo electroporation (EP). Antigen-specific antibodies were analyzed for antibody titers, avidity and isotype by ELISA. Immune protection against sporozoite challenge, using transgenic P. berghei expressing PfCSP and a GFP-luciferase fusion protein (PbPfCSP-GFP/Luc), was assessed by in vivo bioluminescence imaging and blood-stage parasite growth. Transmission reducing activity (TRA) was evaluated in standard membrane feeding assays (SMFA). High levels of PfCSP- and Pfs25-specific antibodies were induced in mice immunized with either DNA vaccine alone or in combination. No difference in antibody titer and avidity was observed for both PfCSP and Pfs25 between the single DNA and combined DNA immunization groups. When challenged by PbPfCSP-GFP/Luc sporozoites, mice immunized with PfCSP alone or combined with Pfs25 revealed significantly reduced liver-stage parasite loads as compared to mice immunized with Pfs25, used as a control. Furthermore, parasite liver loads were negatively correlated with PfCSP-specific antibody levels. When evaluating TRA, we found that immunization with Pfs25 alone or in combination with PfCSP elicited comparable significant transmission reduction. Our studies reveal that the combination of PfCSP and Pfs25 DNAs into a vaccine delivered by in vivo EP in mice does not compromise immunogenicity, infection protection and transmission reduction when compared to each DNA vaccine individually, and provide support for further evaluation of this DNA combination vaccine approach in larger animals and clinical trials.
Collapse
Affiliation(s)
- Yi Cao
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA; (Y.C.); (C.T.H.H.); (L.C.C.); (Y.U.); (J.M.V.P.)
| | - Clifford T. H. Hayashi
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA; (Y.C.); (C.T.H.H.); (L.C.C.); (Y.U.); (J.M.V.P.)
| | - Fidel Zavala
- Department of Molecular Microbiology & Immunology, Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; (F.Z.); (A.K.T.)
| | - Abhai K. Tripathi
- Department of Molecular Microbiology & Immunology, Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; (F.Z.); (A.K.T.)
| | - Hayk Simonyan
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA; (H.S.); (C.N.Y.)
| | - Colin N. Young
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA; (H.S.); (C.N.Y.)
| | - Leor C. Clark
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA; (Y.C.); (C.T.H.H.); (L.C.C.); (Y.U.); (J.M.V.P.)
| | - Yukari Usuda
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA; (Y.C.); (C.T.H.H.); (L.C.C.); (Y.U.); (J.M.V.P.)
| | - Jacob M. Van Parys
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA; (Y.C.); (C.T.H.H.); (L.C.C.); (Y.U.); (J.M.V.P.)
| | - Nirbhay Kumar
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA; (Y.C.); (C.T.H.H.); (L.C.C.); (Y.U.); (J.M.V.P.)
| |
Collapse
|
5
|
Affiliation(s)
- Paul Munson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
6
|
Chung H, Kim EA, Chang J. A "Prime and Deploy" Strategy for Universal Influenza Vaccine Targeting Nucleoprotein Induces Lung-Resident Memory CD8 T cells. Immune Netw 2021; 21:e28. [PMID: 34522441 PMCID: PMC8410988 DOI: 10.4110/in.2021.21.e28] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 01/31/2023] Open
Abstract
Lung-resident memory T cells (TRM) play an essential role in protecting against pulmonary virus infection. Parenteral administration of DNA vaccine is generally not sufficient to induce lung CD8 TRM cells. This study investigates whether intramuscularly administered DNA vaccine expressing the nucleoprotein (NP) induces lung TRM cells and protects against the influenza B virus. The results show that DNA vaccination poorly generates lung TRM cells and massive secondary effector CD8 T cells entering the lungs after challenge infection do not offer sufficient protection. Nonetheless, intranasal administration of non-replicating adenovirus vector expressing no Ag following priming DNA vaccination deploys NP-specific CD8 TRM cells in the lungs, which subsequently offers complete protection. This novel 'prime and deploy' strategy could be a promising regimen for a universal influenza vaccine targeting the conserved NP Ag.
Collapse
Affiliation(s)
- Haerynn Chung
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Eun-Ah Kim
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Jun Chang
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
7
|
Huang HY, Liang XY, Lin LY, Chen JT, Ehapo CS, Eyi UM, Li J, Jiang TT, Zheng YZ, Zha GC, Xie DD, He JQ, Chen WZ, Liu XZ, Mo HT, Chen XY, Lin M. Genetic polymorphism of Plasmodium falciparum circumsporozoite protein on Bioko Island, Equatorial Guinea and global comparative analysis. Malar J 2020; 19:245. [PMID: 32660484 PMCID: PMC7359586 DOI: 10.1186/s12936-020-03315-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/04/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Plasmodium falciparum circumsporozoite protein (PfCSP) is a potential malaria vaccine candidate, but various polymorphisms of the pfcsp gene among global P. falciparum population become the major barrier to the effectiveness of vaccines. This study aimed to investigate the genetic polymorphisms and natural selection of pfcsp in Bioko and the comparison among global P. falciparum population. METHODS From January 2011 to December 2018, 148 blood samples were collected from P. falciparum infected Bioko patients and 96 monoclonal sequences of them were successfully acquired and analysed with 2200 global pfcsp sequences mined from MalariaGEN Pf3k Database and NCBI. RESULTS In Bioko, the N-terminus of pfcsp showed limited genetic variations and the numbers of repetitive sequences (NANP/NVDP) were mainly found as 40 (35%) and 41 (34%) in central region. Most polymorphic characters were found in Th2R/Th3R region, where natural selection (p > 0.05) and recombination occurred. The overall pattern of Bioko pfcsp gene had no obvious deviation from African mainland pfcsp (Fst = 0.00878, p < 0.05). The comparative analysis of Bioko and global pfcsp displayed the various mutation patterns and obvious geographic differentiation among populations from four continents (p < 0.05). The global pfcsp C-terminal sequences were clustered into 138 different haplotypes (H_1 to H_138). Only 3.35% of sequences matched 3D7 strain haplotype (H_1). CONCLUSIONS The genetic polymorphism phenomena of pfcsp were found universal in Bioko and global isolates and the majority mutations located at T cell epitopes. Global genetic polymorphism and geographical characteristics were recommended to be considered for future improvement of malaria vaccine design.
Collapse
Affiliation(s)
- Hui-Ying Huang
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, People's Republic of China
- Department of Medical Genetics, Shantou University Medical College, Shantou, Guangdong Province, People's Republic of China
| | - Xue-Yan Liang
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, People's Republic of China
- Department of Medical Genetics, Shantou University Medical College, Shantou, Guangdong Province, People's Republic of China
| | - Li-Yun Lin
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, People's Republic of China
| | - Jiang-Tao Chen
- Department of Medical Laboratory, Huizhou Central Hospital, Huizhou, Guangdong Province, People's Republic of China
- The Chinese Medical Aid Team to the Republic of Equatorial Guinea, Guangzhou, Guangdong Province, People's Republic of China
| | - Carlos Salas Ehapo
- Department of Medical Laboratory, Malabo Regional Hospital, Malabo, Equatorial Guinea
| | - Urbano Monsuy Eyi
- Department of Medical Laboratory, Malabo Regional Hospital, Malabo, Equatorial Guinea
| | - Jian Li
- Department of Human Parasitology, School of Basic Medical Sciences, Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei Province, People's Republic of China
| | - Ting-Ting Jiang
- Department of Human Parasitology, School of Basic Medical Sciences, Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei Province, People's Republic of China
| | - Yu-Zhong Zheng
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, People's Republic of China
| | - Guang-Cai Zha
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, People's Republic of China
| | - Dong-De Xie
- The Chinese Medical Aid Team to the Republic of Equatorial Guinea, Guangzhou, Guangdong Province, People's Republic of China
| | - Jin-Quan He
- The Chinese Medical Aid Team to the Republic of Equatorial Guinea, Guangzhou, Guangdong Province, People's Republic of China
| | - Wei-Zhong Chen
- Department of Medical Laboratory, Chaozhou People's Hospital Affiliated to Shantou University Medical College, Chaozhou, Guangdong Province, People's Republic of China
| | - Xiang-Zhi Liu
- Department of Medical Laboratory, Chaozhou People's Hospital Affiliated to Shantou University Medical College, Chaozhou, Guangdong Province, People's Republic of China
| | - Huan-Tong Mo
- Department of Medical Laboratory, Chaozhou People's Hospital Affiliated to Shantou University Medical College, Chaozhou, Guangdong Province, People's Republic of China
| | - Xin-Yao Chen
- Department of Medical Laboratory, Chaozhou People's Hospital Affiliated to Shantou University Medical College, Chaozhou, Guangdong Province, People's Republic of China
| | - Min Lin
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, People's Republic of China.
- Department of Medical Laboratory, Chaozhou People's Hospital Affiliated to Shantou University Medical College, Chaozhou, Guangdong Province, People's Republic of China.
| |
Collapse
|
8
|
Moncunill G, Scholzen A, Mpina M, Nhabomba A, Hounkpatin AB, Osaba L, Valls R, Campo JJ, Sanz H, Jairoce C, Williams NA, Pasini EM, Arteta D, Maynou J, Palacios L, Duran-Frigola M, Aponte JJ, Kocken CHM, Agnandji ST, Mas JM, Mordmüller B, Daubenberger C, Sauerwein R, Dobaño C. Antigen-stimulated PBMC transcriptional protective signatures for malaria immunization. Sci Transl Med 2020; 12:eaay8924. [PMID: 32404508 DOI: 10.1126/scitranslmed.aay8924] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/26/2019] [Accepted: 04/15/2020] [Indexed: 01/03/2025]
Abstract
Identifying immune correlates of protection and mechanisms of immunity accelerates and streamlines the development of vaccines. RTS,S/AS01E, the most clinically advanced malaria vaccine, has moderate efficacy in African children. In contrast, immunization with sporozoites under antimalarial chemoprophylaxis (CPS immunization) can provide 100% sterile protection in naïve adults. We used systems biology approaches to identifying correlates of vaccine-induced immunity based on transcriptomes of peripheral blood mononuclear cells from individuals immunized with RTS,S/AS01E or chemoattenuated sporozoites stimulated with parasite antigens in vitro. Specifically, we used samples of individuals from two age cohorts and three African countries participating in an RTS,S/AS01E pediatric phase 3 trial and malaria-naïve individuals participating in a CPS trial. We identified both preimmunization and postimmunization transcriptomic signatures correlating with protection. Signatures were validated in independent children and infants from the RTS,S/AS01E phase 3 trial and individuals from an independent CPS trial with high accuracies (>70%). Transcription modules revealed interferon, NF-κB, Toll-like receptor (TLR), and monocyte-related signatures associated with protection. Preimmunization signatures suggest that priming the immune system before vaccination could potentially improve vaccine immunogenicity and efficacy. Last, signatures of protection could be useful to determine efficacy in clinical trials, accelerating vaccine candidate testing. Nevertheless, signatures should be tested more extensively across multiple cohorts and trials to demonstrate their universal predictive capacity.
Collapse
Affiliation(s)
- Gemma Moncunill
- ISGlobal, Hospital Clínic-Universitat de Barcelona, E-08036 Barcelona, Catalonia, Spain.
