1
|
Zhang S, Fan S, He H, Zhu J, Murray L, Liang G, Ran S, Zhu YZ, Cryle MJ, He HY, Zhang Y. Cyclic natural product oligomers: diversity and (bio)synthesis of macrocycles. Chem Soc Rev 2025; 54:396-464. [PMID: 39584260 DOI: 10.1039/d2cs00909a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Cyclic compounds are generally preferred over linear compounds for functional studies due to their enhanced bioavailability, stability towards metabolic degradation, and selective receptor binding. This has led to a need for effective cyclization strategies for compound synthesis and hence increased interest in macrocyclization mediated by thioesterase (TE) domains, which naturally boost the chemical diversity and bioactivities of cyclic natural products. Many non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) derived natural products are assembled to form cyclodimeric compounds, with these molecules possessing diverse structures and biological activities. There is significant interest in identifying the biosynthetic pathways that produce such molecules given the challenge that cyclodimerization represents from a biosynthetic perspective. In the last decade, many groups have pursued the characterization of TE domains and have provided new insights into this biocatalytic machinery: however, the enzymes involved in formation of cyclodimeric compounds have proven far more elusive. In this review we focus on natural products that involve macrocyclization in their biosynthesis and chemical synthesis, with an emphasis on the function and biosynthetic investigation on the special family of TE domains responsible for forming cyclodimeric natural products. We also introduce additional macrocyclization catalysts, including butelase and the CT-mediated cyclization of peptides, alongside the formation of cyclodipeptides mediated by cyclodipeptide synthases (CDPS) and single-module NRPSs. Due to the interdisciplinary nature of biosynthetic research, we anticipate that this review will prove valuable to synthetic chemists, drug discovery groups, enzymologists, and the biosynthetic community in general, and inspire further efforts to identify and exploit these biocatalysts for the formation of novel bioactive molecules.
Collapse
Affiliation(s)
- Songya Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shuai Fan
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Haocheng He
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jing Zhu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lauren Murray
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
- EMBL Australia, Monash University, Clayton, Victoria, 3800, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, 3800, Australia
| | - Gong Liang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shi Ran
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yi Zhun Zhu
- School of Pharmacy & State Key Lab. for the Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Max J Cryle
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
- EMBL Australia, Monash University, Clayton, Victoria, 3800, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, 3800, Australia
| | - Hai-Yan He
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Youming Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
2
|
Thorpe MP, Smith AN, Blackwell DJ, Hopkins CR, Knollmann BC, Akers WS, Johnston JN. The backbone constitution drives passive permeability independent of side chains in depsipeptide and peptide macrocycles inspired by ent-verticilide. Chem Sci 2024; 15:d4sc02758b. [PMID: 39211739 PMCID: PMC11348715 DOI: 10.1039/d4sc02758b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
The number of peptide-like scaffolds found in late-stage drug development is increasing, but a critical unanswered question in the field is whether substituents (side chains) or the backbone drive passive permeability. The backbone is scrutinized in this study. Five series of macrocyclic peptidic compounds were prepared, and their passive permeability was determined (PAMPA, Caco-2), to delineate structure-permeability relationships. Each series was based on the cell-permeable antiarrhythmic compound ent-verticilide, a cyclic oligomeric depsipeptide (COD) containing repeating ester/N-Me amide didepsipeptide monomers. One key finding is that native lipophilic ester functionality can impart a favorable level of permeability, but ester content alone is not the final determinant - the analog with highest P app was discovered by a single ester-to-N-H amide replacement. Furthermore, the relative composition of esters and N-Me amides in a series had more nuanced permeability behavior. Overall, a systematic approach to structure-permeability correlations suggests that a combinatorial-like investigation of functionality in peptidic or peptide-like compounds could better identify leads with optimal passive permeability, perhaps prior to modification of side chains.
Collapse
Affiliation(s)
- Madelaine P Thorpe
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University Nashville TN 37235-1822 USA
| | - Abigail N Smith
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University Nashville TN 37235-1822 USA
| | - Daniel J Blackwell
- Department of Medicine, Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Vanderbilt University Medical Center Medical Research Bldg IV, Room 1265, 2215B Garland Ave Nashville TN 37232-0575 USA
| | - Corey R Hopkins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Bjorn C Knollmann
- Department of Medicine, Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Vanderbilt University Medical Center Medical Research Bldg IV, Room 1265, 2215B Garland Ave Nashville TN 37232-0575 USA
| | - Wendell S Akers
- Pharmaceutical Sciences Research Center, College of Pharmacy, Lipscomb University Nashville TN 37204 USA
| | - Jeffrey N Johnston
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University Nashville TN 37235-1822 USA
| |
Collapse
|
3
|
Thorpe MP, Blackwell DJ, Knollmann BC, Johnston JN. Backbone-Determined Antiarrhythmic Structure-Activity Relationships for a Mirror Image, Oligomeric Depsipeptide Natural Product. J Med Chem 2024; 67:12205-12220. [PMID: 38958200 DOI: 10.1021/acs.jmedchem.4c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Cyclic oligomeric depsipeptides (COD) are a structural class within naturally occurring compounds with a wide range of biological activity. Verticilide is a COD (24-membered ring) that was identified by its inhibition of insect ryanodine receptor (RyR). We have since found that the enantiomer of verticilide (ent-verticilide, 1) is a potent inhibitor of mammalian RyR2, a cardiac calcium channel, and therefore a potential antiarrhythmic agent. Oddly, nat-verticilide does not inhibit RyR2. To further develop ent-verticilide as an antiarrhythmic, we explored potential SAR through systematic modification of the ester's functionality to both N-H and N-Me amides. The syntheses of these ent-verticilide-inspired analogs are detailed using a monomer-based platform enabled by enantioselective catalysis. Two analogs among 23 exhibited measurable reduction of calcium sparks in a functional assay of RyR2 activity. These findings illustrate the value of natural product-inspired therapeutic development, but the less-studied approach where the non-natural enantiomeric series harbors important SAR.
Collapse
Affiliation(s)
- Madelaine P Thorpe
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Daniel J Blackwell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37235, United States
| | - Bjorn C Knollmann
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37235, United States
| | - Jeffrey N Johnston
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
4
|
Gochman A, Do TQ, Kim K, Schwarz JA, Thorpe MP, Blackwell DJ, Ritschel PA, Smith AN, Rebbeck RT, Akers WS, Cornea RL, Laver DR, Johnston JN, Knollmann BC. ent-Verticilide B1 Inhibits Type 2 Ryanodine Receptor Channels and is Antiarrhythmic in Casq2 -/- Mice. Mol Pharmacol 2024; 105:194-201. [PMID: 38253398 PMCID: PMC10877729 DOI: 10.1124/molpharm.123.000752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Intracellular Ca2+ leak from cardiac ryanodine receptor (RyR2) is an established mechanism of sudden cardiac death (SCD), whereby dysregulated Ca2+ handling causes ventricular arrhythmias. We previously discovered the RyR2-selective inhibitor ent-(+)-verticilide (ent-1), a 24-membered cyclooligomeric depsipeptide that is the enantiomeric form of a natural product (nat-(-)-verticilide). Here, we examined its 18-membered ring-size oligomer (ent-verticilide B1; "ent-B1") in RyR2 single channel and [3H]ryanodine binding assays, and in Casq2 -/- cardiomyocytes and mice, a gene-targeted model of SCD. ent-B1 inhibited RyR2 single channels and RyR2-mediated spontaneous Ca2+ release in Casq2 -/- cardiomyocytes with sub-micromolar potency. ent-B1 was a partial RyR2 inhibitor, with maximal inhibitory efficacy of less than 50%. ent-B1 was stable in plasma, with a peak plasma concentration of 1460 ng/ml at 10 minutes and half-life of 45 minutes after intraperitoneal administration of 3 mg/kg in mice. In vivo, ent-B1 significantly reduced catecholamine-induced ventricular arrhythmias in Casq2 -/- mice in a dose-dependent manner. Hence, we have identified a novel chemical entity - ent-B1 - that preserves the mechanism of action of a hit compound and shows therapeutic efficacy. These findings strengthen RyR2 as an antiarrhythmic drug target and highlight the potential of investigating the mirror-image isomers of natural products to discover new therapeutics. SIGNIFICANCE STATEMENT: The cardiac ryanodine receptor (RyR2) is an untapped target in the stagnant field of antiarrhythmic drug development. We have confirmed RyR2 as an antiarrhythmic target in a mouse model of sudden cardiac death and shown the therapeutic efficacy of a second enantiomeric natural product.
Collapse
Affiliation(s)
- Aaron Gochman
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (A.G., T.Q.D. K.K., D.J.B., P.A.R., B.C.K.); Vanderbilt Department of Chemistry and Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee (M.P.T., A.N.S., J.N.J.); Pharmaceutical Sciences Research Center, Lipscomb University College of Pharmacy, Nashville, Tennessee (W.S.A.); Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (J.A.S., R.L.C., R.T.R.); and School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia (D.R.L.)
| | - Tri Q Do
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (A.G., T.Q.D. K.K., D.J.B., P.A.R., B.C.K.); Vanderbilt Department of Chemistry and Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee (M.P.T., A.N.S., J.N.J.); Pharmaceutical Sciences Research Center, Lipscomb University College of Pharmacy, Nashville, Tennessee (W.S.A.); Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (J.A.S., R.L.C., R.T.R.); and School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia (D.R.L.)
| | - Kyungsoo Kim
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (A.G., T.Q.D. K.K., D.J.B., P.A.R., B.C.K.); Vanderbilt Department of Chemistry and Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee (M.P.T., A.N.S., J.N.J.); Pharmaceutical Sciences Research Center, Lipscomb University College of Pharmacy, Nashville, Tennessee (W.S.A.); Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (J.A.S., R.L.C., R.T.R.); and School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia (D.R.L.)
| | - Jacob A Schwarz
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (A.G., T.Q.D. K.K., D.J.B., P.A.R., B.C.K.); Vanderbilt Department of Chemistry and Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee (M.P.T., A.N.S., J.N.J.); Pharmaceutical Sciences Research Center, Lipscomb University College of Pharmacy, Nashville, Tennessee (W.S.A.); Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (J.A.S., R.L.C., R.T.R.); and School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia (D.R.L.)
| | - Madelaine P Thorpe
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (A.G., T.Q.D. K.K., D.J.B., P.A.R., B.C.K.); Vanderbilt Department of Chemistry and Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee (M.P.T., A.N.S., J.N.J.); Pharmaceutical Sciences Research Center, Lipscomb University College of Pharmacy, Nashville, Tennessee (W.S.A.); Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (J.A.S., R.L.C., R.T.R.); and School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia (D.R.L.)
| | - Daniel J Blackwell
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (A.G., T.Q.D. K.K., D.J.B., P.A.R., B.C.K.); Vanderbilt Department of Chemistry and Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee (M.P.T., A.N.S., J.N.J.); Pharmaceutical Sciences Research Center, Lipscomb University College of Pharmacy, Nashville, Tennessee (W.S.A.); Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (J.A.S., R.L.C., R.T.R.); and School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia (D.R.L.)
| | - Paxton A Ritschel
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (A.G., T.Q.D. K.K., D.J.B., P.A.R., B.C.K.); Vanderbilt Department of Chemistry and Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee (M.P.T., A.N.S., J.N.J.); Pharmaceutical Sciences Research Center, Lipscomb University College of Pharmacy, Nashville, Tennessee (W.S.A.); Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (J.A.S., R.L.C., R.T.R.); and School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia (D.R.L.)
| | - Abigail N Smith
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (A.G., T.Q.D. K.K., D.J.B., P.A.R., B.C.K.); Vanderbilt Department of Chemistry and Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee (M.P.T., A.N.S., J.N.J.); Pharmaceutical Sciences Research Center, Lipscomb University College of Pharmacy, Nashville, Tennessee (W.S.A.); Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (J.A.S., R.L.C., R.T.R.); and School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia (D.R.L.)
| | - Robyn T Rebbeck
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (A.G., T.Q.D. K.K., D.J.B., P.A.R., B.C.K.); Vanderbilt Department of Chemistry and Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee (M.P.T., A.N.S., J.N.J.); Pharmaceutical Sciences Research Center, Lipscomb University College of Pharmacy, Nashville, Tennessee (W.S.A.); Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (J.A.S., R.L.C., R.T.R.); and School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia (D.R.L.)
