1
|
Mak EWK, Turk‐Kubo KA, Caron DA, Harbeitner RC, Magasin JD, Coale TH, Hagino K, Takano Y, Nishimura T, Adachi M, Zehr JP. Phagotrophy in the nitrogen-fixing haptophyte Braarudosphaera bigelowii. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13312. [PMID: 39049182 PMCID: PMC11269211 DOI: 10.1111/1758-2229.13312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Biological nitrogen fixation provides fixed nitrogen for microbes living in the oligotrophic open ocean. UCYN-A2, the previously known symbiont of Braarudosphaera bigelowii, now believed to be an early-stage B. bigelowii organelle that exchanges fixed nitrogen for fixed carbon, is globally distributed. Indirect evidence suggested that B. bigelowii might be a mixotrophic (phagotrophic) phototrophic flagellate. The goal of this study was to determine if B. bigelowii can graze on bacteria using several independent approaches. The results showed that B. bigelowii grazed on co-occurring bacteria at a rate of 5-7 cells/h/B. bigelowii and that the overall grazing rate was significantly higher at nighttime than at daytime. Bacterial abundance changes, assessed with 16S rRNA gene amplicon sequencing analysis, may have indicated preferential grazing by B. bigelowii on specific bacterial genotypes. In addition, Lysotracker™ staining of B. bigelowii suggested digestive activity inside B. bigelowii. Carbon and nitrogen fixation measurements revealed that the carbon demand of B. bigelowii could not be fulfilled by photosynthesis alone, implying supplementation by heterotrophy. These independent lines of evidence together revealed that B. bigelowii engages in phagotrophy, which, beyond serving as a supplementary source of carbon and energy, may also facilitate the indirect assimilation of inorganic nutrients.
Collapse
Affiliation(s)
| | | | - David A. Caron
- Department of Biological SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | | | - Tyler H. Coale
- Department of Ocean SciencesUniversity of CaliforniaSanta CruzCaliforniaUSA
| | - Kyoko Hagino
- Marine Core Research InstituteKochi UniversityNankokuJapan
| | | | - Tomohiro Nishimura
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
- Fisheries Technology Institute, Japan Fisheries Research and Education AgencyHiroshimaJapan
| | - Masao Adachi
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| | - Jonathan P. Zehr
- Department of Ocean SciencesUniversity of CaliforniaSanta CruzCaliforniaUSA
| |
Collapse
|
2
|
Nguyen A, Ustick LJ, Larkin AA, Martiny AC. Global Phylogeography and Microdiversity of the Marine Diazotrophic Cyanobacteria Trichodesmium and UCYN-A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603225. [PMID: 39026769 PMCID: PMC11257549 DOI: 10.1101/2024.07.12.603225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Cyanobacterial diazotrophs, specifically the genera Trichodesmium and UCYN-A, play a pivotal role in marine nitrogen cycling through their capacity for nitrogen fixation. Despite their global distribution, the microdiversity and environmental drivers of these diazotrophs remain underexplored. This study provides a comprehensive analysis of the global diversity and distribution of Trichodesmium and UCYN-A using the nitrogenase gene ( nifH ) as a genetic marker. We sequenced 954 samples from the Pacific, Atlantic, and Indian Oceans as part of the Bio-GO-SHIP project. Our results reveal significant phylogenetic and biogeographic differences between and within the two genera. Trichodesmium exhibited greater microdiversity compared to UCYN-A, with clades showing region-specific distribution. Trichodesmium clades were primarily influenced by temperature and nutrient availability, and particularly frequent in regions of phosphorus stress. In contrast UCYN-A was found in regions of iron stress. UCYN-A clades demonstrated a more homogeneous distributions, with a single sequencing variant within the UCYN-A1 clade dominating across varied environments. The biogeographic patterns and environmental correlations of Trichodesmium and UCYN-A highlight the role of microdiversity in their ecological adaptation and reflect their different ecological strategies. This study underscores the importance of characterizing the global patterns of fine-scale genetic diversity to better understand the functional roles and distribution of marine nitrogen-fixing cyanobacteria.
Collapse
|
3
|
Masuda T, Mareš J, Shiozaki T, Inomura K, Fujiwara A, Prášil O. Crocosphaera watsonii - A widespread nitrogen-fixing unicellular marine cyanobacterium. JOURNAL OF PHYCOLOGY 2024; 60:604-620. [PMID: 38551849 DOI: 10.1111/jpy.13450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 12/14/2023] [Accepted: 02/08/2024] [Indexed: 06/12/2024]
Abstract
Crocosphaera watsonii is a unicellular N2-fixing (diazotrophic) cyanobacterium observed in tropical and subtropical oligotrophic oceans. As a diazotroph, it can be a source of bioavailable nitrogen (N) to the microbial community in N-limited environments, and this may fuel primary production in the regions where it occurs. Crocosphaera watsonii has been the subject of intense study, both in culture and in field populations. Here, we summarize the current understanding of the phylogenetic and physiological diversity of C. watsonii, its distribution, and its ecological niche. Analysis of the relationships among the individual Crocosphaera species and related free-living and symbiotic lineages of diazotrophs based on the nifH gene have shown that the C. watsonii group holds a basal position and that its sequence is more similar to Rippkaea and Zehria than to other Crocosphaera species. This finding warrants further scrutiny to determine if the placement is related to a horizontal gene transfer event. Here, the nifH UCYN-B gene copy number from a recent synthesis effort was used as a proxy for relative C. watsonii abundance to examine patterns of C. watsonii distribution as a function of environmental factors, like iron and phosphorus concentration, and complimented with a synthesis of C. watsonii physiology. Furthermore, we have summarized the current knowledge of C. watsonii with regards to N2 fixation, photosynthesis, and quantitative modeling of physiology. Because N availability can limit primary production, C. watsonii is widely recognized for its importance to carbon and N cycling in ocean ecosystems, and we conclude this review by highlighting important topics for further research on this important species.
Collapse
Affiliation(s)
- Takako Masuda
- Institute of Microbiology, The Czech Academy of Sciences, Třeboň, Czech Republic
- Japan Fisheries Research and Education Agency, Shiogama, Miyagi, Japan
| | - Jan Mareš
- Institute of Microbiology, The Czech Academy of Sciences, Třeboň, Czech Republic
- Institute of Hydrobiology, Biology Centre, The Czech Academy of Sciences, České Budejovice, Czech Republic
| | - Takuhei Shiozaki
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Keisuke Inomura
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - Amane Fujiwara
- Research Institute for Global Change, JAMSTEC, Yokosuka, Japan
| | - Ondřej Prášil
- Institute of Microbiology, The Czech Academy of Sciences, Třeboň, Czech Republic
| |
Collapse
|
4
|
Deutsch C, Inomura K, Luo YW, Wang YP. Projecting global biological N 2 fixation under climate warming across land and ocean. Trends Microbiol 2024; 32:546-553. [PMID: 38262802 DOI: 10.1016/j.tim.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/04/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024]
Abstract
Biological N2 fixation sustains the global inventory of nitrogenous nutrients essential for the productivity of terrestrial and marine ecosystems. Like most metabolic processes, rates of biological N2 fixation vary strongly with temperature, making it sensitive to climate change, but a global projection across land and ocean is lacking. Here we use compilations of field and laboratory measurements to reveal a relationship between N2 fixation rates and temperature that is similar in both domains despite large taxonomic and environmental differences. Rates of N2 fixation increase gradually to a thermal optimum around ~25°C, and decline more rapidly toward a thermal maximum, which is lower in the ocean than on land. In both realms, the observed temperature sensitivities imply that climate warming this century could decrease N2 fixation rates by ~50% in the tropics while increasing rates by ~50% in higher latitudes. We propose a conceptual framework for understanding the physiological and ecological mechanisms that underpin and modulate the observed temperature dependence of global N2 fixation rates, facilitating cross-fertilization of marine and terrestrial research to assess its response to climate change.
Collapse
Affiliation(s)
- Curtis Deutsch
- Department of Geosciences and High Meadows Environmental Institute, Princeton University, Princeton, NJ, USA.
| | - Keisuke Inomura
- Graduate School of Oceanography, University of Rhode Island, South Kingstown, RI, USA
| | - Ya-Wei Luo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, China
| | - Ying-Ping Wang
- CSIRO Environment, Private Bag 10, Clayton South, VIC 3169, Australia
| |
Collapse
|
5
|
Deng L, Cheung S, Liu J, Chen J, Chen F, Zhang X, Liu H. Nanoplastics impair growth and nitrogen fixation of marine nitrogen-fixing cyanobacteria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123960. [PMID: 38608853 DOI: 10.1016/j.envpol.2024.123960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/09/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Nanoplastics pollution is a growing environmental problem worldwide. Recent research has demonstrated the toxic effects of nanoplastics on various marine organisms. However, the influences of nanoplastics on marine nitrogen-fixing cyanobacteria, a critical nitrogen source in the ocean, remained unknown. Here, we report that nanoplastics exposure significantly reduced growth, photosynthetic, and nitrogen fixation rates of Crocosphaera watsonii (a major marine nitrogen-fixing cyanobacterium). Transcriptomic analysis revealed that nanoplastics might harm C. watsonii via downregulation of photosynthetic pathways and DNA damage repair genes, while genes for respiration, cell damage, nitrogen limitation, and iron (and phosphorus) scavenging were upregulated. The number and size of starch grains and electron-dense vacuoles increased significantly after nanoplastics exposure, suggesting that C. watsonii allocated more resources to storage instead of growth under stress. We propose that nanoplastics can damage the cell (e.g., DNA, cell membrane, and membrane-bound transporters), inhibit nitrogen and carbon fixation, and hence lead to nutrient limitation and impaired growth. Our findings suggest the possibility that nanoplastics pollution could reduce the new nitrogen input and hence affect the productivity in the ocean. The impact of nanoplastics on marine nitrogen fixation and productivity should be considered when predicting the ecosystem response and biogeochemical cycling in the changing ocean.
Collapse
Affiliation(s)
- Lixia Deng
- Department of Ocean Science, The Hong Kong University of Science and Technology, China
| | - Shunyan Cheung
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Jiaxing Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Jiawei Chen
- Department of Ocean Science, The Hong Kong University of Science and Technology, China
| | - Fengyuan Chen
- Department of Ocean Science, The Hong Kong University of Science and Technology, China; SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, China
| | - Xiaodong Zhang
- Department of Ocean Science, The Hong Kong University of Science and Technology, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, China.
| |
Collapse
|
6
|
Zehr JP, Capone DG. Unsolved mysteries in marine nitrogen fixation. Trends Microbiol 2024; 32:532-545. [PMID: 37658011 DOI: 10.1016/j.tim.2023.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 09/03/2023]
Abstract
Biological nitrogen (N2) fixation is critical in global biogeochemical cycles and in sustaining the productivity of the oceans. There remain many unanswered questions, unresolved hypotheses, and unchallenged paradigms. The fundamental balance of N input and losses has not been fully resolved. One of the major N2-fixers, Trichodesmium, remains an enigma with intriguing biological and ecological secrets. Cyanobacterial N2 fixation, once thought to be primarily due to free-living cyanobacteria, now also appears to be dependent on microbial interactions, from microbiomes to unicellular symbioses, which remain poorly characterized. Nitrogenase genes associated with diverse non-cyanobacterial diazotrophs (NCDs) are prevalent, but their significance remains a huge knowledge gap. Answering questions, new and old, such as those discussed here, is needed to understand the ocean's N and C cycles and their responses to environmental change.
Collapse
Affiliation(s)
- Jonathan P Zehr
- Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, CA, USA.
| | - Douglas G Capone
- Marine and Environmental Biology Section of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
7
|
Coale TH, Loconte V, Turk-Kubo KA, Vanslembrouck B, Mak WKE, Cheung S, Ekman A, Chen JH, Hagino K, Takano Y, Nishimura T, Adachi M, Le Gros M, Larabell C, Zehr JP. Nitrogen-fixing organelle in a marine alga. Science 2024; 384:217-222. [PMID: 38603509 DOI: 10.1126/science.adk1075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/22/2024] [Indexed: 04/13/2024]
Abstract
Symbiotic interactions were key to the evolution of chloroplast and mitochondria organelles, which mediate carbon and energy metabolism in eukaryotes. Biological nitrogen fixation, the reduction of abundant atmospheric nitrogen gas (N2) to biologically available ammonia, is a key metabolic process performed exclusively by prokaryotes. Candidatus Atelocyanobacterium thalassa, or UCYN-A, is a metabolically streamlined N2-fixing cyanobacterium previously reported to be an endosymbiont of a marine unicellular alga. Here we show that UCYN-A has been tightly integrated into algal cell architecture and organellar division and that it imports proteins encoded by the algal genome. These are characteristics of organelles and show that UCYN-A has evolved beyond endosymbiosis and functions as an early evolutionary stage N2-fixing organelle, or "nitroplast."
Collapse
Affiliation(s)
- Tyler H Coale
- Ocean Sciences Department, University of California, Santa Cruz, CA, USA
| | - Valentina Loconte
- Department of Anatomy, School of Medicine, University of California, San Francisco, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kendra A Turk-Kubo
- Ocean Sciences Department, University of California, Santa Cruz, CA, USA
| | - Bieke Vanslembrouck
- Department of Anatomy, School of Medicine, University of California, San Francisco, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Shunyan Cheung
- Institute of Marine Biology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Axel Ekman
- Department of Anatomy, School of Medicine, University of California, San Francisco, CA, USA
| | - Jian-Hua Chen
- Department of Anatomy, School of Medicine, University of California, San Francisco, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kyoko Hagino
- Marine Core Research Institute, Kochi University, Nankoku, Kochi, Japan
| | - Yoshihito Takano
- Marine Core Research Institute, Kochi University, Nankoku, Kochi, Japan
| | - Tomohiro Nishimura
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Hatsukaichi, Hiroshima, Japan
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| | - Masao Adachi
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| | - Mark Le Gros
- Department of Anatomy, School of Medicine, University of California, San Francisco, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Carolyn Larabell
- Department of Anatomy, School of Medicine, University of California, San Francisco, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jonathan P Zehr
- Ocean Sciences Department, University of California, Santa Cruz, CA, USA
| |
Collapse
|
8
|
Seok MW, Ko YH, Park KT, Kim TW. Possible enhancement in ocean productivity associated with wildfire-derived nutrient and black carbon deposition in the Arctic Ocean in 2019-2021. MARINE POLLUTION BULLETIN 2024; 201:116149. [PMID: 38364527 DOI: 10.1016/j.marpolbul.2024.116149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
The Arctic is severely affected by climate change and various forms of environmental pollution. Enriched with nutrients and light-absorbing compounds, the wildfire plume has the potential to affect biological carbon fixation and sequestration within the Arctic Ocean. In this study, we utilized satellite-derived oceanic data (phytoplankton and sea ice) and atmospheric reanalysis products (black carbon, BC, indicative of wildfire impact) to evaluate the effect of the pronounced increase in wildfires from 2019 to 2021 on the East Siberian Sea. During these years, chlorophyll-a levels rose by ∼213 % compared to the previous decadal average, which had notably lower wildfire activities. This increase in chlorophyll-a is attributable to the deposition of nitrogen from the wildfire plume. Concurrently, the period required for sea ice concentration to decrease by 25 % was on average ∼ 10 days shorter than usual. This suggests that BC-induced acceleration of sea ice melting might extend the growing season for phytoplankton.