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929 Maputo, Mozambique
| | - Anja Scholzen
- Department of Medical Microbiology, Radboud University Medical Center, 6500 HB Nijmegen, Netherlands
| | - Maximillian Mpina
- Ifakara Health Institute, Bagamoyo Research and Training Centre. P.O. Box 74, Bagamoyo, Tanzania
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Augusto Nhabomba
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929 Maputo, Mozambique
| | - Aurore Bouyoukou Hounkpatin
- Centre de Recherches Médicales de Lambaréné (CERMEL), BP 242 Lambaréné, Gabon
- Institute of Tropical Medicine and German Center for Infection Research, University of Tübingen, Wilhelmstraße 27, D-72074 Tübingen, Germany
| | - Lourdes Osaba
- Progenika Biopharma. A Grifols Company, S.A., 48160 Derio, Vizcaya, Spain
| | | | - Joseph J Campo
- ISGlobal, Hospital Clínic-Universitat de Barcelona, E-08036 Barcelona, Catalonia, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929 Maputo, Mozambique
| | - Hèctor Sanz
- ISGlobal, Hospital Clínic-Universitat de Barcelona, E-08036 Barcelona, Catalonia, Spain
| | - Chenjerai Jairoce
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929 Maputo, Mozambique
| | - Nana Aba Williams
- ISGlobal, Hospital Clínic-Universitat de Barcelona, E-08036 Barcelona, Catalonia, Spain
| | - Erica M Pasini
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - David Arteta
- Progenika Biopharma. A Grifols Company, S.A., 48160 Derio, Vizcaya, Spain
| | - Joan Maynou
- Progenika Biopharma. A Grifols Company, S.A., 48160 Derio, Vizcaya, Spain
| | - Lourdes Palacios
- Progenika Biopharma. A Grifols Company, S.A., 48160 Derio, Vizcaya, Spain
| | - Miquel Duran-Frigola
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, 08028 Barcelona, Catalonia, Spain
| | - John J Aponte
- ISGlobal, Hospital Clínic-Universitat de Barcelona, E-08036 Barcelona, Catalonia, Spain
| | - Clemens H M Kocken
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Selidji Todagbe Agnandji
- Centre de Recherches Médicales de Lambaréné (CERMEL), BP 242 Lambaréné, Gabon
- Institute of Tropical Medicine and German Center for Infection Research, University of Tübingen, Wilhelmstraße 27, D-72074 Tübingen, Germany
| | | | - Benjamin Mordmüller
- Institute of Tropical Medicine and German Center for Infection Research, University of Tübingen, Wilhelmstraße 27, D-72074 Tübingen, Germany
| | - Claudia Daubenberger
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Robert Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, 6500 HB Nijmegen, Netherlands
| | - Carlota Dobaño
- ISGlobal, Hospital Clínic-Universitat de Barcelona, E-08036 Barcelona, Catalonia, Spain.
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929 Maputo, Mozambique
| |
Collapse
|
9
|
Suschak JJ, Dupuy LC, Shoemaker CJ, Six C, Kwilas SA, Spik KW, Williams JA, Schmaljohn CS. Nanoplasmid Vectors Co-expressing Innate Immune Agonists Enhance DNA Vaccines for Venezuelan Equine Encephalitis Virus and Ebola Virus. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:810-821. [PMID: 32296729 PMCID: PMC7158766 DOI: 10.1016/j.omtm.2020.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/13/2020] [Indexed: 01/04/2023]
Abstract
DNA vaccines expressing codon-optimized Venezuelan equine encephalitis virus (VEEV) and Ebola virus (EBOV) glycoprotein genes provide protective immunity to mice and nonhuman primates when delivered by intramuscular (IM) electroporation (EP). To achieve equivalent protective efficacy in the absence of EP, we evaluated VEEV and EBOV DNA vaccines constructed using minimalized Nanoplasmid expression vectors that are smaller than conventional plasmids used for DNA vaccination. These vectors may also be designed to co-express type I interferon inducing innate immune agonist genes that have an adjuvant effect. Nanoplasmid vaccinated mice had increased antibody responses as compared to those receiving our conventional pWRG7077-based vaccines when delivered by IM injection, and these responses were further enhanced by the inclusion of the innate immune agonist genes. The Nanoplasmid VEEV DNA vaccines also significantly increased protection against aerosol VEEV challenge as compared to the pWRG7077 VEEV DNA vaccine. Although all mice receiving the pWRG7077 and Nanoplasmid EBOV DNA vaccines at the dose tested survived EBOV challenge, only mice receiving the Nanoplasmid EBOV DNA vaccine that co-expresses the innate immune agonist genes failed to lose weight after challenge. Our results suggest that Nanoplasmid vectors can improve the immunogenicity and protective efficacy of alphavirus and filovirus DNA vaccines.
Collapse
Affiliation(s)
- John J Suschak
- Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Lesley C Dupuy
- Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Charles J Shoemaker
- Diagnostic Systems Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Carolyn Six
- Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Steven A Kwilas
- Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Kristin W Spik
- Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | | | - Connie S Schmaljohn
- Headquarters, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| |
Collapse
|
10
|
Browne DJ, Brady JL, Waardenberg AJ, Loiseau C, Doolan DL. An Analytically and Diagnostically Sensitive RNA Extraction and RT-qPCR Protocol for Peripheral Blood Mononuclear Cells. Front Immunol 2020; 11:402. [PMID: 32265908 PMCID: PMC7098950 DOI: 10.3389/fimmu.2020.00402] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/20/2020] [Indexed: 12/12/2022] Open
Abstract
Reliable extraction and sensitive detection of RNA from human peripheral blood mononuclear cells (PBMCs) is critical for a broad spectrum of immunology research and clinical diagnostics. RNA analysis platforms are dependent upon high-quality and high-quantity RNA; however, sensitive detection of specific responses associated with high-quality RNA extractions from human samples with limited PBMCs can be challenging. Furthermore, the comparative sensitivity between RNA quantification and best-practice protein quantification is poorly defined. Therefore, we provide herein a critical evaluation of the wide variety of current generation of RNA-based kits for PBMCs, representative of several strategies designed to maximize sensitivity. We assess these kits with a reverse transcription quantitative PCR (RT-qPCR) assay optimized for both analytically and diagnostically sensitive cell-based RNA-based applications. Specifically, three RNA extraction kits, one post-extraction RNA purification/concentration kit, four SYBR master-mix kits, and four reverse transcription kits were tested. RNA extraction and RT-qPCR reaction efficiency were evaluated with commonly used reference and cytokine genes. Significant variation in RNA expression of reference genes was apparent, and absolute quantification based on cell number was established as an effective RT-qPCR normalization strategy. We defined an optimized RNA extraction and RT-qPCR protocol with an analytical sensitivity capable of single cell RNA detection. The diagnostic sensitivity of this assay was sufficient to show a CD8+ T cell peptide epitope hierarchy with as few as 1 × 104 cells. Finally, we compared our optimized RNA extraction and RT-qPCR protocol with current best-practice immune assays and demonstrated that our assay is a sensitive alternative to protein-based assays for peptide-specific responses, especially with limited PBMCs number. This protocol with high analytical and diagnostic sensitivity has broad applicability for both primary research and clinical practice.
Collapse
Affiliation(s)
- Daniel J Browne
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
| | - Jamie L Brady
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
| | - Ashley J Waardenberg
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia.,Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
| | - Claire Loiseau
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
| | - Denise L Doolan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia.,Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
11
|
Goh YS, McGuire D, Rénia L. Vaccination With Sporozoites: Models and Correlates of Protection. Front Immunol 2019; 10:1227. [PMID: 31231377 PMCID: PMC6560154 DOI: 10.3389/fimmu.2019.01227] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 05/14/2019] [Indexed: 12/14/2022] Open
Abstract
Despite continuous efforts, the century-old goal of eradicating malaria still remains. Multiple control interventions need to be in place simultaneously to achieve this goal. In addition to effective control measures, drug therapies and insecticides, vaccines are critical to reduce mortality and morbidity. Hence, there are numerous studies investigating various malaria vaccine candidates. Most of the malaria vaccine candidates are subunit vaccines. However, they have shown limited efficacy in Phase II and III studies. To date, only whole parasite formulations have been shown to induce sterile immunity in human. In this article, we review and discuss the recent developments in vaccination with sporozoites and the mechanisms of protection involved.
Collapse
Affiliation(s)
- Yun Shan Goh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Biopolis, Singapore, Singapore
| | - Daniel McGuire
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Biopolis, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Laurent Rénia
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Biopolis, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
12
|
Heide J, Vaughan KC, Sette A, Jacobs T, Schulze Zur Wiesch J. Comprehensive Review of Human Plasmodium falciparum-Specific CD8+ T Cell Epitopes. Front Immunol 2019; 10:397. [PMID: 30949162 PMCID: PMC6438266 DOI: 10.3389/fimmu.2019.00397] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/15/2019] [Indexed: 12/16/2022] Open
Abstract
Control of malaria is an important global health issue and there is still an urgent need for the development of an effective prophylactic vaccine. Multiple studies have provided strong evidence that Plasmodium falciparum-specific MHC class I-restricted CD8+ T cells are important for sterile protection against Plasmodium falciparum infection. Here, we present an interactive epitope map of all P. falciparum-specific CD8+ T cell epitopes published to date, based on a comprehensive data base (IEDB), and literature search. The majority of the described P. falciparum-specific CD8+ T cells were directed against the antigens CSP, TRAP, AMA1, and LSA1. Notably, most of the epitopes were discovered in vaccine trials conducted with malaria-naïve volunteers. Only few immunological studies of P. falciparum-specific CD8+ T cell epitopes detected in patients suffering from acute malaria or in people living in malaria endemic areas have been published. Further detailed immunological mappings of P. falciparum-specific epitopes of a broader range of P. falciparum proteins in different settings and with different disease status are needed to gain a more comprehensive understanding of the role of CD8+ T cell responses for protection, and to better guide vaccine design and to study their efficacy.
Collapse
Affiliation(s)
- Janna Heide
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Kerrie C Vaughan
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States.,Department of Medicine, Division of Infectious Diseases, University of California, San Diego (UCSD), La Jolla, CA, United States
| | - Thomas Jacobs
- Protozoa Immunology, Bernhard-Nocht-Institute of Tropical Medicine, Hamburg, Germany
| | - Julian Schulze Zur Wiesch
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
13
|
Olsen TM, Stone BC, Chuenchob V, Murphy SC. Prime-and-Trap Malaria Vaccination To Generate Protective CD8 + Liver-Resident Memory T Cells. THE JOURNAL OF IMMUNOLOGY 2018; 201:1984-1993. [PMID: 30127085 DOI: 10.4049/jimmunol.1800740] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/02/2018] [Indexed: 11/19/2022]
Abstract
Tissue-resident memory CD8+ T (Trm) cells in the liver are critical for long-term protection against pre-erythrocytic Plasmodium infection. Such protection can usually be induced with three to five doses of i.v. administered radiation-attenuated sporozoites (RAS). To simplify and accelerate vaccination, we tested a DNA vaccine designed to induce potent T cell responses against the SYVPSAEQI epitope of Plasmodium yoelii circumsporozoite protein. In a heterologous "prime-and-trap" regimen, priming using gene gun-administered DNA and boosting with one dose of RAS attracted expanding Ag-specific CD8+ T cell populations to the liver, where they became Trm cells. Vaccinated in this manner, BALB/c mice were completely protected against challenge, an outcome not reliably achieved following one dose of RAS or following DNA-only vaccination. This study demonstrates that the combination of CD8+ T cell priming by DNA and boosting with liver-homing RAS enhances formation of a completely protective liver Trm cell response and suggests novel approaches for enhancing T cell-based pre-erythrocytic malaria vaccines.
