1
|
Nagesh PKB, Monette S, