1
|
Christiani P, Rana P, Räsänen A, Pitkänen TP, Tolvanen A. Detecting Spatial Patterns of Peatland Greenhouse Gas Sinks and Sources with Geospatial Environmental and Remote Sensing Data. ENVIRONMENTAL MANAGEMENT 2024; 74:461-478. [PMID: 38563987 PMCID: PMC11306394 DOI: 10.1007/s00267-024-01965-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/16/2024] [Indexed: 04/04/2024]
Abstract
Peatlands play a key role in the circulation of the main greenhouse gases (GHG) - methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O). Therefore, detecting the spatial pattern of GHG sinks and sources in peatlands is pivotal for guiding effective climate change mitigation in the land use sector. While geospatial environmental data, which provide detailed spatial information on ecosystems and land use, offer valuable insights into GHG sinks and sources, the potential of directly using remote sensing data from satellites remains largely unexplored. We predicted the spatial distribution of three major GHGs (CH4, CO2, and N2O) sinks and sources across Finland. Utilizing 143 field measurements, we compared the predictive capacity of three different data sets with MaxEnt machine-learning modeling: (1) geospatial environmental data including climate, topography and habitat variables, (2) remote sensing data (Sentinel-1 and Sentinel-2), and (3) a combination of both. The combined dataset yielded the highest accuracy with an average test area under the receiver operating characteristic curve (AUC) of 0.845 and AUC stability of 0.928. A slightly lower accuracy was achieved using only geospatial environmental data (test AUC 0.810, stability AUC 0.924). In contrast, using only remote sensing data resulted in reduced predictive accuracy (test AUC 0.763, stability AUC 0.927). Our results suggest that (1) reliable estimates of GHG sinks and sources cannot be produced with remote sensing data only and (2) integrating multiple data sources is recommended to achieve accurate and realistic predictions of GHG spatial patterns.
Collapse
Affiliation(s)
| | - Parvez Rana
- Natural Resources Institute Finland (Luke), Oulu, Finland
| | - Aleksi Räsänen
- Natural Resources Institute Finland (Luke), Oulu, Finland
| | - Timo P Pitkänen
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Anne Tolvanen
- Natural Resources Institute Finland (Luke), Oulu, Finland
| |
Collapse
|
2
|
Crawford AJ, Belcher CM, New S, Gallego-Sala A, Swindles GT, Page S, Blyakharchuk TA, Cadillo-Quiroz H, Charman DJ, Gałka M, Hughes PDM, Lähteenoja O, Mauquoy D, Roland TP, Väliranta M. Tropical peat composition may provide a negative feedback on fire occurrence and severity. Nat Commun 2024; 15:7363. [PMID: 39191729 DOI: 10.1038/s41467-024-50916-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Loss of peat through increased burning will have major impacts on the global carbon cycle. In a normal hydrological state, the risk of fire propagation is largely controlled by peat bulk density and moisture content. However, where humans have interfered with the moisture status of peat either via drainage, or indirectly via climate change, we hypothesise that its botanical composition will become important to flammability, such that peats from different latitudes might have different compositionally-driven susceptibility to ignition. We use pyrolysis combustion flow calorimetry to determine the temperature of maximum thermal decomposition (Tmax) of peats from different latitudes, and couple this to a botanical composition analysis. We find that tropical peat has higher Tmax than other regions, likely on account of its higher wood content which appears to convey a greater resistance to ignition. This resistance also increases with depth, which means that loss of surface peat in tropical regions may lead to a reduction in the subsequent ignitability of deeper peat layers as they are exposed, potentially resulting in a negative feedback on increased fire occurrence and severity.
Collapse
Affiliation(s)
- Alastair J Crawford
- wildFIRE Lab, Hatherly Laboratories, University of Exeter, Exeter, UK.
- School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, UK.
| | - Claire M Belcher
- wildFIRE Lab, Hatherly Laboratories, University of Exeter, Exeter, UK
| | | | - Angela Gallego-Sala
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK
| | - Graeme T Swindles
- Geography, School of Natural and Built Environment, Queen's University Belfast, Belfast, UK
- Ottawa-Carleton Geoscience Centre and Department of Earth Sciences, Carleton University, Ottawa, ON, Canada
| | - Susan Page
- School of Geography, Geology and the Environment, University of Leicester, Leicester, UK
| | - Tatiana A Blyakharchuk
- Tomsk State University, Tomsk, Russia
- Institute of Monitoring of Climatic and Ecological Systems SB RAS, Tomsk, Russia
| | - Hinsby Cadillo-Quiroz
- School of Life Sciences and Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Dan J Charman
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK
| | - Mariusz Gałka
- Faculty of Biology and Environmental Protection, Department of Biogeography, Paleoecology and Nature Conservation, University of Lodz, Łódź, Poland
| | - Paul D M Hughes
- Palaeoecology Laboratory, Department of Geography, University of Southampton, Southampton, UK
| | | | - Dmitri Mauquoy
- School of Geosciences, University of Aberdeen, Aberdeen, UK
| | - Thomas P Roland
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK
| | - Minna Väliranta
- Ecosystems and Environment Research Programme, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Campeau A, He H, Riml J, Humphreys E, Dalva M, Roulet N. Wind as a Driver of Peat CO 2 Dynamics in a Northern Bog. Ecosystems 2024; 27:621-635. [PMID: 39091378 PMCID: PMC11289004 DOI: 10.1007/s10021-024-00904-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/15/2024] [Indexed: 08/04/2024]
Abstract
Excess CO2 accumulated in soils is typically transported to the atmosphere through molecular diffusion along a concentration gradient. Because of the slow and constant nature of this process, a steady state between peat CO2 production and emissions is often established. However, in peatland ecosystems, high peat porosity could foster additional non-diffusive transport processes, whose dynamics may become important to peat CO2 storage, transport and emission. Based on a continuous record of in situ peat pore CO2 concentration within the unsaturated zone of a raised bog in southern Canada, we show that changes in wind speed create large diel fluctuations in peat pore CO2 store. Peat CO2 builds up overnight and is regularly flushed out the following morning. Persistently high wind speed during the day maintains the peat CO2 with concentrations close to that of the ambient air. At night, wind speed decreases and CO2 production overtakes the transport rate leading to the accumulation of CO2 in the peat. Our results indicate that the effective diffusion coefficient fluctuates based on wind speed and generally exceeds the estimated molecular diffusion coefficient. The balance between peat CO2 accumulation and transport is most dynamic within the range of 0-2 m s-1 wind speeds, which occurs over 75% of the growing season and dominates night-time measurements. Wind therefore drives considerable temporal dynamics in peat CO2 transport and storage, particularly over sub-daily timescales, such that peat CO2 emissions can only be directly related to biological production over longer timescales. Supplementary Information The online version contains supplementary material available at 10.1007/s10021-024-00904-1.