Collapse
Affiliation(s)
- Tayla M Olsen
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98109.,Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA 98109
| | - Brad C Stone
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98109.,Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA 98109
| | - Vorada Chuenchob
- Center for Infectious Disease Research, University of Washington, Seattle, WA 98109; and
| | - Sean C Murphy
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98109; .,Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA 98109.,Department of Microbiology, University of Washington, Seattle, WA 98195
| |
Collapse
|
14
|
|
15
|
Ake JA, Schuetz A, Pegu P, Wieczorek L, Eller MA, Kibuuka H, Sawe F, Maboko L, Polonis V, Karasavva N, Weiner D, Sekiziyivu A, Kosgei J, Missanga M, Kroidl A, Mann P, Ratto-Kim S, Anne Eller L, Earl P, Moss B, Dorsey-Spitz J, Milazzo M, Laissa Ouedraogo G, Rizvi F, Yan J, Khan AS, Peel S, Sardesai NY, Michael NL, Ngauy V, Marovich M, Robb ML. Safety and Immunogenicity of PENNVAX-G DNA Prime Administered by Biojector 2000 or CELLECTRA Electroporation Device With Modified Vaccinia Ankara-CMDR Boost. J Infect Dis 2017; 216:1080-1090. [PMID: 28968759 DOI: 10.1093/infdis/jix456] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/01/2017] [Indexed: 01/24/2023] Open
Abstract
Background We report the first-in-human safety and immunogenicity evaluation of PENNVAX-G DNA/modified vaccinia Ankara-Chiang Mai double recombinant (MVA-CMDR) prime-boost human immuonodeficiency virus (HIV) vaccine, with intramuscular DNA delivery by either Biojector 2000 needle-free injection system (Biojector) or CELLECTRA electroporation device. Methods Healthy, HIV-uninfected adults were randomized to receive 4 mg of PENNVAX-G DNA delivered intramuscularly by Biojector or electroporation at baseline and week 4 followed by intramuscular injection of 108 plaque forming units of MVA-CMDR at weeks 12 and 24. The open-label part A was conducted in the United States, followed by a double-blind, placebo-controlled part B in East Africa. Solicited and unsolicited adverse events were recorded, and immune responses were measured. Results Eighty-eight of 100 enrolled participants completed all study injections, which were generally safe and well tolerated, with more immediate, but transient, pain in the electroporation group. Cellular responses were observed in 57% of vaccine recipients tested and were CD4 predominant. High rates of binding antibody responses to CRF01_AE antigens, including gp70 V1V2 scaffold, were observed. Neutralizing antibodies were detected in a peripheral blood mononuclear cell assay, and moderate antibody-dependent, cell-mediated cytotoxicity activity was demonstrated. Discussion The PVG/MVA-CMDR HIV-1 vaccine regimen is safe and immunogenic. Substantial differences in safety or immunogenicity between modes of DNA delivery were not observed. Clinical Trials Registration NCT01260727.
Collapse
Affiliation(s)
- Julie A Ake
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring
| | - Alexandra Schuetz
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda.,Armed Forces Research Institute of Medical Sciences, Department of Retrovirology, Bangkok, Thailand
| | - Poonam Pegu
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda
| | - Lindsay Wieczorek
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda
| | - Michael A Eller
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda
| | - Hannah Kibuuka
- Makerere University/Walter Reed Project, Kampala, Uganda
| | | | - Leonard Maboko
- National Institute of Medical Research, Mbeya Medical Research Centre, Mbeya, United Republic of Tanzania
| | - Victoria Polonis
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring
| | - Nicos Karasavva
- Armed Forces Research Institute of Medical Sciences, Department of Retrovirology, Bangkok, Thailand
| | | | | | | | - Marco Missanga
- National Institute of Medical Research, Mbeya Medical Research Centre, Mbeya, United Republic of Tanzania
| | - Arne Kroidl
- National Institute of Medical Research, Mbeya Medical Research Centre, Mbeya, United Republic of Tanzania.,Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich, Germany
| | - Philipp Mann
- National Institute of Medical Research, Mbeya Medical Research Centre, Mbeya, United Republic of Tanzania.,Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich, Germany
| | - Silvia Ratto-Kim
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda
| | - Leigh Anne Eller
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda
| | | | | | - Julie Dorsey-Spitz
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda
| | - Mark Milazzo
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda
| | - G Laissa Ouedraogo
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda
| | - Farrukh Rizvi
- Military Infectious Diseases Research Program, Ft. Detrick, Maryland
| | - Jian Yan
- Inovio Pharmaceuticals, Inc, Plymouth Meeting, Pennsylvania
| | - Amir S Khan
- Inovio Pharmaceuticals, Inc, Plymouth Meeting, Pennsylvania
| | - Sheila Peel
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring
| | | | - Nelson L Michael
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring
| | - Viseth Ngauy
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring.,Armed Forces Research Institute of Medical Sciences, Department of Retrovirology, Bangkok, Thailand
| | - Mary Marovich
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring
| | - Merlin L Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda
| |
Collapse
|
16
|
Suschak JJ, Williams JA, Schmaljohn CS. Advancements in DNA vaccine vectors, non-mechanical delivery methods, and molecular adjuvants to increase immunogenicity. Hum Vaccin Immunother 2017. [PMID: 28604157 DOI: 10.1080/21645515.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
A major advantage of DNA vaccination is the ability to induce both humoral and cellular immune responses. DNA vaccines are currently used in veterinary medicine, but have not achieved widespread acceptance for use in humans due to their low immunogenicity in early clinical studies. However, recent clinical data have re-established the value of DNA vaccines, particularly in priming high-level antigen-specific antibody responses. Several approaches have been investigated for improving DNA vaccine efficacy, including advancements in DNA vaccine vector design, the inclusion of genetically engineered cytokine adjuvants, and novel non-mechanical delivery methods. These strategies have shown promise, resulting in augmented adaptive immune responses in not only mice, but also in large animal models. Here, we review advancements in each of these areas that show promise for increasing the immunogenicity of DNA vaccines.
Collapse
Affiliation(s)
- John J Suschak
- a U.S. Army Medical Research Institute of Infectious Diseases , Fort Detrick , MD , USA
| | | | - Connie S Schmaljohn
- a U.S. Army Medical Research Institute of Infectious Diseases , Fort Detrick , MD , USA
| |
Collapse
|
17
|
Suschak JJ, Williams JA, Schmaljohn CS. Advancements in DNA vaccine vectors, non-mechanical delivery methods, and molecular adjuvants to increase immunogenicity. Hum Vaccin Immunother 2017; 13:2837-2848. [PMID: 28604157 PMCID: PMC5718814 DOI: 10.1080/21645515.2017.1330236] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A major advantage of DNA vaccination is the ability to induce both humoral and cellular immune responses. DNA vaccines are currently used in veterinary medicine, but have not achieved widespread acceptance for use in humans due to their low immunogenicity in early clinical studies. However, recent clinical data have re-established the value of DNA vaccines, particularly in priming high-level antigen-specific antibody responses. Several approaches have been investigated for improving DNA vaccine efficacy, including advancements in DNA vaccine vector design, the inclusion of genetically engineered cytokine adjuvants, and novel non-mechanical delivery methods. These strategies have shown promise, resulting in augmented adaptive immune responses in not only mice, but also in large animal models. Here, we review advancements in each of these areas that show promise for increasing the immunogenicity of DNA vaccines.
Collapse
Affiliation(s)
- John J Suschak
- a U.S. Army Medical Research Institute of Infectious Diseases , Fort Detrick , MD , USA
| | | | - Connie S Schmaljohn
- a U.S. Army Medical Research Institute of Infectious Diseases , Fort Detrick , MD , USA
| |
Collapse
|
18
|
Abstract
The primate malaria Plasmodium knowlesi has a long-standing history as an experimental malaria model. Studies using this model parasite in combination with its various natural and experimental non-human primate hosts have led to important advances in vaccine development and in our understanding of malaria invasion, immunology and parasite-host interactions. The adaptation to long-term in vitro continuous blood stage culture in rhesus monkey, Macaca fascicularis and human red blood cells, as well as the development of various transfection methodologies has resulted in a highly versatile experimental malaria model, further increasing the potential of what was already a very powerful model. The growing evidence that P. knowlesi is an important human zoonosis in South-East Asia has added relevance to former and future studies of this parasite species.
Collapse
|
19
|
Abstract
Nasal delivery offers many benefits over traditional approaches to vaccine administration. These include ease of administration without needles that reduces issues associated with needlestick injuries and disposal. Additionally, this route offers easy access to a key part of the immune system that can stimulate other mucosal sites throughout the body. Increased acceptance of nasal vaccine products in both adults and children has led to a burgeoning pipeline of nasal delivery technology. Key challenges and opportunities for the future will include translating in vivo data to clinical outcomes. Particular focus should be brought to designing delivery strategies that take into account the broad range of diseases, populations and healthcare delivery settings that stand to benefit from this unique mucosal route.
Collapse
Affiliation(s)
- Helmy Yusuf
- a School of Pharmacy, Queen's University of Belfast , Belfast , Antrim , UK
| | - Vicky Kett
- b School of Pharmacy, Queen's University of Belfast , Belfast , Antrim , UK
| |
Collapse
|
20
|
Sedegah M, Peters B, Hollingdale MR, Ganeshan HD, Huang J, Farooq F, Belmonte MN, Belmonte AD, Limbach KJ, Diggs C, Soisson L, Chuang I, Villasante ED. Vaccine Strain-Specificity of Protective HLA-Restricted Class 1 P. falciparum Epitopes. PLoS One 2016; 11:e0163026. [PMID: 27695088 PMCID: PMC5047630 DOI: 10.1371/journal.pone.0163026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/01/2016] [Indexed: 11/19/2022] Open
Abstract
A DNA prime/adenovirus boost malaria vaccine encoding Plasmodium falciparum strain 3D7 CSP and AMA1 elicited sterile clinical protection associated with CD8+ T cell interferon-gamma (IFN-γ) cells responses directed to HLA class 1-restricted AMA1 epitopes of the vaccine strain 3D7. Since a highly effective malaria vaccine must be broadly protective against multiple P. falciparum strains, we compared these AMA1 epitopes of two P. falciparum strains (7G8 and 3D7), which differ by single amino acid substitutions, in their ability to recall CD8+ T cell activities using ELISpot and flow cytometry/intracellular staining assays. The 7G8 variant peptides did not recall 3D7 vaccine-induced CD8+ T IFN-γ cell responses in these assays, suggesting that protection may be limited to the vaccine strain. The predicted MHC binding affinities of the 7G8 variant epitopes were similar to the 3D7 epitopes, suggesting that the amino acid substitutions of the 7G8 variants may have interfered with TCR recognition of the MHC:peptide complex or that the 7G8 variant may have acted as an altered peptide ligand. These results stress the importance of functional assays in defining protective epitopes. Clinical Trials Registrations: NCT00870987, NCT00392015
Collapse
Affiliation(s)
- Martha Sedegah
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, United States of America
| | - Michael R. Hollingdale
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, 20817, United States of America
- * E-mail:
| | - Harini D. Ganeshan
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, 20817, United States of America
| | - Jun Huang
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, 20817, United States of America
| | - Fouzia Farooq
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, 20817, United States of America
| | - Maria N. Belmonte
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, 20817, United States of America
| | - Arnel D. Belmonte
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, 20817, United States of America
| | - Keith J. Limbach
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, 20817, United States of America
| | - Carter Diggs
- USAID, Washington, DC, 20523, United States of America
| | | | - Ilin Chuang
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
| | - Eileen D. Villasante
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
| |
Collapse
|
21
|
Decrease in circulating CD25 hi Foxp3 + regulatory T cells following vaccination with the candidate malaria vaccine RTS,S. Vaccine 2016; 34:4618-4625. [DOI: 10.1016/j.vaccine.2016.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 06/20/2016] [Accepted: 07/06/2016] [Indexed: 11/23/2022]
|
22
|
Dunachie S, Berthoud T, Hill AVS, Fletcher HA. Transcriptional changes induced by candidate malaria vaccines and correlation with protection against malaria in a human challenge model. Vaccine 2015; 33:5321-31. [PMID: 26256523 PMCID: PMC4582771 DOI: 10.1016/j.vaccine.2015.07.087] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/16/2015] [Accepted: 07/28/2015] [Indexed: 11/05/2022]
Abstract
Malaria remains one of the world's major killers. Partially effective vaccines against malaria are in development. We profiled global gene expression after two candidate vaccine regimens. Key pathways of vaccine response include interferon induced genes and the proteasome. Global immune profiling approaches are necessary to improve candidate malaria vaccines.
