1
|
Yang S, Zeng Z, Yuan Q, Chen Q, Wang Z, Xie H, Liu J. Vascular calcification: from the perspective of crosstalk. MOLECULAR BIOMEDICINE 2023; 4:35. [PMID: 37851172 PMCID: PMC10584806 DOI: 10.1186/s43556-023-00146-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023] Open
Abstract
Vascular calcification (VC) is highly correlated with cardiovascular disease morbidity and mortality, but anti-VC treatment remains an area to be tackled due to the ill-defined molecular mechanisms. Regardless of the type of VC, it does not depend on a single cell but involves multi-cells/organs to form a complex cellular communication network through the vascular microenvironment to participate in the occurrence and development of VC. Therefore, focusing only on the direct effect of pathological factors on vascular smooth muscle cells (VSMCs) tends to overlook the combined effect of other cells and VSMCs, including VSMCs-VSMCs, ECs-VMSCs, Macrophages-VSMCs, etc. Extracellular vesicles (EVs) are a collective term for tiny vesicles with a membrane structure that are actively secreted by cells, and almost all cells secrete EVs. EVs docked on the surface of receptor cells can directly mediate signal transduction or transfer their contents into the cell to elicit a functional response from the receptor cells. They have been proven to participate in the VC process and have also shown attractive therapeutic prospects. Based on the advantages of EVs and the ability to be detected in body fluids, they may become a novel therapeutic agent, drug delivery vehicle, diagnostic and prognostic biomarker, and potential therapeutic target in the future. This review focuses on the new insight into VC molecular mechanisms from the perspective of crosstalk, summarizes how multi-cells/organs interactions communicate via EVs to regulate VC and the emerging potential of EVs as therapeutic methods in VC. We also summarize preclinical experiments on crosstalk-based and the current state of clinical studies on VC-related measures.
Collapse
Affiliation(s)
- Shiqi Yang
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
- Department of Clinical Laboratory Medicine, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Zhaolin Zeng
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Qing Yuan
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
- Department of Clinical Laboratory Medicine, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Qian Chen
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Zuo Wang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Hui Xie
- Department of Orthopaedics, Movement System Injury and Repair Research Centre, Xiangya Hospital, Central South University, Changsha, Hunan Province, China.
| | - Jianghua Liu
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
2
|
Bakhshian Nik A, Kaiser K, Sun P, Khomtchouk BB, Hutcheson JD. Altered Caveolin-1 Dynamics Result in Divergent Mineralization Responses in Bone and Vascular Calcification. Cell Mol Bioeng 2023; 16:299-308. [PMID: 37811003 PMCID: PMC10550882 DOI: 10.1007/s12195-023-00779-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/08/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Though vascular smooth muscle cells adopt an osteogenic phenotype during pathological vascular calcification, clinical studies note an inverse correlation between bone mineral density and arterial mineral-also known as the calcification paradox. Both processes are mediated by extracellular vesicles (EVs) that sequester calcium and phosphate. Calcifying EV formation in the vasculature requires caveolin-1 (CAV1), a membrane scaffolding protein that resides in membrane invaginations (caveolae). Of note, caveolin-1-deficient mice, however, have increased bone mineral density. We hypothesized that caveolin-1 may play divergent roles in calcifying EV formation from vascular smooth muscle cells (VSMCs) and osteoblasts (HOBs). Methods Primary human coronary artery VSMCs and osteoblasts were cultured for up to 28 days in an osteogenic media. CAV1 expression was knocked down using siRNA. Methyl β-cyclodextrin (MβCD) and a calpain inhibitor were used, respectively, to disrupt and stabilize the caveolar domains in VSMCs and HOBs. Results CAV1 genetic variation demonstrates significant inverse relationships between bone-mineral density (BMD) and coronary artery calcification (CAC) across two independent epidemiological cohorts. Culture in osteogenic (OS) media increased calcification in HOBs and VSMCs. siRNA knockdown of CAV1 abrogated VSMC calcification with no effect on osteoblast mineralization. MβCD-mediated caveolae disruption led to a 3-fold increase of calcification in VSMCs treated with osteogenic media (p < 0.05) but hindered osteoblast mineralization (p < 0.01). Conversely, stabilizing caveolae by calpain inhibition prevented VSMC calcification (p < 0.05) without affecting osteoblast mineralization. There was no significant difference in CAV1 content between lipid domains from HOBs cultured in OS and control media. Conclusion Our data indicate fundamental cellular-level differences in physiological and pathophysiological mineralization mediated by CAV1 dynamics. This is the first study to suggest that divergent mechanisms in calcifying EV formation may play a role in the calcification paradox. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-023-00779-7.
