1
|
Dockerill M, Ford DJ, Angerani S, Alwis I, Dowman LJ, Ripoll-Rozada J, Smythe RE, Liu JST, Pereira PJB, Jackson SP, Payne RJ, Winssinger N. Development of supramolecular anticoagulants with on-demand reversibility. Nat Biotechnol 2025; 43:186-193. [PMID: 38689027 PMCID: PMC11825364 DOI: 10.1038/s41587-024-02209-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/14/2024] [Indexed: 05/02/2024]
Abstract
Drugs are administered at a dosing schedule set by their therapeutic index, and termination of action is achieved by clearance and metabolism of the drug. In some cases, such as anticoagulant drugs or immunotherapeutics, it is important to be able to quickly reverse the drug's action. Here, we report a general strategy to achieve on-demand reversibility by designing a supramolecular drug (a noncovalent assembly of two cooperatively interacting drug fragments held together by transient hybridization of peptide nucleic acid (PNA)) that can be reversed with a PNA antidote that outcompetes the hybridization between the fragments. We demonstrate the approach with thrombin-inhibiting anticoagulants, creating very potent and reversible bivalent direct thrombin inhibitors (Ki = 74 pM). The supramolecular inhibitor effectively inhibited thrombus formation in mice in a needle injury thrombosis model, and this activity could be reversed by administration of the PNA antidote. This design is applicable to therapeutic targets where two binding sites can be identified.
Collapse
Affiliation(s)
- Millicent Dockerill
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Daniel J Ford
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Heart Research Institute, Sydney, New South Wales, Australia
| | - Simona Angerani
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Imala Alwis
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Heart Research Institute, Sydney, New South Wales, Australia
| | - Luke J Dowman
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Jorge Ripoll-Rozada
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Rhyll E Smythe
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Heart Research Institute, Sydney, New South Wales, Australia
| | - Joanna S T Liu
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Heart Research Institute, Sydney, New South Wales, Australia
| | - Pedro José Barbosa Pereira
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Shaun P Jackson
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Heart Research Institute, Sydney, New South Wales, Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
2
|
Maxwell JWC, Hawkins PME, Watson EE, Payne RJ. Exploiting Chemical Protein Synthesis to Study the Role of Tyrosine Sulfation on Anticoagulants from Hematophagous Organisms. Acc Chem Res 2023; 56:2688-2699. [PMID: 37708351 DOI: 10.1021/acs.accounts.3c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Tyrosine sulfation is a post-translational modification (PTM) that modulates function by mediating key protein-protein interactions. One of the early proteins shown to possess this PTM was hirudin, produced in the salivary glands of the medicinal leech Hirudo medicinalis, whereby tyrosine sulfation led to a ∼10-fold improvement in α-thrombin inhibitory activity. Outside of this pioneering discovery, the involvement of tyrosine sulfation in modulating the activity of salivary proteins from other hematophagous organisms was unknown. We hypothesized that the intrinsic instability of the tyrosine sulfate functionality, particularly under the acidic conditions used to isolate and analyze peptides and proteins, has led to poor detection during the isolation and/or expression of these molecules.Herein, we summarize our efforts to interrogate the functional role of tyrosine sulfation in the thrombin inhibitory and anticoagulant activity of salivary peptides and proteins from a range of different blood feeding organisms, including leeches, ticks, mosquitoes, and flies. Specifically, we have harnessed synthetic chemistry to efficiently generate homogeneously sulfated peptides and proteins for detailed structure-function studies both in vitro and in vivo.Our studies began with the leech protein hirudin P6 (from Hirudinaria manillensis), which is both sulfated on tyrosine and O-glycosylated at a nearby threonine residue. Synthetically, this was achieved through solid-phase peptide synthesis (SPPS) with a late-stage on-resin sulfation, followed by native chemical ligation and a folding step to generate six differentially modified variants of hirudin P6 to assess the functional interplay between O-glycosylation and tyrosine sulfation. A one-pot, kinetically controlled ligation of three peptide fragments was used to assemble homogeneously sulfoforms of madanin-1 and chimadanin from the tick Haemaphysalis longicornis. Dual tyrosine sulfation at two distinct sites was shown to increase the thrombin inhibitory activity by up to 3 orders of magnitude through a novel interaction with exosite II of thrombin. The diselenide-selenoester ligation developed by our lab provided us with a means to rapidly assemble a library of different sulfated tick anticoagulant proteins: the andersonins, hyalomins, madanin-like proteins, and hemeathrins, thus enabling the generation of key structure-activity data on this family of proteins. We have also confirmed the presence of tyrosine sulfation in the anticoagulant proteins of Anopheles mosquitoes (anophelins) and the Tsetse fly (TTI) via insect expression and mass spectrometric analysis. These molecules were subsequently synthesized and assessed for thrombin inhibitory and anticoagulant activity. Activity was significantly improved by the addition of tyrosine sulfate modifications and led to molecules with potent antithrombotic activity in an in vivo murine thrombosis model.The Account concludes with our most recent work on the design of trivalent hybrids that tandemly occupy the active site and both exosites (I and II) of α-thrombin, with a TTI-anophelin hybrid (Ki = 20 fM against α-thrombin) being one of the most potent protease inhibitors and anticoagulants ever generated. Taken together, this Account highlights the importance of the tyrosine sulfate post-translational modification within salivary proteins from blood feeding organisms for enhancing anticoagulant activity. This work lays the foundation for exploiting native or engineered variants as therapeutic leads for thrombotic disorders in the future.
Collapse
Affiliation(s)
- Joshua W C Maxwell
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Sydney, NSW 2006, Australia
| | - Paige M E Hawkins
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Sydney, NSW 2006, Australia
| | - Emma E Watson
- School of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Sydney, NSW 2006, Australia
| |
Collapse
|
3
|
Chen Y, Jin S, Zhang M, Hu Y, Wu KL, Chung A, Wang S, Tian Z, Wang Y, Wolynes PG, Xiao H. Unleashing the potential of noncanonical amino acid biosynthesis to create cells with precision tyrosine sulfation. Nat Commun 2022; 13:5434. [PMID: 36114189 PMCID: PMC9481576 DOI: 10.1038/s41467-022-33111-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/01/2022] [Indexed: 01/31/2023] Open
Abstract
Despite the great promise of genetic code expansion technology to modulate structures and functions of proteins, external addition of ncAAs is required in most cases and it often limits the utility of genetic code expansion technology, especially to noncanonical amino acids (ncAAs) with poor membrane internalization. Here, we report the creation of autonomous cells, both prokaryotic and eukaryotic, with the ability to biosynthesize and genetically encode sulfotyrosine (sTyr), an important protein post-translational modification with low membrane permeability. These engineered cells can produce site-specifically sulfated proteins at a higher yield than cells fed exogenously with the highest level of sTyr reported in the literature. We use these autonomous cells to prepare highly potent thrombin inhibitors with site-specific sulfation. By enhancing ncAA incorporation efficiency, this added ability of cells to biosynthesize ncAAs and genetically incorporate them into proteins greatly extends the utility of genetic code expansion methods.
Collapse
Affiliation(s)
- Yuda Chen
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Shikai Jin
- grid.21940.3e0000 0004 1936 8278Center for Theoretical Biological Physics, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Department of Biosciences, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Mengxi Zhang
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Yu Hu
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Kuan-Lin Wu
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Anna Chung
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Shichao Wang
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Zeru Tian
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Yixian Wang
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Peter G. Wolynes
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Center for Theoretical Biological Physics, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Department of Biosciences, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Department of Physics, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Han Xiao
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Department of Biosciences, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005 USA
| |
Collapse
|
4
|
Stewart V, Ronald PC. Sulfotyrosine residues: interaction specificity determinants for extracellular protein-protein interactions. J Biol Chem 2022; 298:102232. [PMID: 35798140 PMCID: PMC9372746 DOI: 10.1016/j.jbc.2022.102232] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/28/2022] Open
Abstract
Tyrosine sulfation, a post-translational modification, can determine and often enhance protein–protein interaction specificity. Sulfotyrosyl residues (sTyrs) are formed by the enzyme tyrosyl-protein sulfotransferase during protein maturation in the Golgi apparatus and most often occur singly or as a cluster within a six-residue span. With both negative charge and aromatic character, sTyr facilitates numerous atomic contacts as visualized in binding interface structural models, thus there is no discernible binding site consensus. Found exclusively in secreted proteins, in this review, we discuss the four broad sequence contexts in which sTyr has been observed: first, a solitary sTyr has been shown to be critical for diverse high-affinity interactions, such as between peptide hormones and their receptors, in both plants and animals. Second, sTyr clusters within structurally flexible anionic segments are essential for a variety of cellular processes, including coreceptor binding to the HIV-1 envelope spike protein during virus entry, chemokine interactions with receptors, and leukocyte rolling cell adhesion. Third, a subcategory of sTyr clusters is found in conserved acidic sequences termed hirudin-like motifs that enable proteins to interact with thrombin; consequently, many proven and potential therapeutic proteins derived from blood-consuming invertebrates depend on sTyrs for their activity. Finally, several proteins that interact with collagen or similar proteins contain one or more sTyrs within an acidic residue array. Refined methods to direct sTyr incorporation in peptides synthesized both in vitro and in vivo, together with continued advances in mass spectrometry and affinity detection, promise to accelerate discoveries of sTyr occurrence and function.
Collapse
Affiliation(s)
- Valley Stewart
- Department of Microbiology & Molecular Genetics, University of California, Davis, USA.
| | - Pamela C Ronald
- Department of Plant Pathology, University of California, Davis, USA; Genome Center, University of California, Davis, USA.
| |
Collapse
|
5
|
Guan I, Williams K, Liu JST, Liu X. Synthetic Thiol and Selenol Derived Amino Acids for Expanding the Scope of Chemical Protein Synthesis. Front Chem 2022; 9:826764. [PMID: 35237567 PMCID: PMC8883728 DOI: 10.3389/fchem.2021.826764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/29/2021] [Indexed: 01/18/2023] Open
Abstract
Cells employ post-translational modifications (PTMs) as key mechanisms to expand proteome diversity beyond the inherent limitations of a concise genome. The ability to incorporate post-translationally modified amino acids into protein targets via chemical ligation of peptide fragments has enabled the access to homogeneous proteins bearing discrete PTM patterns and empowered functional elucidation of individual modification sites. Native chemical ligation (NCL) represents a powerful and robust means for convergent assembly of two homogeneous, unprotected peptides bearing an N-terminal cysteine residue and a C-terminal thioester, respectively. The subsequent discovery that protein cysteine residues can be chemoselectively desulfurized to alanine has ignited tremendous interest in preparing unnatural thiol-derived variants of proteogenic amino acids for chemical protein synthesis following the ligation-desulfurization logic. Recently, the 21st amino acid selenocysteine, together with other selenyl derivatives of amino acids, have been shown to facilitate ultrafast ligation with peptidyl selenoesters, while the advancement in deselenization chemistry has provided reliable bio-orthogonality to PTMs and other amino acids. The combination of these ligation techniques and desulfurization/deselenization chemistries has led to streamlined synthesis of multiple structurally-complex, post-translationally modified proteins. In this review, we aim to summarize the latest chemical synthesis of thiolated and selenylated amino-acid building blocks and exemplify their important roles in conquering challenging protein targets with distinct PTM patterns.
Collapse
Affiliation(s)
- Ivy Guan
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
- The Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Kayla Williams
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
- The Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Joanna Shu Ting Liu
- The Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Xuyu Liu
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
- The Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
- *Correspondence: Xuyu Liu,
| |
Collapse
|
6
|
Bedding MJ, Kulkarni SS, Payne RJ. Diselenide-selenoester ligation in the chemical synthesis of proteins. Methods Enzymol 2022; 662:363-399. [PMID: 35101218 DOI: 10.1016/bs.mie.2021.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Peptides and proteins represent an important class of biomolecules responsible for a plethora of structural and functional roles in vivo. Following their translation on the ribosome, the majority of eukaryotic proteins are post-translationally modified, leading to a proteome that is much larger than the number of genes present in a given organism. In order to understand the functional role of a given protein modification, it is necessary to access peptides and proteins bearing homogeneous and site-specific modifications. Accordingly, there has been significant research effort centered on the development of peptide ligation methodologies for the chemical synthesis of modified proteins. In this chapter we outline the discovery and development of a contemporary methodology called the diselenide-selenoester ligation (DSL) that enables the rapid and efficient fusion of peptide fragments to generate synthetic proteins. The practical aspects of using DSL for the preparation of chemically modified peptides and proteins in the laboratory is described. In addition, recent advances in the application of the methodology are outlined, exemplified by the synthesis and biological evaluation of a number of complex protein targets.
Collapse
Affiliation(s)
- Max J Bedding
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Camperdown, NSW, Australia
| | - Sameer S Kulkarni
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Camperdown, NSW, Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
7
|
Tyrosine-O-sulfation is a widespread affinity enhancer among thrombin interactors. Biochem Soc Trans 2022; 50:387-401. [PMID: 34994377 DOI: 10.1042/bst20210600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/24/2022]
Abstract
Tyrosine-O-sulfation is a common post-translational modification (PTM) of proteins following the cellular secretory pathway. First described in human fibrinogen, tyrosine-O-sulfation has long been associated with the modulation of protein-protein interactions in several physiological processes. A number of relevant interactions for hemostasis are largely dictated by this PTM, many of which involving the serine proteinase thrombin (FIIa), a central player in the blood-clotting cascade. Tyrosine sulfation is not limited to endogenous FIIa ligands and has also been found in hirudin, a well-known and potent thrombin inhibitor from the medicinal leech, Hirudo medicinalis. The discovery of hirudin led to successful clinical application of analogs of leech-inspired molecules, but also unveiled several other natural thrombin-directed anticoagulant molecules, many of which undergo tyrosine-O-sulfation. The presence of this PTM has been shown to enhance the anticoagulant properties of these peptides from a range of blood-feeding organisms, including ticks, mosquitos and flies. Interestingly, some of these molecules display mechanisms of action that mimic those of thrombin's bona fide substrates.
Collapse
|
8
|
Lu S, Tirloni L, Oliveira MB, Bosio CF, Nardone GA, Zhang Y, Hinnebusch BJ, Ribeiro JM, Andersen JF. Identification of a substrate-like cleavage-resistant thrombin inhibitor from the saliva of the flea Xenopsylla cheopis. J Biol Chem 2021; 297:101322. [PMID: 34688666 PMCID: PMC8573170 DOI: 10.1016/j.jbc.2021.101322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/24/2022] Open
Abstract
The salivary glands of the flea Xenopsylla cheopis, a vector of the plague bacterium, Yersinia pestis, express proteins and peptides thought to target the hemostatic and inflammatory systems of its mammalian hosts. Past transcriptomic analyses of salivary gland tissue revealed the presence of two similar peptides (XC-42 and XC-43) having no extensive similarities to any other deposited sequences. Here we show that these peptides specifically inhibit coagulation of plasma and the amidolytic activity of α-thrombin. XC-43, the smaller of the two peptides, is a fast, tight-binding inhibitor of thrombin with a dissociation constant of less than 10 pM. XC-42 exhibits similar selectivity as well as kinetic and binding properties. The crystal structure of XC-43 in complex with thrombin shows that despite its substrate-like binding mode, XC-43 is not detectably cleaved by thrombin and that it interacts with the thrombin surface from the enzyme catalytic site through the fibrinogen-binding exosite I. The low rate of hydrolysis was verified in solution experiments with XC-43, which show the substrate to be largely intact after 2 h of incubation with thrombin at 37 °C. The low rate of XC-43 cleavage by thrombin may be attributable to specific changes in the catalytic triad observable in the crystal structure of the complex or to extensive interactions in the prime sites that may stabilize the binding of cleavage products. Based on the increased arterial occlusion time, tail bleeding time, and blood coagulation parameters in rat models of thrombosis XC-43 could be valuable as an anticoagulant.
Collapse
Affiliation(s)
- Stephen Lu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Lucas Tirloni
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA; Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA
| | - Markus Berger Oliveira
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Christopher F Bosio
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA
| | - Glenn A Nardone
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Yixiang Zhang
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - B Joseph Hinnebusch
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA
| | - José M Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - John F Andersen
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA.
| |
Collapse
|
9
|
Dowman LJ, Agten SM, Ripoll-Rozada J, Calisto BM, Pereira PJB, Payne RJ. Synthesis and evaluation of peptidic thrombin inhibitors bearing acid-stable sulfotyrosine analogues. Chem Commun (Camb) 2021; 57:10923-10926. [PMID: 34596182 DOI: 10.1039/d1cc04742f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tyrosine sulfation is an important post-translational modification of peptides and proteins which underpins and modulates many protein-protein interactions. In order to overcome the inherent instability of the native modification, we report the synthesis of two sulfonate analogues and their incorporation into two thrombin-inhibiting sulfopeptides. The effective mimicry of these sulfonate analogues for native sulfotyrosine was validated in the context of their thrombin inhibitory activity and binding mode, as determined by X-ray crystallography.
Collapse
Affiliation(s)
- Luke J Dowman
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia. .,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydne, NSW 2006, Australia
| | - Stijn M Agten
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Jorge Ripoll-Rozada
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | | | - Pedro José Barbosa Pereira
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia. .,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydne, NSW 2006, Australia
| |
Collapse
|
10
|
Ho TNT, Lee HS, Swaminathan S, Goodwin L, Rai N, Ushay B, Lewis RJ, Rosengren KJ, Conibear AC. Posttranslational modifications of α-conotoxins: sulfotyrosine and C-terminal amidation stabilise structures and increase acetylcholine receptor binding. RSC Med Chem 2021; 12:1574-1584. [PMID: 34671739 PMCID: PMC8459321 DOI: 10.1039/d1md00182e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/21/2021] [Indexed: 11/21/2022] Open
Abstract
Conotoxins are peptides found in the venoms of marine cone snails. They are typically highly structured and stable and have potent activities at nicotinic acetylcholine receptors, which make them valuable research tools and promising lead molecules for drug development. Many conotoxins are also highly modified with posttranslational modifications such as proline hydroxylation, glutamic acid gamma-carboxylation, tyrosine sulfation and C-terminal amidation, amongst others. The role of these posttranslational modifications is poorly understood, and it is unclear whether the modifications interact directly with the binding site, alter conotoxin structure, or both. Here we synthesised a set of twelve conotoxin variants bearing posttranslational modifications in the form of native sulfotyrosine and C-terminal amidation and show that these two modifications in combination increase their activity at nicotinic acetylcholine receptors and binding to soluble acetylcholine binding proteins, respectively. We then rationalise how these functional differences between variants might arise from stabilization of the three-dimensional structures and interactions with the binding sites, using high-resolution nuclear magnetic resonance data. This study demonstrates that posttranslational modifications can modulate interactions between a ligand and receptor by a combination of structural and binding alterations. A deeper mechanistic understanding of the role of posttranslational modifications in structure-activity relationships is essential for understanding receptor biology and could help to guide structure-based drug design.
Collapse
Affiliation(s)
- Thao N T Ho
- Institute for Molecular Bioscience, The University of Queensland St Lucia 4072 Brisbane Australia
| | - Han Siean Lee
- School of Biomedical Sciences, The University of Queensland St Lucia 4072 Brisbane Australia +61 7 3365 1738
| | - Shilpa Swaminathan
- School of Biomedical Sciences, The University of Queensland St Lucia 4072 Brisbane Australia +61 7 3365 1738
| | - Lewis Goodwin
- School of Biomedical Sciences, The University of Queensland St Lucia 4072 Brisbane Australia +61 7 3365 1738
| | - Nishant Rai
- School of Biomedical Sciences, The University of Queensland St Lucia 4072 Brisbane Australia +61 7 3365 1738
| | - Brianna Ushay
- School of Biomedical Sciences, The University of Queensland St Lucia 4072 Brisbane Australia +61 7 3365 1738
| | - Richard J Lewis
- Institute for Molecular Bioscience, The University of Queensland St Lucia 4072 Brisbane Australia
| | - K Johan Rosengren
- School of Biomedical Sciences, The University of Queensland St Lucia 4072 Brisbane Australia +61 7 3365 1738
| | - Anne C Conibear
- School of Biomedical Sciences, The University of Queensland St Lucia 4072 Brisbane Australia +61 7 3365 1738
| |
Collapse
|
11
|
Griffiths RC, Mitchell NJ. The Chemical Synthesis of Site-Specifically Modified Proteins Via Diselenide-Selenoester Ligation. Methods Mol Biol 2021; 2355:231-251. [PMID: 34386962 DOI: 10.1007/978-1-0716-1617-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Peptide ligation techniques enable the controlled chemical synthesis of native and engineered proteins, including examples that display site-specific post-translational modifications (PTMs) and non-proteinogenic functionality. Diselenide-selenoester ligation (DSL) is a recent addition to the synthetic methodology that offers several advantages over existing strategies. The standard DSL reaction involves the additive-free ligation of a peptide carrying an N-terminal selenocysteine (Sec) residue with a fragment bearing a C-terminal selenoester. This operationally simple ligation proceeds rapidly at sterically hindered junctions and is efficient across a broad pH range. The incorporation of deselenization and oxidative deselenization techniques into the DSL protocol enables conversion of the Sec residue at the ligation site to alanine (Ala) and serine (Ser), respectively, thus enhancing the scope and versatility of the method. In this chapter, we describe the application of DSL to the one-pot chemical synthesis of proteins via both two-component and three-component ligation pathways.
Collapse
Affiliation(s)
- Rhys C Griffiths
- School of Chemistry, University of Nottingham, University Park, Nottingham, UK
| | - Nicholas J Mitchell
- School of Chemistry, University of Nottingham, University Park, Nottingham, UK.
| |
Collapse
|
12
|
Agten SM, Watson EE, Ripoll‐Rozada J, Dowman LJ, Wu MCL, Alwis I, Jackson SP, Pereira PJB, Payne RJ. Potent Trivalent Inhibitors of Thrombin through Hybridization of Salivary Sulfopeptides from Hematophagous Arthropods. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Stijn M. Agten
- School of Chemistry and ARC Centre of Excellence for Innovations in Peptide and Protein Science The University of Sydney Sydney NSW 2006 Australia
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM) Maastricht University Universiteitssingel 50 6229 ER Maastricht The Netherlands
| | - Emma E. Watson
- School of Chemistry and ARC Centre of Excellence for Innovations in Peptide and Protein Science The University of Sydney Sydney NSW 2006 Australia
| | - Jorge Ripoll‐Rozada
- IBMC—Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde Universidade do Porto 4200-135 Porto Portugal
| | - Luke J. Dowman
- School of Chemistry and ARC Centre of Excellence for Innovations in Peptide and Protein Science The University of Sydney Sydney NSW 2006 Australia
| | - Mike C. L. Wu
- Charles Perkins Centre The University of Sydney Sydney NSW 2006 Australia
- Heart Research Institute Sydney NSW 2042 Australia
| | - Imala Alwis
- Charles Perkins Centre The University of Sydney Sydney NSW 2006 Australia
- Heart Research Institute Sydney NSW 2042 Australia
| | - Shaun P. Jackson
- Charles Perkins Centre The University of Sydney Sydney NSW 2006 Australia
- Heart Research Institute Sydney NSW 2042 Australia
| | - Pedro José Barbosa Pereira
- IBMC—Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde Universidade do Porto 4200-135 Porto Portugal
| | - Richard J. Payne
- School of Chemistry and ARC Centre of Excellence for Innovations in Peptide and Protein Science The University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
13
|
Agten SM, Watson EE, Ripoll-Rozada J, Dowman LJ, Wu MCL, Alwis I, Jackson SP, Pereira PJB, Payne RJ. Potent Trivalent Inhibitors of Thrombin through Hybridization of Salivary Sulfopeptides from Hematophagous Arthropods. Angew Chem Int Ed Engl 2021; 60:5348-5356. [PMID: 33345438 DOI: 10.1002/anie.202015127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/14/2020] [Indexed: 12/20/2022]
Abstract
Blood feeding arthropods, such as leeches, ticks, flies and mosquitoes, provide a privileged source of peptidic anticoagulant molecules. These primarily operate through inhibition of the central coagulation protease thrombin by binding to the active site and either exosite I or exosite II. Herein, we describe the rational design of a novel class of trivalent thrombin inhibitors that simultaneously block both exosites as well as the active site. These engineered hybrids were synthesized using tandem diselenide-selenoester ligation (DSL) and native chemical ligation (NCL) reactions in one-pot. The most potent trivalent inhibitors possessed femtomolar inhibition constants against α-thrombin and were selective over related coagulation proteases. A lead hybrid inhibitor possessed potent anticoagulant activity, blockade of both thrombin generation and platelet aggregation in vitro and efficacy in a murine thrombosis model at 1 mg kg-1 . The rational engineering approach described here lays the foundation for the development of potent and selective inhibitors for a range of other enzymatic targets that possess multiple sites for the disruption of protein-protein interactions, in addition to an active site.
Collapse
Affiliation(s)
- Stijn M Agten
- School of Chemistry and ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, 2006, NSW, Australia
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Emma E Watson
- School of Chemistry and ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, 2006, NSW, Australia
| | - Jorge Ripoll-Rozada
- IBMC-Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Luke J Dowman
- School of Chemistry and ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, 2006, NSW, Australia
| | - Mike C L Wu
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- Heart Research Institute, Sydney, NSW, 2042, Australia
| | - Imala Alwis
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- Heart Research Institute, Sydney, NSW, 2042, Australia
| | - Shaun P Jackson
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- Heart Research Institute, Sydney, NSW, 2042, Australia
| | - Pedro José Barbosa Pereira
- IBMC-Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Richard J Payne
- School of Chemistry and ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, 2006, NSW, Australia
| |
Collapse
|
14
|
Abstract
Although the majority of proteins used for biomedical research are produced using living systems such as bacteria, biological means for producing proteins can be advantageously complemented by protein semisynthesis or total chemical synthesis. The latter approach is particularly useful when the proteins to be produced are toxic for the expression system or show unusual features that cannot be easily programmed in living organisms. The aim of this review is to provide a wide overview of the use of chemical protein synthesis in medicinal chemistry with a special focus on the production of post-translationally modified proteins and backbone cyclized proteins.
Collapse
Affiliation(s)
- Vangelis Agouridas
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019, UMR 9017, CIIL, Center for Infection and Immunity of Lille, F-59000 Lille, France.,Centrale Lille, F-59000 Lille, France
| | - Ouafâa El Mahdi
- Faculté Polydisciplinaire de Taza, University Sidi Mohamed Ben Abdellah, BP 1223 Taza gare, Morocco
| | - Oleg Melnyk
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019, UMR 9017, CIIL, Center for Infection and Immunity of Lille, F-59000 Lille, France
| |
Collapse
|
15
|
Calisto BM, Ripoll-Rozada J, Dowman LJ, Franck C, Agten SM, Parker BL, Veloso RC, Vale N, Gomes P, de Sanctis D, Payne RJ, Pereira PJB. Sulfotyrosine-Mediated Recognition of Human Thrombin by a Tsetse Fly Anticoagulant Mimics Physiological Substrates. Cell Chem Biol 2020; 28:26-33.e8. [PMID: 33096052 DOI: 10.1016/j.chembiol.2020.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/22/2020] [Accepted: 10/05/2020] [Indexed: 11/16/2022]
Abstract
Despite possessing only 32 residues, the tsetse thrombin inhibitor (TTI) is among the most potent anticoagulants described, with sub-picomolar inhibitory activity against thrombin. Unexpectedly, TTI isolated from the fly is 2000-fold more active and 180 Da heavier than synthetic and recombinant variants. We predicted the presence of a tyrosine O-sulfate post-translational modification of TTI, prompting us to investigate the effect of the modification on anticoagulant activity. A combination of chemical synthesis and functional assays was used to reveal that sulfation significantly improved the inhibitory activity of TTI against thrombin. Using X-ray crystallography, we show that the N-terminal sulfated segment of TTI binds the basic exosite II of thrombin, establishing interactions similar to those of physiologic substrates, while the C-terminal segment abolishes the catalytic activity of thrombin. This non-canonical mode of inhibition, coupled with its potency and small size, makes TTI an attractive scaffold for the design of novel antithrombotics.
Collapse
Affiliation(s)
- Bárbara M Calisto
- ESRF - The European Synchrotron, Structural Biology Group, 38000 Grenoble, France; ALBA Synchrotron, 08290 Cerdanyola del Vallès, Spain
| | - Jorge Ripoll-Rozada
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Luke J Dowman
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Charlotte Franck
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Stijn M Agten
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Benjamin L Parker
- Department of Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Rita Carvalho Veloso
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| | - Nuno Vale
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; Laboratory of Pharmacology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| | - Daniele de Sanctis
- ESRF - The European Synchrotron, Structural Biology Group, 38000 Grenoble, France
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Pedro José Barbosa Pereira
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
| |
Collapse
|
16
|
Abstract
α-Conotoxins (Ctx) can selectively target distinct subtypes of nicotinic acetylcholine receptors (nAChRs), which are closely related to a number of neurological diseases, and they have been considered as ideal probes and model peptide drugs. Sulfotyrosine (sY) is an important post-translational modification and believed to modulate certain key protein-protein interactions. Although sY modification has been indicated in several α-Ctx, its biological consequence has largely remained unexplored, mostly because of the difficulties in both its extraction from biological samples and chemical synthesis. Herein, we report a facile synthesis and folding strategy for obtaining the sY modified α-Ctx. This strategy is based on the development of a simple and controlled deprotection of the neopentyl protecting group of the sulfate ester as well as its compatibility with a step-wise oxidative folding of the two disulfide bonds. Eight sY modified α-Ctx peptides were successfully synthesized in good yield and with high purity, and their serum stabilities were almost comparable with non-modified peptides.
Collapse
Affiliation(s)
- Changpeng Li
- School of Chemistry and Chemical Engineering; South China University of Technology, Guangzhou 510640, China.
| | | |
Collapse
|
17
|
Conibear AC. Deciphering protein post-translational modifications using chemical biology tools. Nat Rev Chem 2020; 4:674-695. [PMID: 37127974 DOI: 10.1038/s41570-020-00223-8] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
Proteins carry out a wide variety of catalytic, regulatory, signalling and structural functions in living systems. Following their assembly on ribosomes and throughout their lifetimes, most eukaryotic proteins are modified by post-translational modifications; small functional groups and complex biomolecules are conjugated to amino acid side chains or termini, and the protein backbone is cleaved, spliced or cyclized, to name just a few examples. These modifications modulate protein activity, structure, location and interactions, and, thereby, control many core biological processes. Aberrant post-translational modifications are markers of cellular stress or malfunction and are implicated in several diseases. Therefore, gaining an understanding of which proteins are modified, at which sites and the resulting biological consequences is an important but complex challenge requiring interdisciplinary approaches. One of the key challenges is accessing precisely modified proteins to assign functional consequences to specific modifications. Chemical biologists have developed a versatile set of tools for accessing specifically modified proteins by applying robust chemistries to biological molecules and developing strategies for synthesizing and ligating proteins. This Review provides an overview of these tools, with selected recent examples of how they have been applied to decipher the roles of a variety of protein post-translational modifications. Relative advantages and disadvantages of each of the techniques are discussed, highlighting examples where they are used in combination and have the potential to address new frontiers in understanding complex biological processes.
Collapse
|
18
|
Maxwell JW, Payne RJ. Revealing the functional roles of tyrosine sulfation using synthetic sulfopeptides and sulfoproteins. Curr Opin Chem Biol 2020; 58:72-85. [DOI: 10.1016/j.cbpa.2020.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/27/2022]
|
19
|
Pinto MF, Baici A, Pereira PJB, Macedo-Ribeiro S, Pastore A, Rocha F, Martins PM. interferENZY: A Web-Based Tool for Enzymatic Assay Validation and Standardized Kinetic Analysis. J Mol Biol 2020; 433:166613. [PMID: 32768452 DOI: 10.1016/j.jmb.2020.07.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 02/01/2023]
Abstract
Enzymatic assays are widely employed to characterize important allosteric and enzyme modulation effects. The high sensitivity of these assays can represent a serious problem if the occurrence of experimental errors surreptitiously affects the reliability of enzyme kinetics results. We have addressed this problem and found that hidden assay interferences can be unveiled by the graphical representation of progress curves in modified reaction coordinates. To render this analysis accessible to users across all levels of expertise, we have developed a webserver, interferENZY, that allows (i) an unprecedented tight quality control of experimental data, (ii) the automated identification of small and major assay interferences, and (iii) the estimation of bias-free kinetic parameters. By eliminating the subjectivity factor in kinetic data reporting, interferENZY will contribute to solving the "reproducibility crisis" that currently challenges experimental molecular biology. The interferENZY webserver is freely available (no login required) at https://interferenzy.i3s.up.pt.
Collapse
Affiliation(s)
- Maria Filipa Pinto
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; LEPABE-Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Antonio Baici
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Pedro José Barbosa Pereira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Sandra Macedo-Ribeiro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Annalisa Pastore
- Maurice Wohl Clinical Neuroscience Institute, King's College London, 5 Cutcombe Rd, Brixton, London SE5 9RT, England, UK
| | - Fernando Rocha
- LEPABE-Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Pedro M Martins
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.
| |
Collapse
|
20
|
Ribeiro JMC, Mans BJ. TickSialoFam (TSFam): A Database That Helps to Classify Tick Salivary Proteins, a Review on Tick Salivary Protein Function and Evolution, With Considerations on the Tick Sialome Switching Phenomenon. Front Cell Infect Microbiol 2020; 10:374. [PMID: 32850476 PMCID: PMC7396615 DOI: 10.3389/fcimb.2020.00374] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/17/2020] [Indexed: 01/09/2023] Open
Abstract
Tick saliva contains a complex mixture of peptides and non-peptides that counteract their hosts' hemostasis, immunity, and tissue-repair reactions. Recent transcriptomic studies have revealed over one thousand different transcripts coding for secreted polypeptides in a single tick species. Not only do these gene products belong to many expanded families, such as the lipocalins, metalloproteases, Antigen-5, cystatins, and apyrases, but also families that are found exclusively in ticks, such as the evasins, Isac, DAP36, and many others. Phylogenetic analysis of the deduced protein sequences indicate that the salivary genes exhibit an increased rate of evolution due to a lower evolutionary constraint and/or positive selection, allowing for a large diversity of tick salivary proteins. Thus, for each new tick species that has its salivary transcriptome sequenced and assembled, a formidable task of annotation of these transcripts awaits. Currently, as of November 2019, there are over 287 thousand coding sequences deposited at the National Center for Biotechnology Information (NCBI) that are derived from tick salivary gland mRNA. Here, from these 287 thousand sequences we identified 45,264 potential secretory proteins which possess a signal peptide and no transmembrane domains on the mature peptide. By using the psiblast tools, position-specific matrices were constructed and assembled into the TickSialoFam (TSF) database. The TSF is a rpsblastable database that can help with the annotation of tick sialotranscriptomes. The TSA database identified 136 tick salivary secreted protein families, as well as 80 families of endosomal-related products, mostly having a protein modification function. As the number of sequences increases, and new annotation details become available, new releases of the TSF database may become available.
Collapse
Affiliation(s)
- José M. C. Ribeiro
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, United States
| | - Ben J. Mans
- Epidemiology, Parasites and Vectors, Agricultural Research Council - Onderstepoort Veterinary Research, Pretoria, South Africa
- The Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
- Department of Life and Consumer Sciences, University of South Africa, Pretoria, South Africa
| |
Collapse
|
21
|
Johansen-Leete J, Passioura T, Foster SR, Bhusal RP, Ford DJ, Liu M, Jongkees SAK, Suga H, Stone MJ, Payne RJ. Discovery of Potent Cyclic Sulfopeptide Chemokine Inhibitors via Reprogrammed Genetic Code mRNA Display. J Am Chem Soc 2020; 142:9141-9146. [DOI: 10.1021/jacs.0c03152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Toby Passioura
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Analytical, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Simon R. Foster
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Ram Prasad Bhusal
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Daniel J. Ford
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Minglong Liu
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Seino A. K. Jongkees
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Martin J. Stone
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Richard J. Payne
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
22
|
Clayton D, Kulkarni SS, Sayers J, Dowman LJ, Ripoll-Rozada J, Pereira PJB, Payne RJ. Chemical synthesis of a haemathrin sulfoprotein library reveals enhanced thrombin inhibition following tyrosine sulfation. RSC Chem Biol 2020. [DOI: 10.1039/d0cb00146e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The synthesis and thrombin inhibitory activity of eight homogeneously sulfated variants of the haemathrin proteins from tick saliva is described.
Collapse
Affiliation(s)
- Daniel Clayton
- School of Chemistry
- The University of Sydney
- Sydney
- Australia
| | | | - Jessica Sayers
- School of Chemistry
- The University of Sydney
- Sydney
- Australia
| | - Luke J. Dowman
- School of Chemistry
- The University of Sydney
- Sydney
- Australia
| | - Jorge Ripoll-Rozada
- IBMC – Instituto de Biologia Molecular e Celular & Instituto de Investigação e Inovação em Saúde
- Universidade do Porto
- 4200-135 Porto
- Portugal
| | - Pedro José Barbosa Pereira
- IBMC – Instituto de Biologia Molecular e Celular & Instituto de Investigação e Inovação em Saúde
- Universidade do Porto
- 4200-135 Porto
- Portugal
| | - Richard J. Payne
- School of Chemistry
- The University of Sydney
- Sydney
- Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science
| |
Collapse
|
23
|
Wang X, Corcilius L, Premdjee B, Payne RJ. Synthesis and Utility of β-Selenophenylalanine and β-Selenoleucine in Diselenide–Selenoester Ligation. J Org Chem 2019; 85:1567-1578. [DOI: 10.1021/acs.joc.9b02665] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xiaoyi Wang
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Leo Corcilius
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Bhavesh Premdjee
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Richard J. Payne
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
24
|
Chisholm TS, Kulkarni SS, Hossain KR, Cornelius F, Clarke RJ, Payne RJ. Peptide Ligation at High Dilution via Reductive Diselenide-Selenoester Ligation. J Am Chem Soc 2019; 142:1090-1100. [DOI: 10.1021/jacs.9b12558] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Sameer S. Kulkarni
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Flemming Cornelius
- Department of Biomedicine, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Ronald J. Clarke
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute, Sydney, NSW 2006, Australia
| | - Richard J. Payne
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
25
|
A simple linearization method unveils hidden enzymatic assay interferences. Biophys Chem 2019; 252:106193. [DOI: 10.1016/j.bpc.2019.106193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/23/2019] [Accepted: 05/26/2019] [Indexed: 01/09/2023]
|