1
|
Cha M, Ma J, Kim JY, Emre EST, Kotov NA. Graph-theoretical chirality measure and chirality-property relations for chemical structures with multiscale mirror asymmetries. Chirality 2024; 36:e23678. [PMID: 38859658 DOI: 10.1002/chir.23678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 06/12/2024]
Abstract
Chirality is an essential geometric property unifying small molecules, biological macromolecules, inorganic nanomaterials, biological microparticles, and many other chemical structures. Numerous chirality measures have attempted to quantify this geometric property of mirror asymmetry and to correlate these measures with physical and chemical properties. However, their utility has been widely limited because these correlations have been largely notional. Furthermore, chirality measures also require prohibitively demanding computations, especially for chiral structures comprised of thousands of atoms. Acknowledging the fundamental problems with quantification of mirror asymmetry, including the ambiguity of sign-variable pseudoscalar chirality measures, we revisit this subject because of the significance of quantifying chirality for quantitative biomimetics and describing the chirality of nanoscale materials that display chirality continuum and scale-dependent mirror asymmetry. We apply the concept of torsion within the framework of differential geometry to the graph theoretical representation of chiral molecules and nanostructures to address some of the fundamental problems and practical limitations of other chirality measures. Chiral gold clusters and other chiral structures are used as models to elaborate a graph-theoretical chirality (GTC) measure, demonstrating its applicability to chiral materials with different degrees of chirality at different scales. For specific cases, we show that GTC provides an adequate description of both the sign and magnitude of mirror asymmetry. The direct correlations with macroscopic properties, such as chiroptical spectra, are enhanced by using the hybrid chirality measures combining parameters from discrete mathematics and physics. Taking molecular helices as an example, we established a direct relation between GTC and optical activity, indicating that this chirality measure can be applied to chiral metamaterials and complex chiral constructs.
Collapse
Affiliation(s)
- Minjeong Cha
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Jessica Ma
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
- Center of Complex Particle Systems (COMPASS), University of Michigan, Ann Arbor, Michigan, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Ji-Young Kim
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
- Center of Complex Particle Systems (COMPASS), University of Michigan, Ann Arbor, Michigan, USA
| | - Emine Sumeyra Turali Emre
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
- Center of Complex Particle Systems (COMPASS), University of Michigan, Ann Arbor, Michigan, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicholas A Kotov
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
- Center of Complex Particle Systems (COMPASS), University of Michigan, Ann Arbor, Michigan, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Lago-Silva M, Cid MM, Quiñoá E, Freire F. P/M Macromolecular Switch Based on Conformational Control Exerted by an Achiral Side Chain within an Axially Chiral Locked Pendant. J Am Chem Soc 2024; 146:752-759. [PMID: 38150582 PMCID: PMC10786024 DOI: 10.1021/jacs.3c10766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
Molecular switches, supramolecular chemistry, and polymers can be combined to create stimuli-responsive multichiral materials. Therefore, by acting on the extended/bent conformational composition of an achiral arm, it is possible to create a macromolecular gear, where different supramolecular interactions can be activated/deactivated to control the helical sense of a polymer containing up to five different chiral axial motifs. For this, a chiral allene with a flexible achiral arm was introduced as a pendant in poly(phenylacetylene). Through flexible arm control between extended and bent conformations, it is possible to selectively induce either a P or M helical sense in the polymer, while the relative spatial distribution of the substituents in the allene remains unaltered in two perpendicular planes (configurationally locked). These results show that complex dynamic multichiral materials can be obtained by the polymerization of appropriate monomers that combine chirality, switching properties, and the ability to generate chiral supramolecular assemblies.
Collapse
Affiliation(s)
- María Lago-Silva
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS) and Departamento de Química
Orgánica, Universidade de Santiago
de Compostela, E-15782 Santiago de Compostela, Spain
| | - María Magdalena Cid
- Departamento
de Química Orgánica, Campus Lagoas-Marcosende, Universidade de Vigo, E-36310 Vigo, Spain
| | - Emilio Quiñoá
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS) and Departamento de Química
Orgánica, Universidade de Santiago
de Compostela, E-15782 Santiago de Compostela, Spain
| | - Félix Freire
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS) and Departamento de Química
Orgánica, Universidade de Santiago
de Compostela, E-15782 Santiago de Compostela, Spain
| |
Collapse
|
3
|
Perego J, Bezuidenhout CX, Bracco S, Piva S, Prando G, Aloisi C, Carretta P, Kaleta J, Le TP, Sozzani P, Daolio A, Comotti A. Benchmark Dynamics of Dipolar Molecular Rotors in Fluorinated Metal-Organic Frameworks. Angew Chem Int Ed Engl 2023; 62:e202215893. [PMID: 36469012 DOI: 10.1002/anie.202215893] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Fluorinated Metal-Organic Frameworks (MOFs), comprising a wheel-shaped ligand with geminal rotating fluorine atoms, produced benchmark mobility of correlated dipolar rotors at 2 K, with practically null activation energy (Ea =17 cal mol-1 ). 1 H T1 NMR revealed multiple relaxation phenomena due to the exchange among correlated dipole-rotor configurations. Synchrotron radiation X-ray diffraction at 4 K, Density Functional Theory, Molecular Dynamics and phonon calculations showed the fluid landscape and pointed out a cascade mechanism converting dipole configurations into each other. Gas accessibility, shown by hyperpolarized-Xe NMR, allowed for chemical stimuli intervention: CO2 triggered dipole reorientation, reducing their collective dynamics and stimulating a dipole configuration change in the crystal. Dynamic materials under limited thermal noise and high responsiveness enable the fabrication of molecular machines with low energy dissipation and controllable dynamics.
Collapse
Affiliation(s)
- Jacopo Perego
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125, Milan, Italy
| | - Charl X Bezuidenhout
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125, Milan, Italy
| | - Silvia Bracco
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125, Milan, Italy
| | - Sergio Piva
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125, Milan, Italy
| | - Giacomo Prando
- Department of Physics, University of Pavia, Via Bassi 6, 27100, Pavia, Italy
| | - Cristian Aloisi
- Department of Physics, University of Pavia, Via Bassi 6, 27100, Pavia, Italy
| | - Pietro Carretta
- Department of Physics, University of Pavia, Via Bassi 6, 27100, Pavia, Italy
| | - Jiří Kaleta
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo námĕstí 542/2, 16000, Prague, Czech Republic
| | - Thi Phuong Le
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo námĕstí 542/2, 16000, Prague, Czech Republic
| | - Piero Sozzani
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125, Milan, Italy
| | - Andrea Daolio
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125, Milan, Italy
| | - Angiolina Comotti
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125, Milan, Italy
| |
Collapse
|
4
|
Kolodzeiski E, Amirjalayer S. On-the-Fly Training of Atomistic Potentials for Flexible and Mechanically Interlocked Molecules. J Chem Theory Comput 2021; 17:7010-7020. [PMID: 34613742 DOI: 10.1021/acs.jctc.1c00497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mechanically interlocked molecules have gained significant attention because of their unique ability to perform well-defined motions originating from their entanglement, which is important for the design of artificial molecular machines. Atomistic simulations based on force fields (FFs) provide detailed insights into such architectures at the molecular level enabling one to predict the resulting functionalities. However, the development of reliable FFs is still challenging and time-consuming, in particular for highly dynamic and interlocked structures such as rotaxanes, which exhibit a large number of different conformers. In the present work, we present an on-the-fly training (OTFT) algorithm. By a guided and nonguided phase space sampling, relevant reference data are automatically and continuously generated and included for the on-the-fly parametrization of the FF based on a population swapping genetic algorithm (psGA). The OTFT approach provides a fast and automated FF parametrization scheme and tackles problems caused by missing phase space information or the need for big data. We demonstrate the high accuracy of the developed FF for flexible molecules with respect to equilibrium and out-of-equilibrium properties. Finally, by applying the ab initio parametrized FF, molecular dynamic simulations were performed up to experimentally relevant time scales (ca. 1 μs) enabling capture in detail of the structural evaluation and mapping out of the free-energy topology. The on-the-fly training approach thus provides a strong foundation toward automated FF developments and large-scale investigations of phenomena in and out of thermal equilibrium.
Collapse
Affiliation(s)
- Elena Kolodzeiski
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany.,Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany.,Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Saeed Amirjalayer
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany.,Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany.,Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| |
Collapse
|
5
|
Molaaghaei T, Kalateh K, Najafpour J, Ahmadi R. Theoretical investigation of the structural and electronic properties of molecular machine based on phenylene and trityl. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1016/j.sajce.2021.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
6
|
Ghosh A, Paul I, Schmittel M. Multitasking with Chemical Fuel: Dissipative Formation of a Pseudorotaxane Rotor from Five Distinct Components. J Am Chem Soc 2021; 143:5319-5323. [PMID: 33787253 DOI: 10.1021/jacs.1c01948] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A 3-fold completive self-sorted library of dynamic motifs was integrated into the design of the pseudorotaxane-based rotor [Zn(2·H+)(3)(4)]2+ operating at k298 = 15.4 kHz. The rotational motion in the five-component device is based on association/dissociation of the pyridyl head of the pseudorotaxane rotator arm between two zinc(II) porphyrin stations. Addition of TFA or 2-cyano-2-phenylpropanoic acid as a chemical fuel to a zinc release system and the loose rotor components 2-4 enabled the liberated zinc(II) ions and protons to act in unison, setting up the rotor through the formation of a heteroleptic zinc complex and a pseudorotaxane linkage. With chemical fuel, the dissipative system was reproducibly pulsed three times without a problem. Due to the double role of the fuel acid, two kinetically distinct processes played a role in both the out-of-equilibrium assembly and disassembly of the rotor, highlighting the complex issues in multitasking of chemical fuels.
Collapse
Affiliation(s)
- Amit Ghosh
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strasse 2, D-57068 Siegen, Germany
| | - Indrajit Paul
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strasse 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strasse 2, D-57068 Siegen, Germany
| |
Collapse
|
7
|
Feng Y, Ovalle M, Seale JSW, Lee CK, Kim DJ, Astumian RD, Stoddart JF. Molecular Pumps and Motors. J Am Chem Soc 2021; 143:5569-5591. [PMID: 33830744 DOI: 10.1021/jacs.0c13388] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pumps and motors are essential components of the world as we know it. From the complex proteins that sustain our cells, to the mechanical marvels that power industries, much we take for granted is only possible because of pumps and motors. Although molecular pumps and motors have supported life for eons, it is only recently that chemists have made progress toward designing and building artificial forms of the microscopic machinery present in nature. The advent of artificial molecular machines has granted scientists an unprecedented level of control over the relative motion of components of molecules through the development of kinetically controlled, away-from-thermodynamic equilibrium chemistry. We outline the history of pumps and motors, focusing specifically on the innovations that enable the design and synthesis of the artificial molecular machines central to this Perspective. A key insight connecting biomolecular and artificial molecular machines is that the physical motions by which these machines carry out their function are unambiguously in mechanical equilibrium at every instant. The operation of molecular motors and pumps can be described by trajectory thermodynamics, a theory based on the work of Onsager, which is grounded on the firm foundation of the principle of microscopic reversibility. Free energy derived from thermodynamically non-equilibrium reactions kinetically favors some reaction pathways over others. By designing molecules with kinetic asymmetry, one can engineer potential landscapes to harness external energy to drive the formation and maintenance of geometries of component parts of molecules away-from-equilibrium, that would be impossible to achieve by standard synthetic approaches.
Collapse
Affiliation(s)
- Yuanning Feng
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Marco Ovalle
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - James S W Seale
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Christopher K Lee
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Dong Jun Kim
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - R Dean Astumian
- Department of Physics, University of Maine, Orono, Maine 04469, United States
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
8
|
Hu YX, Wu GY, Wang XQ, Yin GQ, Zhang CW, Li X, Xu L, Yang HB. Acid-Activated Motion Switching of DB24C8 between Two Discrete Platinum(II) Metallacycles. Molecules 2021; 26:molecules26030716. [PMID: 33573149 PMCID: PMC7866548 DOI: 10.3390/molecules26030716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/16/2022] Open
Abstract
The precise operation of molecular motion for constructing complicated mechanically interlocked molecules has received considerable attention and is still an energetic field of supramolecular chemistry. Herein, we reported the construction of two tris[2]pseudorotaxanes metallacycles with acid-base controllable molecular motion through self-sorting strategy and host-guest interaction. Firstly, two hexagonal Pt(II) metallacycles M1 and M2 decorated with different host-guest recognition sites have been constructed via coordination-driven self-assembly strategy. The binding of metallacycles M1 and M2 with dibenzo-24-crown-8 (DB24C8) to form tris[2]pseudorotaxanes complexes TPRM1 and TPRM2 have been investigated. Furthermore, by taking advantage of the strong binding affinity between the protonated metallacycle M2 and DB24C8, the addition of trifluoroacetic acid (TFA) as a stimulus successfully induces an acid-activated motion switching of DB24C8 between the discrete metallacycles M1 and M2. This research not only affords a highly efficient way to construct stimuli-responsive smart supramolecular systems but also offers prospects for precisely control multicomponent cooperative motion.
Collapse
Affiliation(s)
- Yi-Xiong Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China; (Y.-X.H.); (G.-Y.W.); (X.-Q.W.); (C.-W.Z.)
| | - Gui-Yuan Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China; (Y.-X.H.); (G.-Y.W.); (X.-Q.W.); (C.-W.Z.)
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China; (Y.-X.H.); (G.-Y.W.); (X.-Q.W.); (C.-W.Z.)
| | - Guang-Qiang Yin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China; (G.-Q.Y.); (X.L.)
| | - Chang-Wei Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China; (Y.-X.H.); (G.-Y.W.); (X.-Q.W.); (C.-W.Z.)
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China; (G.-Q.Y.); (X.L.)
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China; (Y.-X.H.); (G.-Y.W.); (X.-Q.W.); (C.-W.Z.)
- Correspondence: (L.X.); (H.-B.Y.)
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China; (Y.-X.H.); (G.-Y.W.); (X.-Q.W.); (C.-W.Z.)
- Correspondence: (L.X.); (H.-B.Y.)
| |
Collapse
|
9
|
Shi ZT, Hu YX, Hu Z, Zhang Q, Chen SY, Chen M, Yu JJ, Yin GQ, Sun H, Xu L, Li X, Feringa BL, Yang HB, Tian H, Qu DH. Visible-Light-Driven Rotation of Molecular Motors in Discrete Supramolecular Metallacycles. J Am Chem Soc 2021; 143:442-452. [PMID: 33371675 PMCID: PMC7809693 DOI: 10.1021/jacs.0c11752] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The organization of molecular motors in supramolecular assemblies to allow the amplification and transmission of motion and collective action is an important step toward future responsive systems. Metal-coordination-driven directional self-assembly into supramolecular metallacycles provides a powerful strategy to position several motor units in larger structures with well-defined geometries. Herein, we present a pyridyl-modified molecular motor ligand (MPY) which upon coordination with geometrically distinct di-Pt(II) acceptors assembles into discrete metallacycles of different sizes and shapes. This coordination leads to a red-shift of the absorption bands of molecular motors, making these motorized metallacycles responsive to visible light. Photochemical and thermal isomerization experiments demonstrated that the light-driven rotation of the motors in the metallacycles is similar to that in free MPY in solution. CD studies show that the helicity inversions associated with each isomerization step in the rotary cycle are preserved. To explore collective motion, the trimeric motor-containing metallacycle was aggregated with heparin through multiple electrostatic interactions, to construct a multi-component hierarchical system. SEM, TEM, and DLS measurements revealed that the photo- and thermal-responsive molecular motor units enabled selective manipulation of the secondary supramolecular aggregation process without dissociating the primary metallacycle structures. These visible-light-responsive metallacycles, with intrinsic multiple rotary motors, offer prospects for cooperative operations, dynamic hierarchical self-assembled systems, and adaptive materials.
Collapse
Affiliation(s)
- Zhao-Tao Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yi-Xiong Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.,Center for System Chemistry, Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Shao-Yu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.,Center for System Chemistry, Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Meng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jing-Jing Yu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Guang-Qiang Yin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| | - Ben L Feringa
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.,Center for System Chemistry, Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
10
|
She S, Xuan W, Bell NL, Pow R, Ribo EG, Sinclair Z, Long DL, Cronin L. Peptide sequence mediated self-assembly of molybdenum blue nanowheel superstructures. Chem Sci 2020; 12:2427-2432. [PMID: 34164008 PMCID: PMC8179307 DOI: 10.1039/d0sc06098d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/14/2020] [Indexed: 12/22/2022] Open
Abstract
The precise control over the formation of complex nanostructures, e.g. polyoxometalates (POMs), at the sub-nanoscale is challenging but critical if non-covalent architectures are to be designed. Combining biologically-evolved systems with inorganic nanostructures could lead to sequence-mediated assembly. Herein, we exploit oligopeptides as multidentate structure-directing ligands via metal-coordination and hydrogen bonded interactions to modulate the self-assembly of POM superstructures. Six oligopeptides (GH, AH, SH, G2H, G4H and G5H) are incorporated into the cavities of Molybdenum Blue (MB) POM nanowheels. It is found that the helicity of the nanowheel can be readily switched (Δ to Λ) by simply altering the N-terminal amino acid on the peptide chain rather than their overall stereochemistry. We also reveal a delicate balance between the Mo-coordination and the hydrogen bonds found within the internal cavity of the inorganic nanowheels which results in the sequence mediated formation of two unprecedented asymmetrical nanowheel frameworks: {Mo122Ce5} and {Mo126Ce4}.
Collapse
Affiliation(s)
- Shan She
- School of Chemistry, University of Glasgow University Avenue Glasgow G12 8QQ UK
| | - Weimin Xuan
- School of Chemistry, University of Glasgow University Avenue Glasgow G12 8QQ UK
| | - Nicola L Bell
- School of Chemistry, University of Glasgow University Avenue Glasgow G12 8QQ UK
| | - Robert Pow
- School of Chemistry, University of Glasgow University Avenue Glasgow G12 8QQ UK
| | - Eduard Garrido Ribo
- School of Chemistry, University of Glasgow University Avenue Glasgow G12 8QQ UK
| | - Zoe Sinclair
- School of Chemistry, University of Glasgow University Avenue Glasgow G12 8QQ UK
| | - De-Liang Long
- School of Chemistry, University of Glasgow University Avenue Glasgow G12 8QQ UK
| | - Leroy Cronin
- School of Chemistry, University of Glasgow University Avenue Glasgow G12 8QQ UK
| |
Collapse
|
11
|
Sluysmans D, Zhang L, Li X, Garci A, Stoddart JF, Duwez AS. Viologen Tweezers to Probe the Force of Individual Donor–Acceptor π-Interactions. J Am Chem Soc 2020; 142:21153-21159. [DOI: 10.1021/jacs.0c10339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Damien Sluysmans
- Research Unit MolSys, NanoChem, University of Liege, Sart-Tilman, B6a, Liege 4000, Belgium
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Long Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Xuesong Li
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Amine Garci
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - J. Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- Institute for Molecular Design and Synthesis, Tianjin University, Tianjin 300072, China
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Anne-Sophie Duwez
- Research Unit MolSys, NanoChem, University of Liege, Sart-Tilman, B6a, Liege 4000, Belgium
| |
Collapse
|
12
|
Pfeifer L, Hoang NV, Scherübl M, Pshenichnikov MS, Feringa BL. Powering rotary molecular motors with low-intensity near-infrared light. SCIENCE ADVANCES 2020; 6:6/44/eabb6165. [PMID: 33115739 PMCID: PMC7608792 DOI: 10.1126/sciadv.abb6165] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/14/2020] [Indexed: 05/03/2023]
Abstract
Light-controlled artificial molecular machines hold tremendous potential to revolutionize molecular sciences as autonomous motion allows the design of smart materials and systems whose properties can respond, adapt, and be modified on command. One long-standing challenge toward future applicability has been the need to develop methods using low-energy, low-intensity, near-infrared light to power these nanomachines. Here, we describe a rotary molecular motor sensitized by a two-photon absorber, which efficiently operates under near-infrared light at intensities and wavelengths compatible with in vivo studies. Time-resolved spectroscopy was used to gain insight into the mechanism of energy transfer to the motor following initial two-photon excitation. Our results offer prospects toward in vitro and in vivo applications of artificial molecular motors.
Collapse
Affiliation(s)
- Lukas Pfeifer
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Nong V Hoang
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Maximilian Scherübl
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Maxim S Pshenichnikov
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands.
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands.
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| |
Collapse
|
13
|
Boursalian GB, Nijboer ER, Dorel R, Pfeifer L, Markovitch O, Blokhuis A, Feringa BL. All-Photochemical Rotation of Molecular Motors with a Phosphorus Stereoelement. J Am Chem Soc 2020; 142:16868-16876. [PMID: 32905701 PMCID: PMC7530895 DOI: 10.1021/jacs.0c08249] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Unidirectional molecular
rotation based on alternating photochemical
and thermal isomerizations of overcrowded alkenes is well established,
but rotary cycles based purely on photochemical isomerizations are
rare. Herein we report three new second-generation molecular motors
featuring a phosphorus center in the lower half, which engenders a
unique element of axial chirality. These motors exhibit unusual behavior,
in that all four diastereomeric states can interconvert solely photochemically.
Kinetic analysis and modeling reveal that the behavior of the new
motors is consistent with all-photochemical unidirectional rotation.
Furthermore, X-ray crystal structures of all four diastereomeric states
of two of these new motors were obtained, which constitute the first
achievements of crystallographic characterization of the full 360°
rotational cycle of overcrowded-alkene-based molecular motors. Finally,
the axial phosphorus stereoelement in the phosphine motor can
be thermally inverted, and this epimerization enables a “shortcut”
of the traditional rotational cycle of these compounds.
Collapse
Affiliation(s)
- Gregory B Boursalian
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Eise R Nijboer
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ruth Dorel
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Lukas Pfeifer
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Omer Markovitch
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.,Origins Center, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Alex Blokhuis
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
14
|
|
15
|
Aprahamian I. The Future of Molecular Machines. ACS CENTRAL SCIENCE 2020; 6:347-358. [PMID: 32232135 PMCID: PMC7099591 DOI: 10.1021/acscentsci.0c00064] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Indexed: 05/23/2023]
Abstract
Artificial molecular machines have captured the imagination of scientists and nonscientists alike for decades now, given their clear potential to transform and enhance all aspects of human life. In this Outlook, I use a bicycle as an analogy to explain what a molecular machine is, in my opinion, and work through a representative selection of case studies to specify the significant accomplishments made to date, and the obstacles that currently stand between these and the field's fulfillment of its great potential. The hope of this intentionally sober account is to sketch a path toward a rich and exciting research trajectory that might challenge current practitioners and attract junior scientists into its fold. Considering the progress we have witnessed in the past decade, I am positive that the future of the field is a rosy one.
Collapse
Affiliation(s)
- Ivan Aprahamian
- 6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
16
|
Liu S, Cheng Y, Li Y, Chen M, Lam JWY, Tang BZ. Manipulating Solid-State Intramolecular Motion toward Controlled Fluorescence Patterns. ACS NANO 2020; 14:2090-2098. [PMID: 31909986 DOI: 10.1021/acsnano.9b08761] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Molecules have limited mobility in the solid state because of the strong intermolecular interactions, and therefore, applications based on solid-state molecular motions are seldom explored. Herein, by manipulating the solid-state intramolecular motion of tetraphenylethylene (TPE) in a crystallizing polymer matrix, controlled fluorescent patterns with information storage and encoding functionality are developed. The intramolecular mobility of TPE can not only affect the fluorescence intensity but also determine the photocyclization activity, which can be tuned by surrounding polymer rigidity. The soft amorphous region in the semicrystalline polymer facilitates the intramolecular motion to achieve weak blue emission and high photocyclization activity, whereas the rigid crystalline phase restricts the intramolecular motion to give intense blue emission and low photoreactivity. Meanwhile, in the process of crystallization, the dynamic movement of the polymer chain in the crystal growth boundary layer further accelerates the intramolecular motions of TPE, allowing enhanced photoreactivity across crystalline and amorphous regions. The motion-dominated fluorescence allows TPE as a smart molecular robot to generate desired fluorescent patterns triggered by polymer crystallization. Our findings provide a correlation between microscopic molecular motions and macroscopic optical signals.
Collapse
Affiliation(s)
- Shunjie Liu
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong 999077
- HKUST-Shenzhen Research Institute , No.9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057 , China
| | - Yanhua Cheng
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong 999077
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering , Donghua University , Shanghai 201620 , China
- HKUST-Shenzhen Research Institute , No.9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057 , China
| | - Yuanyuan Li
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong 999077
- HKUST-Shenzhen Research Institute , No.9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057 , China
| | - Ming Chen
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong 999077
- HKUST-Shenzhen Research Institute , No.9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057 , China
| | - Jacky W Y Lam
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong 999077
- HKUST-Shenzhen Research Institute , No.9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057 , China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong 999077
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510641 , China
- HKUST-Shenzhen Research Institute , No.9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057 , China
| |
Collapse
|
17
|
|
18
|
Abstract
Directed motion at the nanoscale is a central attribute of life, and chemically driven motor proteins are nature's choice to accomplish it. Motivated and inspired by such bionanodevices, in the past few decades chemists have developed artificial prototypes of molecular motors, namely, multicomponent synthetic species that exhibit directionally controlled, stimuli-induced movements of their parts. In this context, photonic and redox stimuli represent highly appealing modes of activation, particularly from a technological viewpoint. Here we describe the evolution of the field of photo- and redox-driven artificial molecular motors, and we provide a comprehensive review of the work published in the past 5 years. After an analysis of the general principles that govern controlled and directed movement at the molecular scale, we describe the fundamental photochemical and redox processes that can enable its realization. The main classes of light- and redox-driven molecular motors are illustrated, with a particular focus on recent designs, and a thorough description of the functions performed by these kinds of devices according to literature reports is presented. Limitations, challenges, and future perspectives of the field are critically discussed.
Collapse
Affiliation(s)
- Massimo Baroncini
- CLAN-Center for Light Activated Nanostructures , Istituto ISOF-CNR , via Gobetti 101 , 40129 Bologna , Italy.,Dipartimento di Scienze e Tecnologie Agro-alimentari , Università di Bologna , viale Fanin 44 , 40127 Bologna , Italy
| | - Serena Silvi
- CLAN-Center for Light Activated Nanostructures , Istituto ISOF-CNR , via Gobetti 101 , 40129 Bologna , Italy.,Dipartimento di Chimica "G. Ciamician" , Università di Bologna , via Selmi 2 , 40126 Bologna , Italy
| | - Alberto Credi
- CLAN-Center for Light Activated Nanostructures , Istituto ISOF-CNR , via Gobetti 101 , 40129 Bologna , Italy.,Dipartimento di Scienze e Tecnologie Agro-alimentari , Università di Bologna , viale Fanin 44 , 40127 Bologna , Italy
| |
Collapse
|
19
|
Pfeifer L, Scherübl M, Fellert M, Danowski W, Cheng J, Pol J, Feringa BL. Photoefficient 2 nd generation molecular motors responsive to visible light. Chem Sci 2019; 10:8768-8773. [PMID: 31803449 PMCID: PMC6849633 DOI: 10.1039/c9sc02150g] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/31/2019] [Indexed: 12/14/2022] Open
Abstract
A new series of visible light-driven artificial rotary molecular motors is presented including the most red-shifted example to date.
Molecular motors that operate with high efficiency using visible light are attractive for numerous applications. Here the synthesis and characterisation of three novel visible light switchable 2nd generation molecular motors is presented. Two of them are based on push–pull systems with the third one possessing an extended π-system. With a maximum effective excitation wavelength of 530 nm we designed the most red-shifted artificial rotary motor known to date. All three motors benefit from efficient switching to the metastable isomer, high quantum yields and excellent photostability setting them apart from visible light switchable motors reported previously. The activation barriers of the rate-determining thermal helix inversion could be accurately predicted using DFT calculations and differences between the motors can be explained by distinct transition state structures. Enantiomers of push–pull motors were successfully separated and their helical twisting power in E7 liquid crystals was determined.
Collapse
Affiliation(s)
- Lukas Pfeifer
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands .
| | - Maximilian Scherübl
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands .
| | - Maximilian Fellert
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands .
| | - Wojciech Danowski
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands .
| | - Jinling Cheng
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands .
| | - Jasper Pol
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands .
| | - Ben L Feringa
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands .
| |
Collapse
|
20
|
Shao B, Qian H, Li Q, Aprahamian I. Structure Property Analysis of the Solution and Solid-State Properties of Bistable Photochromic Hydrazones. J Am Chem Soc 2019; 141:8364-8371. [DOI: 10.1021/jacs.9b03932] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Baihao Shao
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Hai Qian
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Quan Li
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
21
|
Sluysmans D, Stoddart JF. The Burgeoning of Mechanically Interlocked Molecules in Chemistry. TRENDS IN CHEMISTRY 2019. [DOI: 10.1016/j.trechm.2019.02.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|