Introduction The complexity of immunity to malaria is well known, and clear correlates of protection against malaria have not been established. A better understanding of immune markers induced by candidate malaria vaccines would greatly enhance vaccine development, immunogenicity monitoring and estimation of vaccine efficacy in the field. We have previously reported complete or partial efficacy against experimental sporozoite challenge by several vaccine regimens in healthy malaria-naïve subjects in Oxford. These include a prime-boost regimen with RTS,S/AS02A and modified vaccinia virus Ankara (MVA) expressing the CSP antigen, and a DNA-prime, MVA-boost regimen expressing the ME TRAP antigens. Using samples from these trials we performed transcriptional profiling, allowing a global assessment of responses to vaccination. Methods We used Human RefSeq8 Bead Chips from Illumina to examine gene expression using PBMC (peripheral blood mononuclear cells) from 16 human volunteers. To focus on antigen-specific changes, comparisons were made between PBMC stimulated with CSP or TRAP peptide pools and unstimulated PBMC post vaccination. We then correlated gene expression with protection against malaria in a human Plasmodium falciparum malaria challenge model. Results Differentially expressed genes induced by both vaccine regimens were predominantly in the IFN-γ pathway. Gene set enrichment analysis revealed antigen-specific effects on genes associated with IFN induction and proteasome modules after vaccination. Genes associated with IFN induction and antigen presentation modules were positively enriched in subjects with complete protection from malaria challenge, while genes associated with haemopoietic stem cells, regulatory monocytes and the myeloid lineage modules were negatively enriched in protected subjects. Conclusions These results represent novel insights into the immune repertoires involved in malaria vaccination.
Collapse
Affiliation(s)
- Susanna Dunachie
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, UK; Mahidol-Oxford Tropical Medicine Research Unit, 3rd Floor, 60th Anniversary Chalermprakiat Building, 420/6 Ratchawithi Road, Bangkok 10400, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, UK.
| | - Tamara Berthoud
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, UK
| | - Adrian V S Hill
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, UK
| | - Helen A Fletcher
- London School of Hygiene & Tropical Medicine, London W1CE 7HT, UK; The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, UK
| |
Collapse
|
23
|
Abstract
The development of a highly effective malaria vaccine remains a key goal to aid in the control and eventual eradication of this devastating parasitic disease. The field has made huge strides in recent years, with the first-generation vaccine RTS,S showing modest efficacy in a Phase III clinical trial. The updated 2030 Malaria Vaccine Technology Roadmap calls for a second generation vaccine to achieve 75% efficacy over two years for both Plasmodium falciparum and Plasmodium vivax, and for a vaccine that can prevent malaria transmission. Whole-parasite immunisation approaches and combinations of pre-erythrocytic subunit vaccines are now reporting high-level efficacy, whilst exciting new approaches to the development of blood-stage and transmission-blocking vaccine subunit components are entering clinical development. The development of a highly effective multi-component multi-stage subunit vaccine now appears to be a realistic ambition. This review will cover these recent developments in malaria vaccinology.
Collapse
|
24
|
Multiple factors affect immunogenicity of DNA plasmid HIV vaccines in human clinical trials. Vaccine 2015; 33:2347-53. [PMID: 25820067 DOI: 10.1016/j.vaccine.2015.03.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 03/06/2015] [Accepted: 03/12/2015] [Indexed: 11/24/2022]
Abstract
Plasmid DNA vaccines have been licensed for use in domesticated animals because of their excellent immunogenicity, but none have yet been licensed for use in humans. Here we report a retrospective analysis of 1218 healthy human volunteers enrolled in 10 phase I clinical trials in which DNA plasmids encoding HIV antigens were administered. Elicited T-cell immune responses were quantified by validated intracellular cytokine staining (ICS) stimulated with HIV peptide pools. HIV-specific binding and neutralizing antibody activities were also analyzed using validated assays. Results showed that, in the absence of adjuvants and boosting with alternative vaccines, DNA vaccines elicited CD8+ and CD4+ T-cell responses in an average of 13.3% (95% CI: 9.8-17.8%) and 37.7% (95% CI: 31.9-43.8%) of vaccine recipients, respectively. Three vaccinations (vs. 2) improved the proportion of subjects with antigen-specific CD8+ responses (p=0.02), as did increased DNA dosage (p=0.007). Furthermore, female gender and participants having a lower body mass index were independently associated with higher CD4+ T-cell response rate (p=0.001 and p=0.008, respectively). These vaccines elicited minimal neutralizing and binding antibody responses. These findings of the immunogenicity of HIV DNA vaccines in humans can provide guidance for future clinical trials.
Collapse
|
25
|
Suschak JJ, Wang S, Fitzgerald KA, Lu S. Identification of Aim2 as a sensor for DNA vaccines. THE JOURNAL OF IMMUNOLOGY 2014; 194:630-6. [PMID: 25488991 DOI: 10.4049/jimmunol.1402530] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Recent human study data have re-established the value of DNA vaccines, especially in priming high-level Ag-specific Ab responses, but also raised questions about the mechanisms responsible for such effects. Whereas previous reports have shown involvement of downstream signaling molecules in the innate immune system, the current study investigated the role of absent in melanoma 2 (Aim2) as a sensor for DNA vaccines. The Aim2 inflammasome directs maturation of the proinflammatory cytokines IL-1β and IL-18 and an inflammatory form of cell death called pyroptosis. Both the humoral and cellular Ag-specific adaptive responses were significantly reduced in Aim2-deficient mice in an IL-1β/IL-18-independent manner after DNA vaccination. Surprisingly, Aim2-deficient mice also exhibited significantly lower levels of IFN-α/β at the site of injection. These results indicate a previously unreported link between DNA vaccine-induced pyroptotic cell death and vaccine immunogenicity that is instrumental in shaping the Ag-specific immune response to DNA vaccines.
Collapse
Affiliation(s)
- John J Suschak
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Shixia Wang
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Katherine A Fitzgerald
- Program in Innate Immunity, Division of Infectious Diseases, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655
| | - Shan Lu
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655; and
| |
Collapse
|
26
|
Sedegah M, Hollingdale MR, Farooq F, Ganeshan H, Belmonte M, Kim Y, Peters B, Sette A, Huang J, McGrath S, Abot E, Limbach K, Shi M, Soisson L, Diggs C, Chuang I, Tamminga C, Epstein JE, Villasante E, Richie TL. Sterile immunity to malaria after DNA prime/adenovirus boost immunization is associated with effector memory CD8+T cells targeting AMA1 class I epitopes. PLoS One 2014; 9:e106241. [PMID: 25211344 PMCID: PMC4161338 DOI: 10.1371/journal.pone.0106241] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/29/2014] [Indexed: 11/24/2022] Open
Abstract
Background Fifteen volunteers were immunized with three doses of plasmid DNA encoding P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1) and boosted with human adenovirus-5 (Ad) expressing the same antigens (DNA/Ad). Four volunteers (27%) demonstrated sterile immunity to controlled human malaria infection and, overall, protection was statistically significantly associated with ELISpot and CD8+ T cell IFN-γ activities to AMA1 but not CSP. DNA priming was required for protection, as 18 additional subjects immunized with Ad alone (AdCA) did not develop sterile protection. Methodology/Principal Findings We sought to identify correlates of protection, recognizing that DNA-priming may induce different responses than AdCA alone. Among protected volunteers, two and three had higher ELISpot and CD8+ T cell IFN-γ responses to CSP and AMA1, respectively, than non-protected volunteers. Unexpectedly, non-protected volunteers in the AdCA trial showed ELISpot and CD8+ T cell IFN-γ responses to AMA1 equal to or higher than the protected volunteers. T cell functionality assessed by intracellular cytokine staining for IFN-γ, TNF-α and IL-2 likewise did not distinguish protected from non-protected volunteers across both trials. However, three of the four protected volunteers showed higher effector to central memory CD8+ T cell ratios to AMA1, and one of these to CSP, than non-protected volunteers for both antigens. These responses were focused on discrete regions of CSP and AMA1. Class I epitopes restricted by A*03 or B*58 supertypes within these regions of AMA1 strongly recalled responses in three of four protected volunteers. We hypothesize that vaccine-induced effector memory CD8+ T cells recognizing a single class I epitope can confer sterile immunity to P. falciparum in humans. Conclusions/Significance We suggest that better understanding of which epitopes within malaria antigens can confer sterile immunity and design of vaccine approaches that elicit responses to these epitopes will increase the potency of next generation gene-based vaccines.
Collapse
Affiliation(s)
- Martha Sedegah
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- * E-mail:
| | - Michael R. Hollingdale
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Fouzia Farooq
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Harini Ganeshan
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Maria Belmonte
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Yohan Kim
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Jun Huang
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Shannon McGrath
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Esteban Abot
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Keith Limbach
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Meng Shi
- Division of Medical, Audio, Visual, Library and Statistical Services, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | | | | | - Ilin Chuang
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Cindy Tamminga
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Judith E. Epstein
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Eileen Villasante
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Thomas L. Richie
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| |
Collapse
|
27
|
Stenler S, Blomberg P, Smith CIE. Safety and efficacy of DNA vaccines: plasmids vs. minicircles. Hum Vaccin Immunother 2014; 10:1306-8. [PMID: 24553064 PMCID: PMC4896608 DOI: 10.4161/hv.28077] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 02/01/2014] [Indexed: 01/05/2023] Open
Abstract
While DNA vaccination using plasmid vectors is highly attractive, there is a need for further vector optimization regarding safety, stability, and efficiency. In this commentary, we review the minicircle vector (MC), which is an entity devoid of plasmid bacterial sequences, as an alternative to the traditional plasmid construct. The commentary highlights the recent discovery by Stenler et al. (2014) that the small size of an MC enables improved resistance to the shearing forces associated with e.g. pneumatic delivery methods. This observation may have implications for the regulatory agencies' requirement of plasmid integrity and quality.
Collapse
Affiliation(s)
- Sofia Stenler
- Department of Laboratory Medicine; Clinical Research Center; Karolinska Institutet; Stockholm, Sweden
| | - Pontus Blomberg
- Department of Laboratory Medicine; Clinical Research Center; Karolinska Institutet; Stockholm, Sweden
- Vecura; Clinical Research Center, Karolinska University Hospital; Stockholm, Sweden
| | - CI Edvard Smith
- Department of Laboratory Medicine; Clinical Research Center; Karolinska Institutet; Stockholm, Sweden
| |
Collapse
|
28
|
Abstract
Parasitic diseases caused by protozoan and helminth parasites are among the leading causes of morbidity and mortality in tropical and subtropical regions of the world. Unfortunately, at present, there is no vaccine against any human parasitic disease. Conventional vaccine methods have largely failed against parasitic infections. This is due, in part, to the complexity of the parasite life cycle, the ability of the parasite to evade the immune system, and difficulties in identifying and eliciting the desired protective immune responses. The discovery of DNA vaccines has renewed hope for vaccine development against parasites. In the last decade, DNA vaccines were successful in inducing at least partial protection against several parasitic diseases. This review discusses the latest developments in DNA vaccines against tropical parasitic diseases.
Collapse
Affiliation(s)
- Akram A Da'dara
- Department of Immunology and Infectious Disease, Harvard School of Public Health, 665 Huntington Ave, Boston, MA 02115, USA.
| | | |
Collapse
|
29
|
Micro-minicircle Gene Therapy: Implications of Size on Fermentation, Complexation, Shearing Resistance, and Expression. MOLECULAR THERAPY-NUCLEIC ACIDS 2014; 2:e140. [PMID: 24399204 PMCID: PMC3910003 DOI: 10.1038/mtna.2013.67] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/08/2013] [Indexed: 12/20/2022]
Abstract
The minicircle (MC), composed of eukaryotic sequences only, is an interesting approach to increase the safety and efficiency of plasmid-based vectors for gene therapy. In this paper, we investigate micro-MC (miMC) vectors encoding small regulatory RNA. We use a construct encoding a splice-correcting U7 small nuclear RNA, which results in a vector of 650 base pairs (bp), as compared to a conventional 3600 bp plasmid carrying the same expression cassette. Furthermore, we construct miMCs of varying sizes carrying different number of these cassettes. This allows us to evaluate how size influences production, super-coiling, stability and efficiency of the vector. We characterize coiling morphology by atomic force microscopy and measure the resistance to shearing forces caused by an injector device, the Biojector. We compare the behavior of miMCs and plasmids in vitro using lipofection and electroporation, as well as in vivo in mice. We here show that when the size of the miMC is reduced, the formation of dimers and trimers increases. There seems to be a lower size limit for efficient expression. We demonstrate that miMCs are more robust than plasmids when exposed to shearing forces, and that they show extended expression in vivo.
Collapse
|
30
|
Heuking S, Rothen-Rutishauser B, Raemy DO, Gehr P, Borchard G. Fate of TLR-1/TLR-2 agonist functionalised pDNA nanoparticles upon deposition at the human bronchial epithelium in vitro. J Nanobiotechnology 2013; 11:29. [PMID: 23964697 PMCID: PMC3765319 DOI: 10.1186/1477-3155-11-29] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/16/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmid DNA vaccination is a promising approach, but studies in non-human primates and humans failed to achieve protective immunity. To optimise this technology further with focus on pulmonary administration, we developed and evaluated an adjuvant-equipped DNA carrier system based on the biopolymer chitosan. In more detail, the uptake and accompanying immune response of adjuvant Pam3Cys (Toll-like receptor-1/2 agonist) decorated chitosan DNA nanoparticles (NP) were explored by using a three-dimensional (3D) cell culture model of the human epithelial barrier. Pam3Cys functionalised and non-functionalised chitosan DNA NP were sprayed by a microsprayer onto the surface of 3D cell cultures and uptake of NP by epithelial and immune cells (blood monocyte-derived dendritic cells (MDDC) and macrophages (MDM)) was visualised by confocal laser scanning microscopy. In addition, immune activation by TLR pathway was monitored by analysis of interleukin-8 and tumor necrosis factor-α secretions (ELISA). RESULTS At first, a high uptake rate into antigen-presenting cells (MDDC: 16-17%; MDM: 68-75%) was obtained. Although no significant difference in uptake patterns was observed for Pam3Cys adjuvant functionalised and non-functionalised DNA NP, ELISA of interleukin-8 and tumor necrosis factor-α demonstrated clearly that Pam3Cys functionalisation elicited an overall higher immune response with the ranking of Pam3Cys chitosan DNA NP>chitosan DNA NP=DNA unloaded chitosan NP>control (culture medium). CONCLUSIONS Chitosan-based DNA delivery enables uptake into abluminal MDDC, which are the most immune competent cells in the human lung for the induction of antigen-specific immunity. In addition, Pam3Cys adjuvant functionalisation of chitosan DNA NP enhances significantly an environment favoring recruitment of immune cells together with a Th1 associated (cellular) immune response due to elevated IL-8 and TNF-α levels. The latter renders this DNA delivery approach attractive for potential DNA vaccination against intracellular pathogens in the lung (e.g., Mycobacterium tuberculosis or influenza virus).
Collapse
Affiliation(s)
- Simon Heuking
- School of Pharmaceutical Sciences Geneva-Lausanne (EPGL), University of Geneva, University of Lausanne, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
31
|
Sedegah M, Kim Y, Ganeshan H, Huang J, Belmonte M, Abot E, Banania JG, Farooq F, McGrath S, Peters B, Sette A, Soisson L, Diggs C, Doolan DL, Tamminga C, Villasante E, Hollingdale MR, Richie TL. Identification of minimal human MHC-restricted CD8+ T-cell epitopes within the Plasmodium falciparum circumsporozoite protein (CSP). Malar J 2013; 12:185. [PMID: 23738590 PMCID: PMC3683343 DOI: 10.1186/1475-2875-12-185] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 05/23/2013] [Indexed: 01/14/2023] Open
Abstract
Background Plasmodium falciparum circumsporozoite protein (CSP) is a leading malaria vaccine candidate antigen, known to elicit protective antibody responses in humans (RTS,S vaccine). Recently, a DNA prime / adenovirus (Ad) vector boost vaccine encoding CSP and a second P. falciparum antigen, apical membrane antigen-1, also elicited sterile protection, but in this case associated with interferon gamma ELISpot and CD8+ T cell but not antibody responses. The finding that CSP delivered by an appropriate vaccine platform likely elicits protective cell-mediated immunity provided a rationale for identifying class I-restricted epitopes within this leading vaccine candidate antigen. Methods Limited samples of peripheral blood mononuclear cells from clinical trials of the Ad vaccine were used to identify CD8+ T cell epitopes within pools of overlapping 15mer peptides spanning portions of CSP that stimulated recall responses. Computerized algorithms (NetMHC) predicted 17 minimal class I-restricted 9-10mer epitopes within fifteen 15mers positive in ELISpot assay using PBMC from 10 HLA-matched study subjects. Four additional epitopes were subsequently predicted using NetMHC, matched to other study subjects without initial 15mer ELISpot screening. Nine of the putative epitopes were synthesized and tested by ELISpot assay, and six of these nine were further tested for CD8+ T cell responses by ELISpot CD4+ and CD8+ T cell-depletion and flow cytometry assays for evidence of CD8+ T cell dependence. Results Each of the nine putative epitopes, all sequence-conserved, recalled responses from HLA-matched CSP-immunized research subjects. Four shorter sequences contained within these sequences were identified using NetMHC predictions and may have contributed to recall responses. Five (9-10mer) epitopes were confirmed to be targets of CD8+ T cell responses using ELISpot depletion and ICS assays. Two 9mers among these nine epitopes were each restricted by two HLA supertypes (A01/B07; A01A24/A24) and one 9mer was restricted by three HLA supertypes (A01A24/A24/B27) indicating that some CSP class I-restricted epitopes, like DR epitopes, may be HLA-promiscuous. Conclusions This study identified nine and confirmed five novel class I epitopes restricted by six HLA supertypes, suggesting that an adenovirus-vectored CSP vaccine would be immunogenic and potentially protective in genetically diverse populations.
Collapse
Affiliation(s)
- Martha Sedegah
- US Military Malaria Vaccine Program, Naval Medical Research Center, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tamminga C, Sedegah M, Maiolatesi S, Fedders C, Reyes S, Reyes A, Vasquez C, Alcorta Y, Chuang I, Spring M, Kavanaugh M, Ganeshan H, Huang J, Belmonte M, Abot E, Belmonte A, Banania J, Farooq F, Murphy J, Komisar J, Richie NO, Bennett J, Limbach K, Patterson NB, Bruder JT, Shi M, Miller E, Dutta S, Diggs C, Soisson LA, Hollingdale MR, Epstein JE, Richie TL. Human adenovirus 5-vectored Plasmodium falciparum NMRC-M3V-Ad-PfCA vaccine encoding CSP and AMA1 is safe, well-tolerated and immunogenic but does not protect against controlled human malaria infection. Hum Vaccin Immunother 2013; 9:2165-77. [PMID: 23899517 PMCID: PMC3906401 DOI: 10.4161/hv.24941] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background: In a prior study, a DNA prime / adenovirus boost vaccine (DNA/Ad) expressing P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1) (NMRC-M3V-D/Ad-PfCA Vaccine) induced 27% protection against controlled human malaria infection (CHMI). To investigate the contribution of DNA priming, we tested the efficacy of adenovirus vaccine alone (NMRC-M3V-Ad-PfCA ) in a Phase 1 clinical trial. Methodology/Principal Findings: The regimen was a single intramuscular injection with two non-replicating human serotype 5 adenovectors encoding CSP and AMA1, respectively. One x 1010 particle units of each construct were combined prior to administration. The regimen was safe and well-tolerated. Four weeks later, 18 study subjects received P. falciparum CHMI administered by mosquito bite. None were fully protected although one showed delayed onset of parasitemia. Antibody responses were low, with geometric mean CSP ELISA titer of 381 (range < 50–1626) and AMA1 ELISA of 4.95 µg/mL (range 0.2–38). Summed ex vivo IFN-γ ELISpot responses to overlapping peptides were robust, with geometric mean spot forming cells/million peripheral blood mononuclear cells [sfc/m] for CSP of 273 (range 38–2550) and for AMA1 of 1303 (range 435–4594). CD4+ and CD8+ T cell IFN-γ responses to CSP were positive by flow cytometry in 25% and 56% of the research subjects, respectively, and to AMA1 in 94% and 100%, respectively. Significance: In contrast to DNA/Ad, Ad alone did not protect against CHMI despite inducing broad, cell-mediated immunity, indicating that DNA priming is required for protection by the adenovirus-vectored vaccine. ClinicalTrials.gov Identifier: NCT00392015.