Collapse
Affiliation(s)
- Min-Woo Seok
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Young Ho Ko
- OJeong Resilience Institute, Korea University, Seoul 02841, Republic of Korea
| | - Ki-Tae Park
- Division of Polar Climate Sciences, Korea Polar Research Institute, Incheon, Republic of Korea; now at Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Tae-Wook Kim
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea; OJeong Resilience Institute, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
9
|
Vieyra‐Mexicano C, Souza V, Pajares S. Distribution of the N 2 -fixing cyanobacterium Candidatus Atelocyanobacterium thalassa in the Mexican Pacific upwelling system under two contrasting El Niño Southern Oscillation conditions. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13237. [PMID: 38350668 PMCID: PMC10866059 DOI: 10.1111/1758-2229.13237] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/19/2024] [Indexed: 02/15/2024]
Abstract
The unicellular cyanobacterium Candidatus Atelocyanobacterium thalassa (UCYN-A) is a key diazotroph in the global ocean owing to its high N2 fixation rates and wide distribution in marine environments. Nevertheless, little is known about UCYN-A in oxygen-deficient zones (ODZs), which may be optimal environments for marine diazotrophy. Therefore, the distribution and diversity of UCYN-A were studied in two consecutive years under contrasting phases (La Niña vs. El Niño) of El Niño Southern Oscillation (ENSO) along a transect in the ODZ of the Mexican Pacific upwelling system. Of the three UCYN-A sublineages found, UCYN-A1 and UCYN-A3 were barely detected, whereas UCYN-A2 was dominant in all the stations and showed a wide distribution in both ENSO phases. The presence of UCYN-A was associated with well-oxygenated waters, but it was also found for the first time under suboxic conditions (<20 μM) at the bottom of a shallow coastal station, within the oxygen-poor and nutrient-rich Subsurface Subtropical water mass. This study contributes to the understanding of UCYN-A distribution under different oceanographic conditions associated with ENSO phases in upwelling systems, especially because of the current climate change and increasing deoxygenation in many areas of the world's oceans.
Collapse
Affiliation(s)
- Cinthya Vieyra‐Mexicano
- Unidad Académica de Ecología y Biodiversidad Acuática, Institute of Marine Sciences and LimnologyNational Autonomous University of MexicoMexico CityMexico
- Posgrado en Ciencias del Mar y LimnologíaNational Autonomous University of MexicoMexico CityMexico
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Institute of EcologyNational Autonomous University of MexicoMexico CityMexico
| | - Silvia Pajares
- Unidad Académica de Ecología y Biodiversidad Acuática, Institute of Marine Sciences and LimnologyNational Autonomous University of MexicoMexico CityMexico
| |
Collapse
|
10
|
Robicheau BM, Tolman J, Rose S, Desai D, LaRoche J. Marine nitrogen-fixers in the Canadian Arctic Gateway are dominated by biogeographically distinct noncyanobacterial communities. FEMS Microbiol Ecol 2023; 99:fiad122. [PMID: 37951299 PMCID: PMC10656255 DOI: 10.1093/femsec/fiad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/30/2023] [Accepted: 11/09/2023] [Indexed: 11/13/2023] Open
Abstract
We describe diazotrophs present during a 2015 GEOTRACES expedition through the Canadian Arctic Gateway (CAG) using nifH metabarcoding. In the less studied Labrador Sea, Bradyrhizobium sp. and Vitreoscilla sp. nifH variants were dominant, while in Baffin Bay, a Stutzerimonas stutzeri variant was dominant. In comparison, the Canadian Arctic Archipelago (CAA) was characterized by a broader set of dominant variants belonging to Desulfobulbaceae, Desulfuromonadales, Arcobacter sp., Vibrio spp., and Sulfuriferula sp. Although dominant diazotrophs fell within known nifH clusters I and III, only a few of these variants were frequently recovered in a 5-year weekly nifH times series in the coastal NW Atlantic presented herein, notably S. stutzeri and variants belonging to Desulfobacterales and Desulfuromonadales. In addition, the majority of dominant Arctic nifH variants shared low similarity (< 92% nucleotide identities) to sequences in a global noncyanobacterial diazotroph catalog recently compiled by others. We further detected UCYN-A throughout the CAG at low-levels using quantitative-PCR assays. Temperature, depth, salinity, oxygen, and nitrate were most strongly correlated to the Arctic diazotroph diversity observed, and we found a stark division between diazotroph communities of the Labrador Sea versus Baffin Bay and the CAA, hence establishing that a previously unknown biogeographic community division can occur for diazotrophs in the CAG.
Collapse
Affiliation(s)
- Brent M Robicheau
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Jennifer Tolman
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Sonja Rose
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Dhwani Desai
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, B3H 4R2, Canada
- Department of Pharmacology, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Julie LaRoche
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
11
|
Turk-Kubo KA, Gradoville MR, Cheung S, Cornejo-Castillo FM, Harding KJ, Morando M, Mills M, Zehr JP. Non-cyanobacterial diazotrophs: global diversity, distribution, ecophysiology, and activity in marine waters. FEMS Microbiol Rev 2023; 47:fuac046. [PMID: 36416813 PMCID: PMC10719068 DOI: 10.1093/femsre/fuac046] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/15/2022] [Accepted: 11/17/2022] [Indexed: 12/17/2023] Open
Abstract
Biological dinitrogen (N2) fixation supplies nitrogen to the oceans, supporting primary productivity, and is carried out by some bacteria and archaea referred to as diazotrophs. Cyanobacteria are conventionally considered to be the major contributors to marine N2 fixation, but non-cyanobacterial diazotrophs (NCDs) have been shown to be distributed throughout ocean ecosystems. However, the biogeochemical significance of marine NCDs has not been demonstrated. This review synthesizes multiple datasets, drawing from cultivation-independent molecular techniques and data from extensive oceanic expeditions, to provide a comprehensive view into the diversity, biogeography, ecophysiology, and activity of marine NCDs. A NCD nifH gene catalog was compiled containing sequences from both PCR-based and PCR-free methods, identifying taxa for future studies. NCD abundances from a novel database of NCD nifH-based abundances were colocalized with environmental data, unveiling distinct distributions and environmental drivers of individual taxa. Mechanisms that NCDs may use to fuel and regulate N2 fixation in response to oxygen and fixed nitrogen availability are discussed, based on a metabolic analysis of recently available Tara Oceans expedition data. The integration of multiple datasets provides a new perspective that enhances understanding of the biology, ecology, and biogeography of marine NCDs and provides tools and directions for future research.
Collapse
Affiliation(s)
- Kendra A Turk-Kubo
- Ocean Sciences Department, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, United States
| | - Mary R Gradoville
- Ocean Sciences Department, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, United States
- Columbia River Inter-Tribal Fish Commission, Portland, OR, United States
| | - Shunyan Cheung
- Ocean Sciences Department, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, United States
| | - Francisco M Cornejo-Castillo
- Ocean Sciences Department, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, United States
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM-CSIC), Pg. Marítim Barceloneta, 37-49 08003 Barcelona, Spain
| | - Katie J Harding
- Ocean Sciences Department, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, United States
- Marine Biology Research Division, Scripps Institute of Oceanography, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Michael Morando
- Ocean Sciences Department, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, United States
| | - Matthew Mills
- Department of Earth System Science, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States
| | - Jonathan P Zehr
- Ocean Sciences Department, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, United States
| |
Collapse
|
12
|
Robicheau BM, Tolman J, Desai D, LaRoche J. Microevolutionary patterns in ecotypes of the symbiotic cyanobacterium UCYN-A revealed from a Northwest Atlantic coastal time series. SCIENCE ADVANCES 2023; 9:eadh9768. [PMID: 37774025 PMCID: PMC10541017 DOI: 10.1126/sciadv.adh9768] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/28/2023] [Indexed: 10/01/2023]
Abstract
UCYN-A is a globally important nitrogen-fixing symbiotic microbe often found in colder regions and coastal areas where nitrogen fixation has been overlooked. We present a 3-year coastal Northwest Atlantic time series of UCYN-A by integrating oceanographic data with weekly nifH and16S rRNA gene sequencing and quantitative PCR assays for UCYN-A ecotypes. High UCYN-A relative abundances dominated by A1 to A4 ecotypes reoccurred annually in the coastal Northwest Atlantic. Although UCYN-A was detected every summer/fall, the ability to observe separate ecotypes may be highly dependent on sampling time given intense interannual and weekly variability of ecotype-specific occurrences. Additionally, much of UCYN-A's rarer diversity was populated by short-lived neutral mutational variants, therefore providing insight into UCYN-A's microevolutionary patterns. For instance, rare ASVs exhibited community composition restructuring annually, while also sharing a common connection to a dominant ASV within each ecotype. Our study provides additional perspectives for interpreting UCYN-A intraspecific diversity and underscores the need for high-resolution datasets when deciphering spatiotemporal ecologies within UCYN-A.
Collapse
Affiliation(s)
- Brent M. Robicheau
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jennifer Tolman
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Dhwani Desai
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Integrated Microbiome Resource, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Julie LaRoche
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
13
|
von Friesen LW, Paulsen ML, Müller O, Gründger F, Riemann L. Glacial meltwater and seasonality influence community composition of diazotrophs in Arctic coastal and open waters. FEMS Microbiol Ecol 2023; 99:fiad067. [PMID: 37349965 DOI: 10.1093/femsec/fiad067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/29/2023] [Accepted: 06/20/2023] [Indexed: 06/24/2023] Open
Abstract
The Arctic Ocean is particularly affected by climate change with unknown consequences for primary productivity. Diazotrophs-prokaryotes capable of converting atmospheric nitrogen to ammonia-have been detected in the often nitrogen-limited Arctic Ocean but distribution and community composition dynamics are largely unknown. We performed amplicon sequencing of the diazotroph marker gene nifH from glacial rivers, coastal, and open ocean regions and identified regionally distinct Arctic communities. Proteobacterial diazotrophs dominated all seasons, epi- to mesopelagic depths and rivers to open waters and, surprisingly, Cyanobacteria were only sporadically identified in coastal and freshwaters. The upstream environment of glacial rivers influenced diazotroph diversity, and in marine samples putative anaerobic sulphate-reducers showed seasonal succession with highest prevalence in summer to polar night. Betaproteobacteria (Burkholderiales, Nitrosomonadales, and Rhodocyclales) were typically found in rivers and freshwater-influenced waters, and Delta- (Desulfuromonadales, Desulfobacterales, and Desulfovibrionales) and Gammaproteobacteria in marine waters. The identified community composition dynamics, likely driven by runoff, inorganic nutrients, particulate organic carbon, and seasonality, imply diazotrophy a phenotype of ecological relevance with expected responsiveness to ongoing climate change. Our study largely expands baseline knowledge of Arctic diazotrophs-a prerequisite to understand underpinning of nitrogen fixation-and supports nitrogen fixation as a contributor of new nitrogen in the rapidly changing Arctic Ocean.
Collapse
Affiliation(s)
- Lisa W von Friesen
- Department of Biology, University of Copenhagen, Strandpromenaden 5, DK-3000 Helsingør, Denmark
| | - Maria L Paulsen
- Department of Biology, Aarhus University, Ny Munkegade 114-116, DK-8000 Aarhus, Denmark
| | - Oliver Müller
- Department of Biological Sciences, University of Bergen, Thormøhlens gate 53A, NO-5006 Bergen, Norway
| | - Friederike Gründger
- Department of Biology, Aarhus University, Ny Munkegade 114-116, DK-8000 Aarhus, Denmark
| | - Lasse Riemann
- Department of Biology, University of Copenhagen, Strandpromenaden 5, DK-3000 Helsingør, Denmark
| |
Collapse
|
14
|
Hu X, Wang X, Zhao S, Cao L, Pan Y, Li F, Li F, Lu J, Li Y, Song G, Zhang H, Sun P, Bao M. Uncovering the dynamic evolution of microbes and n-alkanes: Insights from the Kuroshio Extension in the Northwest Pacific Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162418. [PMID: 36858214 DOI: 10.1016/j.scitotenv.2023.162418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/11/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Biomarkers offer unique insights into the state of the environment, but little is known about how they interact with microbial communities in the open ocean. This study investigated the correlative effects between microbial communities and n-alkane distribution in surface seawater and sediments from the Kuroshio Extension in the Northwest Pacific Ocean. The n-alkanes in both surface seawater and surface sediments were mostly derived from algae and higher plants, with some minor contributions from anthropogenic and biological sources. The composition of microbial communities in surface seawater and sediments was different. In surface seawater, the dominant taxa were Vibrio, Alteromonas, Clade_Ia, Pseudoalteromonas, and Synechococcus_CC9902, while the taxa in the sediments were mostly unclassified. These variations/fluctuations of n-alkanes in three areas caused the aggregation of specialized microbial communities (Alteromonas). As the characteristic composition indexes of two typical n-alkanes, Short-chain n-alkane carbon preference index (CPI-L) and long-chain n-alkane carbon preference index (CPI-H) significantly influenced the microbial community structure in surface seawater, but not in surface sediments. Effect of CPI on microbial communities may be attributed to anthropogenic inputs or petroleum pollution. The abundance of hydrocarbon degradation genes also varied across the three different areas. Our work underscores that n-alkanes in the oceans alter the microbial community structure and enrich associated degradation genes. The functional differences in microbial communities within different areas contribute to their ecological uniqueness.
Collapse
Affiliation(s)
- Xin Hu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Xinping Wang
- Key Laboratory of Ecological Warning, Protection & Restoration for Bohai Sea, Ministry of Natural Resources, Qingdao, Shandong Province 266033, China; North China Sea Environmental Monitoring Center, State Oceanic Administration, Qingdao, Shandong Province, 266033, China
| | - Shanshan Zhao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Lixin Cao
- Key Laboratory of Ecological Warning, Protection & Restoration for Bohai Sea, Ministry of Natural Resources, Qingdao, Shandong Province 266033, China; North China Sea Environmental Monitoring Center, State Oceanic Administration, Qingdao, Shandong Province, 266033, China
| | - Yaping Pan
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Fujuan Li
- Key Laboratory of Ecological Warning, Protection & Restoration for Bohai Sea, Ministry of Natural Resources, Qingdao, Shandong Province 266033, China; North China Sea Environmental Monitoring Center, State Oceanic Administration, Qingdao, Shandong Province, 266033, China
| | - Fengshu Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Jinren Lu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Yiming Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Guodong Song
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Honghai Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Peiyan Sun
- Key Laboratory of Ecological Warning, Protection & Restoration for Bohai Sea, Ministry of Natural Resources, Qingdao, Shandong Province 266033, China; North China Sea Environmental Monitoring Center, State Oceanic Administration, Qingdao, Shandong Province, 266033, China.
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China.
| |
Collapse
|
15
|
Takuhei S, Nishimura Y, Yoshizawa S, Takami H, Hamasaki K, Fujiwara A, Nishino S, Harada N. Distribution and survival strategies of endemic and cosmopolitan diazotrophs in the Arctic Ocean. THE ISME JOURNAL 2023:10.1038/s41396-023-01424-x. [PMID: 37217593 DOI: 10.1038/s41396-023-01424-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023]
Abstract
Dinitrogen (N2) fixation is the major source of reactive nitrogen in the ocean and has been considered to occur specifically in low-latitude oligotrophic oceans. Recent studies have shown that N2 fixation also occurs in the polar regions and thus is a global process, although the physiological and ecological characteristics of polar diazotrophs are not yet known. Here, we successfully reconstructed diazotroph genomes, including that of cyanobacterium UCYN-A (Candidatus 'Atelocyanobacterium thalassa'), from metagenome data corresponding to 111 samples isolated from the Arctic Ocean. These diazotrophs were highly abundant in the Arctic Ocean (max., 1.28% of the total microbial community), suggesting that they have important roles in the Arctic ecosystem and biogeochemical cycles. Further, we show that diazotrophs within genera Arcobacter, Psychromonas, and Oceanobacter are prevalent in the <0.2 µm fraction in the Arctic Ocean, indicating that current methods cannot capture their N2 fixation. Diazotrophs in the Arctic Ocean were either Arctic-endemic or cosmopolitan species from their global distribution patterns. Arctic-endemic diazotrophs, including Arctic UCYN-A, were similar to low-latitude-endemic and cosmopolitan diazotrophs in genome-wide function, however, they had unique gene sets (e.g., diverse aromatics degradation genes), suggesting adaptations to Arctic-specific conditions. Cosmopolitan diazotrophs were generally non-cyanobacteria and commonly had the gene that encodes the cold-inducible RNA chaperone, which presumably makes their survival possible even in deep, cold waters of global ocean and polar surface waters. This study shows global distribution pattern of diazotrophs with their genomes and provides clues to answering the question of how diazotrophs can inhabit polar waters.
Collapse
Affiliation(s)
- Shiozaki Takuhei
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, 277-8564, Japan.
| | - Yosuke Nishimura
- Research Centre for Bioscience and Nanoscience, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, 237-0061, Japan
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, 277-8564, Japan
| | - Hideto Takami
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, 277-8564, Japan
- Center for Mathematical Science and Advanced Technology, JAMSTEC, Yokohama, 236-0001, Japan
| | - Koji Hamasaki
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, 277-8564, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 277-8564, Kashiwa, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 113-8657, Bunkyo-ku, Japan
| | - Amane Fujiwara
- Research Institute for Global Change, JAMSTEC, Yokosuka, 237-0061, Japan
| | - Shigeto Nishino
- Research Institute for Global Change, JAMSTEC, Yokosuka, 237-0061, Japan
| | - Naomi Harada
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, 277-8564, Japan
- Research Institute for Global Change, JAMSTEC, Yokosuka, 237-0061, Japan
| |
Collapse
|
16
|
Bonnet S, Benavides M, Le Moigne FAC, Camps M, Torremocha A, Grosso O, Dimier C, Spungin D, Berman-Frank I, Garczarek L, Cornejo-Castillo FM. Diazotrophs are overlooked contributors to carbon and nitrogen export to the deep ocean. THE ISME JOURNAL 2023; 17:47-58. [PMID: 36163270 PMCID: PMC9750961 DOI: 10.1038/s41396-022-01319-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 11/09/2022]
Abstract
Diazotrophs are widespread microorganisms that alleviate nitrogen limitation in 60% of our oceans, thereby regulating marine productivity. Yet, the group-specific contribution of diazotrophs to organic matter export has not been quantified, which so far has impeded an accurate assessment of their impact on the biological carbon pump. Here, we examine the fate of five groups of globally-distributed diazotrophs by using an original combination of mesopelagic particle sampling devices across the subtropical South Pacific Ocean. We demonstrate that cyanobacterial and non-cyanobacterial diazotrophs are exported down to 1000 m depth. Surprisingly, group-specific export turnover rates point to a more efficient export of small unicellular cyanobacterial diazotrophs (UCYN) relative to the larger and filamentous Trichodesmium. Phycoerythrin-containing UCYN-B and UCYN-C-like cells were recurrently found embedded in large (>50 µm) organic aggregates or organized into clusters of tens to hundreds of cells linked by an extracellular matrix, presumably facilitating their export. Beyond the South Pacific, our data are supported by analysis of the Tara Oceans metagenomes collected in other ocean basins, extending the scope of our results globally. We show that, when diazotrophs are found in the euphotic zone, they are also systematically present in mesopelagic waters, suggesting their transport to the deep ocean. We thus conclude that diazotrophs are a significant part of the carbon sequestered in the deep ocean and, therefore, they need to be accounted in regional and global estimates of export.
Collapse
Affiliation(s)
- Sophie Bonnet
- Aix Marseille University, Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France.
| | - Mar Benavides
- Aix Marseille University, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France ,grid.5399.60000 0001 2176 4817Turing Center for Living Systems, Aix-Marseille University, 13009 Marseille, France
| | - Frédéric A. C. Le Moigne
- Aix Marseille University, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France ,grid.463763.30000 0004 0638 0577LEMAR, Laboratoire des sciences de l’environnement marin, UMR6539, CNRS, UBO, IFREMER, IRD, 29280 Plouzané, Technopôle Brest-Iroise France
| | - Mercedes Camps
- Aix Marseille University, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
| | - Antoine Torremocha
- Aix Marseille University, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
| | - Olivier Grosso
- Aix Marseille University, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
| | - Céline Dimier
- grid.499565.20000 0004 0366 8890Laboratoire d’Océanographie de Villefranche (LOV), Sorbonne Université, CNRS, 06230 Villefranche sur mer, France
| | - Dina Spungin
- grid.18098.380000 0004 1937 0562University of Haifa, The Leon H. Charney School of Marine Sciences, Haifa, 3498838 Israel
| | - Ilana Berman-Frank
- grid.18098.380000 0004 1937 0562University of Haifa, The Leon H. Charney School of Marine Sciences, Haifa, 3498838 Israel
| | - Laurence Garczarek
- grid.464101.60000 0001 2203 0006Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Francisco M. Cornejo-Castillo
- grid.464101.60000 0001 2203 0006Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France ,grid.418218.60000 0004 1793 765XInstitut de Ciènces del Mar (ICM-CSIC), E08003 Barcelona, Spain
| |
Collapse
|
17
|
Salas K, Cabello AM, Turk-Kubo KA, Zehr JP, Cornejo-Castillo FM. Primer design for the amplification of the ammonium transporter genes from the uncultured haptophyte algal species symbiotic with the marine nitrogen-fixing cyanobacterium UCYN-A1. Front Microbiol 2023; 14:1130695. [PMID: 37138636 PMCID: PMC10150950 DOI: 10.3389/fmicb.2023.1130695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/21/2023] [Indexed: 05/05/2023] Open
Abstract
The multiple symbiotic partnerships between closely related species of the haptophyte algae Braarudosphaera bigelowii and the nitrogen-fixing cyanobacteria Candidatus Atelocyanobacterium thalassa (UCYN-A) contribute importantly to the nitrogen and carbon cycles in vast areas of the ocean. The diversity of the eukaryotic 18S rDNA phylogenetic gene marker has helped to identify some of these symbiotic haptophyte species, yet we still lack a genetic marker to assess its diversity at a finer scale. One of such genes is the ammonium transporter (amt) gene, which encodes the protein that might be involved in the uptake of ammonium from UCYN-A in these symbiotic haptophytes. Here, we designed three specific PCR primer sets targeting the amt gene of the haptophyte species (A1-Host) symbiotic with the open ocean UCYN-A1 sublineage, and tested them in samples collected from open ocean and near-shore environments. Regardless of the primer pair used at Station ALOHA, which is where UCYN-A1 is the pre-dominant UCYN-A sublineage, the most abundant amt amplicon sequence variant (ASV) was taxonomically classified as A1-Host. In addition, two out of the three PCR primer sets revealed the existence of closely-related divergent haptophyte amt ASVs (>95% nucleotide identity). These divergent amt ASVs had higher relative abundances than the haptophyte typically associated with UCYN-A1 in the Bering Sea, or co-occurred with the previously identified A1-Host in the Coral Sea, suggesting the presence of new diversity of closely-related A1-Hosts in polar and temperate waters. Therefore, our study reveals an overlooked diversity of haptophytes species with distinct biogeographic distributions partnering with UCYN-A, and provides new primers that will help to gain new knowledge of the UCYN-A/haptophyte symbiosis.
Collapse
Affiliation(s)
- Krystal Salas
- Department of Ocean Sciences, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Ana M. Cabello
- Department of Ocean Sciences, University of California, Santa Cruz, Santa Cruz, CA, United States
- Centro Oceanográfico de Málaga, Instituto Español de Oceanografía, IEO-CSIC, Málaga, Spain
| | - Kendra A. Turk-Kubo
- Department of Ocean Sciences, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Jonathan P. Zehr
- Department of Ocean Sciences, University of California, Santa Cruz, Santa Cruz, CA, United States
- *Correspondence: Jonathan P. Zehr,
| | - Francisco M. Cornejo-Castillo
- Department of Ocean Sciences, University of California, Santa Cruz, Santa Cruz, CA, United States
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
- Francisco M. Cornejo-Castillo,
| |
Collapse
|
18
|
Muñoz-Marín MDC, Magasin JD, Zehr JP. Open ocean and coastal strains of the N2-fixing cyanobacterium UCYN-A have distinct transcriptomes. PLoS One 2023; 18:e0272674. [PMID: 37130101 PMCID: PMC10153697 DOI: 10.1371/journal.pone.0272674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 02/18/2023] [Indexed: 05/03/2023] Open
Abstract
Decades of research on marine N2 fixation focused on Trichodesmium, which are generally free-living cyanobacteria, but in recent years the endosymbiotic cyanobacterium Candidatus Atelocyanobacterium thalassa (UCYN-A) has received increasing attention. However, few studies have shed light on the influence of the host versus the habitat on UCYN-A N2 fixation and overall metabolism. Here we compared transcriptomes from natural populations of UCYN-A from oligotrophic open-ocean versus nutrient-rich coastal waters, using a microarray that targets the full genomes of UCYN-A1 and UCYN-A2 and known genes for UCYN-A3. We found that UCYN-A2, usually regarded as adapted to coastal environments, was transcriptionally very active in the open ocean and appeared to be less impacted by habitat change than UCYN-A1. Moreover, for genes with 24 h periodic expression we observed strong but inverse correlations among UCYN-A1, A2, and A3 to oxygen and chlorophyll, which suggests distinct host-symbiont relationships. Across habitats and sublineages, genes for N2 fixation and energy production had high transcript levels, and, intriguingly, were among the minority of genes that kept the same schedule of diel expression. This might indicate different regulatory mechanisms for genes that are critical to the symbiosis for the exchange of nitrogen for carbon from the host. Our results underscore the importance of N2 fixation in UCYN-A symbioses across habitats, with consequences for community interactions and global biogeochemical cycles.
Collapse
Affiliation(s)
- María Del Carmen Muñoz-Marín
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Jonathan D Magasin
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Jonathan P Zehr
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
19
|
Lu Q, Xiao Y, Wu P. Emerging technologies of employing algae and microorganisms to promote the return-to-field of crop straws: A mini-review. Front Bioeng Biotechnol 2023; 11:1152778. [PMID: 37064245 PMCID: PMC10097884 DOI: 10.3389/fbioe.2023.1152778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/16/2023] [Indexed: 04/18/2023] Open
Abstract
As an agricultural waste, crop straw enriched with a variety of nutrients is regarded as an important fertilizer resource. In the past, crop straw return-to-field played a key role in the sustainability of agricultural environment, but some problems, such as ammonia loss in ammoniation, low rate of straw decomposition, and high carbon footprint, attracted researchers' attentions. In this paper, we propose three technical routes, including cyanobacteria-based ammonia assimilation, microorganisms-based crop straw pretreatment, and microalgae-based carbon capture, to address the aforementioned problems. Besides, challenges which may hinder the practical application of these technical routes as well as the potential solutions are discussed in detail. It is expected that this paper could provide new ideas to the practical application of crop straw return-to-field.
Collapse
Affiliation(s)
- Qian Lu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- *Correspondence: Qian Lu, ; Yu Xiao,
| | - Yu Xiao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- *Correspondence: Qian Lu, ; Yu Xiao,
| | - Pengfei Wu
- College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
20
|
Aryal B, Gurung R, Camargo AF, Fongaro G, Treichel H, Mainali B, Angove MJ, Ngo HH, Guo W, Puadel SR. Nitrous oxide emission in altered nitrogen cycle and implications for climate change. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120272. [PMID: 36167167 DOI: 10.1016/j.envpol.2022.120272] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/28/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Natural processes and human activities play a crucial role in changing the nitrogen cycle and increasing nitrous oxide (N2O) emissions, which are accelerating at an unprecedented rate. N2O has serious global warming potential (GWP), about 310 times higher than that of carbon dioxide. The food production, transportation, and energy required to sustain a world population of seven billion have required dramatic increases in the consumption of synthetic nitrogen (N) fertilizers and fossil fuels, leading to increased N2O in air and water. These changes have radically disturbed the nitrogen cycle and reactive nitrogen species, such as nitrous oxide (N2O), and have impacted the climatic system. Yet, systematic and comprehensive studies on various underlying processes and parameters in the altered nitrogen cycle, and their implications for the climatic system are still lacking. This paper reviews how the nitrogen cycle has been disturbed and altered by anthropogenic activities, with a central focus on potential pathways of N2O generation. The authors also estimate the N2O-N emission mainly due to anthropogenic activities will be around 8.316 Tg N2O-N yr-1 in 2050. In order to minimize and tackle the N2O emissions and its consequences on the global ecosystem and climate change, holistic mitigation strategies and diverse adaptations, policy reforms, and public awareness are suggested as vital considerations. This study concludes that rapidly increasing anthropogenic perturbations, the identification of new microbial communities, and their role in mediating biogeochemical processes now shape the modern nitrogen cycle.
Collapse
Affiliation(s)
- Babita Aryal
- Naaya Aayam Multidisciplinary Institute, NAMI, University of Northampton, Jorpati, Kathmandu, Nepal
| | - Roshni Gurung
- Naaya Aayam Multidisciplinary Institute, NAMI, University of Northampton, Jorpati, Kathmandu, Nepal
| | - Aline F Camargo
- Federal University of Santa Catarina, Post-graduation Program in Biotechnology and Biosciences, Florianopólis, Brazil; Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil
| | - Gislaine Fongaro
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil
| | - Bandita Mainali
- School of Engineering and Mathematical Sciences, La Trobe University, Bendigo, VIC, 3550, Australia; School of Engineering, Macquarie University, Sydney, Australia
| | - Michael J Angove
- Department of Pharmacy and Biomedical Science, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bendigo, VIC-3550, Australia
| | - Huu Hao Ngo
- Faculty of Engineering, University of Technology Sydney (UTS), PO Box 123, Broadway, NSW, 2007, Australia
| | - Wenshan Guo
- Faculty of Engineering, University of Technology Sydney (UTS), PO Box 123, Broadway, NSW, 2007, Australia
| | - Shukra Raj Puadel
- Department of Civil Engineering, Pulchowk Campus, Institute of Engineering, Tribhuwan University, Pulchowk, Lalitpur, 44700, Nepal; Department of Environmental Engineering, College of Science and Technology, Korea University, Sejong, Republic of Korea.
| |
Collapse
|
21
|
Abstract
Coastal marine macrophytes exhibit some of the highest rates of primary productivity in the world. They have been found to host a diverse set of microbes, many of which may impact the biology of their hosts through metabolisms that are unique to microbial taxa. Here, we characterized the metabolic functions of macrophyte-associated microbial communities using metagenomes collected from 2 species of kelp (Laminaria setchellii and Nereocystis luetkeana) and 3 marine angiosperms (Phyllospadix scouleri, P. serrulatus, and Zostera marina), including the rhizomes of two surfgrass species (Phyllospadix spp.), the seagrass Zostera marina, and the sediments surrounding P. scouleri and Z. marina. Using metagenomic sequencing, we describe 63 metagenome-assembled genomes (MAGs) that potentially benefit from being associated with macrophytes and may contribute to macrophyte fitness through their metabolic activity. Host-associated metagenomes contained genes for the use of dissolved organic matter from hosts and vitamin (B1, B2, B7, B12) biosynthesis in addition to a range of nitrogen and sulfur metabolisms that recycle dissolved inorganic nutrients into forms more available to the host. The rhizosphere of surfgrass and seagrass contained genes for anaerobic microbial metabolisms, including nifH genes associated with nitrogen fixation, despite residing in a well-mixed and oxygenated environment. The range of oxygen environments engineered by macrophytes likely explains the diversity of both oxidizing and reducing microbial metabolisms and contributes to the functional capabilities of microbes and their influences on carbon and nitrogen cycling in nearshore ecosystems. IMPORTANCE Kelps, seagrasses, and surfgrasses are ecosystem engineers on rocky shorelines, where they show remarkably high levels of primary production. Through analysis of their associated microbial communities, we found a variety of microbial metabolisms that may benefit the host, including nitrogen metabolisms, sulfur oxidation, and the production of B vitamins. In turn, these microbes have the genetic capabilities to assimilate the dissolved organic compounds released by their macrophyte hosts. We describe a range of oxygen environments associated with surfgrass, including low-oxygen microhabitats in their rhizomes that host genes for nitrogen fixation. The tremendous productivity of coastal seaweeds and seagrasses is likely due in part to the activities of associated microbes, and an increased understanding of these associations is needed.
Collapse
|
22
|
Löptien U, Dietze H. Ambiguous controls on simulated diazotrophs in the world oceans. Sci Rep 2022; 12:17784. [PMID: 36273091 PMCID: PMC9588038 DOI: 10.1038/s41598-022-22382-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 10/13/2022] [Indexed: 01/19/2023] Open
Abstract
Nitrogen fixers, or diazotrophs, play a key role in the nitrogen and carbon cycle of the world oceans. Diazotrophs are capable of utilising atmospheric dinitrogen which is a competitive advantage over generally faster growing ordinary phytoplankton in nitrogen-depleted conditions in the sun-lit surface ocean. In this study we argue that additional competitive advantages must be at play in order to explain the dynamics and distribution of diazotrophs in the global oceans. Backed by growing published evidence we test the effects of preferential grazing (where zooplankton partly avoids diazotrophs) and high-affinity diazotrophic phosphorus uptake in an Earth System Model of intermediate complexity. Our results illustrate that these fundamentally different model assumptions result in a very similar match to observation-based estimates of nitrogen fixation while, at the same time, they imply very different trajectories into our warming future. The latter applies to biomass, fixation rates as well as to the ratio of the two. We conclude that a more comprehensive understanding of the competition between ordinary and diazotrophic phytoplankton will reduce uncertainties in model-based projections of the oceanic N cycle.
Collapse
Affiliation(s)
- U. Löptien
- grid.9764.c0000 0001 2153 9986Department of Computer Science, Archaeoinformatics - Data Science, University of Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany ,grid.9026.d0000 0001 2287 2617MIN Faculty, CEN, Universität Hamburg, Grindelberg 5, 20144 Hamburg, Germany
| | - H. Dietze
- grid.9764.c0000 0001 2153 9986Department of Computer Science, Archaeoinformatics - Data Science, University of Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany ,grid.13097.3c0000 0001 2322 6764Department of Chemistry, King’s College London, 7 Trinity Street, London, UK
| |
Collapse
|
23
|
Chen M, Teng W, Zhao L, Han B, Song L, Shu W. Phylogenomics uncovers evolutionary trajectory of nitrogen fixation in Cyanobacteria. Mol Biol Evol 2022; 39:6659242. [PMID: 35946347 PMCID: PMC9435057 DOI: 10.1093/molbev/msac171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Biological nitrogen fixation (BNF) by cyanobacteria is of significant importance for the Earth’s biogeochemical nitrogen cycle but is restricted to a few genera that do not form monophyletic group. To explore the evolutionary trajectory of BNF and investigate the driving forces of its evolution, we analyze 650 cyanobacterial genomes and compile the database of diazotrophic cyanobacteria based on the presence of nitrogen fixation gene clusters (NFGCs). We report that 266 of 650 examined genomes are NFGC-carrying members, and these potentially diazotrophic cyanobacteria are unevenly distributed across the phylogeny of Cyanobacteria, that multiple independent losses shaped the scattered distribution. Among the diazotrophic cyanobacteria, two types of NFGC exist, with one being ancestral and abundant, which have descended from diazotrophic ancestors, and the other being anaerobe-like and sparse, possibly being acquired from anaerobic microbes through horizontal gene transfer. Interestingly, we illustrate that the origin of BNF in Cyanobacteria coincide with two major evolutionary events. One is the origin of multicellularity of cyanobacteria, and the other is concurrent genetic innovations with massive gene gains and expansions, implicating their key roles in triggering the evolutionary transition from nondiazotrophic to diazotrophic cyanobacteria. Additionally, we reveal that genes involved in accelerating respiratory electron transport (coxABC), anoxygenic photosynthetic electron transport (sqr), as well as anaerobic metabolisms (pfor, hemN, nrdG, adhE) are enriched in diazotrophic cyanobacteria, representing adaptive genetic signatures that underpin the diazotrophic lifestyle. Collectively, our study suggests that multicellularity, together with concurrent genetic adaptations contribute to the evolution of diazotrophic cyanobacteria.
Collapse
Affiliation(s)
- Mengyun Chen
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Wenkai Teng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Liang Zhao
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Boping Han
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, PR China
| | - Lirong Song
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Science, Hubei 430072, PR China
| | - Wensheng Shu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| |
Collapse
|
24
|
Ouyang Z, Collins A, Li Y, Qi D, Arrigo KR, Zhuang Y, Nishino S, Humphreys MP, Kosugi N, Murata A, Kirchman DL, Chen L, Chen J, Cai WJ. Seasonal Water Mass Evolution and Non-Redfield Dynamics Enhance CO 2 Uptake in the Chukchi Sea. JOURNAL OF GEOPHYSICAL RESEARCH. OCEANS 2022; 127:e2021JC018326. [PMID: 36589206 PMCID: PMC9787980 DOI: 10.1029/2021jc018326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 06/17/2023]
Abstract
The Chukchi Sea is an increasing CO2 sink driven by rapid climate changes. Understanding the seasonal variation of air-sea CO2 exchange and the underlying mechanisms of biogeochemical dynamics is important for predicting impacts of climate change on and feedbacks by the ocean. Here, we present a unique data set of underway sea surface partial pressure of CO2 (pCO2) and discrete samples of biogeochemical properties collected in five consecutive cruises in 2014 and examine the seasonal variations in air-sea CO2 flux and net community production (NCP). We found that thermal and non-thermal effects have different impacts on sea surface pCO2 and thus the air-sea CO2 flux in different water masses. The Bering summer water combined with meltwater has a significantly greater atmospheric CO2 uptake potential than that of the Alaskan Coastal Water in the southern Chukchi Sea in summer, due to stronger biological CO2 removal and a weaker thermal effect. By analyzing the seasonal drawdown of dissolved inorganic carbon (DIC) and nutrients, we found that DIC-based NCP was higher than nitrate-based NCP by 66%-84% and attributable to partially decoupled C and N uptake because of a variable phytoplankton stoichiometry. A box model with a non-Redfield C:N uptake ratio can adequately reproduce observed pCO2 and DIC, which reveals that, during the intensive growing season (late spring to early summer), 30%-46% CO2 uptake in the Chukchi Sea was supported by a flexible stoichiometry of phytoplankton. These findings have important ramification for forecasting the responses of CO2 uptake of the Chukchi ecosystem to climate change.
Collapse
Affiliation(s)
- Zhangxian Ouyang
- School of Marine Science and Policy University of Delaware Newark DE USA
| | - Andrew Collins
- School of Marine Science and Policy University of Delaware Newark DE USA
- NOAA Pacific Marine Environmental Laboratory Seattle WA USA
| | - Yun Li
- School of Marine Science and Policy University of Delaware Newark DE USA
| | - Di Qi
- Polar and Marine Research Institute Jimei University Xiamen China
- Key Laboratory of Global Change and Marine-Atmospheric Chemistry of Ministry of Natural Resources Third Institute of Oceanography MNR Xiamen China
| | - Kevin R Arrigo
- Department of Earth System Science Stanford University Stanford CA USA
| | - Yanpei Zhuang
- Polar and Marine Research Institute Jimei University Xiamen China
- Key Laboratory of Marine Ecosystem Dynamics Second Institute of Oceanography Ministry of Natural Resources Hangzhou China
| | - Shigeto Nishino
- Institute of Arctic Climate and Environment Research Japan Agency for Marine-Earth Science and Technology (JAMSTEC) Yokosuka Japan
| | - Matthew P Humphreys
- Department of Ocean Systems (OCS) NIOZ Royal Netherlands Institute for Sea Research Texel The Netherlands
| | | | - Akihiko Murata
- Global Ocean Observation Research Center Research Institute for Global Change Japan Agency for Marine-Earth Science and Technology (JAMSTEC) Yokosuka Japan
| | - David L Kirchman
- School of Marine Science and Policy University of Delaware Newark DE USA
| | - Liqi Chen
- Key Laboratory of Global Change and Marine-Atmospheric Chemistry of Ministry of Natural Resources Third Institute of Oceanography MNR Xiamen China
| | - Jianfang Chen
- Key Laboratory of Marine Ecosystem Dynamics Second Institute of Oceanography Ministry of Natural Resources Hangzhou China
| | - Wei-Jun Cai
- School of Marine Science and Policy University of Delaware Newark DE USA
| |
Collapse
|
25
|
Alcamán-Arias ME, Cifuentes-Anticevic J, Castillo-Inaipil W, Farías L, Sanhueza C, Fernández-Gómez B, Verdugo J, Abarzua L, Ridley C, Tamayo-Leiva J, Díez B. Dark Diazotrophy during the Late Summer in Surface Waters of Chile Bay, West Antarctic Peninsula. Microorganisms 2022; 10:microorganisms10061140. [PMID: 35744658 PMCID: PMC9227844 DOI: 10.3390/microorganisms10061140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 11/16/2022] Open
Abstract
Although crucial for the addition of new nitrogen in marine ecosystems, dinitrogen (N2) fixation remains an understudied process, especially under dark conditions and in polar coastal areas, such as the West Antarctic Peninsula (WAP). New measurements of light and dark N2 fixation rates in parallel with carbon (C) fixation rates, as well as analysis of the genetic marker nifH for diazotrophic organisms, were conducted during the late summer in the coastal waters of Chile Bay, South Shetland Islands, WAP. During six late summers (February 2013 to 2019), Chile Bay was characterized by high NO3− concentrations (~20 µM) and an NH4+ content that remained stable near 0.5 µM. The N:P ratio was approximately 14.1, thus close to that of the Redfield ratio (16:1). The presence of Cluster I and Cluster III nifH gene sequences closely related to Alpha-, Delta- and, to a lesser extent, Gammaproteobacteria, suggests that chemosynthetic and heterotrophic bacteria are primarily responsible for N2 fixation in the bay. Photosynthetic carbon assimilation ranged from 51.18 to 1471 nmol C L−1 d−1, while dark chemosynthesis ranged from 9.24 to 805 nmol C L−1 d−1. N2 fixation rates were higher under dark conditions (up to 45.40 nmol N L−1 d−1) than under light conditions (up to 7.70 nmol N L−1 d−1), possibly contributing more than 37% to new nitrogen-based production (≥2.5 g N m−2 y−1). Of all the environmental factors measured, only PO43- exhibited a significant correlation with C and N2 rates, being negatively correlated (p < 0.05) with dark chemosynthesis and N2 fixation under the light condition, revealing the importance of the N:P ratio for these processes in Chile Bay. This significant contribution of N2 fixation expands the ubiquity and biological potential of these marine chemosynthetic diazotrophs. As such, this process should be considered along with the entire N cycle when further reviewing highly productive Antarctic coastal waters and the diazotrophic potential of the global marine ecosystem.
Collapse
Affiliation(s)
- María E. Alcamán-Arias
- Departamento de Oceanografía, Universidad de Concepción, Concepción 4030000, Chile; (M.E.A.-A.); (L.F.); (L.A.)
- Center for Climate and Resilience Research (CR)2, Universidad de Chile, Blanco Encalada 2002, Santiago 8320000, Chile; (C.R.); (J.T.-L.)
- Escuela de Medicina, Universidad Espíritu Santo, Guayaquil 0901952, Ecuador
| | - Jerónimo Cifuentes-Anticevic
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (J.C.-A.); (W.C.-I.); (C.S.); (B.F.-G.)
| | - Wilson Castillo-Inaipil
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (J.C.-A.); (W.C.-I.); (C.S.); (B.F.-G.)
| | - Laura Farías
- Departamento de Oceanografía, Universidad de Concepción, Concepción 4030000, Chile; (M.E.A.-A.); (L.F.); (L.A.)
- Center for Climate and Resilience Research (CR)2, Universidad de Chile, Blanco Encalada 2002, Santiago 8320000, Chile; (C.R.); (J.T.-L.)
| | - Cynthia Sanhueza
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (J.C.-A.); (W.C.-I.); (C.S.); (B.F.-G.)
| | - Beatriz Fernández-Gómez
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (J.C.-A.); (W.C.-I.); (C.S.); (B.F.-G.)
- Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria (ULPGC), 35001 Las Palmas, Spain
| | - Josefa Verdugo
- Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany;
| | - Leslie Abarzua
- Departamento de Oceanografía, Universidad de Concepción, Concepción 4030000, Chile; (M.E.A.-A.); (L.F.); (L.A.)
| | - Christina Ridley
- Center for Climate and Resilience Research (CR)2, Universidad de Chile, Blanco Encalada 2002, Santiago 8320000, Chile; (C.R.); (J.T.-L.)
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (J.C.-A.); (W.C.-I.); (C.S.); (B.F.-G.)
| | - Javier Tamayo-Leiva
- Center for Climate and Resilience Research (CR)2, Universidad de Chile, Blanco Encalada 2002, Santiago 8320000, Chile; (C.R.); (J.T.-L.)
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (J.C.-A.); (W.C.-I.); (C.S.); (B.F.-G.)
- Center for Genome Regulation (CRG), Universidad de Chile, Blanco Encalada 2085, Santiago 8320000, Chile
| | - Beatriz Díez
- Center for Climate and Resilience Research (CR)2, Universidad de Chile, Blanco Encalada 2002, Santiago 8320000, Chile; (C.R.); (J.T.-L.)
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (J.C.-A.); (W.C.-I.); (C.S.); (B.F.-G.)
- Center for Genome Regulation (CRG), Universidad de Chile, Blanco Encalada 2085, Santiago 8320000, Chile
- Correspondence:
| |
Collapse
|
26
|
Riemann L, Rahav E, Passow U, Grossart HP, de Beer D, Klawonn I, Eichner M, Benavides M, Bar-Zeev E. Planktonic Aggregates as Hotspots for Heterotrophic Diazotrophy: The Plot Thickens. Front Microbiol 2022; 13:875050. [PMID: 35464923 PMCID: PMC9019601 DOI: 10.3389/fmicb.2022.875050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/11/2022] [Indexed: 11/26/2022] Open
Abstract
Biological dinitrogen (N2) fixation is performed solely by specialized bacteria and archaea termed diazotrophs, introducing new reactive nitrogen into aquatic environments. Conventionally, phototrophic cyanobacteria are considered the major diazotrophs in aquatic environments. However, accumulating evidence indicates that diverse non-cyanobacterial diazotrophs (NCDs) inhabit a wide range of aquatic ecosystems, including temperate and polar latitudes, coastal environments and the deep ocean. NCDs are thus suspected to impact global nitrogen cycling decisively, yet their ecological and quantitative importance remain unknown. Here we review recent molecular and biogeochemical evidence demonstrating that pelagic NCDs inhabit and thrive especially on aggregates in diverse aquatic ecosystems. Aggregates are characterized by reduced-oxygen microzones, high C:N ratio (above Redfield) and high availability of labile carbon as compared to the ambient water. We argue that planktonic aggregates are important loci for energetically-expensive N2 fixation by NCDs and propose a conceptual framework for aggregate-associated N2 fixation. Future studies on aggregate-associated diazotrophy, using novel methodological approaches, are encouraged to address the ecological relevance of NCDs for nitrogen cycling in aquatic environments.
Collapse
Affiliation(s)
- Lasse Riemann
- Marine Biology Section, University of Copenhagen, Helsingør, Denmark
| | - Eyal Rahav
- Israel Oceanographic and Limnological Research, Haifa, Israel
| | - Uta Passow
- Ocean Science Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Hans-Peter Grossart
- Institute for Biochemistry and Biology, Potsdam University, Potsdam, Germany.,Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany
| | - Dirk de Beer
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Isabell Klawonn
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research, Rostock, Germany
| | - Meri Eichner
- Institute of Microbiology CAS, Centre ALGATECH, Třeboň, Czechia
| | - Mar Benavides
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France.,Turing Center for Living Systems, Aix-Marseille University, Marseille, France
| | - Edo Bar-Zeev
- The Jacob Blaustein Institutes for Desert Research, Zuckerberg Institute for Water Research (ZIWR), Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
27
|
The marine nitrogen cycle: new developments and global change. Nat Rev Microbiol 2022; 20:401-414. [PMID: 35132241 DOI: 10.1038/s41579-022-00687-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2022] [Indexed: 12/25/2022]
Abstract
The ocean is home to a diverse and metabolically versatile microbial community that performs the complex biochemical transformations that drive the nitrogen cycle, including nitrogen fixation, assimilation, nitrification and nitrogen loss processes. In this Review, we discuss the wealth of new ocean nitrogen cycle research in disciplines from metaproteomics to global biogeochemical modelling and in environments from productive estuaries to the abyssal deep sea. Influential recent discoveries include new microbial functional groups, novel metabolic pathways, original conceptual perspectives and ground-breaking analytical capabilities. These emerging research directions are already contributing to urgent efforts to address the primary challenge facing marine microbiologists today: the unprecedented onslaught of anthropogenic environmental change on marine ecosystems. Ocean warming, acidification, nutrient enrichment and seawater stratification have major effects on the microbial nitrogen cycle, but widespread ocean deoxygenation is perhaps the most consequential for the microorganisms involved in both aerobic and anaerobic nitrogen transformation pathways. In turn, these changes feed back to the global cycles of greenhouse gases such as carbon dioxide and nitrous oxide. At a time when our species casts a lengthening shadow across all marine ecosystems, timely new advances offer us unique opportunities to understand and better predict human impacts on nitrogen biogeochemistry in the changing ocean of the Anthropocene.
Collapse
|
28
|
Foster RA, Tienken D, Littmann S, Whitehouse MJ, Kuypers MMM, White AE. The rate and fate of N 2 and C fixation by marine diatom-diazotroph symbioses. THE ISME JOURNAL 2022; 16:477-487. [PMID: 34429522 PMCID: PMC8776783 DOI: 10.1038/s41396-021-01086-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 11/08/2022]
Abstract
N2 fixation constitutes an important new nitrogen source in the open sea. One group of filamentous N2 fixing cyanobacteria (Richelia intracellularis, hereafter Richelia) form symbiosis with a few genera of diatoms. High rates of N2 fixation and carbon (C) fixation have been measured in the presence of diatom-Richelia symbioses. However, it is unknown how partners coordinate C fixation and how the symbiont sustains high rates of N2 fixation. Here, both the N2 and C fixation in wild diatom-Richelia populations are reported. Inhibitor experiments designed to inhibit host photosynthesis, resulted in lower estimated growth and depressed C and N2 fixation, suggesting that despite the symbionts ability to fix their own C, they must still rely on their respective hosts for C. Single cell analysis indicated that up to 22% of assimilated C in the symbiont is derived from the host, whereas 78-91% of the host N is supplied from their symbionts. A size-dependent relationship is identified where larger cells have higher N2 and C fixation, and only N2 fixation was light dependent. Using the single cell measures, the N-rich phycosphere surrounding these symbioses was estimated and contributes directly and rapidly to the surface ocean rather than the mesopelagic, even at high estimated sinking velocities (<10 m d-1). Several eco-physiological parameters necessary for incorporating symbiotic N2 fixing populations into larger basin scale biogeochemical models (i.e., N and C cycles) are provided.
Collapse
Affiliation(s)
- Rachel A Foster
- Department of Ocean Sciences, University of California, Santa Cruz, CA, USA.
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany.
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden.
| | - Daniela Tienken
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Sten Littmann
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Martin J Whitehouse
- Department of Geosciences, Swedish Museum of Natural History, Stockholm, Sweden
| | - Marcel M M Kuypers
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Angelicque E White
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, USA
| |
Collapse
|
29
|
Sun P, Liao Y, Wang Y, Yang EJ, Jiao N, Lee Y, Jung J, Cho KH, Moon JK, Xu D. Contrasting Community Composition and Co-Occurrence Relationships of the Active Pico-Sized Haptophytes in the Surface and Subsurface Chlorophyll Maximum Layers of the Arctic Ocean in Summer. Microorganisms 2022; 10:248. [PMID: 35208705 PMCID: PMC8877492 DOI: 10.3390/microorganisms10020248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/10/2022] Open
Abstract
Haptophytes (Hacrobia: Haptophyta), which can perform phototrophic, phagotrophic, or mixotrophic nutritional modes, are critical for element cycling in a variety of aquatic ecosystems. However, their diversity, particularly in the changing Arctic Ocean (AO), remains largely unknown. In the present study, the biodiversity, community composition, and co-occurrence networks of pico-sized haptophytes in the surface water and subsurface chlorophyll maximum (SCM) layer of the AO were explored. Our results found higher alpha diversity estimates in the surface water compared with in the SCM based on high-throughput sequencing of haptophyte specific 18S rRNA. The community composition of the surface water was significantly different from that of the SCM, and water temperature was identified as the primary factor shaping the community compositions. Prymnesiales (mostly Chrysochromulina), uncultured Prymnesiophyceae, and Phaeocystis dominated the surface water communities, whereas Phaeocystis dominated the SCM communities, followed by Chrysochromulina, uncultured Prymnesiophyceae, and the remaining taxa. The communities of the surface water and SCM layer developed relatively independent modules in the metacommunity network. Nodes in the surface water were more closely connected to one another than those in the SCM. Network stability analysis revealed that surface water networks were more stable than SCM networks. These findings suggest that SCM communities are more susceptible to environmental fluctuations than those in surface water and that future global changes (e.g., global warming) may profoundly influence the development, persistence, and service of SCM in the AO.
Collapse
Affiliation(s)
- Ping Sun
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; (P.S.); (Y.L.); (Y.W.); (N.J.)
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China
| | - Yuyu Liao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; (P.S.); (Y.L.); (Y.W.); (N.J.)
- Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Ying Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; (P.S.); (Y.L.); (Y.W.); (N.J.)
- Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Eun-Jin Yang
- Division of Polar Ocean Science, Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, Korea; (E.-J.Y.); (Y.L.); (J.J.); (K.-H.C.); (J.-K.M.)
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; (P.S.); (Y.L.); (Y.W.); (N.J.)
- Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Youngju Lee
- Division of Polar Ocean Science, Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, Korea; (E.-J.Y.); (Y.L.); (J.J.); (K.-H.C.); (J.-K.M.)
| | - Jinyoung Jung
- Division of Polar Ocean Science, Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, Korea; (E.-J.Y.); (Y.L.); (J.J.); (K.-H.C.); (J.-K.M.)
| | - Kyoung-Ho Cho
- Division of Polar Ocean Science, Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, Korea; (E.-J.Y.); (Y.L.); (J.J.); (K.-H.C.); (J.-K.M.)
| | - Jong-Kuk Moon
- Division of Polar Ocean Science, Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, Korea; (E.-J.Y.); (Y.L.); (J.J.); (K.-H.C.); (J.-K.M.)
| | - Dapeng Xu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; (P.S.); (Y.L.); (Y.W.); (N.J.)
- Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
30
|
Polerecky L, Eichner M, Masuda T, Zavřel T, Rabouille S, Campbell DA, Halsey K. Calculation and Interpretation of Substrate Assimilation Rates in Microbial Cells Based on Isotopic Composition Data Obtained by nanoSIMS. Front Microbiol 2021; 12:621634. [PMID: 34917040 PMCID: PMC8670600 DOI: 10.3389/fmicb.2021.621634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
Stable isotope probing (SIP) combined with nano-scale secondary ion mass spectrometry (nanoSIMS) is a powerful approach to quantify assimilation rates of elements such as C and N into individual microbial cells. Here, we use mathematical modeling to investigate how the derived rate estimates depend on the model used to describe substrate assimilation by a cell during a SIP incubation. We show that the most commonly used model, which is based on the simplifying assumptions of linearly increasing biomass of individual cells over time and no cell division, can yield underestimated assimilation rates when compared to rates derived from a model that accounts for cell division. This difference occurs because the isotopic labeling of a dividing cell increases more rapidly over time compared to a non-dividing cell and becomes more pronounced as the labeling increases above a threshold value that depends on the cell cycle stage of the measured cell. Based on the modeling results, we present formulae for estimating assimilation rates in cells and discuss their underlying assumptions, conditions of applicability, and implications for the interpretation of intercellular variability in assimilation rates derived from nanoSIMS data, including the impacts of storage inclusion metabolism. We offer the formulae as a Matlab script to facilitate rapid data evaluation by nanoSIMS users.
Collapse
Affiliation(s)
- Lubos Polerecky
- Department of Earth Sciences, Utrecht University, Utrecht, Netherlands
| | - Meri Eichner
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Třeboň, Czechia
| | - Takako Masuda
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Třeboň, Czechia
| | - Tomáš Zavřel
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czechia
| | - Sophie Rabouille
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, Villefranche-sur-mer, France.,Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne, LOMIC, Banyuls-sur-mer, France
| | | | - Kimberly Halsey
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
31
|
Lehtinen S, Suikkanen S, Hällfors H, Tuimala J, Kuosa H. Phytoplankton Morpho-Functional Trait Variability along Coastal Environmental Gradients. Microorganisms 2021; 9:2477. [PMID: 34946082 PMCID: PMC8708429 DOI: 10.3390/microorganisms9122477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 11/16/2022] Open
Abstract
We utilized the trait-based approach in a novel way to examine how specific phytoplankton traits are related to physical features connected to global change, water quality features connected to catchment change, and nutrient availability connected to nutrient loading. For the analyses, we used summertime monitoring data originating from the coastal northern Baltic Sea and generalized additive mixed modeling (GAMM). Of the physical features connected to global climate change, temperature was the most important affecting several studied traits. Nitrogen-fixing, buoyant, non-motile, and autotrophic phytoplankton, as well as harmful cyanobacteria, benefited from a higher temperature. Salinity and stratification did not have clear effects on the traits. Water transparency, which in the Baltic Sea is connected to catchment change, had a mostly negative relation to the studied traits. Harmfulness was negatively correlated with transparency, while the share of non-harmful and large-sized phytoplankton was positively related to it. We used nutrient loading source type and total phosphorus (TP) as proxies for nutrient availability connected to anthropogenic eutrophication. The nutrient loading source type did not relate to any of the traits. Our result showing that N-fixing was not related to TP is discussed. The regionality analysis demonstrated that traits should be calculated in both absolute terms (biomass) and proportions (share of total biomass) to get a better view of community changes and to potentially supplement the environmental status assessments.
Collapse
Affiliation(s)
- Sirpa Lehtinen
- Marine Research Centre, Finnish Environment Institute (SYKE), 00790 Helsinki, Finland; (S.S.); (H.H.); (H.K.)
| | - Sanna Suikkanen
- Marine Research Centre, Finnish Environment Institute (SYKE), 00790 Helsinki, Finland; (S.S.); (H.H.); (H.K.)
| | - Heidi Hällfors
- Marine Research Centre, Finnish Environment Institute (SYKE), 00790 Helsinki, Finland; (S.S.); (H.H.); (H.K.)
| | | | - Harri Kuosa
- Marine Research Centre, Finnish Environment Institute (SYKE), 00790 Helsinki, Finland; (S.S.); (H.H.); (H.K.)
| |
Collapse
|
32
|
Li L, Wu C, Huang D, Ding C, Wei Y, Sun J. Integrating Stochastic and Deterministic Process in the Biogeography of N 2-Fixing Cyanobacterium Candidatus Atelocyanobacterium Thalassa. Front Microbiol 2021; 12:654646. [PMID: 34745020 PMCID: PMC8566894 DOI: 10.3389/fmicb.2021.654646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
UCYN-A is one of the most widespread and important marine diazotrophs. Its unusual distribution in both cold/warm and coastal/oceanic waters challenges current understanding about what drives the biogeography of diazotrophs. This study assessed the community assembly processes of the nitrogen-fixing cyanobacterium UCYN-A, developing a framework of assembly processes underpinning the microbial biogeography and diversity. High-throughput sequencing and a qPCR approach targeting the nifH gene were used to investigate three tropical seas: the Bay of Bengal, the Western Pacific Ocean, and the South China Sea. Based on the neutral community model and two types of null models calculating the β-nearest taxon index and the normalized stochasticity ratio, we found that stochastic assembly processes could explain 66-92% of the community assembly; thus, they exert overwhelming influence on UCYN-A biogeography and diversity. Among the deterministic processes, temperature and coastal/oceanic position appeared to be the principal environmental factors driving UCYN-A diversity. In addition, a close linkage between assembly processes and UCYN-A abundance/diversity/drivers can provide clues for the unusual global distribution of UCYN-A.
Collapse
Affiliation(s)
- Liuyang Li
- College of Marine Science and Technology, China University of Geosciences, Wuhan, China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Wu
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Danyue Huang
- College of Marine Science and Technology, China University of Geosciences, Wuhan, China.,School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Changling Ding
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China.,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yuqiu Wei
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jun Sun
- College of Marine Science and Technology, China University of Geosciences, Wuhan, China
| |
Collapse
|
33
|
Landolfi A, Prowe AEF, Pahlow M, Somes CJ, Chien CT, Schartau M, Koeve W, Oschlies A. Can Top-Down Controls Expand the Ecological Niche of Marine N 2 Fixers? Front Microbiol 2021; 12:690200. [PMID: 34489886 PMCID: PMC8416505 DOI: 10.3389/fmicb.2021.690200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/05/2021] [Indexed: 01/12/2023] Open
Abstract
The ability of marine diazotrophs to fix dinitrogen gas (N2) is one of the most influential yet enigmatic processes in the ocean. With their activity diazotrophs support biological production by fixing about 100–200 Tg N/year and turning otherwise unavailable dinitrogen into bioavailable nitrogen (N), an essential limiting nutrient. Despite their important role, the factors that control the distribution of diazotrophs and their ability to fix N2 are not fully elucidated. We discuss insights that can be gained from the emerging picture of a wide geographical distribution of marine diazotrophs and provide a critical assessment of environmental (bottom-up) versus trophic (top-down) controls. We expand a simplified theoretical framework to understand how top-down control affects competition for resources that determine ecological niches. Selective mortality, mediated by grazing or viral-lysis, on non-fixing phytoplankton is identified as a critical process that can broaden the ability of diazotrophs to compete for resources in top-down controlled systems and explain an expanded ecological niche for diazotrophs. Our simplified analysis predicts a larger importance of top-down control on competition patterns as resource levels increase. As grazing controls the faster growing phytoplankton, coexistence of the slower growing diazotrophs can be established. However, these predictions require corroboration by experimental and field data, together with the identification of specific traits of organisms and associated trade-offs related to selective top-down control. Elucidation of these factors could greatly improve our predictive capability for patterns and rates of marine N2 fixation. The susceptibility of this key biogeochemical process to future changes may not only be determined by changes in environmental conditions but also via changes in the ecological interactions.
Collapse
Affiliation(s)
- Angela Landolfi
- Institute of Marine Sciences, National Research Council, Rome, Italy.,Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - A E Friederike Prowe
- Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Markus Pahlow
- Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Christopher J Somes
- Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Chia-Te Chien
- Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Markus Schartau
- Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Wolfgang Koeve
- Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Andreas Oschlies
- Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| |
Collapse
|
34
|
Turk-Kubo KA, Mills MM, Arrigo KR, van Dijken G, Henke BA, Stewart B, Wilson ST, Zehr JP. UCYN-A/haptophyte symbioses dominate N 2 fixation in the Southern California Current System. ISME COMMUNICATIONS 2021; 1:42. [PMID: 36740625 PMCID: PMC9723760 DOI: 10.1038/s43705-021-00039-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023]
Abstract
The availability of fixed nitrogen (N) is an important factor limiting biological productivity in the oceans. In coastal waters, high dissolved inorganic N concentrations were historically thought to inhibit dinitrogen (N2) fixation, however, recent N2 fixation measurements and the presence of the N2-fixing UCYN-A/haptophyte symbiosis in nearshore waters challenge this paradigm. We characterized the contribution of UCYN-A symbioses to nearshore N2 fixation in the Southern California Current System (SCCS) by measuring bulk community and single-cell N2 fixation rates, as well as diazotroph community composition and abundance. UCYN-A1 and UCYN-A2 symbioses dominated diazotroph communities throughout the region during upwelling and oceanic seasons. Bulk N2 fixation was detected in most surface samples, with rates up to 23.0 ± 3.8 nmol N l-1 d-1, and was often detected at the deep chlorophyll maximum in the presence of nitrate (>1 µM). UCYN-A2 symbiosis N2 fixation rates were higher (151.1 ± 112.7 fmol N cell-1 d-1) than the UCYN-A1 symbiosis (6.6 ± 8.8 fmol N cell-1 d-1). N2 fixation by the UCYN-A1 symbiosis accounted for a majority of the measured bulk rates at two offshore stations, while the UCYN-A2 symbiosis was an important contributor in three nearshore stations. This report of active UCYN-A symbioses and broad mesoscale distribution patterns establishes UCYN-A symbioses as the dominant diazotrophs in the SCCS, where heterocyst-forming and unicellular cyanobacteria are less prevalent, and provides evidence that the two dominant UCYN-A sublineages are separate ecotypes.
Collapse
Affiliation(s)
- Kendra A Turk-Kubo
- Ocean Sciences Department, University of California at Santa Cruz, Santa Cruz, CA, USA.
| | - Matthew M Mills
- Earth System Science, Stanford University, Stanford, CA, USA
| | - Kevin R Arrigo
- Earth System Science, Stanford University, Stanford, CA, USA
| | - Gert van Dijken
- Earth System Science, Stanford University, Stanford, CA, USA
| | - Britt A Henke
- Ocean Sciences Department, University of California at Santa Cruz, Santa Cruz, CA, USA
| | - Brittany Stewart
- Ocean Sciences Department, University of California at Santa Cruz, Santa Cruz, CA, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Samuel T Wilson
- Center for Microbial Oceanography: Research and Education, University of Hawai'i at Manoa, Honolulu, HI, USA
| | - Jonathan P Zehr
- Ocean Sciences Department, University of California at Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
35
|
Gradoville MR, Cabello AM, Wilson ST, Turk-Kubo KA, Karl DM, Zehr JP. Light and depth dependency of nitrogen fixation by the non-photosynthetic, symbiotic cyanobacterium UCYN-A. Environ Microbiol 2021; 23:4518-4531. [PMID: 34227720 PMCID: PMC9291983 DOI: 10.1111/1462-2920.15645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/28/2022]
Abstract
The symbiotic cyanobacterium UCYN‐A is one of the most globally abundant marine dinitrogen (N2)‐fixers, but cultures have not been available and its biology and ecology are poorly understood. We used cultivation‐independent approaches to investigate how UCYN‐A single‐cell N2 fixation rates (NFRs) and nifH gene expression vary as a function of depth and photoperiod. Twelve‐hour day/night incubations showed that UCYN‐A only fixed N2 during the day. Experiments conducted using in situ arrays showed a light‐dependence of NFRs by the UCYN‐A symbiosis, with the highest rates in surface waters (5–45 m) and lower rates at depth (≥ 75 m). Analysis of NFRs versus in situ light intensity yielded a light saturation parameter (Ik) for UCYN‐A of 44 μmol quanta m−2 s−1. This is low compared with other marine diazotrophs, suggesting an ecological advantage for the UCYN‐A symbiosis under low‐light conditions. In contrast to cell‐specific NFRs, nifH gene‐specific expression levels did not vary with depth, indicating that light regulates N2 fixation by UCYN‐A through processes other than transcription, likely including host–symbiont interactions. These results offer new insights into the physiology of the UCYN‐A symbiosis in the subtropical North Pacific Ocean and provide clues to the environmental drivers of its global distributions.
Collapse
Affiliation(s)
- Mary R Gradoville
- Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Ana M Cabello
- Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, CA, USA.,Centro Oceanográfico de Málaga, Instituto Español de Oceanografía, Fuengirola, Málaga, Spain
| | - Samuel T Wilson
- Department of Oceanography, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Kendra A Turk-Kubo
- Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, CA, USA
| | - David M Karl
- Department of Oceanography, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Jonathan P Zehr
- Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
36
|
Landa M, Turk-Kubo KA, Cornejo-Castillo FM, Henke BA, Zehr JP. Critical Role of Light in the Growth and Activity of the Marine N 2-Fixing UCYN-A Symbiosis. Front Microbiol 2021; 12:666739. [PMID: 34025621 PMCID: PMC8139342 DOI: 10.3389/fmicb.2021.666739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/08/2021] [Indexed: 11/27/2022] Open
Abstract
The unicellular N2-fixing cyanobacteria UCYN-A live in symbiosis with haptophytes in the Braarudosphaera bigelowii lineage. Maintaining N2-fixing symbioses between two unicellular partners requires tight coordination of multiple biological processes including cell growth and division and, in the case of the UCYN-A symbiosis, N2 fixation of the symbiont and photosynthesis of the host. In this system, it is thought that the host photosynthesis supports the high energetic cost of N2 fixation, and both processes occur during the light period. However, information on this coordination is very limited and difficult to obtain because the UCYN-A symbiosis has yet to be available in culture. Natural populations containing the UCYN-A2 symbiosis were manipulated to explore the effects of alterations of regular light and dark periods and inhibition of host photosynthesis on N2 fixation (single cell N2 fixation rates), nifH gene transcription, and UCYN-A2 cell division (fluorescent in situ hybridization and nifH gene abundances). The results showed that the light period is critical for maintenance of regular patterns of gene expression, N2 fixation and symbiont replication and cell division. This study suggests a crucial role for the host as a producer of fixed carbon, rather than light itself, in the regulation and implementation of these cellular processes in UCYN-A.
Collapse
Affiliation(s)
- Marine Landa
- Ocean Sciences Department, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Kendra A Turk-Kubo
- Ocean Sciences Department, University of California, Santa Cruz, Santa Cruz, CA, United States
| | | | - Britt A Henke
- Ocean Sciences Department, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Jonathan P Zehr
- Ocean Sciences Department, University of California, Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
37
|
Vishnivetskaya TA, Almatari AL, Spirina EV, Wu X, Williams DE, Pfiffner SM, Rivkina EM. Insights into community of photosynthetic microorganisms from permafrost. FEMS Microbiol Ecol 2021; 96:5979775. [PMID: 33181853 DOI: 10.1093/femsec/fiaa229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
This work integrates cultivation studies of Siberian permafrost and analyses of metagenomes from different locations in the Arctic with the aim of obtaining insights into the community of photosynthetic microorganisms in perennially frozen deposits. Cyanobacteria and microalgae have been described in Arctic aquatic and surface soil environments, but their diversity and ability to withstand harsh conditions within the permafrost are still largely unknown. Community structure of photosynthetic organisms in permafrost sediments was explored using Arctic metagenomes available through the MG-RAST. Sequences affiliated with cyanobacteria represented from 0.25 to 3.03% of total sequences, followed by sequences affiliated with Streptophyta (algae and vascular plants) 0.01-0.45% and Chlorophyta (green algae) 0.01-0.1%. Enrichment and cultivation approaches revealed that cyanobacteria and green algae survive in permafrost and they could be revived during prolonged incubation at low light intensity. Among photosynthetic microorganisms isolated from permafrost, the filamentous Oscillatoria-like cyanobacteria and unicellular green algae of the genus Chlorella were dominant. Our findings suggest that permafrost cyanobacteria and green algae are expected to be effective members of the re-assembled community after permafrost thawing and soil collapse.
Collapse
Affiliation(s)
- Tatiana A Vishnivetskaya
- Center for Environmental Biotechnology, University of Tennessee, 676 Dabney Hall, 1416 Circle Drive, Knoxville, TN 37996-1605, USA.,Soil Cryology Laboratory, Institute of Physicochemical and Biological Problems in Soil Science, Institutskaya Street, Bldg. 2, Pushchino, Russia
| | - Abraham L Almatari
- Center for Environmental Biotechnology, University of Tennessee, 676 Dabney Hall, 1416 Circle Drive, Knoxville, TN 37996-1605, USA
| | - Elena V Spirina
- Soil Cryology Laboratory, Institute of Physicochemical and Biological Problems in Soil Science, Institutskaya Street, Bldg. 2, Pushchino, Russia
| | - Xiaofen Wu
- Center for Environmental Biotechnology, University of Tennessee, 676 Dabney Hall, 1416 Circle Drive, Knoxville, TN 37996-1605, USA
| | - Daniel E Williams
- Center for Environmental Biotechnology, University of Tennessee, 676 Dabney Hall, 1416 Circle Drive, Knoxville, TN 37996-1605, USA
| | - Susan M Pfiffner
- Center for Environmental Biotechnology, University of Tennessee, 676 Dabney Hall, 1416 Circle Drive, Knoxville, TN 37996-1605, USA
| | - Elizaveta M Rivkina
- Soil Cryology Laboratory, Institute of Physicochemical and Biological Problems in Soil Science, Institutskaya Street, Bldg. 2, Pushchino, Russia
| |
Collapse
|
38
|
David GM, López-García P, Moreira D, Alric B, Deschamps P, Bertolino P, Restoux G, Rochelle-Newall E, Thébault E, Simon M, Jardillier L. Small freshwater ecosystems with dissimilar microbial communities exhibit similar temporal patterns. Mol Ecol 2021; 30:2162-2177. [PMID: 33639035 DOI: 10.1111/mec.15864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 11/27/2022]
Abstract
Despite small freshwater ecosystems being biodiversity reservoirs and contributing significantly to greenhouse fluxes, their microbial communities remain largely understudied. Yet, microorganisms intervene in biogeochemical cycling and impact water quality. Because of their small size, these ecosystems are in principle more sensitive to disturbances, seasonal variation and pluri-annual climate change. However, how microbial community composition varies over space and time, and whether archaeal, bacterial and microbial eukaryote communities behave similarly remain unanswered. Here, we aim to unravel the composition and intra/interannual temporal dynamic patterns for archaea, bacteria and microbial eukaryotes in a set of small freshwater ecosystems. We monitored archaeal and bacterial community composition during 24 consecutive months in four ponds and one brook from northwestern France by 16S rRNA gene amplicon sequencing (microbial eukaryotes were previously investigated for the same systems). Unexpectedly for oxic environments, bacterial Candidate Phyla Radiation (CPR) were highly diverse and locally abundant. Our results suggest that microbial community structure is mainly driven by environmental conditions acting over space (ecosystems) and time (seasons). A low proportion of operational taxonomic units (OTUs) (<1%) was shared by the five ecosystems despite their geographical proximity (2-9 km away), making microbial communities almost unique in each ecosystem and highlighting the strong selective influence of local environmental conditions. Marked and similar seasonality patterns were observed for archaea, bacteria and microbial eukaryotes in all ecosystems despite strong turnovers of rare OTUs. Over the 2-year survey, microbial community composition varied despite relatively stable environmental parameters. This suggests that biotic associations play an important role in interannual community assembly.
Collapse
Affiliation(s)
- Gwendoline M David
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | | | - David Moreira
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Benjamin Alric
- Irstea, UR RiverLy, Laboratoire d'écotoxicologie, centre de Lyon-Villeurbanne, Villeurbanne, France
| | - Philippe Deschamps
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Paola Bertolino
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Gwendal Restoux
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Emma Rochelle-Newall
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute d'Ecologie de des Sciences de l'Environnement de Paris, iEES-Paris, Paris, France
| | - Elisa Thébault
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute d'Ecologie de des Sciences de l'Environnement de Paris, iEES-Paris, Paris, France
| | - Marianne Simon
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Ludwig Jardillier
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| |
Collapse
|
39
|
Wang S, Tang W, Delage E, Gifford S, Whitby H, González AG, Eveillard D, Planquette H, Cassar N. Investigating the microbial ecology of coastal hotspots of marine nitrogen fixation in the western North Atlantic. Sci Rep 2021; 11:5508. [PMID: 33750865 PMCID: PMC7943828 DOI: 10.1038/s41598-021-84969-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/27/2021] [Indexed: 11/24/2022] Open
Abstract
Variation in the microbial cycling of nutrients and carbon in the ocean is an emergent property of complex planktonic communities. While recent findings have considerably expanded our understanding of the diversity and distribution of nitrogen (N2) fixing marine diazotrophs, knowledge gaps remain regarding ecological interactions between diazotrophs and other community members. Using quantitative 16S and 18S V4 rDNA amplicon sequencing, we surveyed eukaryotic and prokaryotic microbial communities from samples collected in August 2016 and 2017 across the Western North Atlantic. Leveraging and significantly expanding an earlier published 2015 molecular dataset, we examined microbial community structure and ecological co-occurrence relationships associated with intense hotspots of N2 fixation previously reported at sites off the Southern New England Shelf and Mid-Atlantic Bight. Overall, we observed a negative relationship between eukaryotic diversity and both N2 fixation and net community production (NCP). Maximum N2 fixation rates occurred at sites with high abundances of mixotrophic stramenopiles, notably Chrysophyceae. Network analysis revealed such stramenopiles to be keystone taxa alongside the haptophyte diazotroph host Braarudosphaera bigelowii and chlorophytes. Our findings highlight an intriguing relationship between marine stramenopiles and high N2 fixation coastal sites.
Collapse
Affiliation(s)
- Seaver Wang
- Division of Earth and Ocean Sciences, Duke University, Grainger Environment Hall, 9 Circuit Drive, Box 90328, Durham, NC, 27708, USA
| | - Weiyi Tang
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - Erwan Delage
- LS2N, UMR 6004, CNRS, Université de Nantes, 44000, Nantes, France
| | - Scott Gifford
- Department of Marine Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hannah Whitby
- Department of Earth, Ocean, and Ecological Sciences, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Aridane G González
- Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria, ULPGC, Las Palmas, Spain.,Laboratoire des Sciences de l'Environnement Marin (LEMAR), Institut Universitaire Européen de la Mer (IUEM), Technopôle Brest-Iroise, 13 Plouzané, 29280, Locmaria-Plouzané, France
| | - Damien Eveillard
- LS2N, UMR 6004, CNRS, Université de Nantes, 44000, Nantes, France
| | - Hélène Planquette
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), Institut Universitaire Européen de la Mer (IUEM), Technopôle Brest-Iroise, 13 Plouzané, 29280, Locmaria-Plouzané, France
| | - Nicolas Cassar
- Division of Earth and Ocean Sciences, Duke University, Grainger Environment Hall, 9 Circuit Drive, Box 90328, Durham, NC, 27708, USA. .,Laboratoire des Sciences de l'Environnement Marin (LEMAR), Institut Universitaire Européen de la Mer (IUEM), Technopôle Brest-Iroise, 13 Plouzané, 29280, Locmaria-Plouzané, France.
| |
Collapse
|
40
|
Messer LF, Brown MV, Van Ruth PD, Doubell M, Seymour JR. Temperate southern Australian coastal waters are characterised by surprisingly high rates of nitrogen fixation and diversity of diazotrophs. PeerJ 2021; 9:e10809. [PMID: 33717676 PMCID: PMC7931716 DOI: 10.7717/peerj.10809] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 12/30/2020] [Indexed: 11/20/2022] Open
Abstract
Biological dinitrogen (N2) fixation is one mechanism by which specific microorganisms (diazotrophs) can ameliorate nitrogen (N) limitation. Historically, rates of N2 fixation were believed to be limited outside of the low nutrient tropical and subtropical open ocean; however, emerging evidence suggests that N2 fixation is also a significant process within temperate coastal waters. Using a combination of amplicon sequencing, targeting the nitrogenase reductase gene (nifH), quantitative nifH PCR, and 15N2 stable isotope tracer experiments, we investigated spatial patterns of diazotroph assemblage structure and N2 fixation rates within the temperate coastal waters of southern Australia during Austral autumn and summer. Relative to previous studies in open ocean environments, including tropical northern Australia, and tropical and temperate estuaries, our results indicate that high rates of N2 fixation (10-64 nmol L-1 d-1) can occur within the large inverse estuary Spencer Gulf, while comparatively low rates of N2 fixation (2 nmol L-1 d-1) were observed in the adjacent continental shelf waters. Across the dataset, low concentrations of NO3/NO2 were significantly correlated with the highest N2 fixation rates, suggesting that N2 fixation could be an important source of new N in the region as dissolved inorganic N concentrations are typically limiting. Overall, the underlying diazotrophic community was dominated by nifH sequences from Cluster 1 unicellular cyanobacteria of the UCYN-A clade, as well as non-cyanobacterial diazotrophs related to Pseudomonas stutzeri, and Cluster 3 sulfate-reducing deltaproteobacteria. Diazotroph community composition was significantly influenced by salinity and SiO4 concentrations, reflecting the transition from UCYN-A-dominated assemblages in the continental shelf waters, to Cluster 3-dominated assemblages in the hypersaline waters of the inverse estuary. Diverse, transitional diazotrophic communities, comprised of a mixture of UCYN-A and putative heterotrophic bacteria, were observed at the mouth and southern edge of Spencer Gulf, where the highest N2 fixation rates were observed. In contrast to observations in other environments, no seasonal patterns in N2 fixation rates and diazotroph community structure were apparent. Collectively, our findings are consistent with the emerging view that N2 fixation within temperate coastal waters is a previously overlooked dynamic and potentially important component of the marine N cycle.
Collapse
Affiliation(s)
- Lauren F Messer
- Climate Change Cluster, University of Technology Sydney, Sydney, New South Wales, Australia.,Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Mark V Brown
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Paul D Van Ruth
- Aquatic Sciences, South Australian Research and Development Institute, Adelaide, South Australia, Australia
| | - Mark Doubell
- Aquatic Sciences, South Australian Research and Development Institute, Adelaide, South Australia, Australia
| | - Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
41
|
Jabir T, Vipindas PV, Krishnan KP, Mohamed Hatha AA. Abundance and diversity of diazotrophs in the surface sediments of Kongsfjorden, an Arctic fjord. World J Microbiol Biotechnol 2021; 37:41. [PMID: 33544264 DOI: 10.1007/s11274-020-02993-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/27/2020] [Indexed: 10/22/2022]
Abstract
Diazotrophy in the Arctic environment is poorly understood compared to tropical and subtropical regions. Hence in this study, we report the abundance and diversity of diazotrophs in Arctic fjord sediments and elucidate the role of environmental factors on the distribution of diazotrophs. The study was conducted during the boreal summer in the Kongsfjorden, an Arctic fjord situated in the western coast of Spitsbergen. The abundance of nifH gene was measured through quantitative real-time PCR and the diversity of diazotrophs was assessed by nifH targeted clone library and next generation sequence analysis. Results revealed that the abundance of nifH gene in the surface sediments ranged from 2.3 × 106 to 3.7 × 107 copies g- 1. The δ-proteobacterial diazotrophs (71% of total sequence) were the dominant class observed in this study. Major genera retrieved from the sequence analysis were Desulfovibrionaceae (25% of total sequence), Desulfuromonadaceae (18% of total sequence) and Desulfobacteriaceae (10% of total sequence); these are important diazotrophic iron and sulfur-reducing bacterial clade in the Kongsfjorden sediments. The abundance of nifH gene showed a significant positive correlation TOC/TN ratio (r2 = 0.96, p ≤ 0.05) and total organic carbon (p ≤ 0.05) content in the fjord sediments. The higher TOC/TN ratio (4.24-14.5) indicated low nitrogen content organic matter in the fjord sediments through glacier runoff, which enhances the abundance and diversity of nitrogen fixing microorganisms.
Collapse
Affiliation(s)
- T Jabir
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences (Government of India), Headland Sada, Vasco-da-Gama, Goa, 403 804, India
| | - P V Vipindas
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences (Government of India), Headland Sada, Vasco-da-Gama, Goa, 403 804, India
| | - K P Krishnan
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences (Government of India), Headland Sada, Vasco-da-Gama, Goa, 403 804, India. .,CUSAT-NCPOR Centre for Polar Sciences, Cochin University of Science and Technology (CUSAT), Kochi, 682 016, India.
| | - A A Mohamed Hatha
- Department of Marine Biology, Microbiology, Biochemistry, School of Marine Sciences, Cochin University of Science and Technology (CUSAT), Kochi, 682 016, India.,CUSAT-NCPOR Centre for Polar Sciences, Cochin University of Science and Technology (CUSAT), Kochi, 682 016, India
| |
Collapse
|
42
|
Terhaar J, Lauerwald R, Regnier P, Gruber N, Bopp L. Around one third of current Arctic Ocean primary production sustained by rivers and coastal erosion. Nat Commun 2021; 12:169. [PMID: 33420093 PMCID: PMC7794587 DOI: 10.1038/s41467-020-20470-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/03/2020] [Indexed: 01/29/2023] Open
Abstract
Net primary production (NPP) is the foundation of the oceans' ecosystems and the fisheries they support. In the Arctic Ocean, NPP is controlled by a complex interplay of light and nutrients supplied by upwelling as well as lateral inflows from adjacent oceans and land. But so far, the role of the input from land by rivers and coastal erosion has not been given much attention. Here, by upscaling observations from the six largest rivers and using measured coastal erosion rates, we construct a pan-Arctic, spatio-temporally resolved estimate of the land input of carbon and nutrients to the Arctic Ocean. Using an ocean-biogeochemical model, we estimate that this input fuels 28-51% of the current annual Arctic Ocean NPP. This strong enhancement of NPP is a consequence of efficient recycling of the land-derived nutrients on the vast Arctic shelves. Our results thus suggest that nutrient input from the land is a key process that will affect the future evolution of Arctic Ocean NPP.
Collapse
Affiliation(s)
- Jens Terhaar
- grid.460789.40000 0004 4910 6535Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France ,grid.4989.c0000 0001 2348 0746Biogeochemistry and Earth System Modelling, Department of Geoscience, Environment and Society, Université Libre de Bruxelles, Bruxelles, Belgium ,grid.5734.50000 0001 0726 5157Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland ,grid.5734.50000 0001 0726 5157Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland
| | - Ronny Lauerwald
- grid.460789.40000 0004 4910 6535Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France ,grid.4989.c0000 0001 2348 0746Biogeochemistry and Earth System Modelling, Department of Geoscience, Environment and Society, Université Libre de Bruxelles, Bruxelles, Belgium ,Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 78850 Thiverval-Grignon, France
| | - Pierre Regnier
- grid.4989.c0000 0001 2348 0746Biogeochemistry and Earth System Modelling, Department of Geoscience, Environment and Society, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Nicolas Gruber
- grid.5801.c0000 0001 2156 2780Environmental Physics, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
| | - Laurent Bopp
- grid.462844.80000 0001 2308 1657LMD/IPSL, Ecole Normale Supérieure/PSL University, CNRS, Ecole Polytechnique, Sorbonne Université, Paris, France
| |
Collapse
|
43
|
von Friesen LW, Riemann L. Nitrogen Fixation in a Changing Arctic Ocean: An Overlooked Source of Nitrogen? Front Microbiol 2021; 11:596426. [PMID: 33391213 PMCID: PMC7775723 DOI: 10.3389/fmicb.2020.596426] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/17/2020] [Indexed: 11/13/2022] Open
Abstract
The Arctic Ocean is the smallest ocean on Earth, yet estimated to play a substantial role as a global carbon sink. As climate change is rapidly changing fundamental components of the Arctic, it is of local and global importance to understand and predict consequences for its carbon dynamics. Primary production in the Arctic Ocean is often nitrogen-limited, and this is predicted to increase in some regions. It is therefore of critical interest that biological nitrogen fixation, a process where some bacteria and archaea termed diazotrophs convert nitrogen gas to bioavailable ammonia, has now been detected in the Arctic Ocean. Several studies report diverse and active diazotrophs on various temporal and spatial scales across the Arctic Ocean. Their ecology and biogeochemical impact remain poorly known, and nitrogen fixation is so far absent from models of primary production in the Arctic Ocean. The composition of the diazotroph community appears distinct from other oceans – challenging paradigms of function and regulation of nitrogen fixation. There is evidence of both symbiotic cyanobacterial nitrogen fixation and heterotrophic diazotrophy, but large regions are not yet sampled, and the sparse quantitative data hamper conclusive insights. Hence, it remains to be determined to what extent nitrogen fixation represents a hitherto overlooked source of new nitrogen to consider when predicting future productivity of the Arctic Ocean. Here, we discuss current knowledge on diazotroph distribution, composition, and activity in pelagic and sea ice-associated environments of the Arctic Ocean. Based on this, we identify gaps and outline pertinent research questions in the context of a climate change-influenced Arctic Ocean – with the aim of guiding and encouraging future research on nitrogen fixation in this region.
Collapse
Affiliation(s)
- Lisa W von Friesen
- Marine Biology Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Lasse Riemann
- Marine Biology Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| |
Collapse
|
44
|
Cabello AM, Turk‐Kubo KA, Hayashi K, Jacobs L, Kudela RM, Zehr JP. Unexpected presence of the nitrogen-fixing symbiotic cyanobacterium UCYN-A in Monterey Bay, California. JOURNAL OF PHYCOLOGY 2020; 56:1521-1533. [PMID: 32609873 PMCID: PMC7754506 DOI: 10.1111/jpy.13045] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/10/2020] [Indexed: 05/20/2023]
Abstract
In the last decade, the known biogeography of nitrogen fixation in the ocean has been expanded to colder and nitrogen-rich coastal environments. The symbiotic nitrogen-fixing cyanobacteria group A (UCYN-A) has been revealed as one of the most abundant and widespread nitrogen-fixers, and includes several sublineages that live associated with genetically distinct but closely related prymnesiophyte hosts. The UCYN-A1 sublineage is associated with an open ocean picoplanktonic prymnesiophyte, whereas UCYN-A2 is associated with the coastal nanoplanktonic coccolithophore Braarudosphaera bigelowii, suggesting that different sublineages may be adapted to different environments. Here, we study the diversity of nifH genes present at the Santa Cruz Municipal Wharf in the Monterey Bay (MB), California, and report for the first time the presence of multiple UCYN-A sublineages, unexpectedly dominated by the UCYN-A2 sublineage. Sequence and quantitative PCR data over an 8-year time-series (2011-2018) showed a shift toward increasing UCYN-A2 abundances after 2013, and a marked seasonality for this sublineage which was present during summer-fall months, coinciding with the upwelling-relaxation period in the MB. Increased abundances corresponded to positive temperature anomalies in MB, and we discuss the possibility of a benthic life stage of the associated coccolithophore host to explain the seasonal pattern. The dominance of UCYN-A2 in coastal waters of the MB underscores the need to further explore the habitat preference of the different sublineages in order to provide additional support for the hypothesis that UCYN-A1 and UCYN-A2 sublineages are different ecotypes.
Collapse
Affiliation(s)
- Ana M. Cabello
- Ocean Sciences DepartmentUniversity of California, Santa CruzSanta CruzCalifornia95064USA
- Centro Oceanográfico de MálagaInstituto Español de OceanografíaFuengirolaMálaga29001Spain
| | - Kendra A. Turk‐Kubo
- Ocean Sciences DepartmentUniversity of California, Santa CruzSanta CruzCalifornia95064USA
| | - Kendra Hayashi
- Ocean Sciences DepartmentUniversity of California, Santa CruzSanta CruzCalifornia95064USA
| | - Lucien Jacobs
- Ocean Sciences DepartmentUniversity of California, Santa CruzSanta CruzCalifornia95064USA
| | - Raphael M. Kudela
- Ocean Sciences DepartmentUniversity of California, Santa CruzSanta CruzCalifornia95064USA
| | - Jonathan P. Zehr
- Ocean Sciences DepartmentUniversity of California, Santa CruzSanta CruzCalifornia95064USA
| |
Collapse
|
45
|
Inomura K, Deutsch C, Masuda T, Prášil O, Follows MJ. Quantitative models of nitrogen-fixing organisms. Comput Struct Biotechnol J 2020; 18:3905-3924. [PMID: 33335688 PMCID: PMC7733014 DOI: 10.1016/j.csbj.2020.11.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 10/26/2022] Open
Abstract
Nitrogen-fixing organisms are of importance to the environment, providing bioavailable nitrogen to the biosphere. Quantitative models have been used to complement the laboratory experiments and in situ measurements, where such evaluations are difficult or costly. Here, we review the current state of the quantitative modeling of nitrogen-fixing organisms and ways to enhance the bridge between theoretical and empirical studies.
Collapse
Affiliation(s)
- Keisuke Inomura
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Curtis Deutsch
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Takako Masuda
- Institute of Microbiology, The Czech Academy of Sciences, Opatovický mlýn, Třeboň, Czech Republic
| | - Ondřej Prášil
- Institute of Microbiology, The Czech Academy of Sciences, Opatovický mlýn, Třeboň, Czech Republic
| | - Michael J. Follows
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
46
|
Meyer NR, Fortney JL, Dekas AE. NanoSIMS sample preparation decreases isotope enrichment: magnitude, variability and implications for single-cell rates of microbial activity. Environ Microbiol 2020; 23:81-98. [PMID: 33000528 DOI: 10.1111/1462-2920.15264] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 12/01/2022]
Abstract
The activity of individual microorganisms can be measured within environmental samples by detecting uptake of isotope-labelled substrates using nano-scale secondary ion mass spectrometry (nanoSIMS). Recent studies have demonstrated that sample preparation can decrease 13 C and 15 N enrichment in bacterial cells, resulting in underestimates of activity. Here, we explore this effect with a variety of preparation types, microbial lineages and isotope labels to determine its consistency and therefore potential for correction. Specifically, we investigated the impact of different protocols for fixation, nucleic acid staining and catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH) on >14 500 archaeal and bacterial cells (Methanosarcina acetivorans, Sulfolobus acidocaldarius and Pseudomonas putida) enriched in 13 C, 15 N, 18 O, 2 H and/or 34 S. We found these methods decrease isotope enrichments by up to 80% - much more than previously reported - and that the effect varies by taxa, growth phase, isotope label and applied protocol. We make recommendations for how to account for this effect experimentally and analytically. We also re-evaluate published nanoSIMS datasets and revise estimated microbial turnover times in the marine subsurface and nitrogen fixation rates in pelagic unicellular cyanobacteria. When sample preparation is accounted for, cell-specific rates increase and are more consistent with modelled and bulk rates.
Collapse
Affiliation(s)
- Nicolette R Meyer
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| | - Julian L Fortney
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| | - Anne E Dekas
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
47
|
Pyle AE, Johnson AM, Villareal TA. Isolation, growth, and nitrogen fixation rates of the Hemiaulus-Richelia (diatom-cyanobacterium) symbiosis in culture. PeerJ 2020; 8:e10115. [PMID: 33083143 PMCID: PMC7548074 DOI: 10.7717/peerj.10115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/16/2020] [Indexed: 11/20/2022] Open
Abstract
Nitrogen fixers (diazotrophs) are often an important nitrogen source to phytoplankton nutrient budgets in N-limited marine environments. Diazotrophic symbioses between cyanobacteria and diatoms can dominate nitrogen-fixation regionally, particularly in major river plumes and in open ocean mesoscale blooms. This study reports the successful isolation and growth in monocultures of multiple strains of a diatom-cyanobacteria symbiosis from the Gulf of Mexico using a modified artificial seawater medium. We document the influence of light and nutrients on nitrogen fixation and growth rates of the host diatom Hemiaulus hauckii Grunow together with its diazotrophic endosymbiont Richelia intracellularis Schmidt, as well as less complete results on the Hemiaulus membranaceus-R. intracellularis symbiosis. The symbioses rates reported here are for the joint diatom-cyanobacteria unit. Symbiont diazotrophy was sufficient to support both the host diatom and cyanobacteria symbionts, and the entire symbiosis replicated and grew without added nitrogen. Maximum growth rates of multiple strains of H. hauckii symbioses in N-free medium with N2 as the sole N source were 0.74-0.93 div d-1. Growth rates followed light saturation kinetics in H. hauckii symbioses with a growth compensation light intensity (EC) of 7-16 µmol m-2s-1and saturation light level (EK) of 84-110 µmol m-2s-1. Nitrogen fixation rates by the symbiont while within the host followed a diel pattern where rates increased from near-zero in the scotophase to a maximum 4-6 h into the photophase. At the onset of the scotophase, nitrogen-fixation rates declined over several hours to near-zero values. Nitrogen fixation also exhibited light saturation kinetics. Maximum N2 fixation rates (84 fmol N2 heterocyst-1h-1) in low light adapted cultures (50 µmol m-2s-1) were approximately 40-50% of rates (144-154 fmol N2 heterocyst-1h-1) in high light (150 and 200 µmol m-2s-1) adapted cultures. Maximum laboratory N2 fixation rates were ~6 to 8-fold higher than literature-derived field rates of the H. hauckii symbiosis. In contrast to published results on the Rhizosolenia-Richelia symbiosis, the H. hauckii symbiosis did not use nitrate when added, although ammonium was consumed by the H. hauckii symbiosis. Symbiont-free host cell cultures could not be established; however, a symbiont-free H. hauckii strain was isolated directly from the field and grown on a nitrate-based medium that would not support DDA growth. Our observations together with literature reports raise the possibility that the asymbiotic H. hauckii are lines distinct from an obligately symbiotic H. hauckii line. While brief descriptions of successful culture isolation have been published, this report provides the first detailed description of the approaches, handling, and methodologies used for successful culture of this marine symbiosis. These techniques should permit a more widespread laboratory availability of these important marine symbioses.
Collapse
Affiliation(s)
- Amy E Pyle
- Department of Marine Science and Marine Science Institute, The University of Texas at Austin, Port Aransas, TX, USA
| | | | - Tracy A Villareal
- Department of Marine Science and Marine Science Institute, The University of Texas at Austin, Port Aransas, TX, USA
| |
Collapse
|
48
|
Krisch S, Browning TJ, Graeve M, Ludwichowski KU, Lodeiro P, Hopwood MJ, Roig S, Yong JC, Kanzow T, Achterberg EP. The influence of Arctic Fe and Atlantic fixed N on summertime primary production in Fram Strait, North Greenland Sea. Sci Rep 2020; 10:15230. [PMID: 32943713 PMCID: PMC7499181 DOI: 10.1038/s41598-020-72100-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/25/2020] [Indexed: 11/14/2022] Open
Abstract
Climate change has led to a ~ 40% reduction in summer Arctic sea-ice cover extent since the 1970s. Resultant increases in light availability may enhance phytoplankton production. Direct evidence for factors currently constraining summertime phytoplankton growth in the Arctic region is however lacking. GEOTRACES cruise GN05 conducted a Fram Strait transect from Svalbard to the NE Greenland Shelf in summer 2016, sampling for bioessential trace metals (Fe, Co, Zn, Mn) and macronutrients (N, Si, P) at ~ 79°N. Five bioassay experiments were conducted to establish phytoplankton responses to additions of Fe, N, Fe + N and volcanic dust. Ambient nutrient concentrations suggested N and Fe were deficient in surface seawater relative to typical phytoplankton requirements. A west-to-east trend in the relative deficiency of N and Fe was apparent, with N becoming more deficient towards Greenland and Fe more deficient towards Svalbard. This aligned with phytoplankton responses in bioassay experiments, which showed greatest chlorophyll-a increases in + N treatment near Greenland and + N + Fe near Svalbard. Collectively these results suggest primary N limitation of phytoplankton growth throughout the study region, with conditions potentially approaching secondary Fe limitation in the eastern Fram Strait. We suggest that the supply of Atlantic-derived N and Arctic-derived Fe exerts a strong control on summertime nutrient stoichiometry and resultant limitation patterns across the Fram Strait region.
Collapse
Affiliation(s)
- Stephan Krisch
- Marine Biogeochemistry Division, GEOMAR Helmholtz Centre for Ocean Research, 24148, Kiel, Germany
| | - Thomas J Browning
- Marine Biogeochemistry Division, GEOMAR Helmholtz Centre for Ocean Research, 24148, Kiel, Germany
| | - Martin Graeve
- Alfred-Wegener-Institute for Polar and Marine Research, 27570, Bremerhaven, Germany
| | - Kai-Uwe Ludwichowski
- Alfred-Wegener-Institute for Polar and Marine Research, 27570, Bremerhaven, Germany
| | - Pablo Lodeiro
- Marine Biogeochemistry Division, GEOMAR Helmholtz Centre for Ocean Research, 24148, Kiel, Germany
| | - Mark J Hopwood
- Marine Biogeochemistry Division, GEOMAR Helmholtz Centre for Ocean Research, 24148, Kiel, Germany
| | - Stéphane Roig
- Marine Biogeochemistry Division, GEOMAR Helmholtz Centre for Ocean Research, 24148, Kiel, Germany
| | - Jaw-Chuen Yong
- Marine Biogeochemistry Division, GEOMAR Helmholtz Centre for Ocean Research, 24148, Kiel, Germany
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Torsten Kanzow
- Alfred-Wegener-Institute for Polar and Marine Research, 27570, Bremerhaven, Germany
| | - Eric P Achterberg
- Marine Biogeochemistry Division, GEOMAR Helmholtz Centre for Ocean Research, 24148, Kiel, Germany.
| |
Collapse
|
49
|
Young JN, Schmidt K. It's what's inside that matters: physiological adaptations of high-latitude marine microalgae to environmental change. THE NEW PHYTOLOGIST 2020; 227:1307-1318. [PMID: 32391569 DOI: 10.1111/nph.16648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 03/23/2020] [Indexed: 05/13/2023]
Abstract
Marine microalgae within seawater and sea ice fuel high-latitude ecosystems and drive biogeochemical cycles through the fixation and export of carbon, uptake of nutrients, and production and release of oxygen and organic compounds. High-latitude marine environments are characterized by cold temperatures, dark winters and a strong seasonal cycle. Within this environment a number of diverse and dynamic habitats exist, particularly in association with the formation and melt of sea ice, with distinct microalgal communities that transition with the season. Algal physiology is a crucial component, both responding to the dynamic environment and in turn influencing its immediate physicochemical environment. As high-latitude oceans shift into new climate regimes the analysis of seasonal responses may provide insights into how microalgae will respond to long-term environmental change. This review discusses recent developments in our understanding of how the physiology of high-latitude marine microalgae is regulated over a polar seasonal cycle, with a focus on ice-associated (sympagic) algae. In particular, physiologies that impact larger scale processes will be explored, with an aim to improve our understanding of current and future ecosystems and biogeochemical cycles.
Collapse
Affiliation(s)
- Jodi N Young
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - Katrin Schmidt
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
50
|
Chlamydomonas reinhardtii, an Algal Model in the Nitrogen Cycle. PLANTS 2020; 9:plants9070903. [PMID: 32708782 PMCID: PMC7412212 DOI: 10.3390/plants9070903] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023]
Abstract
Nitrogen (N) is an essential constituent of all living organisms and the main limiting macronutrient. Even when dinitrogen gas is the most abundant form of N, it can only be used by fixing bacteria but is inaccessible to most organisms, algae among them. Algae preferentially use ammonium (NH4+) and nitrate (NO3−) for growth, and the reactions for their conversion into amino acids (N assimilation) constitute an important part of the nitrogen cycle by primary producers. Recently, it was claimed that algae are also involved in denitrification, because of the production of nitric oxide (NO), a signal molecule, which is also a substrate of NO reductases to produce nitrous oxide (N2O), a potent greenhouse gas. This review is focused on the microalga Chlamydomonas reinhardtii as an algal model and its participation in different reactions of the N cycle. Emphasis will be paid to new actors, such as putative genes involved in NO and N2O production and their occurrence in other algae genomes. Furthermore, algae/bacteria mutualism will be considered in terms of expanding the N cycle to ammonification and N fixation, which are based on the exchange of carbon and nitrogen between the two organisms.
Collapse
|