Collapse
Affiliation(s)
- A. Campeau
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
- Department of Geography, McGill University, Montreal, Canada
- Present Address: Department of Geography, University of Montréal, Montreal, Quebec Canada
| | - H. He
- Department of Geography, McGill University, Montreal, Canada
| | - J. Riml
- Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - E. Humphreys
- Department of Geography and Environmental Studies, Carleton University, Ottawa, Canada
| | - M. Dalva
- Department of Geography, McGill University, Montreal, Canada
| | - N. Roulet
- Department of Geography, McGill University, Montreal, Canada
| |
Collapse
|
4
|
Sabrekov AF, Semenov MV, Terentieva IE, Krasnov GS, Kharitonov SL, Glagolev MV, Litti YV. Anaerobic methane oxidation is quantitatively important in deeper peat layers of boreal peatlands: Evidence from anaerobic incubations, in situ stable isotopes depth profiles, and microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170213. [PMID: 38278226 DOI: 10.1016/j.scitotenv.2024.170213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/07/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Boreal peatlands store most of their carbon in layers deeper than 0.5 m under anaerobic conditions, where carbon dioxide and methane are produced as terminal products of organic matter degradation. Since the global warming potential of methane is much greater than that of carbon dioxide, the balance between the production rates of these gases is important for future climate predictions. Herein, we aimed to understand whether anaerobic methane oxidation (AMO) could explain the high CO2/CH4 anaerobic production ratios that are widely observed for the deeper peat layers of boreal peatlands. Furthermore, we quantified the metabolic pathways of methanogenesis to examine whether hydrogenotrophic methanogenesis is a dominant methane production pathway for the presumably recalcitrant deeper peat. To assess the CH4 cycling in deeper peat, we combined laboratory anaerobic incubations with a pathway-specific inhibitor, in situ depth patterns of stable isotopes in CH4, and 16S rRNA gene amplicon sequencing for three representative boreal peatlands in Western Siberia. We found up to a 69 % reduction in CH4 production due to AMO, which largely explained the high CO2/CH4 anaerobic production ratios and the in situ depth-related patterns of δ13C and δD in methane. The absence of acetate accumulation after inhibiting acetotrophic methanogenesis and the presence of sulfate- and nitrate-reducing anaerobic acetate oxidizers in the deeper peat indicated that these microorganisms use SO42- and NO3- as electron acceptors. Acetotrophic methanogenesis dominated net CH4 production in the deeper peat, accounting for 81 ± 13 %. Overall, anaerobic oxidation is quantitatively important for the methane cycle in the deeper layers of boreal peatlands, affecting both methane and its main precursor concentrations.
Collapse
Affiliation(s)
- Aleksandr F Sabrekov
- UNESCO Department "Environmental Dynamics and Global Climate Changes", Ugra State University, Khanty-Mansiysk, Russia.
| | - Mikhail V Semenov
- Laboratory of Soil Carbon and Microbial Ecology, Dokuchaev Soil Science Institute, Moscow, Russia
| | | | - George S Krasnov
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Mikhail V Glagolev
- UNESCO Department "Environmental Dynamics and Global Climate Changes", Ugra State University, Khanty-Mansiysk, Russia; Faculty of Soil Science, Lomonosov Moscow State University, Moscow, Russia
| | - Yuriy V Litti
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
Peng H, Nijp JJ, Ratcliffe JL, Li C, Hong B, Lidberg W, Zeng M, Mauquoy D, Bishop K, Nilsson MB. Climatic controls on the dynamic lateral expansion of northern peatlands and its potential implication for the 'anomalous' atmospheric CH 4 rise since the mid-Holocene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168450. [PMID: 37967626 DOI: 10.1016/j.scitotenv.2023.168450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023]
Abstract
Understanding the dynamic changes in peatland area during the Holocene is essential for unraveling the connections between northern peatland development and global carbon budgets. However, studies investigating the centennial to millennial-scale process of peatland expansion and its climate and environmental drivers are still limited. In this study, we present a reconstruction of the peatland area and lateral peatland expansion rate of a peatland complex in northern Sweden since the mid-Holocene, based on Ground Penetrating Radar measurements of peat thickness supported by radiocarbon (14C) dates from four peat cores. Based on this analysis, lateral expansion of the peatland followed a northwest-southeast directionality, constrained by the undulating post-glacial topography. The areal extent of peat has increased non-linearly since the mid-Holocene, and the peatland lateral expansion rate has generally been on the rise, with intensified expansion occurring after around 3500 cal yr BP. Abrupt declines in lateral expansion rates were synchronized with the decreases in total solar irradiance superimposed on the millennial ice-rafted debris events in the northern high latitudes. Supported by the temporal evolution of peatland extent in four other Fennoscandian peatlands, it appears that the northern peatland areal extent during the early to middle Holocene was much smaller compared to previous empirical model reconstructions based on basal age compilations. Interestingly, our reconstruction shows the increments of peat area since the mid-Holocene coincide with the rise in atmospheric CH4 concentration, and that abrupt variations in atmospheric CH4 on decadal to centennial timescales could be synchronized with peatland lateral expansion rates. Based on our analysis we put forward the hypothesis that lateral expansion of northern peatlands is a significant driver of dynamics in the late Holocene atmospheric CH4 budget. We strongly urge for more empirical data to quantify lateral expansion rates and test such hypotheses.
Collapse
Affiliation(s)
- Haijun Peng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081 Guiyang, China; Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden.
| | - Jelmer J Nijp
- KWR Water Research Institute, Ecohydrology Group, Nieuwegein, the Netherlands; Wageningen University, Soil Physics and Land Management Group, Wageningen, the Netherlands
| | - Joshua L Ratcliffe
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Chuxian Li
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Bing Hong
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081 Guiyang, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| | - William Lidberg
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Mengxiu Zeng
- College of Geography and Environmental Sciences, Zhejiang Normal University, 321004 Jinhua, China
| | - Dmitri Mauquoy
- School Geosciences, University of Aberdeen, AB24 3UF, Scotland, UK
| | - Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 75007 Uppsala 12, Sweden
| | - Mats B Nilsson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| |
Collapse
|
6
|
Verrone V, Gupta A, Laloo AE, Dubey RK, Hamid NAA, Swarup S. Organic matter stability and lability in terrestrial and aquatic ecosystems: A chemical and microbial perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167757. [PMID: 37852479 DOI: 10.1016/j.scitotenv.2023.167757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
Terrestrial and aquatic ecosystems have specific carbon fingerprints and sequestration potential, due to the intrinsic properties of the organic matter (OM), mineral content, environmental conditions, and microbial community composition and functions. A small variation in the OM pool can imbalance the carbon dynamics that ultimately affect the climate and functionality of each ecosystem, at regional and global scales. Here, we review the factors that continuously contribute to carbon stability and lability, with particular attention to the OM formation and nature, as well as the microbial activities that drive OM aggregation, degradation and eventually greenhouse gas emissions. We identified that in both aquatic and terrestrial ecosystems, microbial attributes (i.e., carbon metabolism, carbon use efficiency, necromass, enzymatic activities) play a pivotal role in transforming the carbon stock and yet they are far from being completely characterised and not often included in carbon estimations. Therefore, future research must focus on the integration of microbial components into carbon mapping and models, as well as on translating molecular-scaled studies into practical approaches. These strategies will improve carbon management and restoration across ecosystems and contribute to overcome current climate challenges.
Collapse
Affiliation(s)
- Valeria Verrone
- National University of Singapore Environmental Research Institute, National University of Singapore,117411, Singapore
| | - Abhishek Gupta
- Singapore Centre of Environmental Engineering and Life Sciences, National University of Singapore, Singapore.
| | - Andrew Elohim Laloo
- National University of Singapore Environmental Research Institute, National University of Singapore,117411, Singapore; Singapore Centre of Environmental Engineering and Life Sciences, National University of Singapore, Singapore
| | - Rama Kant Dubey
- National University of Singapore Environmental Research Institute, National University of Singapore,117411, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; Department of Biotechnology, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Nur Ashikin Abdul Hamid
- National University of Singapore Environmental Research Institute, National University of Singapore,117411, Singapore
| | - Sanjay Swarup
- National University of Singapore Environmental Research Institute, National University of Singapore,117411, Singapore; Singapore Centre of Environmental Engineering and Life Sciences, National University of Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| |
Collapse
|
7
|
Cobb AR, Dommain R, Yeap K, Hannan C, Dadap NC, Bookhagen B, Glaser PH, Harvey CF. A unified explanation for the morphology of raised peatlands. Nature 2024; 625:79-84. [PMID: 38093013 DOI: 10.1038/s41586-023-06807-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/31/2023] [Indexed: 01/05/2024]
Abstract
Raised peatlands, or bogs, are gently mounded landforms that are composed entirely of organic matter1-4 and store the most carbon per area of any terrestrial ecosystem5. The shapes of bogs are critically important because their domed morphology4,6,7 accounts for much of the carbon that bogs store and determines how they will respond to interventions8,9 to stop greenhouse gas emissions and fires after anthropogenic drainage10-13. However, a general theory to infer the morphology of bogs is still lacking4,6,7. Here we show that an equation based on the processes universal to bogs explains their morphology across biomes, from Alaska, through the tropics, to New Zealand. In contrast to earlier models of bog morphology that attempted to describe only long-term equilibrium shapes4,6,7 and were, therefore, inapplicable to most bogs14-16, our approach makes no such assumption and makes it possible to infer full shapes of bogs from a sample of elevations, such as a single elevation transect. Our findings provide a foundation for quantitative inference about the morphology, hydrology and carbon storage of bogs through Earth's history, as well as a basis for planning natural climate solutions by rewetting damaged bogs around the world.
Collapse
Affiliation(s)
- Alexander R Cobb
- Singapore-MIT Alliance for Research and Technology (SMART), Singapore, Singapore.
| | - René Dommain
- Earth Observatory of Singapore, Nanyang Technological University, Singapore, Singapore
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
- National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Kimberly Yeap
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Singapore
| | - Cao Hannan
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Nathan C Dadap
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Bodo Bookhagen
- Institute of Geosciences, University of Potsdam, Potsdam, Germany
| | - Paul H Glaser
- Department of Earth & Environmental Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Charles F Harvey
- Singapore-MIT Alliance for Research and Technology (SMART), Singapore, Singapore
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
8
|
Tian W, Wang H, Xiang X, Loni PC, Qiu X, Wang R, Huang X, Tuovinen OH. Water table level controls methanogenic and methanotrophic communities and methane emissions in a Sphagnum-dominated peatland. Microbiol Spectr 2023; 11:e0199223. [PMID: 37747896 PMCID: PMC10580971 DOI: 10.1128/spectrum.01992-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/27/2023] [Indexed: 09/27/2023] Open
Abstract
Peatlands are important sources of the greenhouse gas methane emissions equipoised by methanogens and methanotrophs. However, knowledge about how microbial functional groups associated with methane production and oxidation respond to water table fluctuations has been limited to date. Here, methane-related microbial communities and the potentials of methane production and oxidation were determined along sectioned peat layers in a subalpine peatland across four Sphagnum-dominated sites with different water table levels. Methane fluxes were also monitored at these sites. The results showed that mcrA gene copies for methanogens were the highest in the 10- to 15-cm peat layer, which was also characterized by the maximum potential methane production (24.53 ± 1.83 nmol/g/h). Copy numbers of the pmoA gene for type Ia and Ib methanotrophs were enriched in the 0-5 cm peat layer with the highest potential methane oxidation (43.09 ± 3.44 nmol/g/h). For the type II methanotrophs, the pmoA gene copies were higher in the 10- to 15-cm peat layer. Hydrogenotrophic methanogens and type II methanotrophs dominated the methane functional groups. Deterministic process contributed more to methanogenic and methanotrophic community assemblages in comparison with stochastic process. The level of water table significantly shaped methanogenic and methanotrophic community structures and regulated methane fluxes. Compared with vascular plants, Sphagnum mosses significantly reduced the methane emissions in peatlands. Collectively, these findings enhance a comprehensive understanding of the effect of the water table level on methane functional groups, with consequential implications for reducing methane emissions within peatland ecosystems.IMPORTANCEThe water table level is recognized as a critical factor in regulating methane emissions, which are largely dependent on the balance of methanogens and methanotrophs. Previous studies on peat methane emissions have been mostly focused on spatial-temporal variations and the relationship with meteorological conditions. However, the role of the water table level in methane emissions remains unknown. In this work, four representative microhabitats along a water table gradient in a Sphagnum-dominated peatland were sampled to gain an insight into methane functional communities and methane emissions as affected by the water table level. The changes in methane-related microbial community structure and assembly were used to characterize the response to the water table level. This study improves the understanding of the changes in methane-related microbial communities and methane emissions with water table levels in peatlands.
Collapse
Affiliation(s)
- Wen Tian
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- College of Resource and Environment, Anhui Science and Technology of University, Chuzhou, China
- Hubei Key Laboratory of Critical Zone Evolution, China University of Geosciences, Wuhan, China
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Xing Xiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- College of Life Science, Shangrao Normal University, Shangrao, China
| | - Prakash C. Loni
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Xuan Qiu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Ruicheng Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Xianyu Huang
- Hubei Key Laboratory of Critical Zone Evolution, China University of Geosciences, Wuhan, China
| | - Olli H. Tuovinen
- Department of Microbiology, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
9
|
Salis AT, Bray SCE, Lee MSY, Heiniger H, Barnett R, Burns JA, Doronichev V, Fedje D, Golovanova L, Harington CR, Hockett B, Kosintsev P, Lai X, Mackie Q, Vasiliev S, Weinstock J, Yamaguchi N, Meachen JA, Cooper A, Mitchell KJ. Lions and brown bears colonized North America in multiple synchronous waves of dispersal across the Bering Land Bridge. Mol Ecol 2022; 31:6407-6421. [PMID: 34748674 DOI: 10.1111/mec.16267] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 01/13/2023]
Abstract
The Bering Land Bridge connecting North America and Eurasia was periodically exposed and inundated by oscillating sea levels during the Pleistocene glacial cycles. This land connection allowed the intermittent dispersal of animals, including humans, between Western Beringia (far northeast Asia) and Eastern Beringia (northwest North America), changing the faunal community composition of both continents. The Pleistocene glacial cycles also had profound impacts on temperature, precipitation and vegetation, impacting faunal community structure and demography. While these palaeoenvironmental impacts have been studied in many large herbivores from Beringia (e.g., bison, mammoths, horses), the Pleistocene population dynamics of the diverse guild of carnivorans present in the region are less well understood, due to their lower abundances. In this study, we analyse mitochondrial genome data from ancient brown bears (Ursus arctos; n = 103) and lions (Panthera spp.; n = 39), two megafaunal carnivorans that dispersed into North America during the Pleistocene. Our results reveal striking synchronicity in the population dynamics of Beringian lions and brown bears, with multiple waves of dispersal across the Bering Land Bridge coinciding with glacial periods of low sea levels, as well as synchronous local extinctions in Eastern Beringia during Marine Isotope Stage 3. The evolutionary histories of these two taxa underline the crucial biogeographical role of the Bering Land Bridge in the distribution, turnover and maintenance of megafaunal populations in North America.
Collapse
Affiliation(s)
- Alexander T Salis
- Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Division of Vertebrate Zoology, American Museum of Natural History, New York, New York, USA
| | - Sarah C E Bray
- Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Registry of Senior Australians (ROSA), South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Michael S Y Lee
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia.,South Australian Museum, Adelaide, South Australia, Australia
| | - Holly Heiniger
- Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Ross Barnett
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - James A Burns
- Curator Emeritus, Royal Alberta Museum, Edmonton, Alberta, Canada
| | | | - Daryl Fedje
- Department of Anthropology, University of Victoria, Victoria, B.C, Canada
| | | | - C Richard Harington
- Curator Emeritus and Research Associate, Research Division (Paleobiology), Canadian Museum of Nature, Ottawa, Canada
| | - Bryan Hockett
- US Department of Interior, Bureau of Land Management, Nevada State Office, Reno, Nevada, USA
| | - Pavel Kosintsev
- Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia.,Department of History, Ural Federal University, Yekaterinburg, Russia
| | - Xulong Lai
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, Hubei, China
| | - Quentin Mackie
- Department of Anthropology, University of Victoria, Victoria, B.C, Canada
| | - Sergei Vasiliev
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Russia
| | - Jacobo Weinstock
- Faculty of Humanities (Archaeology), University of Southampton, UK
| | - Nobuyuki Yamaguchi
- Institute of Tropical Biodiversity and Sustainable Development, University Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Julie A Meachen
- Anatomy Department, Des Moines University, Des Moines, Iowa, USA
| | - Alan Cooper
- South Australian Museum, Adelaide, South Australia, Australia
| | - Kieren J Mitchell
- Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Department of Zoology, Otago Palaeogenetics Laboratory, University of Otago, Dunedin, New Zealand
| |
Collapse
|
10
|
Kwon MJ, Ballantyne A, Ciais P, Qiu C, Salmon E, Raoult N, Guenet B, Göckede M, Euskirchen ES, Nykänen H, Schuur EAG, Turetsky MR, Dieleman CM, Kane ES, Zona D. Lowering water table reduces carbon sink strength and carbon stocks in northern peatlands. GLOBAL CHANGE BIOLOGY 2022; 28:6752-6770. [PMID: 36039832 PMCID: PMC9805217 DOI: 10.1111/gcb.16394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Peatlands at high latitudes have accumulated >400 Pg carbon (C) because saturated soil and cold temperatures suppress C decomposition. This substantial amount of C in Arctic and Boreal peatlands is potentially subject to increased decomposition if the water table (WT) decreases due to climate change, including permafrost thaw-related drying. Here, we optimize a version of the Organizing Carbon and Hydrology In Dynamic Ecosystems model (ORCHIDEE-PCH4) using site-specific observations to investigate changes in CO2 and CH4 fluxes as well as C stock responses to an experimentally manipulated decrease of WT at six northern peatlands. The unmanipulated control peatlands, with the WT <20 cm on average (seasonal max up to 45 cm) below the surface, currently act as C sinks in most years (58 ± 34 g C m-2 year-1 ; including 6 ± 7 g C-CH4 m-2 year-1 emission). We found, however, that lowering the WT by 10 cm reduced the CO2 sink by 13 ± 15 g C m-2 year-1 and decreased CH4 emission by 4 ± 4 g CH4 m-2 year-1 , thus accumulating less C over 100 years (0.2 ± 0.2 kg C m-2 ). Yet, the reduced emission of CH4 , which has a larger greenhouse warming potential, resulted in a net decrease in greenhouse gas balance by 310 ± 360 g CO2-eq m-2 year-1 . Peatlands with the initial WT close to the soil surface were more vulnerable to C loss: Non-permafrost peatlands lost >2 kg C m-2 over 100 years when WT is lowered by 50 cm, while permafrost peatlands temporally switched from C sinks to sources. These results highlight that reductions in C storage capacity in response to drying of northern peatlands are offset in part by reduced CH4 emissions, thus slightly reducing the positive carbon climate feedbacks of peatlands under a warmer and drier future climate scenario.
Collapse
Affiliation(s)
- Min Jung Kwon
- Laboratoire des Sciences du Climat et de l'EnvironnementCEA‐CNRS‐UVSQGif‐sur‐YvetteFrance
- Institute of Soil ScienceUniversity of HamburgHamburgGermany
| | - Ashley Ballantyne
- Laboratoire des Sciences du Climat et de l'EnvironnementCEA‐CNRS‐UVSQGif‐sur‐YvetteFrance
- Department of Ecosystem and Conservation ScienceUniversity of MontanaMissoulaMontanaUSA
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'EnvironnementCEA‐CNRS‐UVSQGif‐sur‐YvetteFrance
| | - Chunjing Qiu
- Laboratoire des Sciences du Climat et de l'EnvironnementCEA‐CNRS‐UVSQGif‐sur‐YvetteFrance
- INRAE, AgroParisTech, Université Paris‐SaclayGif‐sur‐YvetteFrance
| | - Elodie Salmon
- Laboratoire des Sciences du Climat et de l'EnvironnementCEA‐CNRS‐UVSQGif‐sur‐YvetteFrance
| | - Nina Raoult
- Laboratoire des Sciences du Climat et de l'EnvironnementCEA‐CNRS‐UVSQGif‐sur‐YvetteFrance
| | - Bertrand Guenet
- Laboratoire des Sciences du Climat et de l'EnvironnementCEA‐CNRS‐UVSQGif‐sur‐YvetteFrance
- Laboratoire de Géologie, Ecole Normale SupérieureCNRS, PSL Research UniversityParisFrance
| | - Mathias Göckede
- Systems DepartmentMax Planck Institute for BiogeochemistryJenaGermany
| | | | - Hannu Nykänen
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandKuopioFinland
| | - Edward A. G. Schuur
- College of the Environment, Forestry, and Natural SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Merritt R. Turetsky
- Institute of Arctic and Alpine ResearchUniversity of ColoradoBoulderColoradoUSA
| | | | - Evan S. Kane
- College of Forest Resources and Environmental ScienceMichigan Technological UniversityHoughtonMichiganUSA
- USDA Forest Service Northern Research StationHoughtonMichiganUSA
| | - Donatella Zona
- Department of Animal and Plant ScienceUniversity of SheffieldSheffieldUK
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
| |
Collapse
|
11
|
Monteverde S, Healy M, O'Leary D, Daly E, Callery O. Management and rehabilitation of peatlands: The role of water chemistry, hydrology, policy, and emerging monitoring methods to ensure informed decision making. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Stagg CL, Laurenzano C, Vervaeke WC, Krauss KW, McKee KL. Presence of the Herbaceous Marsh Species Schoenoplectus americanus Enhances Surface Elevation Gain in Transitional Coastal Wetland Communities Exposed to Elevated CO2 and Sediment Deposition Events. PLANTS 2022; 11:plants11091259. [PMID: 35567260 PMCID: PMC9102553 DOI: 10.3390/plants11091259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 12/02/2022]
Abstract
Coastal wetlands are dynamic ecosystems that exist along a landscape continuum that can range from freshwater forested wetlands to tidal marsh to mudflat communities. Climate-driven stressors, such as sea-level rise, can cause shifts among these communities, resulting in changes to ecological functions and services. While a growing body of research has characterized the landscape-scale impacts of individual climate-driven stressors, little is known about how multiple stressors and their potential interactions will affect ecological functioning of these ecosystems. How will coastal wetlands respond to discrete climate disturbances, such as hurricane sediment deposition events, under future conditions of elevated atmospheric CO2? Will these responses vary among the different wetland communities? We conducted experimental greenhouse manipulations to simulate sediment deposition from a land-falling hurricane under future elevated atmospheric CO2 concentrations (720 ppm CO2). We measured responses of net primary production, decomposition, and elevation change in mesocosms representing four communities along a coastal wetland landscape gradient: freshwater forested wetland, forest/marsh mix, marsh, and mudflat. When Schoenoplectus americanus was present, above- and belowground biomass production was highest, decomposition rates were lowest, and wetland elevation gain was greatest, regardless of CO2 and sediment deposition treatments. Sediment addition initially increased elevation capital in all communities, but post-deposition rates of elevation gain were lower than in mesocosms without added sediment. Together these results indicate that encroachment of oligohaline marshes into freshwater forested wetlands can enhance belowground biomass accumulation and resilience to sea-level rise, and these plant-mediated ecosystem services will be augmented by periodic sediment pulses from storms and restoration efforts.
Collapse
Affiliation(s)
- Camille LaFosse Stagg
- U.S. Geological Survey, Wetland and Aquatic Research Center, Lafayette, LA 70506, USA; (W.C.V.); (K.W.K.); (K.L.M.)
- Correspondence:
| | - Claudia Laurenzano
- Cherokee Nation System Solutions, Contractor to the U.S. Geological Survey, Wetland and Aquatic Research Center, Lafayette, LA 70506, USA;
| | - William C. Vervaeke
- U.S. Geological Survey, Wetland and Aquatic Research Center, Lafayette, LA 70506, USA; (W.C.V.); (K.W.K.); (K.L.M.)
| | - Ken W. Krauss
- U.S. Geological Survey, Wetland and Aquatic Research Center, Lafayette, LA 70506, USA; (W.C.V.); (K.W.K.); (K.L.M.)
| | - Karen L. McKee
- U.S. Geological Survey, Wetland and Aquatic Research Center, Lafayette, LA 70506, USA; (W.C.V.); (K.W.K.); (K.L.M.)
| |
Collapse
|
13
|
Cory AB, Chanton JP, Spencer RGM, Ogles OC, Rich VI, McCalley CK, Wilson RM. Quantifying the inhibitory impact of soluble phenolics on anaerobic carbon mineralization in a thawing permafrost peatland. PLoS One 2022; 17:e0252743. [PMID: 35108267 PMCID: PMC8809605 DOI: 10.1371/journal.pone.0252743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 01/01/2022] [Indexed: 11/24/2022] Open
Abstract
The mechanisms controlling the extraordinarily slow carbon (C) mineralization rates characteristic of Sphagnum-rich peatlands (“bogs”) are not fully understood, despite decades of research on this topic. Soluble phenolic compounds have been invoked as potentially significant contributors to bog peat recalcitrance due to their affinity to slow microbial metabolism and cell growth. Despite this potentially significant role, the effects of soluble phenolic compounds on bog peat C mineralization remain unclear. We analyzed this effect by manipulating the concentration of free soluble phenolics in anaerobic bog and fen peat incubations using water-soluble polyvinylpyrrolidone (“PVP”), a compound that binds with and inactivates phenolics, preventing phenolic-enzyme interactions. CO2 and CH4 production rates (end-products of anaerobic C mineralization) generally correlated positively with PVP concentration following Michaelis-Menten (M.M.) saturation functions. Using M.M. parameters, we estimated that the extent to which phenolics inhibit anaerobic CO2 production was significantly higher in the bog—62 ± 16%—than the fen—14 ± 4%. This difference was found to be more substantial with regards to methane production—wherein phenolic inhibition for the bog was estimated at 54 ± 19%, while the fen demonstrated no apparent inhibition. Consistent with this habitat difference, we observed significantly higher soluble phenolic content in bog vs. fen pore-water. Together, these findings suggest that soluble phenolics could contribute to bogs’ extraordinary recalcitrance and high (relative to other peatland habitats) CO2:CH4 production ratios.
Collapse
Affiliation(s)
- Alexandra B. Cory
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL, United States of America
- * E-mail:
| | - Jeffrey P. Chanton
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL, United States of America
| | - Robert G. M. Spencer
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL, United States of America
| | - Olivia C. Ogles
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL, United States of America
| | - Virginia I. Rich
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America
| | - Carmody K. McCalley
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States of America
| | | | | | - Rachel M. Wilson
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL, United States of America
| |
Collapse
|
14
|
Varner RK, Crill PM, Frolking S, McCalley CK, Burke SA, Chanton JP, Holmes ME, Saleska S, Palace MW. Permafrost thaw driven changes in hydrology and vegetation cover increase trace gas emissions and climate forcing in Stordalen Mire from 1970 to 2014. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20210022. [PMID: 34865532 PMCID: PMC8646141 DOI: 10.1098/rsta.2021.0022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Permafrost thaw increases active layer thickness, changes landscape hydrology and influences vegetation species composition. These changes alter belowground microbial and geochemical processes, affecting production, consumption and net emission rates of climate forcing trace gases. Net carbon dioxide (CO2) and methane (CH4) fluxes determine the radiative forcing contribution from these climate-sensitive ecosystems. Permafrost peatlands may be a mosaic of dry frozen hummocks, semi-thawed or perched sphagnum dominated areas, wet permafrost-free sedge dominated sites and open water ponds. We revisited estimates of climate forcing made for 1970 and 2000 for Stordalen Mire in northern Sweden and found the trend of increasing forcing continued into 2014. The Mire continued to transition from dry permafrost to sedge and open water areas, increasing by 100% and 35%, respectively, over the 45-year period, causing the net radiative forcing of Stordalen Mire to shift from negative to positive. This trend is driven by transitioning vegetation community composition, improved estimates of annual CO2 and CH4 exchange and a 22% increase in the IPCC's 100-year global warming potential (GWP_100) value for CH4. These results indicate that discontinuous permafrost ecosystems, while still remaining a net overall sink of C, can become a positive feedback to climate change on decadal timescales. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 2)'.
Collapse
Affiliation(s)
- Ruth K. Varner
- Department of Earth Sciences, Oceans and Space, University of New Hampshire, Durham, NH 03824, USA
- Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham, NH 03824, USA
- Department of Physical Geography, Stockholm University, Stockholm, Sweden
| | - Patrick M. Crill
- Department of Geological Sciences, Stockholm University, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Steve Frolking
- Department of Earth Sciences, Oceans and Space, University of New Hampshire, Durham, NH 03824, USA
- Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham, NH 03824, USA
| | - Carmody K. McCalley
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Sophia A. Burke
- Department of Earth Sciences, Oceans and Space, University of New Hampshire, Durham, NH 03824, USA
- Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham, NH 03824, USA
| | - Jeffrey P. Chanton
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL 32306-4350, USA
| | - M. Elizabeth Holmes
- Division of Science and Math, Tallahassee Community College, 444 Appleyard Drive, Tallahassee, FL 32304, USA
| | - Isogenie Project Coordinators
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- Centre for Microbiome Research, School of Biomedical Science, Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD 4102, Australia
| | - Scott Saleska
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Michael W. Palace
- Department of Earth Sciences, Oceans and Space, University of New Hampshire, Durham, NH 03824, USA
- Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
15
|
Imran Firdaus Kamardan M, Atikah Binti Marsid E, Nadia Md Akhir F, Ali Muhammad Yuzir M, Othman N, Hara H. Isolation and characterization of Lignin-derived monomer degraders under acidic conditions from tropical peatland. J GEN APPL MICROBIOL 2022; 68:117-124. [DOI: 10.2323/jgam.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Muhammad Imran Firdaus Kamardan
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia
| | - Ezzah Atikah Binti Marsid
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia
| | - Fazrena Nadia Md Akhir
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia
| | - Muhamad Ali Muhammad Yuzir
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia
| | - Nor’azizi Othman
- Department of Mechanical Precision Engineering, Malaysia Japan International Institute of Technology, Universiti Teknologi Malaysia
| | - Hirofumi Hara
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia
| |
Collapse
|
16
|
Li Y, Zhang X, Xu L, Zhang Y, Ye W, Li Y. Changes of lake organic carbon sinks from closed basins since the Last Glacial Maximum and quantitative evaluation of human impacts. CARBON BALANCE AND MANAGEMENT 2021; 16:28. [PMID: 34533618 PMCID: PMC8447695 DOI: 10.1186/s13021-021-00191-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Closed basins occupy 21% of the world's land area and can substantially affect global carbon budgets. Conventional understanding suggests that the terminal areas of closed basins collect water and carbon from throughout the entire basin, and changes in lake organic carbon sinks are indicative of basin-wide organic carbon storages. However, this hypothesis lacks regional and global validation. Here, we first validate the depositional process of organic carbon in a typical closed-basin region of northwest China using organic geochemical proxies of both soil and lake sediments. Then we estimate the organic carbon sinks and human impacts in extant closed-basin lakes since the Last Glacial Maximum (LGM). RESULTS Results show that 80.56 Pg organic carbon is stored in extant closed-basin lakes mainly found in the northern mid-latitudes. Carbon accumulation rates vary from 17.54 g C m-2 yr-1 during modern times, 6.36 g C m-2 yr-1 during the mid-Holocene and 2.25 g C m-2 yr-1 during the LGM. Then, we evaluated the influence by human activities during the late Holocene (in the past three thousand years). The ratio of human impacts on lake organic carbon storage in above closed basins is estimated to be 22.79%, and human-induced soil organic carbon emissions in the past three thousand years amounted to 207 Pg. CONCLUSIONS While the magnitude of carbon storage is not comparable to those in peatland, vegetation and soil, lake organic carbon sinks from closed basins are significant to long-term terrestrial carbon budget and contain information of climate change and human impact from the whole basins. These observations improve our understanding of carbon sinks in closed basins at various time scales, and provide a basis for the future mitigation policies to global climate change.
Collapse
Affiliation(s)
- Yu Li
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Center for Hydrologic Cycle and Water Resources in Arid Region, Lanzhou University, Lanzhou, China.
| | - Xinzhong Zhang
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Center for Hydrologic Cycle and Water Resources in Arid Region, Lanzhou University, Lanzhou, China
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
| | - Lingmei Xu
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Center for Hydrologic Cycle and Water Resources in Arid Region, Lanzhou University, Lanzhou, China
| | - Yuxin Zhang
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Center for Hydrologic Cycle and Water Resources in Arid Region, Lanzhou University, Lanzhou, China
| | - Wangting Ye
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Center for Hydrologic Cycle and Water Resources in Arid Region, Lanzhou University, Lanzhou, China
| | - Yichan Li
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Center for Hydrologic Cycle and Water Resources in Arid Region, Lanzhou University, Lanzhou, China
- Department of Geosciences, University of Arkansas, Fayetteville, USA
| |
Collapse
|
17
|
Ribeiro K, Pacheco FS, Ferreira JW, de Sousa-Neto ER, Hastie A, Krieger Filho GC, Alvalá PC, Forti MC, Ometto JP. Tropical peatlands and their contribution to the global carbon cycle and climate change. GLOBAL CHANGE BIOLOGY 2021; 27:489-505. [PMID: 33070397 DOI: 10.1111/gcb.15408] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 08/06/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Peatlands are carbon-rich ecosystems that cover 185-423 million hectares (Mha) of the earth's surface. The majority of the world's peatlands are in temperate and boreal zones, whereas tropical ones cover only a total area of 90-170 Mha. However, there are still considerable uncertainties in C stock estimates as well as a lack of information about depth, bulk density and carbon accumulation rates. The incomplete data are notable especially in tropical peatlands located in South America, which are estimated to have the largest area of peatlands in the tropical zone. This paper displays the current state of knowledge surrounding tropical peatlands and their biophysical characteristics, distribution and carbon stock, role in the global climate, the impacts of direct human disturbances on carbon accumulation rates and greenhouse gas (GHG) emissions. Based on the new peat extension and depth data, we estimate that tropical peatlands store 152-288 Gt C, or about half of the global peatland emitted carbon. We discuss the knowledge gaps in research on distribution, depth, C stock and fluxes in these ecosystems which play an important role in the global carbon cycle and risk releasing large quantities of GHGs into the atmosphere (CO2 and CH4 ) when subjected to anthropogenic interferences (e.g., drainage and deforestation). Recent studies show that although climate change has an impact on the carbon fluxes of these ecosystems, the direct anthropogenic disturbance may play a greater role. The future of these systems as carbon sinks will depend on advancing current scientific knowledge and incorporating local understanding to support policies geared toward managing and conserving peatlands in vulnerable regions, such as the Amazon where recent records show increased forest fires and deforestation.
Collapse
Affiliation(s)
- Kelly Ribeiro
- Earth System Science Center (CCST), National Institute for Space Research (INPE), São Paulo, Brazil
| | - Felipe S Pacheco
- Earth System Science Center (CCST), National Institute for Space Research (INPE), São Paulo, Brazil
| | - José W Ferreira
- Earth System Science Center (CCST), National Institute for Space Research (INPE), São Paulo, Brazil
| | - Eráclito R de Sousa-Neto
- Earth System Science Center (CCST), National Institute for Space Research (INPE), São Paulo, Brazil
| | - Adam Hastie
- School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | - Guenther C Krieger Filho
- Laboratory of Thermal and Environmental Engineering, Polytechnic School of the University of São Paulo, São Paulo, Brazil
| | - Plínio C Alvalá
- Earth System Science Center (CCST), National Institute for Space Research (INPE), São Paulo, Brazil
| | - Maria C Forti
- Earth System Science Center (CCST), National Institute for Space Research (INPE), São Paulo, Brazil
| | - Jean P Ometto
- Earth System Science Center (CCST), National Institute for Space Research (INPE), São Paulo, Brazil
| |
Collapse
|
18
|
Bunsen MS, Loisel J. Carbon storage dynamics in peatlands: Comparing recent- and long-term accumulation histories in southern Patagonia. GLOBAL CHANGE BIOLOGY 2020; 26:5778-5795. [PMID: 32623771 DOI: 10.1111/gcb.15262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Peatlands have been important terrestrial carbon (C) reservoirs throughout the Holocene, yet whether these ecosystems will become stronger or weaker C sinks in the future remains debated. While surface peat layers (acrotelm) have a greater apparent rate of C accumulation than deeper, millennial-aged peat (catotelm), it is difficult to project how much more aerobic decomposition will take place before the younger surface cohorts join the older deeper ones. Studies have suggested that warming could lead to weakened C accumulation in peatlands due to enhanced aerobic decay in the acrotelm, which would lead to a slower transfer of peat into the catotelm, if any. Conversely, other studies have suggested increased C accumulation in the acrotelm and thus, larger long-term C transfer into the catotelm under warming conditions because of greater plant productivity and faster peat accumulation. Improving our predictions about the rate of present and future peatland development is important to forecast feedbacks on the global C cycle and help inform land management decisions. In this study, we analyzed two peat cores from southern Patagonia to calculate their long- versus short-peat C accumulation rates. The acrotelm rates were compared to the catotelm peat C legacies using an empirical modeling approach that allows calculating the future catotelm peat storage based on today's acrotelm characteristics, and thus predict if those recent rates of C accumulation will lead to greater or weaker long-term C storage in the future. Our results indicate that, depending on local bioclimatic parameters, some peatlands may become stronger C sinks in the future, while others may become weaker. In the case of this study, the wetter site is expected to increase its C sink capacity, while our prediction for the drier site is a net decrease in C sequestration in the coming decades to centuries.
Collapse
Affiliation(s)
- Michael S Bunsen
- Department of Geography, Texas A&M University, College Station, TX, USA
| | - Julie Loisel
- Department of Geography, Texas A&M University, College Station, TX, USA
| |
Collapse
|
19
|
Abstract
Over many millennia, northern peatlands have accumulated large amounts of carbon and nitrogen, thus cooling the global climate. Over shorter timescales, peatland disturbances can trigger losses of peat and release of greenhouses gases. Despite their importance to the global climate, peatlands remain poorly mapped, and the vulnerability of permafrost peatlands to warming is uncertain. This study compiles over 7,000 field observations to present a data-driven map of northern peatlands and their carbon and nitrogen stocks. We use these maps to model the impact of permafrost thaw on peatlands and find that warming will likely shift the greenhouse gas balance of northern peatlands. At present, peatlands cool the climate, but anthropogenic warming can shift them into a net source of warming. Northern peatlands have accumulated large stocks of organic carbon (C) and nitrogen (N), but their spatial distribution and vulnerability to climate warming remain uncertain. Here, we used machine-learning techniques with extensive peat core data (n > 7,000) to create observation-based maps of northern peatland C and N stocks, and to assess their response to warming and permafrost thaw. We estimate that northern peatlands cover 3.7 ± 0.5 million km2 and store 415 ± 150 Pg C and 10 ± 7 Pg N. Nearly half of the peatland area and peat C stocks are permafrost affected. Using modeled global warming stabilization scenarios (from 1.5 to 6 °C warming), we project that the current sink of atmospheric C (0.10 ± 0.02 Pg C⋅y−1) in northern peatlands will shift to a C source as 0.8 to 1.9 million km2 of permafrost-affected peatlands thaw. The projected thaw would cause peatland greenhouse gas emissions equal to ∼1% of anthropogenic radiative forcing in this century. The main forcing is from methane emissions (0.7 to 3 Pg cumulative CH4-C) with smaller carbon dioxide forcing (1 to 2 Pg CO2-C) and minor nitrous oxide losses. We project that initial CO2-C losses reverse after ∼200 y, as warming strengthens peatland C-sinks. We project substantial, but highly uncertain, additional losses of peat into fluvial systems of 10 to 30 Pg C and 0.4 to 0.9 Pg N. The combined gaseous and fluvial peatland C loss estimated here adds 30 to 50% onto previous estimates of permafrost-thaw C losses, with southern permafrost regions being the most vulnerable.
Collapse
|
20
|
Affiliation(s)
- John F. Hoffecker
- Institute of Arctic and Alpine Research, University of Colorado at Boulder, Boulder, CO, USA
| | - Scott A. Elias
- Institute of Arctic and Alpine Research, University of Colorado at Boulder, Boulder, CO, USA
| | - Olga Potapova
- Pleistocene Park Foundation, Philadelphia, PA, USA
- Department of Mammoth Fauna Studies, Academy of Sciences of Sakha, Yakutsk, Russian Federation
- The Mammoth Site of Hot Springs, SD, Inc., Hot Springs, SD, USA
| |
Collapse
|
21
|
Characterizing Boreal Peatland Plant Composition and Species Diversity with Hyperspectral Remote Sensing. REMOTE SENSING 2019. [DOI: 10.3390/rs11141685] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Peatlands, which account for approximately 15% of land surface across the arctic and boreal regions of the globe, are experiencing a range of ecological impacts as a result of climate change. Factors that include altered hydrology resulting from drought and permafrost thaw, rising temperatures, and elevated levels of atmospheric carbon dioxide have been shown to cause plant community compositional changes. Shifts in plant composition affect the productivity, species diversity, and carbon cycling of peatlands. We used hyperspectral remote sensing to characterize the response of boreal peatland plant composition and species diversity to warming, hydrologic change, and elevated CO2. Hyperspectral remote sensing techniques offer the ability to complete landscape-scale analyses of ecological responses to climate disturbance when paired with plot-level measurements that link ecosystem biophysical properties with spectral reflectance signatures. Working within two large ecosystem manipulation experiments, we examined climate controls on composition and diversity in two types of common boreal peatlands: a nutrient rich fen located at the Alaska Peatland Experiment (APEX) in central Alaska, and an ombrotrophic bog located in northern Minnesota at the Spruce and Peatland Responses Under Changing Environments (SPRUCE) experiment. We found a strong effect of plant functional cover on spectral reflectance characteristics. We also found a positive relationship between species diversity and spectral variation at the APEX field site, which is consistent with other recently published findings. Based on the results of our field study, we performed a supervised land cover classification analysis on an aerial hyperspectral dataset to map peatland plant functional types (PFTs) across an area encompassing a range of different plant communities. Our results underscore recent advances in the application of remote sensing measurements to ecological research, particularly in far northern ecosystems.
Collapse
|
22
|
Singer D, Mitchell EAD, Payne RJ, Blandenier Q, Duckert C, Fernández LD, Fournier B, Hernández CE, Granath G, Rydin H, Bragazza L, Koronatova NG, Goia I, Harris LI, Kajukało K, Kosakyan A, Lamentowicz M, Kosykh NP, Vellak K, Lara E. Dispersal limitations and historical factors determine the biogeography of specialized terrestrial protists. Mol Ecol 2019; 28:3089-3100. [DOI: 10.1111/mec.15117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 12/26/2022]
Affiliation(s)
- David Singer
- Laboratory of Soil Biodiversity, Institute of Biology University of Neuchâtel Neuchâtel Switzerland
- Department of Zoology, Institute of Biosciences University of São Paulo São Paulo Brazil
| | - Edward A. D. Mitchell
- Laboratory of Soil Biodiversity, Institute of Biology University of Neuchâtel Neuchâtel Switzerland
- Jardin Botanique de Neuchâtel Neuchâtel Switzerland
| | | | - Quentin Blandenier
- Laboratory of Soil Biodiversity, Institute of Biology University of Neuchâtel Neuchâtel Switzerland
- Real Jardín Botánico CSIC Madrid Spain
| | - Clément Duckert
- Laboratory of Soil Biodiversity, Institute of Biology University of Neuchâtel Neuchâtel Switzerland
| | - Leonardo D. Fernández
- Laboratory of Soil Biodiversity, Institute of Biology University of Neuchâtel Neuchâtel Switzerland
- Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS) Universidad Bernardo O'Higgins Santiago Chile
| | - Bertrand Fournier
- Community and Quantitative Ecology Laboratory, Department of Biology Concordia University Montreal QC Canada
| | - Cristián E. Hernández
- Facultad de Ciencias Naturales y Oceanográficas, Departamento de Zoología Universidad de Concepción Barrio Universitario de Concepción Chile
| | - Gustaf Granath
- Department of Ecology and Genetics Evolutionary Biology Centre Uppsala University Uppsala Sweden
| | - Håkan Rydin
- Department of Ecology and Genetics Evolutionary Biology Centre Uppsala University Uppsala Sweden
| | - Luca Bragazza
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research Lausanne Switzerland
- Laboratory of Ecological Systems (ECOS), Ecole Polytechnique Féderale de Lausanne (EPFL) School of Architecture, Civil and Environmental Engineering (ENAC) Lausanne Switzerland
- Department of Life Science and Biotechnologies University of Ferrara Ferrara Italy
| | - Natalia G. Koronatova
- Laboratory of Biogeocenology, Institute of Soil Science and Agrochemistry Siberian Branch of Russian Academy of Sciences Novosibirsk Russia
| | - Irina Goia
- Department of Taxonomy and Ecology, Faculty of Biology and Geology Babeș‐Bolyai University Cluj‐Napoca Romania
| | - Lorna I. Harris
- School of Geography and Earth Sciences McMaster University Hamilton ON Canada
| | - Katarzyna Kajukało
- Laboratory of Wetland Ecology and Monitoring, Faculty of Geographical and Geological Sciences and Department of Biogeography and Paleoecology Adam Mickiewicz University Poznań Poland
| | - Anush Kosakyan
- Institute of Parasitology, Biology Center Czech Academy of Sciences České Budĕjovice Czech Republic
| | - Mariusz Lamentowicz
- Laboratory of Wetland Ecology and Monitoring, Faculty of Geographical and Geological Sciences and Department of Biogeography and Paleoecology Adam Mickiewicz University Poznań Poland
| | - Natalia P. Kosykh
- Laboratory of Biogeocenology, Institute of Soil Science and Agrochemistry Siberian Branch of Russian Academy of Sciences Novosibirsk Russia
| | - Kai Vellak
- Institute of Ecology and Earth Sciences, Natural History Museum University of Tartu Tartu Estonia
| | - Enrique Lara
- Laboratory of Soil Biodiversity, Institute of Biology University of Neuchâtel Neuchâtel Switzerland
- Real Jardín Botánico CSIC Madrid Spain
| |
Collapse
|
23
|
|