Collapse
Affiliation(s)
| | | | | | | | - Sharina Reyes
- Naval Medical Research Center; Silver Spring, MD USA
| | | | | | | | - Ilin Chuang
- Naval Medical Research Center; Silver Spring, MD USA
| | - Michele Spring
- Armed Forces Research Institute of Medical Sciences; Bangkok, Thailand
| | | | | | - Jun Huang
- Naval Medical Research Center; Silver Spring, MD USA
| | | | - Esteban Abot
- Naval Medical Research Center; Silver Spring, MD USA
| | | | | | - Fouzia Farooq
- Naval Medical Research Center; Silver Spring, MD USA
| | | | - Jack Komisar
- Walter Reed Army Institute of Research; Silver Spring, MD USA
| | - Nancy O Richie
- Walter Reed Army Institute of Research; Silver Spring, MD USA
| | - Jason Bennett
- Walter Reed Army Institute of Research; Silver Spring, MD USA
| | - Keith Limbach
- Naval Medical Research Center; Silver Spring, MD USA
| | | | | | - Meng Shi
- Walter Reed Army Institute of Research; Silver Spring, MD USA
| | | | - Sheetij Dutta
- Walter Reed Army Institute of Research; Silver Spring, MD USA
| | | | | | | | | | | |
Collapse
|
33
|
Gratieri T, Alberti I, Lapteva M, Kalia YN. Next generation intra- and transdermal therapeutic systems: using non- and minimally-invasive technologies to increase drug delivery into and across the skin. Eur J Pharm Sci 2013; 50:609-22. [PMID: 23567467 DOI: 10.1016/j.ejps.2013.03.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/14/2013] [Accepted: 03/18/2013] [Indexed: 02/08/2023]
Abstract
The number of drug molecules approved by the regulatory authorities for transdermal administration is relatively modest - less than two dozen. Many other therapies might benefit from the advantages offered by the transdermal route. That they have not already done so is due to the exceptional efficacy of the stratum corneum as a diffusional barrier and its remarkable ability to restrict molecular transport. As a result only extremely potent therapeutics possessing the necessary physicochemical properties can be delivered by passive diffusion across intact skin at pharmacologically relevent rates. This has led to the development of several delivery technologies that might be used to expand the range of medicinal agents that can be administered transdermally with the requisite delivery kinetics. There are essentially two approaches: (i) provide an improved driving force to increase the rate of transport (i.e., act on the molecule) or (ii) modify the properties of the microenvironment through which diffusion must occur (i.e., act on the stratum corneum). The challenge for the latter approach is to compromise the barrier in a reversible and relatively painless manner that minimises irritation, is practical for chronic conditions and has minimal risk of infection. Here, we review some of the physical methods that have been used to either transiently perturb the skin barrier or to provide additional driving forces to facilitate molecular transport with a particular focus on technologies that have either led to marketed products or have at least reached the clinical development stage.
Collapse
Affiliation(s)
- Taís Gratieri
- Faculdade de Ciências da Saúde, Universidade de Brasília, Campus Universitário Darcy Ribeiro, s/n, 70910-900 Brasília, DF, Brazil
| | | | | | | |
Collapse
|
34
|
Guha R, Das S, Ghosh J, Naskar K, Mandala A, Sundar S, Dujardin JC, Roy S. Heterologous priming-boosting with DNA and vaccinia virus expressing kinetoplastid membrane protein-11 induces potent cellular immune response and confers protection against infection with antimony resistant and sensitive strains of Leishmania (Leishmania) donovani. Vaccine 2013; 31:1905-15. [PMID: 23499564 DOI: 10.1016/j.vaccine.2013.02.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/08/2013] [Accepted: 02/11/2013] [Indexed: 10/27/2022]
Abstract
BACKGROUND Emergence of resistance against commonly available drugs poses a major threat in the treatment of visceral leishmaniasis (VL), particularly in the Indian subcontinent. Absence of any licensed vaccine against VL emphasizes the urgent need to develop an effective alternative vaccination strategy. METHODOLOGY We developed a novel heterologous prime boost immunization strategy using kinetoplastid membrane protein-11 (KMP-11) DNA priming followed by boosting with recombinant vaccinia virus (rVV) expressing the same antigen. The efficacy of this vaccination regimen in a murine and hamster model of visceral leishmaniasis caused by both antimony resistant (Sb-R) and sensitive (Sb-S) Leishmania (L.) donovani is examined. RESULT Heterologous prime-boost (KMP-11 DNA/rVV) vaccination was able to protect mice and hamsters from experimental VL induced by both Sb-S and Sb-R-L. (L.) donovani isolates. Parasite burden is kept significantly low in the vaccinated groups even after 60 days post-infection in hamsters, which are extremely susceptible to VL. Protection in mice is correlated with strong cellular and humoral immune responses. Generation of polyfunctional CD8(+) T cell was observed in vaccinated groups, which is one of the most important prerequisite for successful vaccination against VL. Protection was accompanied with generation of antigen specific CD4(+) and CD8(+) cells that produced effector cytokines such as IFN-γ, IL-2 and TNF-α. KMP-11-DNA/rVV vaccination also developed strong cytotoxic response and reversed T-cell impairment to induce antigen specific T cell proliferation. CONCLUSION KMP-11 is a unique antigen with high epitope density. Heterologous prime boost vaccination activates CD4(+) and CD8(+) T-cell mediated immunity to confer resistance to VL. This immunization method also produces high quality T-cells secreting multiple effector cytokines thus enhancing durability of the immune response. Thus the vaccination regime as described in the present study could provide a potent strategy for future anti-leishmanial vaccine development.
Collapse
Affiliation(s)
- Rajan Guha
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Chuang I, Sedegah M, Cicatelli S, Spring M, Polhemus M, Tamminga C, Patterson N, Guerrero M, Bennett JW, McGrath S, Ganeshan H, Belmonte M, Farooq F, Abot E, Banania JG, Huang J, Newcomer R, Rein L, Litilit D, Richie NO, Wood C, Murphy J, Sauerwein R, Hermsen CC, McCoy AJ, Kamau E, Cummings J, Komisar J, Sutamihardja A, Shi M, Epstein JE, Maiolatesi S, Tosh D, Limbach K, Angov E, Bergmann-Leitner E, Bruder JT, Doolan DL, King CR, Carucci D, Dutta S, Soisson L, Diggs C, Hollingdale MR, Ockenhouse CF, Richie TL. DNA prime/Adenovirus boost malaria vaccine encoding P. falciparum CSP and AMA1 induces sterile protection associated with cell-mediated immunity. PLoS One 2013; 8:e55571. [PMID: 23457473 PMCID: PMC3573028 DOI: 10.1371/journal.pone.0055571] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 12/24/2012] [Indexed: 12/25/2022] Open
Abstract
Background Gene-based vaccination using prime/boost regimens protects animals and humans against malaria, inducing cell-mediated responses that in animal models target liver stage malaria parasites. We tested a DNA prime/adenovirus boost malaria vaccine in a Phase 1 clinical trial with controlled human malaria infection. Methodology/Principal Findings The vaccine regimen was three monthly doses of two DNA plasmids (DNA) followed four months later by a single boost with two non-replicating human serotype 5 adenovirus vectors (Ad). The constructs encoded genes expressing P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1). The regimen was safe and well-tolerated, with mostly mild adverse events that occurred at the site of injection. Only one AE (diarrhea), possibly related to immunization, was severe (Grade 3), preventing daily activities. Four weeks after the Ad boost, 15 study subjects were challenged with P. falciparum sporozoites by mosquito bite, and four (27%) were sterilely protected. Antibody responses by ELISA rose after Ad boost but were low (CSP geometric mean titer 210, range 44–817; AMA1 geometric mean micrograms/milliliter 11.9, range 1.5–102) and were not associated with protection. Ex vivo IFN-γ ELISpot responses after Ad boost were modest (CSP geometric mean spot forming cells/million peripheral blood mononuclear cells 86, range 13–408; AMA1 348, range 88–1270) and were highest in three protected subjects. ELISpot responses to AMA1 were significantly associated with protection (p = 0.019). Flow cytometry identified predominant IFN-γ mono-secreting CD8+ T cell responses in three protected subjects. No subjects with high pre-existing anti-Ad5 neutralizing antibodies were protected but the association was not statistically significant. Significance The DNA/Ad regimen provided the highest sterile immunity achieved against malaria following immunization with a gene-based subunit vaccine (27%). Protection was associated with cell-mediated immunity to AMA1, with CSP probably contributing. Substituting a low seroprevalence vector for Ad5 and supplementing CSP/AMA1 with additional antigens may improve protection. Trial Registration ClinicalTrials.govNCT00870987.
Collapse
MESH Headings
- Adenoviruses, Human/genetics
- Adenoviruses, Human/immunology
- Adolescent
- Adult
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- CD8-Positive T-Lymphocytes/immunology
- Female
- Humans
- Immunity, Cellular
- Interferon-gamma/immunology
- Malaria Vaccines/adverse effects
- Malaria Vaccines/genetics
- Malaria Vaccines/immunology
- Malaria Vaccines/therapeutic use
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/prevention & control
- Male
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Middle Aged
- Plasmodium falciparum/genetics
- Plasmodium falciparum/immunology
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Vaccines, DNA/adverse effects
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, DNA/therapeutic use
- Young Adult
Collapse
Affiliation(s)
- Ilin Chuang
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Martha Sedegah
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Susan Cicatelli
- US Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Michele Spring
- US Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Mark Polhemus
- US Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Cindy Tamminga
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Noelle Patterson
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Melanie Guerrero
- US Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Jason W. Bennett
- US Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Shannon McGrath
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Harini Ganeshan
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Maria Belmonte
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Fouzia Farooq
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Esteban Abot
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Jo Glenna Banania
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Jun Huang
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Rhonda Newcomer
- US Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Lisa Rein
- US Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Dianne Litilit
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Nancy O. Richie
- US Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Chloe Wood
- US Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Jittawadee Murphy
- US Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Robert Sauerwein
- Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | | | - Andrea J. McCoy
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Edwin Kamau
- US Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - James Cummings
- US Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Jack Komisar
- US Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Awalludin Sutamihardja
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Meng Shi
- US Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Judith E. Epstein
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Santina Maiolatesi
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Donna Tosh
- US Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Keith Limbach
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Evelina Angov
- US Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Elke Bergmann-Leitner
- US Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | | | - Denise L. Doolan
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - C. Richter King
- GenVec, Inc., Gaithersburg, Maryland, United States of America
| | - Daniel Carucci
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Sheetij Dutta
- US Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | | | - Carter Diggs
- USAID, Washington, D. C., United States of America
| | - Michael R. Hollingdale
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Christian F. Ockenhouse
- US Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Thomas L. Richie
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- * E-mail:
| |
Collapse
|
36
|
Hirobe S, Okada N, Nakagawa S. Transcutaneous vaccines--current and emerging strategies. Expert Opin Drug Deliv 2013; 10:485-98. [PMID: 23316778 DOI: 10.1517/17425247.2013.760542] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Vaccination, which is the major fundamental prophylaxis against illness and death from infectious disease, has greatly contributed to the global improvement of human health. However, the disadvantages of conventional injection systems hamper the delivery of vaccination technologies to developing countries. The imminent practice of easy-to-use vaccination methods is expected to overcome certain issues associated with injectable vaccinations. One innovative method is the transcutaneous immunization (TCI) system. AREAS COVERED Two major strategies for TCI are discussed in this review. One is to promote antigen permeation of the skin barrier by patch systems or nanoparticles. The other is the delivery of antigens into the skin by electroporation and microneedles in order to physically overcome the skin barrier. Moreover, adjuvant development for TCI is discussed. EXPERT OPINION Many different approaches have been developed for TCI, which have the potential to be effective, easy-to-use and painless methods of vaccination. However, in practical terms, the guidelines concerning the manufacturing processes and clinical trial evaluation of the procedures have not kept pace with the development of these novel formulations. The accumulation of information regarding skin characteristics and the properties of TCI devices will help refine TCI system development guidelines and thus lead to the improvement of transcutaneous vaccination.
Collapse
Affiliation(s)
- Sachiko Hirobe
- Osaka University, Graduate School of Pharmaceutical Sciences, Laboratory of Biotechnology and Therapeutics, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
37
|
|
38
|
Richie TL, Charoenvit Y, Wang R, Epstein JE, Hedstrom RC, Kumar S, Luke TC, Freilich DA, Aguiar JC, Sacci JB, Sedegah M, Nosek RA, De La Vega P, Berzins MP, Majam VF, Abot EN, Ganeshan H, Richie NO, Banania JG, Baraceros MFB, Geter TG, Mere R, Bebris L, Limbach K, Hickey BW, Lanar DE, Ng J, Shi M, Hobart PM, Norman JA, Soisson LA, Hollingdale MR, Rogers WO, Doolan DL, Hoffman SL. Clinical trial in healthy malaria-naïve adults to evaluate the safety, tolerability, immunogenicity and efficacy of MuStDO5, a five-gene, sporozoite/hepatic stage Plasmodium falciparum DNA vaccine combined with escalating dose human GM-CSF DNA. Hum Vaccin Immunother 2012; 8:1564-84. [PMID: 23151451 PMCID: PMC3601132 DOI: 10.4161/hv.22129] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
When introduced in the 1990s, immunization with DNA plasmids was considered potentially revolutionary for vaccine development, particularly for vaccines intended to induce protective CD8 T cell responses against multiple antigens. We conducted, in 1997−1998, the first clinical trial in healthy humans of a DNA vaccine, a single plasmid encoding Plasmodium falciparum circumsporozoite protein (PfCSP), as an initial step toward developing a multi-antigen malaria vaccine targeting the liver stages of the parasite. As the next step, we conducted in 2000–2001 a clinical trial of a five-plasmid mixture called MuStDO5 encoding pre-erythrocytic antigens PfCSP, PfSSP2/TRAP, PfEXP1, PfLSA1 and PfLSA3. Thirty-two, malaria-naïve, adult volunteers were enrolled sequentially into four cohorts receiving a mixture of 500 μg of each plasmid plus escalating doses (0, 20, 100 or 500 μg) of a sixth plasmid encoding human granulocyte macrophage-colony stimulating factor (hGM-CSF). Three doses of each formulation were administered intramuscularly by needle-less jet injection at 0, 4 and 8 weeks, and each cohort had controlled human malaria infection administered by five mosquito bites 18 d later. The vaccine was safe and well-tolerated, inducing moderate antigen-specific, MHC-restricted T cell interferon-γ responses but no antibodies. Although no volunteers were protected, T cell responses were boosted post malaria challenge. This trial demonstrated the MuStDO5 DNA and hGM-CSF plasmids to be safe and modestly immunogenic for T cell responses. It also laid the foundation for priming with DNA plasmids and boosting with recombinant viruses, an approach known for nearly 15 y to enhance the immunogenicity and protective efficacy of DNA vaccines.
Collapse
|
39
|
Richie TL. Malaria vaccines for travelers. Travel Med Infect Dis 2012; 2:193-210. [PMID: 17291981 DOI: 10.1016/j.tmaid.2004.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Accepted: 07/07/2004] [Indexed: 11/21/2022]
Affiliation(s)
- Thomas L Richie
- Naval Medical Research Center Malaria Program, 503 Robert Grant Avenue, Silver Spring, MD 20910-7500, USA
| |
Collapse
|
40
|
Hartikka J, Bozoukova V, Morrow J, Rusalov D, Shlapobersky M, Wei Q, Boutsaboualoy S, Ye M, Wloch MK, Doukas J, Sullivan S, Rolland A, Smith LR. Preclinical evaluation of the immunogenicity and safety of plasmid DNA-based prophylactic vaccines for human cytomegalovirus. Hum Vaccin Immunother 2012; 8:1595-606. [PMID: 22922766 DOI: 10.4161/hv.21225] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Human cytomegalovirus (CMV) establishes a lifelong persistent infection characterized by periods of latency and sporadic viral replication and is a major infectious cause of birth defects following congenital infection. Currently, no licensed vaccine is available that would prevent CMV infection. In an effort to develop a prophylactic CMV vaccine, the effects of different formulations, immunization routes and delivery devices on the immunogenicity of plasmid DNA (pDNA)-based vaccines were evaluated in rabbits and mice. Compared with PBS- and poloxamer-based formulations, significantly higher antibody responses were obtained with pDNA formulated with Vaxfectin (®) , a cationic lipid-based adjuvant. With low vaccine doses, the intradermal (ID) route resulted in higher antibody responses than obtained when the same dose was administered intramuscularly (IM). Since the IM route allowed injection of larger volumes and higher doses than could be administered at a single ID site, better antibody responses were obtained using the IM route. The needle-free injection system Biojector (®) 2000 and electroporation devices enhanced antibody responses only marginally compared with responses obtained with Vaxfectin (®) -formulated pDNA injected IM with a needle. A single-vial Vaxfectin (®) formulation was developed in a dosage form ready for use after thawing at room temperature. Finally, in a GLP-compliant repeat-dose toxicology study conducted in rabbits, single-vial Vaxfectin (®) -formulated vaccines, containing pDNA and Vaxfectin (®) up to 4.5 mg and 2 mg/injection, respectively, showed a favorable safety profile and were judged as well-tolerated. The results support further development of a Vaxfectin (®) -formulated pDNA vaccine to target congenital CMV infection.
Collapse
|
41
|
Tyagi RK, Garg NK, Sahu T. Vaccination Strategies against Malaria: novel carrier(s) more than a tour de force. J Control Release 2012; 162:242-54. [PMID: 22564369 DOI: 10.1016/j.jconrel.2012.04.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/20/2012] [Accepted: 04/23/2012] [Indexed: 02/07/2023]
Abstract
The introduction of vaccine technology has facilitated an unprecedented multi-antigen approach to develop an effective vaccine against complex systemic inflammatory pathogens such as Plasmodium spp. that cause severe malaria. The capacity of multi subunit DNA vaccine encoding different stage Plasmodium antigens to induce CD8(+) cytotoxic T lymphocytes and interferon-γ responses in mice, monkeys and humans has been observed. Moreover, genetic vaccination may be capable of eliciting both cell mediated and humoral immune responses. The cytotoxic T cell responses are categorically needed against intracellular hepatic stage and humoral response with antibodies targeted against antigens from all stages of malaria parasite life cycle. Therefore, the key to success for any DNA based vaccine is to design a vector able to serve as a safe and efficient delivery system. This has encouraged the development of non-viral DNA-mediated gene transfer techniques such as liposome, virosomes, microsphere and nanoparticles. Efficient and relatively safe DNA transfection using lipoplexes makes them an appealing alternative to be explored for gene delivery. Also, liposome-entrapped DNA has been shown to enhance the potency of DNA vaccines, possibly by facilitating uptake of the plasmid by antigen-presenting cells (APC). Another recent technology using cationic lipids has been deployed and has generated substantial interest in this approach to gene transfer. In this review we discussed various aspects that could be decisive in the formulation of efficient and stable carrier system(s) for the development of malaria vaccine.
Collapse
Affiliation(s)
- Rajeev K Tyagi
- Global Health Infectious Disease Research Program, Department of Global Health, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa, FL 33612-9415, USA.
| | | | | |
Collapse
|
42
|
Li X, Cao H, Wang Q, Di B, Wang M, Lu J, Pan L, Yang L, Mei M, Pan X, Li G, Wang L. Novel AAV-based genetic vaccines encoding truncated dengue virus envelope proteins elicit humoral immune responses in mice. Microbes Infect 2012; 14:1000-7. [PMID: 22626929 DOI: 10.1016/j.micinf.2012.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 04/07/2012] [Accepted: 05/06/2012] [Indexed: 02/06/2023]
Abstract
The envelope protein of dengue virus is involved in host cell attachment for entry and induction of protective immunity. Current efforts are focused on producing a tetravalent vaccine by mixing four monovalent vaccine components. In this work, we developed a genetic vaccine based on a novel adeno-associated viral (AAV) vector expressing the carboxy-terminal truncated envelope protein (79E) of dengue virus. The expression of the recombinant 79E protein in HEK 293 cells was confirmed by Western blot. Vectors packaged with novel AAV capsids (AAV2/8 or AAV2/rh32.33) were injected into C57BL/6 mice intramuscularly. Dengue virus antigen was produced in the mice and induced long-lasting antibody responses against the dengue virus still detectable 20 weeks after immunization. AAV2/8 vaccine induced higher anti-dengue virus antibody levels than AAV2/rh32.33 vaccine or AAV plasmid. Furthermore, the anti-dengue antibodies could neutralize homogeneous dengue virus. These results demonstrated that the AAV vaccines possessed appropriate immunogenicity and could be used for the development of an effective dengue vaccine.
Collapse
Affiliation(s)
- Xueling Li
- Vaccine Research Institute, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Njongmeta LM, Bray J, Davies CJ, Davis WC, Howard CJ, Hope JC, Palmer GH, Brown WC, Mwangi W. CD205 antigen targeting combined with dendritic cell recruitment factors and antigen-linked CD40L activation primes and expands significant antigen-specific antibody and CD4+ T cell responses following DNA vaccination of outbred animals. Vaccine 2012; 30:1624-35. [DOI: 10.1016/j.vaccine.2011.12.110] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 12/13/2011] [Accepted: 12/22/2011] [Indexed: 01/16/2023]
|
44
|
Schwartz L, Brown GV, Genton B, Moorthy VS. A review of malaria vaccine clinical projects based on the WHO rainbow table. Malar J 2012; 11:11. [PMID: 22230255 PMCID: PMC3286401 DOI: 10.1186/1475-2875-11-11] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 01/09/2012] [Indexed: 12/14/2022] Open
Abstract
Development and Phase 3 testing of the most advanced malaria vaccine, RTS,S/AS01, indicates that malaria vaccine R&D is moving into a new phase. Field trials of several research malaria vaccines have also confirmed that it is possible to impact the host-parasite relationship through vaccine-induced immune responses to multiple antigenic targets using different platforms. Other approaches have been appropriately tested but turned out to be disappointing after clinical evaluation. As the malaria community considers the potential role of a first-generation malaria vaccine in malaria control efforts, it is an apposite time to carefully document terminated and ongoing malaria vaccine research projects so that lessons learned can be applied to increase the chances of success for second-generation malaria vaccines over the next 10 years. The most comprehensive resource of malaria vaccine projects is a spreadsheet compiled by WHO thanks to the input from funding agencies, sponsors and investigators worldwide. This spreadsheet, available from WHO's website, is known as "the rainbow table". By summarizing the published and some unpublished information available for each project on the rainbow table, the most comprehensive review of malaria vaccine projects to be published in the last several years is provided below.