| | - Wendell S Akers
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (A.G., T.Q.D. K.K., D.J.B., P.A.R., B.C.K.); Vanderbilt Department of Chemistry and Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee (M.P.T., A.N.S., J.N.J.); Pharmaceutical Sciences Research Center, Lipscomb University College of Pharmacy, Nashville, Tennessee (W.S.A.); Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (J.A.S., R.L.C., R.T.R.); and School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia (D.R.L.)
| | - Razvan L Cornea
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (A.G., T.Q.D. K.K., D.J.B., P.A.R., B.C.K.); Vanderbilt Department of Chemistry and Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee (M.P.T., A.N.S., J.N.J.); Pharmaceutical Sciences Research Center, Lipscomb University College of Pharmacy, Nashville, Tennessee (W.S.A.); Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (J.A.S., R.L.C., R.T.R.); and School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia (D.R.L.)
| | - Derek R Laver
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (A.G., T.Q.D. K.K., D.J.B., P.A.R., B.C.K.); Vanderbilt Department of Chemistry and Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee (M.P.T., A.N.S., J.N.J.); Pharmaceutical Sciences Research Center, Lipscomb University College of Pharmacy, Nashville, Tennessee (W.S.A.); Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (J.A.S., R.L.C., R.T.R.); and School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia (D.R.L.)
| | - Jeffrey N Johnston
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (A.G., T.Q.D. K.K., D.J.B., P.A.R., B.C.K.); Vanderbilt Department of Chemistry and Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee (M.P.T., A.N.S., J.N.J.); Pharmaceutical Sciences Research Center, Lipscomb University College of Pharmacy, Nashville, Tennessee (W.S.A.); Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (J.A.S., R.L.C., R.T.R.); and School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia (D.R.L.)
| | - Bjorn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (A.G., T.Q.D. K.K., D.J.B., P.A.R., B.C.K.); Vanderbilt Department of Chemistry and Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee (M.P.T., A.N.S., J.N.J.); Pharmaceutical Sciences Research Center, Lipscomb University College of Pharmacy, Nashville, Tennessee (W.S.A.); Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (J.A.S., R.L.C., R.T.R.); and School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia (D.R.L.)
| |
Collapse
|
5
|
Waddell HMM, Mereacre V, Alvarado FJ, Munro ML. Clustering properties of the cardiac ryanodine receptor in health and heart failure. J Mol Cell Cardiol 2023; 185:38-49. [PMID: 37890552 PMCID: PMC10717225 DOI: 10.1016/j.yjmcc.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/09/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
The cardiac ryanodine receptor (RyR2) is an intracellular Ca2+ release channel vital for the function of the heart. Physiologically, RyR2 is triggered to release Ca2+ from the sarcoplasmic reticulum (SR) which enables cardiac contraction; however, spontaneous Ca2+ leak from RyR2 has been implicated in the pathophysiology of heart failure (HF). RyR2 channels have been well documented to assemble into clusters within the SR membrane, with the organisation of RyR2 clusters recently gaining interest as a mechanism by which the occurrence of pathological Ca2+ leak is regulated, including in HF. In this review, we explain the terminology relating to key nanoscale RyR2 clustering properties as both single clusters and functionally grouped Ca2+ release units, with a focus on the advancements in super-resolution imaging approaches which have enabled the detailed study of cluster organisation. Further, we discuss proposed mechanisms for modulating RyR2 channel organisation and the debate regarding the potential impact of cluster organisation on Ca2+ leak activity. Finally, recent experimental evidence investigating the nanoscale remodelling and functional alterations of RyR2 clusters in HF is discussed with consideration of the clinical implications.
Collapse
Affiliation(s)
- Helen M M Waddell
- Department of Physiology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Valeria Mereacre
- Department of Physiology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Francisco J Alvarado
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Michelle L Munro
- Department of Physiology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
6
|
Takenaka M, Kodama M, Murayama T, Ishigami-Yuasa M, Mori S, Ishida R, Suzuki J, Kanemaru K, Sugihara M, Iino M, Miura A, Nishio H, Morimoto S, Kagechika H, Sakurai T, Kurebayashi N. Screening for Novel Type 2 Ryanodine Receptor Inhibitors by Endoplasmic Reticulum Ca 2+ Monitoring. Mol Pharmacol 2023; 104:275-286. [PMID: 37678938 DOI: 10.1124/molpharm.123.000720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
Type 2 ryanodine receptor (RyR2) is a Ca2+ release channel on the endoplasmic (ER)/sarcoplasmic reticulum that plays a central role in the excitation-contraction coupling in the heart. Hyperactivity of RyR2 has been linked to ventricular arrhythmias in patients with catecholaminergic polymorphic ventricular tachycardia and heart failure, where spontaneous Ca2+ release via hyperactivated RyR2 depolarizes diastolic membrane potential to induce triggered activity. In such cases, drugs that suppress RyR2 activity are expected to prevent the arrhythmias, but there is no clinically available RyR2 inhibitors at present. In this study, we searched for RyR2 inhibitors from a well-characterized compound library using a recently developed ER Ca2+-based assay, where the inhibition of RyR2 activity was detected by the increase in ER Ca2+ signals from R-CEPIA1er, a genetically encoded ER Ca2+ indicator, in RyR2-expressing HEK293 cells. By screening 1535 compounds in the library, we identified three compounds (chloroxylenol, methyl orsellinate, and riluzole) that greatly increased the ER Ca2+ signal. All of the three compounds suppressed spontaneous Ca2+ oscillations in RyR2-expressing HEK293 cells and correspondingly reduced the Ca2+-dependent [3H]ryanodine binding activity. In cardiomyocytes from RyR2-mutant mice, the three compounds effectively suppressed abnormal Ca2+ waves without substantial effects on the action-potential-induced Ca2+ transients. These results confirm that ER Ca2+-based screening is useful for identifying modulators of ER Ca2+ release channels and suggest that RyR2 inhibitors have potential to be developed as a new category of antiarrhythmic drugs. SIGNIFICANCE STATEMENT: We successfully identified three compounds having RyR2 inhibitory action from a well-characterized compound library using an endoplasmic reticulum Ca2+-based assay, and demonstrated that these compounds suppressed arrhythmogenic Ca2+ wave generation without substantially affecting physiological action-potential induced Ca2+ transients in cardiomyocytes. This study will facilitate the development of RyR2-specific inhibitors as a potential new class of drugs for life-threatening arrhythmias induced by hyperactivation of RyR2.
Collapse
Affiliation(s)
- Mai Takenaka
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| | - Masami Kodama
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| | - Takashi Murayama
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| | - Mari Ishigami-Yuasa
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| | - Shuichi Mori
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| | - Ryosuke Ishida
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| | - Junji Suzuki
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| | - Kazunori Kanemaru
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| | - Masami Sugihara
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| | - Masamitsu Iino
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| | - Aya Miura
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| | - Hajime Nishio
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| | - Sachio Morimoto
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| | - Hiroyuki Kagechika
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| | - Takashi Sakurai
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| | - Nagomi Kurebayashi
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| |
Collapse
|
7
|
Šeflová J, Schwarz JA, Smith AN, Svensson B, Blackwell DJ, Phillips TA, Nikolaienko R, Bovo E, Rebbeck RT, Zima AV, Thomas DD, Van Petegem F, Knollmann BC, Johnston JN, Robia SL, Cornea RL. RyR2 Binding of an Antiarrhythmic Cyclic Depsipeptide Mapped Using Confocal Fluorescence Lifetime Detection of FRET. ACS Chem Biol 2023; 18:2290-2299. [PMID: 37769131 PMCID: PMC11648969 DOI: 10.1021/acschembio.3c00376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Hyperactivity of cardiac sarcoplasmic reticulum (SR) ryanodine receptor (RyR2) Ca2+-release channels contributes to heart failure and arrhythmias. Reducing the RyR2 activity, particularly during cardiac relaxation (diastole), is a desirable therapeutic goal. We previously reported that the unnatural enantiomer (ent) of an insect-RyR activator, verticilide, inhibits porcine and mouse RyR2 at diastolic (nanomolar) Ca2+ and has in vivo efficacy against atrial and ventricular arrhythmia. To determine the ent-verticilide structural mode of action on RyR2 and guide its further development via medicinal chemistry structure-activity relationship studies, here, we used fluorescence lifetime (FLT)-measurements of Förster resonance energy transfer (FRET) in HEK293 cells expressing human RyR2. For these studies, we used an RyR-specific FRET molecular-toolkit and computational methods for trilateration (i.e., using distances to locate a point of interest). Multiexponential analysis of FLT-FRET measurements between four donor-labeled FKBP12.6 variants and acceptor-labeled ent-verticilide yielded distance relationships placing the acceptor probe at two candidate loci within the RyR2 cryo-EM map. One locus is within the Ry12 domain (at the corner periphery of the RyR2 tetrameric complex). The other locus is sandwiched at the interface between helical domain 1 and the SPRY3 domain. These findings document RyR2-target engagement by ent-verticilide, reveal new insight into the mechanism of action of this new class of RyR2-targeting drug candidate, and can serve as input in future computational determinations of the ent-verticilide binding site on RyR2 that will inform structure-activity studies for lead optimization.
Collapse
Affiliation(s)
- Jaroslava Šeflová
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois 60153, United States
| | - Jacob A Schwarz
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Abigail N Smith
- Department of Chemistry & Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Bengt Svensson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Daniel J Blackwell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Taylor A Phillips
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois 60153, United States
| | - Roman Nikolaienko
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois 60153, United States
| | - Elisa Bovo
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois 60153, United States
| | - Robyn T Rebbeck
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Aleksey V Zima
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois 60153, United States
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, Life Sciences Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Björn C Knollmann
- Department of Chemistry & Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jeffrey N Johnston
- Department of Chemistry & Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Seth L Robia
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois 60153, United States
| | - Răzvan L Cornea
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
8
|
George SA, Brennan-McLean JA, Trampel KA, Rytkin E, Faye NR, Knollmann BC, Efimov IR. Ryanodine receptor inhibition with acute dantrolene treatment reduces arrhythmia susceptibility in human hearts. Am J Physiol Heart Circ Physiol 2023; 325:H720-H728. [PMID: 37566110 DOI: 10.1152/ajpheart.00103.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Ryanodine receptor 2 (RyR2) hyperactivity is observed in structural heart diseases that are a result of ischemia or heart failure. It causes abnormal calcium handling and calcium leaks that cause metabolic, electrical, and mechanical dysfunction, which can trigger arrhythmias. Here, we tested the antiarrhythmic potential of dantrolene (RyR inhibitor) in human hearts. Human hearts not used in transplantation were obtained, and right ventricular outflow tract (RVOT) wedges and left ventricular (LV) slices were prepared. Pseudo-ECGs were recorded to determine premature ventricular contraction (PVC) incidences. Optical mapping was performed to determine arrhythmogenic substrates. After baseline optical recordings, tissues were treated with 1) isoproterenol (250 nM), 2) caffeine (200 mM), and 3) dantrolene (2 or 10 mM). Optical recordings were obtained after each treatment. Isoproterenol and caffeine treatment increased PVC incidence, whereas dantrolene reduced the PVC burden. Isoproterenol shortened action potential duration (APD) in the RV, RVOT, and LV regions and shortened calcium transient duration (CaTD) in the LV. Caffeine further shortened APD in the RV, did not modulate APD in the RVOT, and prolonged APD in the LV. In addition, in the LV, CaTD prolongation was also observed. More importantly, adding dantrolene did not alter APD in the RV or RVOT regions but produced a trend toward APD prolongation and significant CaTD prolongation in the LV, restoring these parameters to baseline values. In conclusions, dantrolene treatment suppresses triggers and reverses arrhythmogenic substrates in the human heart and could be a novel antiarrhythmic therapy in patients with structural heart disease.NEW & NOTEWORTHY Ryanodine receptor 2 hyperactivity is observed in structural heart diseases caused by ischemia or heart failure. It causes abnormal calcium leaks, which can trigger arrhythmias. To prevent arrhythmias, we applied dantrolene in human hearts ex vivo. Isoproterenol and caffeine treatment increased PVC incidence, whereas dantrolene reduced the PVC burden. Dantrolene treatment suppresses triggers and reverses arrhythmogenic substrates and could be a novel antiarrhythmic therapy in patients with structural heart disease.
Collapse
Affiliation(s)
- Sharon A George
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia, United States
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, United States
| | - Jaclyn A Brennan-McLean
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia, United States
| | - Katy A Trampel
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia, United States
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, United States
| | - Eric Rytkin
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia, United States
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, United States
| | - N Rokhaya Faye
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia, United States
| | - Bjorn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Igor R Efimov
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia, United States
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, United States
| |
Collapse
|
9
|
Henriquez E, Hernandez EA, Mundla SR, Wankhade DH, Saad M, Ketha SS, Penke Y, Martinez GC, Ahmed FS, Hussain MS. Catecholaminergic Polymorphic Ventricular Tachycardia and Gene Therapy: A Comprehensive Review of the Literature. Cureus 2023; 15:e47974. [PMID: 38034271 PMCID: PMC10686237 DOI: 10.7759/cureus.47974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited channelopathy. In this review, we summarize the epidemiology, pathophysiology, clinical characteristics, diagnostics, genetic mutations, standard treatment, and the emergence of potential gene therapy. This inherited cardiac arrhythmia presents in a bimodal distribution with no association between sex or ethnicity. Six different CPVT genes have been identified, however, most of the cases are related to a heterozygous, gain-of-function mutation on the ryanodine receptor-2 gene (RyR2) and calsequestrin-2 gene (CASQ2) that causes delayed after-depolarization. The diagnosis is clinically based, seen in patients presenting with syncope after exercise or stress-related emotions, as well as cardiac arrest with full recovery or even sudden cardiac death. Standard treatment relies on beta-blockers, with add-on therapy, flecainide, and cardiac sympathetic denervation as second-line treatments. An implantable cardioverter-defibrillator is indicated for patients who have suffered a cardiac arrest. Potential gene therapy has emerged in the last 20 years and accelerated because of associated viral vector application in increasing the efficiency of prolonged cardiac gene expression. Nevertheless, human trials for gene therapy for CPVT have been limited as the population is rare, and an excessive amount of funding is required.
Collapse
Affiliation(s)
- Elvis Henriquez
- Miscellaneous, Facultad de Medicina, Universidad de Ciencias Medicas, Las Tunas, CUB
| | - Edwin A Hernandez
- Miscellaneous, Faculty of Medicine, Universidad de El Salvador, San Salvador, SLV
| | - Sravya R Mundla
- Internal Medicine, Apollo Institute of Medical Sciences and Research, Hyderabad, IND
| | | | - Muhammad Saad
- Internal Medicine, Fatima Memorial College (FMH) of Medicine and Dentistry, Lahore, PAK
| | - Sagar S Ketha
- Internal Medicine, Government Medical College, Srikakulam, IND
| | - Yasaswini Penke
- Internal Medicine, Government Medical College, Srikakulam, IND
| | - Gabriela C Martinez
- Internal Medicine, Faculty of Medicine, Universidad Nacional Autonoma de Honduras, San Pedro Sula, HND
| | - Faiza S Ahmed
- Internal Medicine, Advocate Lutheran General Hospital, Park Ridge, USA
| | | |
Collapse
|
10
|
Dries E, Gilbert G, Roderick HL, Sipido KR. The ryanodine receptor microdomain in cardiomyocytes. Cell Calcium 2023; 114:102769. [PMID: 37390591 DOI: 10.1016/j.ceca.2023.102769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023]
Abstract
The ryanodine receptor type 2 (RyR) is a key player in Ca2+ handling during excitation-contraction coupling. During each heartbeat, RyR channels are responsible for linking the action potential with the contractile machinery of the cardiomyocyte by releasing Ca2+ from the sarcoplasmic reticulum. RyR function is fine-tuned by associated signalling molecules, arrangement in clusters and subcellular localization. These parameters together define RyR function within microdomains and are subject to disease remodelling. This review describes the latest findings on RyR microdomain organization, the alterations with disease which result in increased subcellular heterogeneity and emergence of microdomains with enhanced arrhythmogenic potential, and presents novel technologies that guide future research to study and target RyR channels within specific microdomains.
Collapse
Affiliation(s)
- Eef Dries
- Lab of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.
| | - Guillaume Gilbert
- Lab of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Laboratoire ORPHY EA 4324, Université de Brest, Brest, France
| | - H Llewelyn Roderick
- Lab of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Karin R Sipido
- Lab of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Schmeckpeper J, Kim K, George SA, Blackwell DJ, Brennan JA, Efimov IR, Knollmann BC. RyR2 inhibition with dantrolene is antiarrhythmic, prevents further pathological remodeling, and improves cardiac function in chronic ischemic heart disease. J Mol Cell Cardiol 2023; 181:67-78. [PMID: 37285929 PMCID: PMC10526741 DOI: 10.1016/j.yjmcc.2023.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/30/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
Diastolic Ca2+ leak due to cardiac ryanodine receptor (RyR2) hyperactivity has been widely documented in chronic ischemic heart disease (CIHD) and may contribute to ventricular tachycardia (VT) risk and progressive left-ventricular (LV) remodeling. Here we test the hypothesis that targeting RyR2 hyperactivity can suppress VT inducibility and progressive heart failure in CIHD by the RyR2 inhibitor dantrolene. METHODS AND RESULTS: CIHD was induced in C57BL/6 J mice by left coronary artery ligation. Four weeks later, mice were randomized to either acute or chronic (6 weeks via implanted osmotic pump) treatment with dantrolene or vehicle. VT inducibility was assessed by programmed stimulation in vivo and in isolated hearts. Electrical substrate remodeling was assessed by optical mapping. Ca2+ sparks and spontaneous Ca2+ releases were measured in isolated cardiomyocytes. Cardiac remodeling was quantified by histology and qRT-PCR. Cardiac function and contractility were measured using echocardiography. Compared to vehicle, acute dantrolene treatment reduced VT inducibility. Optical mapping demonstrated reentrant VT prevention by dantrolene, which normalized the shortened refractory period (VERP) and prolonged action potential duration (APD), preventing APD alternans. In single CIHD cardiomyocytes, dantrolene normalized RyR2 hyperactivity and prevented spontaneous intracellular Ca2+ release. Chronic dantrolene treatment not only reduced VT inducibility but also reduced peri-infarct fibrosis and prevented further progression of LV dysfunction in CIHD mice. CONCLUSIONS: RyR2 hyperactivity plays a mechanistic role for VT risk, post-infarct remodeling, and contractile dysfunction in CIHD mice. Our data provide proof of concept for the anti-arrhythmic and anti-remodeling efficacy of dantrolene in CIHD.
Collapse
Affiliation(s)
- Jeffrey Schmeckpeper
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kyungsoo Kim
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sharon A George
- Department of Biomedical Engineering, the George Washington University, Washington DC, USA; Department of Biomedical Engineering, Northwestern University, Chicago, IL, USA
| | - Daniel J Blackwell
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jaclyn A Brennan
- Department of Biomedical Engineering, the George Washington University, Washington DC, USA
| | - Igor R Efimov
- Department of Biomedical Engineering, the George Washington University, Washington DC, USA; Department of Biomedical Engineering, Northwestern University, Chicago, IL, USA
| | - Bjorn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
12
|
Gochman A, Do TQ, Kim K, Schwarz JA, Thorpe MP, Blackwell DJ, Smith AN, Akers WS, Cornea RL, Laver DR, Johnston JN, Knollmann BC. ent -Verticilide B1 inhibits type 2 ryanodine receptor channels and is antiarrhythmic in Casq2-/- mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547578. [PMID: 37461611 PMCID: PMC10349981 DOI: 10.1101/2023.07.03.547578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Ca 2+ leak from cardiac ryanodine receptor (RyR2) is an established mechanism of sudden cardiac death (SCD), whereby dysregulated Ca 2+ handling causes ventricular arrhythmias. We previously discovered the RyR2-selective inhibitor ent- (+)-verticilide ( ent -1), a 24-membered cyclooligomeric depsipeptide that is the enantiomeric form of a natural product ( nat -(-)-verticilide). Here, we examined its 18-membered ring-size oligomer ( ent -verticilide B1; " ent -B1") in single RyR2 channel assays, [ 3 H]ryanodine binding assays, and in Casq2 -/- cardiomyocytes and mice, a gene-targeted model of SCD. ent -B1 inhibited RyR2 single-channels and [ 3 H]ryanodine binding with low micromolar potency, and RyR2-mediated spontaneous Ca 2+ release in Casq2-/- cardiomyocytes with sub-micromolar potency. ent -B1 was a partial RyR2 inhibitor, with maximal inhibitory efficacy of less than 50%. ent -B1 was stable in plasma, with a peak plasma concentration of 1460 ng/ml at 10 min and half-life of 45 min after intraperitoneal administration of 3 mg/kg in mice. Both 3 mg/kg and 30 mg/kg ent -B1 significantly reduced catecholamine-induced ventricular arrhythmia in Casq2-/- mice. Hence, we have identified a novel chemical entity - ent -B1 - that preserves the mechanism of action of a hit compound and shows therapeutic efficacy. These findings strengthen RyR2 as an antiarrhythmic drug target and highlight the potential of investigating the mirror-image isomers of natural products to discover new therapeutics. Significance statement The cardiac ryanodine receptor (RyR2) is an untapped target in the stagnant field of antiarrhythmic drug development. We have confirmed RyR2 as an antiarrhythmic target in a mouse model of sudden cardiac death and shown the therapeutic efficacy of a second enantiomeric natural product.
Collapse
|
13
|
Kim K, Blackwell DJ, Yuen SL, Thorpe MP, Johnston JN, Cornea RL, Knollmann BC. The selective RyR2 inhibitor ent-verticilide suppresses atrial fibrillation susceptibility caused by Pitx2 deficiency. J Mol Cell Cardiol 2023; 180:1-9. [PMID: 37080450 PMCID: PMC10330243 DOI: 10.1016/j.yjmcc.2023.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/25/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia and a major cause of stroke and morbidity. The strongest genetic risk factors for AF in humans are variants on chromosome 4q25, near the paired-like homeobox transcription factor 2 gene PITX2. Although mice deficient in Pitx2 (Pitx2+/-) have increased AF susceptibility, the mechanism remains controversial. Recent evidence has implicated hyperactivation of the cardiac ryanodine receptor (RyR2) in Pitx2 deficiency, which may be associated with AF susceptibility. We investigated pacing-induced AF susceptibility and spontaneous Ca2+ release events in Pitx2 haploinsufficient (+/-) mice and isolated atrial myocytes to test the hypothesis that hyperactivity of RyR2 increases susceptibility to AF, which can be prevented by a potent and selective RyR2 channel inhibitor, ent-verticilide. Compared with littermate wild-type Pitx2+/+, the frequency of Ca2+ sparks and spontaneous Ca2+ release events increased in permeabilized and intact atrial myocytes from Pitx2+/- mice. Atrial burst pacing consistently increased the incidence and duration of AF in Pitx2+/- mice. The RyR2 inhibitor ent-verticilide significantly reduced the frequency of spontaneous Ca2+ release in intact atrial myocytes and attenuated AF susceptibility with reduced AF incidence and duration. Our data demonstrate that RyR2 hyperactivity enhances SR Ca2+ leak and AF inducibility in Pitx2+/- mice via abnormal Ca2+ handling. Therapeutic targeting of hyperactive RyR2 in AF using ent-verticilide may be a viable mechanism-based approach to treat atrial arrhythmias caused by Pitx2 deficiency.
Collapse
Affiliation(s)
- Kyungsoo Kim
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel J Blackwell
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Samantha L Yuen
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Madelaine P Thorpe
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Jeffrey N Johnston
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Razvan L Cornea
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Björn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
14
|
Przybylski R, Abrams DJ. Current management of inherited arrhythmia syndromes associated with the cardiac ryanodine receptor. Curr Opin Cardiol 2023; 38:390-395. [PMID: 37016946 DOI: 10.1097/hco.0000000000001051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
PURPOSE OF REVIEW Gain-of-function variants in the gene encoding the cardiac ryanodine receptor ( RYR2 ) are associated with catecholaminergic polymorphic ventricular tachycardia (CPVT). The exercise stress test (EST) has long been fundamental in diagnosis and management, but recent work has further explored its role. A new entity termed calcium release deficiency syndrome (CRDS) has been associated with loss-of-function RYR2 variants and a different arrhythmic phenotype. RECENT FINDINGS Standard EST is not perfectly reproducible with regards to provocation of arrhythmia in CPVT. A newly described burst EST protocol may be more sensitive in this regard. Nadolol is the most effective beta blocker in CPVT, though arrhythmic events remain frequent and dual therapy with flecainide and/or left cardiac sympathetic denervation may add protection. A recent report renews debate regarding the use of implantable defibrillator therapy in CPVT. CRDS is characterized by later age of presentation, normal/near normal EST, and ventricular arrhythmia induced by a novel ventricular stimulation protocol. SUMMARY Burst EST may aid in the diagnosis and management of CPVT. Nadolol is the preferred beta blocker in CPVT, and consideration should be given to early dual therapy. CRDS should be suspected in patients with arrhythmic events, rare RYR2 variants, and a phenotype inconsistent with CPVT.
Collapse
Affiliation(s)
- Robert Przybylski
- Department of Cardiology, Center for Cardiovascular Genetics, Boston Children's Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
15
|
Nielsen MS, van Opbergen CJM, van Veen TAB, Delmar M. The intercalated disc: a unique organelle for electromechanical synchrony in cardiomyocytes. Physiol Rev 2023; 103:2271-2319. [PMID: 36731030 PMCID: PMC10191137 DOI: 10.1152/physrev.00021.2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
The intercalated disc (ID) is a highly specialized structure that connects cardiomyocytes via mechanical and electrical junctions. Although described in some detail by light microscopy in the 19th century, it was in 1966 that electron microscopy images showed that the ID represented apposing cell borders and provided detailed insight into the complex ID nanostructure. Since then, much has been learned about the ID and its molecular composition, and it has become evident that a large number of proteins, not all of them involved in direct cell-to-cell coupling via mechanical or gap junctions, reside at the ID. Furthermore, an increasing number of functional interactions between ID components are emerging, leading to the concept that the ID is not the sum of isolated molecular silos but an interacting molecular complex, an "organelle" where components work in concert to bring about electrical and mechanical synchrony. The aim of the present review is to give a short historical account of the ID's discovery and an updated overview of its composition and organization, followed by a discussion of the physiological implications of the ID architecture and the local intermolecular interactions. The latter will focus on both the importance of normal conduction of cardiac action potentials as well as the impact on the pathophysiology of arrhythmias.
Collapse
Affiliation(s)
- Morten S Nielsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chantal J M van Opbergen
- The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine, New York, New York, United States
| | - Toon A B van Veen
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mario Delmar
- The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine, New York, New York, United States
| |
Collapse
|
16
|
Steinberg C, Roston TM, van der Werf C, Sanatani S, Chen SRW, Wilde AAM, Krahn AD. RYR2-ryanodinopathies: from calcium overload to calcium deficiency. Europace 2023; 25:euad156. [PMID: 37387319 PMCID: PMC10311407 DOI: 10.1093/europace/euad156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/02/2023] [Indexed: 07/01/2023] Open
Abstract
The sarcoplasmatic reticulum (SR) cardiac ryanodine receptor/calcium release channel RyR2 is an essential regulator of cardiac excitation-contraction coupling and intracellular calcium homeostasis. Mutations of the RYR2 are the cause of rare, potentially lethal inherited arrhythmia disorders. Catecholaminergic polymorphic ventricular tachycardia (CPVT) was first described more than 20 years ago and is the most common and most extensively studied cardiac ryanodinopathy. Over time, other distinct inherited arrhythmia syndromes have been related to abnormal RyR2 function. In addition to CPVT, there are at least two other distinct RYR2-ryanodinopathies that differ mechanistically and phenotypically from CPVT: RYR2 exon-3 deletion syndrome and the recently identified calcium release deficiency syndrome (CRDS). The pathophysiology of the different cardiac ryanodinopathies is characterized by complex mechanisms resulting in excessive spontaneous SR calcium release or SR calcium release deficiency. While the vast majority of CPVT cases are related to gain-of-function variants of the RyR2 protein, the recently identified CRDS is linked to RyR2 loss-of-function variants. The increasing number of these cardiac 'ryanodinopathies' reflects the complexity of RYR2-related cardiogenetic disorders and represents an ongoing challenge for clinicians. This state-of-the-art review summarizes our contemporary understanding of RYR2-related inherited arrhythmia disorders and provides a systematic and comprehensive description of the distinct cardiac ryanodinopathies discussing clinical aspects and molecular insights. Accurate identification of the underlying type of cardiac ryanodinopathy is essential for the clinical management of affected patients and their families.
Collapse
Affiliation(s)
- Christian Steinberg
- Institut universitaire de cardiologie et pneumologie de Québec, Laval University, 2725, Chemin Ste-Foy, Quebec G1V 4G5, Canada
| | - Thomas M Roston
- Centre for Cardiovascular Innovation, Division of Cardiology, St. Paul’s Hospital, University of British Columbia, 211-1033 Davie Street, Vancouver, BC, V6E 1M7, Canada
| | - Christian van der Werf
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, University of Amsterdam, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Shubhayan Sanatani
- Division of Cardiology, Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - S R Wayne Chen
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Calgary, Canada
| | - Arthur A M Wilde
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, University of Amsterdam, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Andrew D Krahn
- Centre for Cardiovascular Innovation, Division of Cardiology, St. Paul’s Hospital, University of British Columbia, 211-1033 Davie Street, Vancouver, BC, V6E 1M7, Canada
| |
Collapse
|
17
|
Blackwell DJ, Smith AN, Do T, Gochman A, Schmeckpeper J, Hopkins CR, Akers WS, Johnston JN, Knollmann BC. In Vivo Pharmacokinetic and Pharmacodynamic Properties of the Antiarrhythmic Molecule ent-Verticilide. J Pharmacol Exp Ther 2023; 385:205-213. [PMID: 36894328 PMCID: PMC10201578 DOI: 10.1124/jpet.122.001455] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
The unnatural verticilide enantiomer (ent-verticilide) is a selective and potent inhibitor of cardiac ryanodine receptor (RyR2) calcium release channels and exhibits antiarrhythmic activity in a murine model of catecholaminergic polymorphic ventricular tachycardia (CPVT). To determine verticilide's pharmacokinetic and pharmacodynamic properties in vivo, we developed a bioassay to measure nat- and ent-verticilide in murine plasma and correlated plasma concentrations with antiarrhythmic efficacy in a mouse model of CPVT. nat-Verticilide rapidly degraded in plasma in vitro, showing >95% degradation within 5 minutes, whereas ent-verticilide showed <1% degradation over 6 hours. Plasma was collected from mice following intraperitoneal administration of ent-verticilide at two doses (3 mg/kg, 30 mg/kg). Peak C max and area under the plasma-concentration time curve (AUC) scaled proportionally to dose, and the half-life was 6.9 hours for the 3-mg/kg dose and 6.4 hours for the 30-mg/kg dose. Antiarrhythmic efficacy was examined using a catecholamine challenge protocol at time points ranging from 5 to 1440 minutes after intraperitoneal dosing. ent-Verticilide inhibited ventricular arrhythmias as early as 7 minutes after administration in a concentration-dependent manner, with an estimated potency (IC50) of 266 ng/ml (312 nM) and an estimated maximum inhibitory effect of 93.5%. Unlike the US Food and Drug Administration-approved pan-RyR blocker dantrolene, the RyR2-selective blocker ent-verticilide (30 mg/kg) did not reduce skeletal muscle strength in vivo. We conclude that ent-verticilide has favorable pharmacokinetic properties and reduces ventricular arrhythmias with an estimated potency in the nanomolar range, warranting further drug development. SIGNIFICANCE STATEMENT: ent-Verticilide has therapeutic potential to treat cardiac arrhythmias, but little is known about its pharmacological profile in vivo. The primary purpose of this study is to determine the systemic exposure and pharmacokinetics of ent-verticilide in mice and estimate its efficacy and potency in vivo. The current work suggests ent-verticilide has favorable pharmacokinetic properties and reduces ventricular arrhythmias with an estimated potency in the nanomolar range, warranting further drug development.
Collapse
Affiliation(s)
- Daniel J Blackwell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (D.J.B., J.S., B.C.K.); Departments of Chemistry (A.N.S., J.N.J.) and Pharmacology (A.G., W.S.A), and Vanderbilt Institute of Chemical Biology (A.N.S., J.N.J.), Vanderbilt University, Nashville, Tennessee; Pharmaceutical Sciences Research Center, Lipscomb University, Nashville, Tennessee (T.D., W.S.A); and Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Abigail N Smith
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (D.J.B., J.S., B.C.K.); Departments of Chemistry (A.N.S., J.N.J.) and Pharmacology (A.G., W.S.A), and Vanderbilt Institute of Chemical Biology (A.N.S., J.N.J.), Vanderbilt University, Nashville, Tennessee; Pharmaceutical Sciences Research Center, Lipscomb University, Nashville, Tennessee (T.D., W.S.A); and Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Tri Do
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (D.J.B., J.S., B.C.K.); Departments of Chemistry (A.N.S., J.N.J.) and Pharmacology (A.G., W.S.A), and Vanderbilt Institute of Chemical Biology (A.N.S., J.N.J.), Vanderbilt University, Nashville, Tennessee; Pharmaceutical Sciences Research Center, Lipscomb University, Nashville, Tennessee (T.D., W.S.A); and Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Aaron Gochman
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (D.J.B., J.S., B.C.K.); Departments of Chemistry (A.N.S., J.N.J.) and Pharmacology (A.G., W.S.A), and Vanderbilt Institute of Chemical Biology (A.N.S., J.N.J.), Vanderbilt University, Nashville, Tennessee; Pharmaceutical Sciences Research Center, Lipscomb University, Nashville, Tennessee (T.D., W.S.A); and Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Jeffrey Schmeckpeper
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (D.J.B., J.S., B.C.K.); Departments of Chemistry (A.N.S., J.N.J.) and Pharmacology (A.G., W.S.A), and Vanderbilt Institute of Chemical Biology (A.N.S., J.N.J.), Vanderbilt University, Nashville, Tennessee; Pharmaceutical Sciences Research Center, Lipscomb University, Nashville, Tennessee (T.D., W.S.A); and Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Corey R Hopkins
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (D.J.B., J.S., B.C.K.); Departments of Chemistry (A.N.S., J.N.J.) and Pharmacology (A.G., W.S.A), and Vanderbilt Institute of Chemical Biology (A.N.S., J.N.J.), Vanderbilt University, Nashville, Tennessee; Pharmaceutical Sciences Research Center, Lipscomb University, Nashville, Tennessee (T.D., W.S.A); and Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Wendell S Akers
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (D.J.B., J.S., B.C.K.); Departments of Chemistry (A.N.S., J.N.J.) and Pharmacology (A.G., W.S.A), and Vanderbilt Institute of Chemical Biology (A.N.S., J.N.J.), Vanderbilt University, Nashville, Tennessee; Pharmaceutical Sciences Research Center, Lipscomb University, Nashville, Tennessee (T.D., W.S.A); and Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Jeffrey N Johnston
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (D.J.B., J.S., B.C.K.); Departments of Chemistry (A.N.S., J.N.J.) and Pharmacology (A.G., W.S.A), and Vanderbilt Institute of Chemical Biology (A.N.S., J.N.J.), Vanderbilt University, Nashville, Tennessee; Pharmaceutical Sciences Research Center, Lipscomb University, Nashville, Tennessee (T.D., W.S.A); and Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| | - Bjorn C Knollmann
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (D.J.B., J.S., B.C.K.); Departments of Chemistry (A.N.S., J.N.J.) and Pharmacology (A.G., W.S.A), and Vanderbilt Institute of Chemical Biology (A.N.S., J.N.J.), Vanderbilt University, Nashville, Tennessee; Pharmaceutical Sciences Research Center, Lipscomb University, Nashville, Tennessee (T.D., W.S.A); and Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.)
| |
Collapse
|
18
|
Bkaily G, Jacques D. Calcium Homeostasis, Transporters, and Blockers in Health and Diseases of the Cardiovascular System. Int J Mol Sci 2023; 24:ijms24108803. [PMID: 37240147 DOI: 10.3390/ijms24108803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Calcium is a highly positively charged ionic species. It regulates all cell types' functions and is an important second messenger that controls and triggers several mechanisms, including membrane stabilization, permeability, contraction, secretion, mitosis, intercellular communications, and in the activation of kinases and gene expression. Therefore, controlling calcium transport and its intracellular homeostasis in physiology leads to the healthy functioning of the biological system. However, abnormal extracellular and intracellular calcium homeostasis leads to cardiovascular, skeletal, immune, secretory diseases, and cancer. Therefore, the pharmacological control of calcium influx directly via calcium channels and exchangers and its outflow via calcium pumps and uptake by the ER/SR are crucial in treating calcium transport remodeling in pathology. Here, we mainly focused on selective calcium transporters and blockers in the cardiovascular system.
Collapse
Affiliation(s)
- Ghassan Bkaily
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Danielle Jacques
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
19
|
MATSUKAWA HIROYUKI, MURAYAMA TAKASHI. Development of Ryanodine Receptor (RyR) Inhibitors for Skeletal Muscle and Heart Diseases. JUNTENDO IJI ZASSHI = JUNTENDO MEDICAL JOURNAL 2023; 69:180-187. [PMID: 38855953 PMCID: PMC11153067 DOI: 10.14789/jmj.jmj22-0045-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 06/11/2024]
Abstract
Ryanodine receptors (RyR) are intracellular calcium (Ca2+) release channels on the sarcoplasmic reticulum of skeletal and cardiac muscles that play a central role in excitation-contraction coupling. Genetic mutations or posttranslational modifications of RyR causes hyperactivation of the channel, leading to various skeletal muscle and heart diseases. Currently, no specific treatments exist for most RyR-associated diseases. Recently, high-throughput screening (HTS) assays have been developed to identify potential candidates for treating RyR-related muscle diseases. These assays have successfully identified several compounds as novel RyR inhibitors, which are effective in animal models. In this review, we will focus on recent progress in HTS assays and discuss future perspectives of these promising approaches.
Collapse
Affiliation(s)
| | - TAKASHI MURAYAMA
- Corresponding author: Takashi Murayama, Department of Pharmacology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan, TEL: +81-3-5802-1035 E-mail: Research of the 4th Alumni Scientific Award for Medical Student, Juntendo University School of Medicine
| |
Collapse
|
20
|
Smith A, Thorpe MP, Blackwell DJ, Batiste SM, Hopkins CR, Schley ND, Knollmann BC, Johnston JN. Structure-Activity Relationships for the N-Me- Versus N-H-Amide Modification to Macrocyclic ent-Verticilide Antiarrhythmics. ACS Med Chem Lett 2022; 13:1755-1762. [PMID: 36385927 PMCID: PMC9661706 DOI: 10.1021/acsmedchemlett.2c00377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/29/2022] [Indexed: 11/28/2022] Open
Abstract
The synthesis of all N-Me and N-H analogues of ent-verticilide is described, enabling a structure-activity relationship study based on cardiac ryanodine receptor (RyR2) calcium ion channel inhibition. The use of permeabilized cardiomyocytes allowed us to correlate the degree of N-methylation with activity without concern for changes in passive membrane permeability that these modifications can cause. A key hypothesis was that the minimal pharmacophore may be repeated in this cyclic oligomeric octadepsipeptide (a 24-membered macrocycle), opening the possibility that target engagement will not necessarily be lost with a single N-Me → N-H modification. The effect in the corresponding 18-membered ring oligomer (ent-verticilide B1) was also investigated. We report here that a high degree of N-methyl amide content is critical for activity in the ent-verticilide series but not entirely so for the ent-verticilide B1 series.
Collapse
Affiliation(s)
- Abigail
N. Smith
- Department
of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville 37235, Tennessee, United States
| | - Madelaine P. Thorpe
- Department
of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville 37235, Tennessee, United States
| | - Daniel J. Blackwell
- Department
of Medicine, Vanderbilt University Medical
Center, Nashville 37235, Tennessee, United States
| | - Suzanne M. Batiste
- Department
of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville 37235, Tennessee, United States
| | - Corey R. Hopkins
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha 68198, Nebraska, United States
| | - Nathan D. Schley
- Department
of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville 37235, Tennessee, United States
| | - Bjorn C. Knollmann
- Department
of Medicine, Vanderbilt University Medical
Center, Nashville 37235, Tennessee, United States
| | - Jeffrey N. Johnston
- Department
of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville 37235, Tennessee, United States
| |
Collapse
|
21
|
Shoemaker MB, Yoneda ZT, Crawford DM, Akers WS, Richardson T, Montgomery JA, Phillips S, Shyr Y, Saavedra P, Estrada J, Kanagasundram A, Shen ST, Michaud G, Crossley G, Ellis CR, Knollmann BC. A Mechanistic Clinical Trial Using ( R)- Versus (S)-Propafenone to Test RyR2 (Ryanodine Receptor) Inhibition for the Prevention of Atrial Fibrillation Induction. Circ Arrhythm Electrophysiol 2022; 15:e010713. [PMID: 36166682 PMCID: PMC9588733 DOI: 10.1161/circep.121.010713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 08/16/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Experimental data suggest ryanodine receptor-mediated intracellular calcium leak is a mechanism for atrial fibrillation (AF), but evidence in humans is still needed. Propafenone is composed of two enantiomers that are equally potent sodium-channel blockers; however, (R)-propafenone is an ryanodine receptor inhibitor whereas (S)-propafenone is not. This study tested the hypothesis that ryanodine receptor inhibition with (R)-propafenone prevents induction of AF compared to (S)-propafenone or placebo in patients referred for AF ablation. METHODS Participants were randomized 4:4:1 to a one-time intravenous dose of (R)-propafenone, (S)-propafenone, or placebo. The study drug was given at the start of the procedure and an AF induction protocol using rapid atrial pacing was performed before ablation. The primary endpoint was 30 s of AF or atrial flutter. RESULTS A total of 193 participants were enrolled and 165 (85%) completed the study protocol (median age: 63 years, 58% male, 95% paroxysmal AF). Sustained AF and/or atrial flutter was induced in 60 participants (84.5%) receiving (R)-propafenone, 60 (80.0%) receiving (S)-propafenone group, and 12 (63.2%) receiving placebo. Atrial flutter occurred significantly more often in the (R)-propafenone (N=23, 32.4%) and (S)-propafenone (N=26, 34.7%) groups compared to placebo (N=1, 5.3%, P=0.029). There was no significant difference between (R)-propafenone and (S)-propafenone for the primary outcome of AF and/or atrial flutter induction in univariable (P=0.522) or multivariable analysis (P=0.199, adjusted for age and serum drug level). CONCLUSIONS There is no difference in AF inducibility between (R)-propafenone and (S)-propafenone at clinically relevant concentrations. These results are confounded by a high rate of inducible atrial flutter due to sodium-channel blockade. REGISTRATION https://clinicaltrials.gov; Unique Identifier: NCT02710669.
Collapse
Affiliation(s)
- M. Benjamin Shoemaker
- Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center
| | - Zachary T. Yoneda
- Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center
| | - Diane M. Crawford
- Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center
| | - Wendell S. Akers
- Department of Pharmacology, Vanderbilt University School of Medicine
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy, Nashville, TN
| | - Travis Richardson
- Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center
| | - Jay A. Montgomery
- Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center
| | - Sharon Phillips
- Department of Biostatistics, Vanderbilt University School of Medicine
| | - Yu Shyr
- Department of Biostatistics, Vanderbilt University School of Medicine
| | - Pablo Saavedra
- Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center
| | - J.C. Estrada
- Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center
| | - Arvindh Kanagasundram
- Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center
| | - Sharon T. Shen
- Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center
| | - Greg Michaud
- Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center
| | - George Crossley
- Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center
| | - Christopher R. Ellis
- Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center
| | | |
Collapse
|
22
|
Krahn AD, Tfelt-Hansen J, Tadros R, Steinberg C, Semsarian C, Han HC. Latent Causes of Sudden Cardiac Arrest. JACC Clin Electrophysiol 2022; 8:806-821. [PMID: 35738861 DOI: 10.1016/j.jacep.2021.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/09/2021] [Accepted: 12/29/2021] [Indexed: 11/30/2022]
Abstract
Inherited arrhythmia syndromes are a common cause of apparently unexplained cardiac arrest or sudden cardiac death. These include long QT syndrome and Brugada syndrome, with a well-recognized phenotype in most patients with sufficiently severe disease to lead to cardiac arrest. Less common and typically less apparent conditions that may not be readily evident include catecholaminergic polymorphic ventricular tachycardia, short QT syndrome and early repolarization syndrome. In cardiac arrest patients whose extensive testing does not reveal an underlying etiology, a diagnosis of idiopathic ventricular fibrillation or short-coupled ventricular fibrillation is assigned. This review summarizes our current understanding of the less common inherited arrhythmia syndromes and provides clinicians with a practical approach to diagnosis and management.
Collapse
Affiliation(s)
- Andrew D Krahn
- Center for Cardiovascular Innovation, Heart Rhythm Services, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Jacob Tfelt-Hansen
- The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rafik Tadros
- Cardiovascular Genetics Center, Montreal Heart Institute, Department of Medicine, Université de Montréal, Montreal, Québec, Canada
| | - Christian Steinberg
- Institut universitaire de cardiologie et pneumologie de Québec (IUCPQ-UL), Laval University, Inherited Arrhythmia Services, Départment of Cardiology and Cardiac Surgery, Québec, Canada
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Hui-Chen Han
- Center for Cardiovascular Innovation, Heart Rhythm Services, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada; Victorian Heart Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
23
|
Hadiatullah H, He Z, Yuchi Z. Structural Insight Into Ryanodine Receptor Channelopathies. Front Pharmacol 2022; 13:897494. [PMID: 35677449 PMCID: PMC9168041 DOI: 10.3389/fphar.2022.897494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022] Open
Abstract
The ryanodine receptors (RyRs) are large cation-selective ligand-gated channels that are expressed in the sarcoplasmic reticulum (SR) membrane. They mediate the controlled release of Ca2+ from SR and play an important role in many cellular processes. The mutations in RyRs are associated with several skeletal muscle and cardiac conditions, including malignant hyperthermia (MH), central core disease (CCD), catecholaminergic polymorphic ventricular tachycardia (CPVT), and arrhythmogenic right ventricular dysplasia (ARVD). Recent breakthroughs in structural biology including cryo-electron microscopy (EM) and X-ray crystallography allowed the determination of a number of near-atomic structures of RyRs, including wildtype and mutant structures as well as the structures in complex with different modulating molecules. This allows us to comprehend the physiological gating and regulatory mechanisms of RyRs and the underlying pathological mechanisms of the disease-causing mutations. In this review, based on the insights gained from the available high-resolution structures of RyRs, we address several questions: 1) what are the gating mechanisms of different RyR isoforms; 2) how RyRs are regulated by multiple channel modulators, including ions, small molecules, and regulatory proteins; 3) how do disease-causing mutations affect the structure and function of RyRs; 4) how can these structural information aid in the diagnosis of the related diseases and the development of pharmacological therapies.
Collapse
Affiliation(s)
- Hadiatullah Hadiatullah
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhao He
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- *Correspondence: Zhiguang Yuchi,
| |
Collapse
|
24
|
van Opbergen CJM, Bagwan N, Maurya SR, Kim JC, Smith AN, Blackwell DJ, Johnston JN, Knollmann BC, Cerrone M, Lundby A, Delmar M. Exercise Causes Arrhythmogenic Remodeling of Intracellular Calcium Dynamics in Plakophilin-2-Deficient Hearts. Circulation 2022; 145:1480-1496. [PMID: 35491884 PMCID: PMC9086182 DOI: 10.1161/circulationaha.121.057757] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/18/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Exercise training, and catecholaminergic stimulation, increase the incidence of arrhythmic events in patients affected with arrhythmogenic right ventricular cardiomyopathy correlated with plakophilin-2 (PKP2) mutations. Separate data show that reduced abundance of PKP2 leads to dysregulation of intracellular Ca2+ (Ca2+i) homeostasis. Here, we study the relation between excercise, catecholaminergic stimulation, Ca2+i homeostasis, and arrhythmogenesis in PKP2-deficient murine hearts. METHODS Experiments were performed in myocytes from a cardiomyocyte-specific, tamoxifen-activated, PKP2 knockout murine line (PKP2cKO). For training, mice underwent 75 minutes of treadmill running once per day, 5 days each week for 6 weeks. We used multiple approaches including imaging, high-resolution mass spectrometry, electrocardiography, and pharmacological challenges to study the functional properties of cells/hearts in vitro and in vivo. RESULTS In myocytes from PKP2cKO animals, training increased sarcoplasmic reticulum Ca2+ load, increased the frequency and amplitude of spontaneous ryanodine receptor (ryanodine receptor 2)-mediated Ca2+ release events (sparks), and changed the time course of sarcomeric shortening. Phosphoproteomics analysis revealed that training led to hyperphosphorylation of phospholamban in residues 16 and 17, suggesting a catecholaminergic component. Isoproterenol-induced increase in Ca2+i transient amplitude showed a differential response to β-adrenergic blockade that depended on the purported ability of the blockers to reach intracellular receptors. Additional experiments showed significant reduction of isoproterenol-induced Ca2+i sparks and ventricular arrhythmias in PKP2cKO hearts exposed to an experimental blocker of ryanodine receptor 2 channels. CONCLUSIONS Exercise disproportionately affects Ca2+i homeostasis in PKP2-deficient hearts in a manner facilitated by stimulation of intracellular β-adrenergic receptors and hyperphosphorylation of phospholamban. These cellular changes create a proarrhythmogenic state that can be mitigated by ryanodine receptor 2 blockade. Our data unveil an arrhythmogenic mechanism for exercise-induced or catecholaminergic life-threatening arrhythmias in the setting of PKP2 deficit. We suggest that membrane-permeable β-blockers are potentially more efficient for patients with arrhythmogenic right ventricular cardiomyopathy, highlight the potential for ryanodine receptor 2 channel blockers as treatment for the control of heart rhythm in the population at risk, and propose that PKP2-dependent and phospholamban-dependent arrhythmogenic right ventricular cardiomyopathy-related arrhythmias have a common mechanism.
Collapse
Affiliation(s)
- Chantal JM van Opbergen
- The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine, New York, NY, USA
| | - Navratan Bagwan
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Svetlana R Maurya
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joon-Chul Kim
- The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine, New York, NY, USA
| | - Abigail N Smith
- Department of Chemistry & Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Daniel J Blackwell
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey N Johnston
- Department of Chemistry & Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Björn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marina Cerrone
- The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine, New York, NY, USA
| | - Alicia Lundby
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mario Delmar
- The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine, New York, NY, USA
| |
Collapse
|
25
|
Smith AN, Blackwell DJ, Knollmann BC, Johnston JN. Ring Size as an Independent Variable in Cyclooligomeric Depsipeptide Antiarrhythmic Activity. ACS Med Chem Lett 2021; 12:1942-1947. [PMID: 34917258 DOI: 10.1021/acsmedchemlett.1c00508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
Hit-to-lead studies employ a variety of strategies to optimize binding to a target of interest. When a structure for the target is available, hypothesis-driven structure-activity relationships (SAR) are a powerful strategy for refining the pharmacophore to achieve robust binding and selectivity characteristics necessary to identify a lead compound. Recrafting the three-dimensional space occupied by a small molecule, optimization of hydrogen bond contacts, and enhancing local attractive interactions are traditional approaches in medicinal chemistry. Ring size, however, is rarely able to be leveraged as an independent variable because most hits lack the symmetry required for such a study. Our discovery that the cyclic oligomeric depsipeptide ent-verticilide inhibits mammalian cardiac ryanodine receptor calcium release channels with submicromolar potency provided an opportunity to explore ring size as a variable, independent of other structural or functional group changes. We report here that ring size can be a critical independent variable, suggesting that modest conformational changes alone can dramatically affect potency.
Collapse
Affiliation(s)
- Abigail N. Smith
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Daniel J. Blackwell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37235, United States
| | - Bjorn C. Knollmann
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37235, United States
| | - Jeffrey N. Johnston
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
26
|
Sarcoplasmic Reticulum from Horse Gluteal Muscle Is Poised for Enhanced Calcium Transport. Vet Sci 2021; 8:vetsci8120289. [PMID: 34941816 PMCID: PMC8705379 DOI: 10.3390/vetsci8120289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/02/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
We have analyzed the enzymatic activity of the sarcoplasmic reticulum (SR) Ca2+-transporting ATPase (SERCA) from the horse gluteal muscle. Horses are bred for peak athletic performance yet exhibit a high incidence of exertional rhabdomyolysis, with elevated levels of cytosolic Ca2+ proposed as a correlative linkage. We recently reported an improved protocol for isolating SR vesicles from horse muscle; these horse SR vesicles contain an abundant level of SERCA and only trace-levels of sarcolipin (SLN), the inhibitory peptide subunit of SERCA in mammalian fast-twitch skeletal muscle. Here, we report that the in vitro Ca2+ transport rate of horse SR vesicles is 2.3 ± 0.7-fold greater than rabbit SR vesicles, which express close to equimolar levels of SERCA and SLN. This suggests that horse myofibers exhibit an enhanced SR Ca2+ transport rate and increased luminal Ca2+ stores in vivo. Using the densitometry of Coomassie-stained SDS-PAGE gels, we determined that horse SR vesicles express an abundant level of the luminal SR Ca2+ storage protein calsequestrin (CASQ), with a CASQ-to-SERCA ratio about double that in rabbit SR vesicles. Thus, we propose that SR Ca2+ cycling in horse myofibers is enhanced by a reduced SLN inhibition of SERCA and by an abundant expression of CASQ. Together, these results suggest that horse muscle contractility and susceptibility to exertional rhabdomyolysis are promoted by enhanced SR Ca2+ uptake and luminal Ca2+ storage.
Collapse
|
27
|
Tao P, Wang Y, Wang Y. Attenuation and Structural Transformation of Crassicauline A During Sand Frying Process and Antiarrhythmic Effects of its Transformed Products. Front Pharmacol 2021; 12:734671. [PMID: 34795582 PMCID: PMC8593248 DOI: 10.3389/fphar.2021.734671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
To ensure safety and efficacy, most Aconitum herbs should be processed before clinical application. The processing methods include boiling, steaming, and sand frying. Among these methods, the transformation pathways of diterpenoid alkaloids in the process of sand frying are more complicated. Therefore, crassicauline A, a natural product with two ester bonds, was chosen as the experimental object. Consequently, a known alkaloid, together with three new alkaloids, was derived from crassicauline A. Meanwhile, the cardiotoxicity of converted products was reduced compared with their parent compound. Interestingly, some diterpenoid alkaloids have similar structures but opposite effects, such as arrhythmia and antiarrhythmic. Considering the converted products are structural analogues of crassicauline A, herein, the antiarrhythmic activity of the transformed products was further investigated. In a rat aconitine-induced arrhythmia assay, the three transformed products, which could dose-dependently delay the ventricular premature beat (VPB) incubation period, reduce the incidence of ventricular tachycardia (VT), combined with the increasing arrhythmia inhibition rate, exhibited prominent antiarrhythmic activities. Our experiments speculated that there might be at least two transformation pathways of crassicauline A during sand frying. The structure-activity data established in this paper constructs the critical pharmacophore of diterpenoid alkaloids as antiarrhythmic agents, which could be helpful in searching for the potential drugs that are equal or more active and with lower toxicity, than currently clinical used antiarrhythmic drugs.
Collapse
Affiliation(s)
- Pei Tao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yujie Wang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
28
|
Lyon A, van Opbergen CJM, Delmar M, Heijman J, van Veen TAB. In silico Identification of Disrupted Myocardial Calcium Homeostasis as Proarrhythmic Trigger in Arrhythmogenic Cardiomyopathy. Front Physiol 2021; 12:732573. [PMID: 34630150 PMCID: PMC8497808 DOI: 10.3389/fphys.2021.732573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/27/2021] [Indexed: 11/30/2022] Open
Abstract
Background: Patients with arrhythmogenic cardiomyopathy may suffer from lethal ventricular arrhythmias. Arrhythmogenic cardiomyopathy is predominantly triggered by mutations in plakophilin-2, a key component of cell-to-cell adhesion and calcium cycling regulation in cardiomyocytes. Calcium dysregulation due to plakophilin-2 mutations may lead to arrhythmias but the underlying pro-arrhythmic mechanisms remain unclear. Aim: To unravel the mechanisms by which calcium-handling abnormalities in plakophilin-2 loss-of-function may contribute to proarrhythmic events in arrhythmogenic cardiomyopathy. Methods: We adapted a computer model of mouse ventricular electrophysiology using recent experimental calcium-handling data from plakophilin-2 conditional knock-out (PKP2-cKO) mice. We simulated individual effects of beta-adrenergic stimulation, modifications in connexin43-mediated calcium entry, sodium-calcium exchanger (NCX) activity and ryanodine-receptor 2 (RyR2) calcium affinity on cellular electrophysiology and occurrence of arrhythmogenic events (delayed-afterdepolarizations). A population-of-models approach was used to investigate the generalizability of our findings. Finally, we assessed the potential translation of proposed mechanisms to humans, using a human ventricular cardiomyocyte computational model. Results: The model robustly reproduced the experimental calcium-handling changes in PKP2-cKO cardiomyocytes: an increased calcium transient amplitude (562 vs. 383 nM), increased diastolic calcium (120 vs. 91 nM), reduced L-type calcium current (15.0 vs. 21.4 pA/pF) and an increased free SR calcium (0.69 vs. 0.50 mM). Under beta-adrenergic stimulation, PKP2-cKO models from the population of models (n = 61) showed a higher susceptibility to delayed-afterdepolarizations compared to control (41 vs. 3.3%). Increased connexin43-mediated calcium entry further elevated the number of delayed-afterdepolarizations (78.7%, 2.5-fold increase in background calcium influx). Elevated diastolic cleft calcium appeared responsible for the increased RyR2-mediated calcium leak, promoting delayed-afterdepolarizations occurrence. A reduction in RyR2 calcium affinity prevented delayed-afterdepolarizations in PKP2-cKO models (24.6 vs. 41%). An additional increase in INCX strongly reduced delayed-afterdepolarizations occurrence, by lowering diastolic cleft calcium levels. The human model showed similar outcomes, suggesting a potential translational value of these findings. Conclusion: Beta-adrenergic stimulation and connexin43-mediated calcium entry upon loss of plakophilin-2 function contribute to generation of delayed-afterdepolarizations. RyR2 and NCX dysregulation play a key role in modulating these proarrhythmic events. This work provides insights into potential future antiarrhythmic strategies in arrhythmogenic cardiomyopathy due to plakophilin-2 loss-of-function.
Collapse
Affiliation(s)
- Aurore Lyon
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Chantal J M van Opbergen
- The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine, New York, NY, United States
| | - Mario Delmar
- The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine, New York, NY, United States
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Toon A B van Veen
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
29
|
Smith AN, Johnston JN. The Formation of Impossible Rings in Macrocyclooligomerizations for Cyclodepsipeptide Synthesis: The 18-from-12 Paradox. J Org Chem 2021; 86:7904-7919. [PMID: 34097410 DOI: 10.1021/acs.joc.0c03069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A reinvestigation into the macrocyclooligomerization (MCO) of a tetradepsipeptide is reported, uncovering a paradox in which the MCO of depsipeptide monomers can produce "impossible" ring sizes: a 12-atom chain produced the expected 24-membered ring, alongside unexpected 18- and 30-membered cyclic oligomeric depsipeptides (CODs). We report an alternative preparation of authentic 18- and 36-membered macrocycles for this case using a stepwise synthesis that provides definitive analytical characterization for each ring size. Our investigation yields a recharacterization and reassignment of two macrocycles originally reported in this MCO series, along with updated yields and isothermal titration calorimetry data after implementation of new critical protocols for purification and subsequent analysis. Initial studies to probe this mechanistic conundrum are described.
Collapse
Affiliation(s)
- Abigail N Smith
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jeffrey N Johnston
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
30
|
Word TA, Quick AP, Miyake CY, Shak MK, Pan X, Kim JJ, Allen HD, Sibrian‐Vazquez M, Strongin RM, Landstrom AP, Wehrens XHT. Efficacy of RyR2 inhibitor EL20 in induced pluripotent stem cell-derived cardiomyocytes from a patient with catecholaminergic polymorphic ventricular tachycardia. J Cell Mol Med 2021; 25:6115-6124. [PMID: 34110090 PMCID: PMC8366453 DOI: 10.1111/jcmm.16521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 02/04/2023] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited cardiac arrhythmia syndrome that often leads to sudden cardiac death. The most common form of CPVT is caused by autosomal-dominant variants in the cardiac ryanodine receptor type-2 (RYR2) gene. Mutations in RYR2 promote calcium (Ca2+ ) leak from the sarcoplasmic reticulum (SR), triggering lethal arrhythmias. Recently, it was demonstrated that tetracaine derivative EL20 specifically inhibits mutant RyR2, normalizes Ca2+ handling and suppresses arrhythmias in a CPVT mouse model. The objective of this study was to determine whether EL20 normalizes SR Ca2+ handling and arrhythmic events in induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) from a CPVT patient. Blood samples from a child carrying RyR2 variant RyR2 variant Arg-176-Glu (R176Q) and a mutation-negative relative were reprogrammed into iPSCs using a Sendai virus system. iPSC-CMs were derived using the StemdiffTM kit. Confocal Ca2+ imaging was used to quantify RyR2 activity in the absence and presence of EL20. iPSC-CMs harbouring the R176Q variant demonstrated spontaneous SR Ca2+ release events, whereas administration of EL20 diminished these abnormal events at low nanomolar concentrations (IC50 = 82 nM). Importantly, treatment with EL20 did not have any adverse effects on systolic Ca2+ handling in control iPSC-CMs. Our results show for the first time that tetracaine derivative EL20 normalized SR Ca2+ handling and suppresses arrhythmogenic activity in iPSC-CMs derived from a CPVT patient. Hence, this study confirms that this RyR2-inhibitor represents a promising therapeutic candidate for treatment of CPVT.
Collapse
Affiliation(s)
- Tarah A. Word
- Department of Molecular Physiology & BiophysicsCardiovascular Research InstituteBaylor College of MedicineHoustonTXUSA
| | - Ann P. Quick
- Section of CardiologyDepartment of PediatricsBaylor College of MedicineHoustonTXUSA
| | - Christina Y. Miyake
- Department of Molecular Physiology & BiophysicsCardiovascular Research InstituteBaylor College of MedicineHoustonTXUSA
- Section of CardiologyDepartment of PediatricsBaylor College of MedicineHoustonTXUSA
| | - Mayra K. Shak
- Department of Molecular Physiology & BiophysicsCardiovascular Research InstituteBaylor College of MedicineHoustonTXUSA
| | - Xiaolu Pan
- Department of Molecular Physiology & BiophysicsCardiovascular Research InstituteBaylor College of MedicineHoustonTXUSA
| | - Jean J. Kim
- Department of Molecular & Cellular BiologyStem Cells and Regenerative Medicine CenterBaylor College of MedicineHoustonTXUSA
| | - Hugh D. Allen
- Department of Molecular & Cellular BiologyStem Cells and Regenerative Medicine CenterBaylor College of MedicineHoustonTXUSA
| | | | | | - Andrew P. Landstrom
- Department of PediatricsDivision of CardiologyDuke University School of MedicineDurhamNCUSA
- Department of Cell BiologyDuke University School of MedicineDurhamNCUSA
| | - Xander H. T. Wehrens
- Department of Molecular Physiology & BiophysicsCardiovascular Research InstituteBaylor College of MedicineHoustonTXUSA
- Section of CardiologyDepartment of PediatricsBaylor College of MedicineHoustonTXUSA
- Department of MedicineSection of CardiologyBaylor College of MedicineHoustonTXUSA
- Department of NeuroscienceSection of CardiologyBaylor College of MedicineHoustonTXUSA
- Center for Space MedicineBaylor College of MedicineHoustonTXUSA
| |
Collapse
|
31
|
Precision Medicine in Catecholaminergic Polymorphic Ventricular Tachycardia: JACC Focus Seminar 5/5. J Am Coll Cardiol 2021; 77:2592-2612. [PMID: 34016269 DOI: 10.1016/j.jacc.2020.12.073] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 11/20/2022]
Abstract
In this final of a 5-part Focus Seminar series on precision medicine, we focus on catecholaminergic polymorphic ventricular tachycardia (CPVT). This focus on CPVT allows us to take a "deep dive" and explore the full extent of the precision medicine opportunities for a single cardiovascular condition at a level that was not possible in the preceding articles. As a new paradigm presented in this article, it has become clear that CPVT can occur as either a typical or atypical form. Although there is a degree of overlap between the typical and atypical forms, it is notable that they arise due to different underlying genetic changes, likely exhibiting differing mechanisms of action, and presenting with different phenotypic features. The recognition of these differing forms of CPVT and their different etiologies and mechanisms is an important step toward implementing rapidly emerging precision medicine approaches that will tailor novel therapies to specific gene defects.
Collapse
|
32
|
Kryshtal DO, Blackwell DJ, Egly CL, Smith AN, Batiste SM, Johnston JN, Laver DR, Knollmann BC. RYR2 Channel Inhibition Is the Principal Mechanism of Flecainide Action in CPVT. Circ Res 2021; 128:321-331. [PMID: 33297863 PMCID: PMC7864884 DOI: 10.1161/circresaha.120.316819] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
RATIONALE The class Ic antiarrhythmic drug flecainide prevents ventricular tachyarrhythmia in patients with catecholaminergic polymorphic ventricular tachycardia (CPVT), a disease caused by hyperactive RyR2 (cardiac ryanodine receptor) mediated calcium (Ca) release. Although flecainide inhibits single RyR2 channels in vitro, reports have claimed that RyR2 inhibition by flecainide is not relevant for its mechanism of antiarrhythmic action and concluded that sodium channel block alone is responsible for flecainide's efficacy in CPVT. OBJECTIVE To determine whether RyR2 block independently contributes to flecainide's efficacy for suppressing spontaneous sarcoplasmic reticulum Ca release and for preventing ventricular tachycardia in vivo. METHODS AND RESULTS We synthesized N-methylated flecainide analogues (QX-flecainide and N-methyl flecainide) and showed that N-methylation reduces flecainide's inhibitory potency on RyR2 channels incorporated into artificial lipid bilayers. N-methylation did not alter flecainide's inhibitory activity on human cardiac sodium channels expressed in HEK293T cells. Antiarrhythmic efficacy was tested utilizing a Casq2 (cardiac calsequestrin) knockout (Casq2-/-) CPVT mouse model. In membrane-permeabilized Casq2-/- cardiomyocytes-lacking intact sarcolemma and devoid of sodium channel contribution-flecainide, but not its analogues, suppressed RyR2-mediated Ca release at clinically relevant concentrations. In voltage-clamped, intact Casq2-/- cardiomyocytes pretreated with tetrodotoxin to inhibit sodium channels and isolate the effect of flecainide on RyR2, flecainide significantly reduced the frequency of spontaneous sarcoplasmic reticulum Ca release, while QX-flecainide and N-methyl flecainide did not. In vivo, flecainide effectively suppressed catecholamine-induced ventricular tachyarrhythmias in Casq2-/- mice, whereas N-methyl flecainide had no significant effect on arrhythmia burden, despite comparable sodium channel block. CONCLUSIONS Flecainide remains an effective inhibitor of RyR2-mediated arrhythmogenic Ca release even when cardiac sodium channels are blocked. In mice with CPVT, sodium channel block alone did not prevent ventricular tachycardia. Hence, RyR2 channel inhibition likely constitutes the principal mechanism of antiarrhythmic action of flecainide in CPVT.
Collapse
Affiliation(s)
- Dmytro O Kryshtal
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN (D.O.K., D.J.B., C.L.E., B.C.K.)
| | - Daniel J Blackwell
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN (D.O.K., D.J.B., C.L.E., B.C.K.)
| | - Christian L Egly
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN (D.O.K., D.J.B., C.L.E., B.C.K.)
| | - Abigail N Smith
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN (A.N.S., S.M.B., J.N.J.)
| | - Suzanne M Batiste
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN (A.N.S., S.M.B., J.N.J.)
| | - Jeffrey N Johnston
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN (A.N.S., S.M.B., J.N.J.)
| | - Derek R Laver
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, Australia (D.R.L.)
| | - Bjorn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN (D.O.K., D.J.B., C.L.E., B.C.K.)
| |
Collapse
|
33
|
Mechanisms underlying pathological Ca 2+ handling in diseases of the heart. Pflugers Arch 2021; 473:331-347. [PMID: 33399957 PMCID: PMC10070045 DOI: 10.1007/s00424-020-02504-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/01/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
Cardiomyocyte contraction relies on precisely regulated intracellular Ca2+ signaling through various Ca2+ channels and transporters. In this article, we will review the physiological regulation of Ca2+ handling and its role in maintaining normal cardiac rhythm and contractility. We discuss how inherited variants or acquired defects in Ca2+ channel subunits contribute to the development or progression of diseases of the heart. Moreover, we highlight recent insights into the role of protein phosphatase subunits and striated muscle preferentially expressed protein kinase (SPEG) in atrial fibrillation, heart failure, and cardiomyopathies. Finally, this review summarizes current drug therapies and new advances in genome editing as therapeutic strategies for the cardiac diseases caused by aberrant intracellular Ca2+ signaling.
Collapse
|
34
|
Wleklinski MJ, Kannankeril PJ, Knollmann BC. Molecular and tissue mechanisms of catecholaminergic polymorphic ventricular tachycardia. J Physiol 2020; 598:2817-2834. [PMID: 32115705 PMCID: PMC7699301 DOI: 10.1113/jp276757] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/03/2020] [Indexed: 12/21/2022] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a stress-induced cardiac channelopathy that has a high mortality in untreated patients. Our understanding has grown tremendously since CPVT was first described as a clinical syndrome in 1995. It is now established that the deadly arrhythmias are caused by unregulated 'pathological' calcium release from the sarcoplasmic reticulum (SR), the major calcium storage organelle in striated muscle. Important questions remain regarding the molecular mechanisms that are responsible for the pathological calcium release, regarding the tissue origin of the arrhythmic beats that initiate ventricular tachycardia, and regarding optimal therapeutic approaches. At present, mutations in six genes involved in SR calcium release have been identified as the genetic cause of CPVT: RYR2 (encoding ryanodine receptor calcium release channel), CASQ2 (encoding cardiac calsequestrin), TRDN (encoding triadin), CALM1, CALM2 and CALM3 (encoding identical calmodulin protein). Here, we review each CPVT subtype and how CPVT mutations alter protein function, RyR2 calcium release channel regulation, and cellular calcium handling. We then discuss research and hypotheses surrounding the tissue mechanisms underlying CPVT, such as the pathophysiological role of sinus node dysfunction in CPVT, and whether the arrhythmogenic beats originate from the conduction system or the ventricular working myocardium. Finally, we review the treatments that are available for patients with CPVT, their efficacy, and how therapy could be improved in the future.
Collapse
Affiliation(s)
- Matthew J Wleklinski
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Prince J Kannankeril
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Bjӧrn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
35
|
Abstract
This review is focusing on the understanding of various factors and components governing and controlling the occurrence of ventricular arrhythmias including (i) the role of various ion channel-related changes in the action potential (AP), (ii) electrocardiograms (ECGs), (iii) some important arrhythmogenic mediators of reperfusion, and pharmacological approaches to their attenuation. The transmembrane potential in myocardial cells is depending on the cellular concentrations of several ions including sodium, calcium, and potassium on both sides of the cell membrane and active or inactive stages of ion channels. The movements of Na+, K+, and Ca2+ via cell membranes produce various currents that provoke AP, determining the cardiac cycle and heart function. A specific channel has its own type of gate, and it is opening and closing under specific transmembrane voltage, ionic, or metabolic conditions. APs of sinoatrial (SA) node, atrioventricular (AV) node, and Purkinje cells determine the pacemaker activity (depolarization phase 4) of the heart, leading to the surface manifestation, registration, and evaluation of ECG waves in both animal models and humans. AP and ECG changes are key factors in arrhythmogenesis, and the analysis of these changes serve for the clarification of the mechanisms of antiarrhythmic drugs. The classification of antiarrhythmic drugs may be based on their electrophysiological properties emphasizing the connection between basic electrophysiological activities and antiarrhythmic properties. The review also summarizes some important mechanisms of ventricular arrhythmias in the ischemic/reperfused myocardium and permits an assessment of antiarrhythmic potential of drugs used for pharmacotherapy under experimental and clinical conditions.
Collapse
Affiliation(s)
- Arpad Tosaki
- Department of Pharmacology, School of Pharmacy, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
36
|
Delmar M, Alvarado FJ, Valdivia HH. Desmosome-Dyad Crosstalk: An Arrhythmogenic Axis in Arrhythmogenic Right Ventricular Cardiomyopathy. Circulation 2020; 141:1494-1497. [PMID: 32364772 DOI: 10.1161/circulationaha.120.046020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mario Delmar
- The Leon H Charney Division of Cardiology. New York University School of Medicine (M.D.)
| | - Francisco J Alvarado
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health. Madison (F.J.A., H.H.V.)
| | - Héctor H Valdivia
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health. Madison (F.J.A., H.H.V.)
| |
Collapse
|
37
|
Köhn M. Turn and Face the Strange: A New View on Phosphatases. ACS CENTRAL SCIENCE 2020; 6:467-477. [PMID: 32341996 PMCID: PMC7181316 DOI: 10.1021/acscentsci.9b00909] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Indexed: 05/08/2023]
Abstract
Phosphorylation as a post-translational modification is critical for cellular homeostasis. Kinases and phosphatases regulate phosphorylation levels by adding or removing, respectively, a phosphate group from proteins or other biomolecules. Imbalances in phosphorylation levels are involved in a multitude of diseases. Phosphatases are often thought of as the black sheep, the strangers, of phosphorylation-mediated signal transduction, particularly when it comes to drug discovery and development. This is due to past difficulties to study them and unsuccessful attempts to target them; however, phosphatases have regained strong attention and are actively pursued now in clinical trials. By giving examples for current hot topics in phosphatase biology and for new approaches to target them, it is illustrated here how and why phosphatases made their comeback, and what is envisioned to come in the future.
Collapse
Affiliation(s)
- Maja Köhn
- Faculty
of Biology, Institute of Biology III, University
of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Signalling
Research Centres BIOSS and CIBSS, University
of Freiburg, Freiburg, Germany
| |
Collapse
|
38
|
Watanabe A, Noguchi Y, Hirose T, Monma S, Satake Y, Arai T, Masuda K, Murashima N, Shiomi K, Ōmura S, Sunazuka T. Efficient synthesis of a ryanodine binding inhibitor verticilide using two practical approaches. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Connell P, Word TA, Wehrens XHT. Targeting pathological leak of ryanodine receptors: preclinical progress and the potential impact on treatments for cardiac arrhythmias and heart failure. Expert Opin Ther Targets 2020; 24:25-36. [PMID: 31869254 DOI: 10.1080/14728222.2020.1708326] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Introduction: Type-2 ryanodine receptor (RyR2) located on the sarcoplasmic reticulum initiate systolic Ca2+ transients within cardiomyocytes. Proper functioning of RyR2 is therefore crucial to the timing and force generated by cardiomyocytes within a healthy heart. Improper intracellular Ca2+ handing secondary to RyR2 dysfunction is associated with a variety of cardiac pathologies including catecholaminergic polymorphic ventricular tachycardia (CPVT), atrial fibrillation (AF), and heart failure (HF). Thus, RyR2 and its associated accessory proteins provide promising drug targets to scientists developing therapeutics for a variety of cardiac pathologies.Areas covered: In this article, we review the role of RyR2 in a variety of cardiac pathologies. We performed a literature search utilizing PubMed and MEDLINE as well as reviewed registries of trials from clinicaltrials.gov from 2010 to 2019 for novel therapeutic approaches that address the cellular mechanisms underlying CPVT, AF, and HF by specifically targeting defective RyR2 channels.Expert opinion: The negative impact of cardiac dysfunction on human health and medical economics are major motivating factors for establishing new and effective therapeutic approaches. Focusing on directly impacting the molecular mechanisms underlying defective Ca2+ handling by RyR2 in HF and arrhythmia has great potential to be translated into novel and innovative therapies.
Collapse
Affiliation(s)
- Patrick Connell
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA.,Departments of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Tarah A Word
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA.,Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA.,Departments of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA.,Medicine (Cardiology, Baylor College of Medicine, Houston, TX, USA.,Neuroscience, Baylor College of Medicine, Houston, TX, USA.,Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
40
|
Hwang HS, Baldo MP, Rodriguez JP, Faggioni M, Knollmann BC. Efficacy of Flecainide in Catecholaminergic Polymorphic Ventricular Tachycardia Is Mutation-Independent but Reduced by Calcium Overload. Front Physiol 2019; 10:992. [PMID: 31456692 PMCID: PMC6701460 DOI: 10.3389/fphys.2019.00992] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/18/2019] [Indexed: 11/22/2022] Open
Abstract
Background The dual Na+ and cardiac Ca2+-release channel inhibitor, Flecainide (FLEC) is effective in patients with catecholaminergic polymorphic ventricular tachycardia (CPVT), a disease caused by mutations in cardiac Ca2+-release channels (RyR2), calsequestrin (Casq2), or calmodulin. FLEC suppresses spontaneous Ca2+ waves in Casq2-knockout (Casq2−/−) cardiomyocytes, a CPVT model. However, a report failed to find FLEC efficacy against Ca2+ waves in another CPVT model, RyR2-R4496C heterozygous mice (RyR2R4496C+/−), raising the possibility that FLEC efficacy may be mutation dependent. Objective To address this controversy, we compared FLEC in Casq2−/− and RyR2R4496C+/− cardiomyocytes and mice under identical conditions. Methods After 30 min exposure to FLEC (6 μM) or vehicle (VEH), spontaneous Ca2+ waves were quantified during a 40 s pause after 1 Hz pacing train in the presence of isoproterenol (ISO, 1 μM). FLEC efficacy was also tested in vivo using a low dose (LOW: 3 mg/kg ISO + 60 mg/kg caffeine) or a high dose catecholamine challenge (HIGH: 3 mg/kg ISO + 120 mg/kg caffeine). Results In cardiomyocytes, FLEC efficacy was dependent on extracellular [Ca2+]. At 2 mM [Ca2+], only Casq2−/− myocytes exhibited Ca2+ waves, which were strongly suppressed by FLEC. At 3 mM [Ca2+] both groups exhibited Ca2+ waves that were suppressed by FLEC. At 4 mM [Ca2+], FLEC no longer suppressed Ca2+ waves in both groups. Analogous to the results in myocytes, RyR2R4496C+/− mice (n = 12) had significantly lower arrhythmia scores than Casq2−/− mice (n = 9), but the pattern of FLEC efficacy was similar in both groups (i.e., reduced FLEC efficacy after HIGH dose catecholamine challenge). Conclusion FLEC inhibits Ca2+ waves in RyR2R4496C+/− cardiomyocytes, indicating that RyR2 channel block by FLEC is not mutation-specific. However, FLEC efficacy is reduced by Ca2+ overload in vitro or by high dose catecholamine challenge in vivo, which could explain conflicting literature reports.
Collapse
Affiliation(s)
- Hyun Seok Hwang
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, United States.,Division of Clinical Pharmacology, Oates Institute for Experimental Therapeutics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Marcelo P Baldo
- Division of Clinical Pharmacology, Oates Institute for Experimental Therapeutics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Jose Pindado Rodriguez
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, United States
| | - Michela Faggioni
- Division of Clinical Pharmacology, Oates Institute for Experimental Therapeutics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Bjorn C Knollmann
- Division of Clinical Pharmacology, Oates Institute for Experimental Therapeutics, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
41
|
Tian CJ, Zhen Z. Reactive Carbonyl Species: Diabetic Complication in the Heart and Lungs. Trends Endocrinol Metab 2019; 30:546-556. [PMID: 31253519 DOI: 10.1016/j.tem.2019.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/26/2019] [Accepted: 05/28/2019] [Indexed: 12/28/2022]
Abstract
Abnormal chemical reactions in hyperglycemia alter normal metabolic processes in diabetes, which is a key process in the production of reactive carbonyls species (RCS). Increasing the concentration of RCS may result in carbonyl/oxidative stress in both the diabetic heart and lung. Ryanodine receptors (RyRs) not only play a key role in heart contraction, including rhythmic contraction and relaxation of the heart, but they are also important for controlling the airway smooth muscle. RCS modifies RyRs, resulting in RyRs dysfunction, which is involved in important mechanisms in diabetic complications. Very little is known about the mechanistic relationship between the heart and lung in diabetes. This review highlights new findings on the pathophysiological mechanisms and discusses potential approaches to treatment for these complications.
Collapse
Affiliation(s)
- Cheng-Ju Tian
- College of Rehabilitation and Sports Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
| | - Zhong Zhen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
42
|
Johnson CN, Pattanayek R, Potet F, Rebbeck RT, Blackwell DJ, Nikolaienko R, Sequeira V, Le Meur R, Radwański PB, Davis JP, Zima AV, Cornea RL, Damo SM, Györke S, George AL, Knollmann BC. The CaMKII inhibitor KN93-calmodulin interaction and implications for calmodulin tuning of Na V1.5 and RyR2 function. Cell Calcium 2019; 82:102063. [PMID: 31401388 DOI: 10.1016/j.ceca.2019.102063] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/15/2019] [Accepted: 07/26/2019] [Indexed: 02/06/2023]
Abstract
Here we report the structure of the widely utilized calmodulin (CaM)-dependent protein kinase II (CaMKII) inhibitor KN93 bound to the Ca2+-sensing protein CaM. KN93 is widely believed to inhibit CaMKII by binding to the kinase. The CaM-KN93 interaction is significant as it can interfere with the interaction between CaM and it's physiological targets, thereby raising the possibility of ascribing modified protein function to CaMKII phosphorylation while concealing a CaM-protein interaction. NMR spectroscopy, stopped-flow kinetic measurements, and x-ray crystallography were used to characterize the structure and biophysical properties of the CaM-KN93 interaction. We then investigated the functional properties of the cardiac Na+ channel (NaV1.5) and ryanodine receptor (RyR2). We find that KN93 disrupts a high affinity CaM-NaV1.5 interaction and alters channel function independent of CaMKII. Moreover, KN93 increases RyR2 Ca2+ release in cardiomyocytes independent of CaMKII. Therefore, when interpreting KN93 data, targets other than CaMKII need to be considered.
Collapse
Affiliation(s)
- Christopher N Johnson
- Center for Arrhythmia Research and Therapeutics, Vanderbilt University Medical Center, Nashville, TN 37240, USA; Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| | - Rekha Pattanayek
- Department of Life and Physical Sciences, Fisk University, Nashville, TN 37208, USA
| | - Franck Potet
- Department of Pharmacology Feinberg School of Medicine, Northwestern University, Chicago IL, 60611, USA
| | - Robyn T Rebbeck
- Department of Biochemistry, Molecular Biology and Biophysics University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel J Blackwell
- Center for Arrhythmia Research and Therapeutics, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Roman Nikolaienko
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University, Maywood IL, 60153, USA
| | - Vasco Sequeira
- Department of Translational Science Universitätsklinikum, Würzburg, Germany
| | - Remy Le Meur
- Department of Biochemistry, Vanderbilt University, Nashville TN 37204, USA
| | - Przemysław B Radwański
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jonathan P Davis
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Aleksey V Zima
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University, Maywood IL, 60153, USA
| | - Razvan L Cornea
- Department of Biochemistry, Molecular Biology and Biophysics University of Minnesota, Minneapolis, MN 55455, USA
| | - Steven M Damo
- Department of Life and Physical Sciences, Fisk University, Nashville, TN 37208, USA
| | - Sandor Györke
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Alfred L George
- Department of Pharmacology Feinberg School of Medicine, Northwestern University, Chicago IL, 60611, USA
| | - Björn C Knollmann
- Center for Arrhythmia Research and Therapeutics, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| |
Collapse
|