Collapse
Affiliation(s)
- Amirala Bakhshian Nik
- Department of Biomedical Engineering, Florida International University, 10555 W Flagler St, EC 2612, Miami, FL 33174 USA
| | - Katherine Kaiser
- Department of Biomedical Engineering, Florida International University, 10555 W Flagler St, EC 2612, Miami, FL 33174 USA
| | - Patrick Sun
- Department of BioHealth Informatics, Luddy School of Informatics, Computing, and Engineering, Indiana University, 535 W Michigan St, IT 477, Indianapolis, IN 46202 USA
| | - Bohdan B. Khomtchouk
- Department of BioHealth Informatics, Luddy School of Informatics, Computing, and Engineering, Indiana University, 535 W Michigan St, IT 477, Indianapolis, IN 46202 USA
- Krannert Cardiovascular Research Center, Indiana University School of Medicine, Indianapolis, IN USA
- Center for Computational Biology & Bioinformatics, Indiana University School of Medicine, Indianapolis, IN USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN USA
| | - Joshua D. Hutcheson
- Department of Biomedical Engineering, Florida International University, 10555 W Flagler St, EC 2612, Miami, FL 33174 USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL USA
| |
Collapse
|
3
|
Abstract
Patients with chronic kidney disease (CKD) exhibit tremendously elevated risk for cardiovascular disease, particularly ischemic heart disease, due to premature vascular and cardiac aging and accelerated ectopic calcification. The presence of cardiovascular calcification associates with increased risk in patients with CKD. Disturbed mineral homeostasis and diverse comorbidities in these patients drive increased systemic cardiovascular calcification in different manifestations with diverse clinical consequences, like plaque instability, vessel stiffening, and aortic stenosis. This review outlines the heterogeneity in calcification patterning, including mineral type and location and potential implications on clinical outcomes. The advent of therapeutics currently in clinical trials may reduce CKD-associated morbidity. Development of therapeutics for cardiovascular calcification begins with the premise that less mineral is better. While restoring diseased tissues to a noncalcified homeostasis remains the ultimate goal, in some cases, calcific mineral may play a protective role, such as in atherosclerotic plaques. Therefore, developing treatments for ectopic calcification may require a nuanced approach that considers individual patient risk factors. Here, we discuss the most common cardiac and vascular calcification pathologies observed in CKD, how mineral in these tissues affects function, and the potential outcomes and considerations for therapeutic strategies that seek to disrupt the nucleation and growth of mineral. Finally, we discuss future patient-specific considerations for treating cardiac and vascular calcification in patients with CKD-a population in need of anticalcification therapies.
Collapse
Affiliation(s)
- Joshua D. Hutcheson
- Department of Biomedical Engineering, Florida International University, Miami, FL (J.D.H.)
| | - Claudia Goettsch
- Department of Internal Medicine I, Division of Cardiology, Medical Faculty, RWTH Aachen University, Germany (C.G.)
| |
Collapse
|
4
|
Bakhshian Nik A, Ng HH, Ashbrook SK, Sun P, Iacoviello F, Shearing PR, Bertazzo S, Mero D, Khomtchouk BB, Hutcheson JD. Epidermal growth factor receptor inhibition prevents vascular calcifying extracellular vesicle biogenesis. Am J Physiol Heart Circ Physiol 2023; 324:H553-H570. [PMID: 36827229 PMCID: PMC10042607 DOI: 10.1152/ajpheart.00280.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 02/02/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023]
Abstract
Chronic kidney disease (CKD) increases the risk of cardiovascular disease, including vascular calcification, leading to higher mortality. The release of calcifying extracellular vesicles (EVs) by vascular smooth muscle cells (VSMCs) promotes ectopic mineralization of vessel walls. Caveolin-1 (CAV1), a structural protein in the plasma membrane, plays a major role in calcifying EV biogenesis in VSMCs. Epidermal growth factor receptor (EGFR) colocalizes with and influences the intracellular trafficking of CAV1. Using a diet-induced mouse model of CKD followed by a high-phosphate diet to promote vascular calcification, we assessed the potential of EGFR inhibition to prevent vascular calcification. Furthermore, we computationally analyzed 7,651 individuals in the Multi-Ethnic Study of Atherosclerosis (MESA) and Framingham cohorts to assess potential correlations between coronary artery calcium and single-nucleotide polymorphisms (SNPs) associated with elevated serum levels of EGFR. Mice with CKD developed widespread vascular calcification, associated with increased serum levels of EGFR. In both the CKD mice and human VSMC culture, EGFR inhibition significantly reduced vascular calcification by mitigating the release of CAV1-positive calcifying EVs. EGFR inhibition also increased bone mineral density in CKD mice. Individuals in the MESA and Framingham cohorts with SNPs associated with increased serum EGFR exhibit elevated coronary artery calcium. Given that EGFR inhibitors exhibit clinical safety and efficacy in other pathologies, the current data suggest that EGFR may represent an ideal target to prevent pathological vascular calcification in CKD.NEW & NOTEWORTHY Here, we investigate the potential of epidermal growth factor receptor (EGFR) inhibition to prevent vascular calcification, a leading indicator of and contributor to cardiovascular morbidity and mortality. EGFR interacts and affects the trafficking of the plasma membrane scaffolding protein caveolin-1. Previous studies reported a key role for caveolin-1 in the development of specialized extracellular vesicles that mediate vascular calcification; however, no role of EGFR has been reported. We demonstrated that EGFR inhibition modulates caveolin-1 trafficking and hinders calcifying extracellular vesicle formation, which prevents vascular calcification. Given that EGFR inhibitors are clinically approved for other indications, this may represent a novel therapeutic strategy for vascular calcification.
Collapse
Affiliation(s)
- Amirala Bakhshian Nik
- Department of Biomedical Engineering, Florida International University, Miami, Florida, United States
| | - Hooi Hooi Ng
- Department of Biomedical Engineering, Florida International University, Miami, Florida, United States
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States
| | - Sophie K Ashbrook
- Department of Biomedical Engineering, Florida International University, Miami, Florida, United States
| | - Patrick Sun
- Department of BioHealth Informatics, Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, Indiana, United States
| | - Francesco Iacoviello
- Department of Chemical Engineering, University College London, London, United Kingdom
| | - Paul R Shearing
- Department of Chemical Engineering, University College London, London, United Kingdom
| | - Sergio Bertazzo
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Deniel Mero
- Dock Therapeutics, Inc., Middletown, Delaware, United States
| | - Bohdan B Khomtchouk
- Department of BioHealth Informatics, Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, Indiana, United States
- Krannert Cardiovascular Research Center, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Joshua D Hutcheson
- Department of Biomedical Engineering, Florida International University, Miami, Florida, United States
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States
| |
Collapse
|
5
|
Cardiovascular Safety and Effectiveness of Bisphosphonates: From Intervention Trials to Real-Life Data. Nutrients 2022; 14:nu14122369. [PMID: 35745099 PMCID: PMC9227734 DOI: 10.3390/nu14122369] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
Both osteoporosis with related fragility fractures and cardiovascular diseases are rapidly outspreading worldwide. Since they are often coexistent in elderly patients and may be related to possible common pathogenetic mechanisms, the possible reciprocal effects of drugs employed to treat these diseases have to be considered in clinical practice. Bisphosphonates, the agents most largely employed to decrease bone fragility, have been shown to be overall safe with respect to cardiovascular diseases and even capable of reducing cardiovascular morbidity in some settings, as mainly shown by real life studies. No randomized controlled trials with cardiovascular outcomes as primary endpoints are available. While contradictory results have emerged about a possible BSP-mediated reduction of overall mortality, it is undeniable that these drugs can be employed safely in patients with high fracture risk, since no increased mortality has ever been demonstrated. Although partial reassurance has emerged from meta-analysis assessing the risk of cardiac arrhythmias during bisphosphonates treatment, caution is warranted in administering this class of drugs to patients at risk for atrial fibrillation, possibly preferring other antiresorptives or anabolics, according to osteoporosis guidelines. This paper focuses on the complex relationship between bisphosphonates use and cardiovascular disease and possible co-management issues.
Collapse
|
6
|
Bakhshian Nik A, Ng HH, Garcia Russo M, Iacoviello F, Shearing PR, Bertazzo S, Hutcheson JD. The Time-Dependent Role of Bisphosphonates on Atherosclerotic Plaque Calcification. J Cardiovasc Dev Dis 2022; 9:jcdd9060168. [PMID: 35735797 PMCID: PMC9225625 DOI: 10.3390/jcdd9060168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Atherosclerotic plaque calcification directly contributes to the leading cause of morbidity and mortality by affecting plaque vulnerability and rupture risk. Small microcalcifications can increase plaque stress and promote rupture, whereas large calcifications can stabilize plaques. Drugs that target bone mineralization may lead to unintended consequences on ectopic plaque calcification and cardiovascular outcomes. Bisphosphonates, common anti-osteoporotic agents, have elicited unexpected cardiovascular events in clinical trials. Here, we investigated the role of bisphosphonate treatment and timing on the disruption or promotion of vascular calcification and bone minerals in a mouse model of atherosclerosis. We started the bisphosphonate treatment either before plaque formation, at early plaque formation times associated with the onset of calcification, or at late stages of plaque development. Our data indicated that long-term bisphosphonate treatment (beginning prior to plaque development) leads to higher levels of plaque calcification, with a narrower mineral size distribution. When given later in plaque development, we measured a wider distribution of mineral size. These morphological alterations might be associated with a higher risk of plaque rupture by creating stress foci. Yet, bone mineral density positively correlated with the duration of the bisphosphonate treatment.
Collapse
Affiliation(s)
- Amirala Bakhshian Nik
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA; (A.B.N.); (H.H.N.); (M.G.R.)
| | - Hooi Hooi Ng
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA; (A.B.N.); (H.H.N.); (M.G.R.)
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Manuel Garcia Russo
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA; (A.B.N.); (H.H.N.); (M.G.R.)
| | - Francesco Iacoviello
- Department of Chemical Engineering, University College London, London WC1E 7JE, UK; (F.I.); (P.R.S.)
| | - Paul R. Shearing
- Department of Chemical Engineering, University College London, London WC1E 7JE, UK; (F.I.); (P.R.S.)
| | - Sergio Bertazzo
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK;
| | - Joshua D. Hutcheson
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA; (A.B.N.); (H.H.N.); (M.G.R.)
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
- Correspondence: ; Tel.: +1-305-348-0157
| |
Collapse
|
7
|
Mukhamadiyarov RA, Bogdanov LA, Glushkova TV, Shishkova DK, Kostyunin AE, Koshelev VA, Shabaev AR, Frolov AV, Stasev AN, Lyapin AA, Kutikhin AG. EMbedding and Backscattered Scanning Electron Microscopy: A Detailed Protocol for the Whole-Specimen, High-Resolution Analysis of Cardiovascular Tissues. Front Cardiovasc Med 2021; 8:739549. [PMID: 34760942 PMCID: PMC8573413 DOI: 10.3389/fcvm.2021.739549] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/21/2021] [Indexed: 11/29/2022] Open
Abstract
Currently, an ultrastructural analysis of cardiovascular tissues is significantly complicated. Routine histopathological examinations and immunohistochemical staining suffer from a relatively low resolution of light microscopy, whereas the fluorescence imaging of plaques and bioprosthetic heart valves yields considerable background noise from the convoluted extracellular matrix that often results in a low signal-to-noise ratio. Besides, the sectioning of calcified or stent-expanded blood vessels or mineralised heart valves leads to a critical loss of their integrity, demanding other methods to be developed. Here, we designed a conceptually novel approach that combines conventional formalin fixation, sequential incubation in heavy metal solutions (osmium tetroxide, uranyl acetate or lanthanides, and lead citrate), and the embedding of the whole specimen into epoxy resin to retain its integrity while accessing the region of interest by grinding and polishing. Upon carbon sputtering, the sample is visualised by means of backscattered scanning electron microscopy. The technique fully preserves calcified and stent-expanded tissues, permits a detailed analysis of vascular and valvular composition and architecture, enables discrimination between multiple cell types (including endothelial cells, vascular smooth muscle cells, fibroblasts, adipocytes, mast cells, foam cells, foreign-body giant cells, canonical macrophages, neutrophils, and lymphocytes) and microvascular identities (arterioles, venules, and capillaries), and gives a technical possibility for quantitating the number, area, and density of the blood vessels. Hence, we suggest that our approach is capable of providing a pathophysiological insight into cardiovascular disease development. The protocol does not require specific expertise and can be employed in virtually any laboratory that has a scanning electron microscope.
Collapse
Affiliation(s)
- Rinat A Mukhamadiyarov
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - Leo A Bogdanov
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - Tatiana V Glushkova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - Daria K Shishkova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - Alexander E Kostyunin
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - Vladislav A Koshelev
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - Amin R Shabaev
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - Alexey V Frolov
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - Alexander N Stasev
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - Anton A Lyapin
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - Anton G Kutikhin
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| |
Collapse
|