Collapse
Affiliation(s)
- Lauren Schwartz
- Initiative for Vaccine Research, Department of Immunization, Vaccines & Biologicals, World Health Organization, Avenue Appia 20, 1211-CH 27, Geneva, Switzerland
| | | | | | | |
Collapse
|
45
|
Thomas BS, Nishikawa S, Ito K, Chopra P, Sharma N, Evans DH, Tyrrell DLJ, Bathe OF, Rancourt DE. Peptide vaccination is superior to genetic vaccination using a recombineered bacteriophage λ subunit vaccine. Vaccine 2011; 30:998-1008. [PMID: 22210400 DOI: 10.1016/j.vaccine.2011.12.070] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 12/12/2011] [Accepted: 12/14/2011] [Indexed: 11/28/2022]
Abstract
Genetic immunization holds promise as a vaccination method, but has so far proven ineffective in large primate and human trials. Herein, we examined the relative merits of genetic immunization and peptide immunization using bacteriophage λ. Bacteriophage λ has proven effective in immune challenge models using both immunization methods, but there has never been a direct comparison of efficacy and of the quality of immune response. In the current study, this vector was produced using a combination of cis and trans phage display. When antibody titers were measured from immunized animals together with IL-2, IL-4 and IFNγ production from splenocytes in vitro, we found that proteins displayed on λ were superior at eliciting an immune response in comparison to genetic immunization with λ. We also found that the antibodies produced in response to immunization with λ displayed proteins bound more epitopes than those produced in response to genetic immunization. Finally, the general immune response to λ inoculation, whether peptide or genetic, was dominated by a Th1 response, as determined by IFNγ and IL-4 concentration, or by a higher concentration of IgG2a antibodies.
Collapse
Affiliation(s)
- Brad S Thomas
- Southern Alberta Cancer Research Institute, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sedegah M, Tamminga C, McGrath S, House B, Ganeshan H, Lejano J, Abot E, Banania GJ, Sayo R, Farooq F, Belmonte M, Manohar N, Richie NO, Wood C, Long CA, Regis D, Williams FT, Shi M, Chuang I, Spring M, Epstein JE, Mendoza-Silveiras J, Limbach K, Patterson NB, Bruder JT, Doolan DL, King CR, Soisson L, Diggs C, Carucci D, Dutta S, Hollingdale MR, Ockenhouse CF, Richie TL. Adenovirus 5-vectored P. falciparum vaccine expressing CSP and AMA1. Part A: safety and immunogenicity in seronegative adults. PLoS One 2011; 6:e24586. [PMID: 22003383 PMCID: PMC3189181 DOI: 10.1371/journal.pone.0024586] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 08/15/2011] [Indexed: 11/24/2022] Open
Abstract
Background Models of immunity to malaria indicate the importance of CD8+ T cell responses for targeting intrahepatic stages and antibodies for targeting sporozoite and blood stages. We designed a multistage adenovirus 5 (Ad5)-vectored Plasmodium falciparum malaria vaccine, aiming to induce both types of responses in humans, that was tested for safety and immunogenicity in a Phase 1 dose escalation trial in Ad5-seronegative volunteers. Methodology/Principal Findings The NMRC-M3V-Ad-PfCA vaccine combines two adenovectors encoding circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1). Group 1 (n = 6) healthy volunteers received one intramuscular injection of 2×10∧10 particle units (1×10∧10 each construct) and Group 2 (n = 6) a five-fold higher dose. Transient, mild to moderate adverse events were more pronounced with the higher dose. ELISpot responses to CSP and AMA1 peaked at 1 month, were higher in the low dose (geomean CSP = 422, AMA1 = 862 spot forming cells/million) than in the high dose (CSP = 154, p = 0.049, AMA1 = 423, p = 0.045) group and were still positive at 12 months in a number of volunteers. ELISpot depletion assays identified dependence on CD4+ or on both CD4+ and CD8+ T cells, with few responses dependent only on CD8+ T cells. Intracellular cytokine staining detected stronger CD8+ than CD4+ T cell IFN-γ responses (CSP p = 0.0001, AMA1 p = 0.003), but similar frequencies of multifunctional CD4+ and CD8+ T cells secreting two or more of IFN-γ, TNF-α or IL-2. Median fluorescence intensities were 7–10 fold higher in triple than single secreting cells. Antibody responses were low but trended higher in the high dose group and did not inhibit growth of cultured P. falciparum blood stage parasites. Significance As found in other trials, adenovectored vaccines appeared safe and well-tolerated at doses up to 1×10∧11 particle units. This is the first demonstration in humans of a malaria vaccine eliciting strong CD8+ T cell IFN-γ responses. Trial Registration ClinicalTrials.govNCT00392015
Collapse
Affiliation(s)
- Martha Sedegah
- U.S. Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Cherif MS, Shuaibu MN, Kurosaki T, Helegbe GK, Kikuchi M, Yanagi T, Tsuboi T, Sasaki H, Hirayama K. Immunogenicity of novel nanoparticle-coated MSP-1 C-terminus malaria DNA vaccine using different routes of administration. Vaccine 2011; 29:9038-50. [PMID: 21939717 DOI: 10.1016/j.vaccine.2011.09.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 08/31/2011] [Accepted: 09/09/2011] [Indexed: 01/08/2023]
Abstract
An important aspect in optimizing DNA vaccination is antigen delivery to the site of action. In this way, any alternative delivery system having higher transfection efficiency and eventual superior antibody production needs to be further explored. The novel nanoparticle, pDNA/PEI/γ-PGA complex, is one of a promising delivery system, which is taken up by cells and is shown to have high transfection efficiency. The immunostimulatory effect of this novel nanoparticle (NP) coated plasmid encoding Plasmodium yoelii MSP1-C-terminus was examined. Groups of C57BL/6 mice were immunized either with NP-coated MSP-1 plasmid, naked plasmid or NP-coated blank plasmid, by three different routes of administration; intravenous (i.v.), intraperitoneal (i.p.) and subcutaneous (s.c). Mice were primed and boosted twice at 3-week intervals, then challenged 2 weeks after; and 100%, 100% and 50% mean of survival was observed in immunized mice with coated DNA vaccine by i.p., i.v. and s.c., respectively. Coated DNA vaccine showed significant immunogenicity and elicited protective levels of antigen specific IgG and its subclass antibody, an increased proportion of CD4(+) and CD8(+) T cells and INF-γ and IL-12 levels in the serum and cultured splenocyte supernatant, as well as INF-γ producing cells in the spleen. We demonstrate that, NP-coated MSP-1 DNA-based vaccine confers protection against lethal P. yoelii challenge in murine model across the various route of administration and may therefore, be considered a promising delivery system for vaccination.
Collapse
Affiliation(s)
- Mahamoud Sama Cherif
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University 1-12-4 Sakamoto, 852-8523, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Epstein JE, Tewari K, Lyke KE, Sim BKL, Billingsley PF, Laurens MB, Gunasekera A, Chakravarty S, James ER, Sedegah M, Richman A, Velmurugan S, Reyes S, Li M, Tucker K, Ahumada A, Ruben AJ, Li T, Stafford R, Eappen AG, Tamminga C, Bennett JW, Ockenhouse CF, Murphy JR, Komisar J, Thomas N, Loyevsky M, Birkett A, Plowe CV, Loucq C, Edelman R, Richie TL, Seder RA, Hoffman SL. Live Attenuated Malaria Vaccine Designed to Protect Through Hepatic CD8+ T Cell Immunity. Science 2011; 334:475-80. [PMID: 21903775 DOI: 10.1126/science.1211548] [Citation(s) in RCA: 407] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- J E Epstein
- U.S. Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD 20910, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
This review provides a detailed look at the attributes and immunologic mechanisms of plasmid DNA vaccines and their utility as laboratory tools as well as potential human vaccines. The immunogenicity and efficacy of DNA vaccines in a variety of preclinical models is used to illustrate how they differ from traditional vaccines in novel ways due to the in situ antigen production and the ease with which they are constructed. The ability to make new DNA vaccines without needing to handle a virulent pathogen or to adapt the pathogen for manufacturing purposes demonstrates the potential value of this vaccine technology for use against emerging and epidemic pathogens. Similarly, personalized anti-tumor DNA vaccines can also readily be made from a biopsy. Because DNA vaccines bias the T-helper (Th) cell response to a Th1 phenotype, DNA vaccines are also under development for vaccines against allergy and autoimmune diseases. The licensure of four animal health products, including two prophylactic vaccines against infectious diseases, one immunotherapy for cancer, and one gene therapy delivery of a hormone for a food animal, provides evidence of the efficacy of DNA vaccines in multiple species including horses and pigs. The size of these target animals provides evidence that the somewhat disappointing immunogenicity of DNA vaccines in a number of human clinical trials is not due simply to the larger mass of humans compared with most laboratory animals. The insights gained from the mechanisms of protection in the animal vaccines, the advances in the delivery and expression technologies for increasing the potency of DNA vaccines, and encouragingly potent human immune responses in certain clinical trials, provide insights for future efforts to develop DNA vaccines into a broadly useful vaccine and immunotherapy platform with applications for human and animal health.
Collapse
|
50
|
Dodoo D, Hollingdale MR, Anum D, Koram KA, Gyan B, Akanmori BD, Ocran J, Adu-Amankwah S, Geneshan H, Abot E, Legano J, Banania G, Sayo R, Brambilla D, Kumar S, Doolan DL, Rogers WO, Epstein J, Richie TL, Sedegah M. Measuring naturally acquired immune responses to candidate malaria vaccine antigens in Ghanaian adults. Malar J 2011; 10:168. [PMID: 21689436 PMCID: PMC3132199 DOI: 10.1186/1475-2875-10-168] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 06/20/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To prepare field sites for malaria vaccine trials, it is important to determine baseline antibody and T cell responses to candidate malaria vaccine antigens. Assessing T cell responses is especially challenging, given genetic restriction, low responses observed in endemic areas, their variability over time, potential suppression by parasitaemia and the intrinsic variability of the assays. METHODS In Part A of this study, antibody titres were measured in adults from urban and rural communities in Ghana to recombinant Plasmodium falciparum CSP, SSP2/TRAP, LSA1, EXP1, MSP1, MSP3 and EBA175 by ELISA, and to sporozoites and infected erythrocytes by IFA. Positive ELISA responses were determined using two methods. T cell responses to defined CD8 or CD4 T cell epitopes from CSP, SSP2/TRAP, LSA1 and EXP1 were measured by ex vivo IFN-γ ELISpot assays using HLA-matched Class I- and DR-restricted synthetic peptides. In Part B, the reproducibility of the ELISpot assay to CSP and AMA1 was measured by repeating assays of individual samples using peptide pools and low, medium or high stringency criteria for defining positive responses, and by comparing samples collected two weeks apart. RESULTS In Part A, positive antibody responses varied widely from 17%-100%, according to the antigen and statistical method, with blood stage antigens showing more frequent and higher magnitude responses. ELISA titres were higher in rural subjects, while IFA titres and the frequencies and magnitudes of ex vivo ELISpot activities were similar in both communities. DR-restricted peptides showed stronger responses than Class I-restricted peptides. In Part B, the most stringent statistical criteria gave the fewest, and the least stringent the most positive responses, with reproducibility slightly higher using the least stringent method when assays were repeated. Results varied significantly between the two-week time-points for many participants. CONCLUSIONS All participants were positive for at least one malaria protein by ELISA, with results dependent on the criteria for positivity. Likewise, ELISpot responses varied among participants, but were relatively reproducible by the three methods tested, especially the least stringent, when assays were repeated. However, results often differed between samples taken two weeks apart, indicating significant biological variability over short intervals.
Collapse
Affiliation(s)
- Daniel Dodoo
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|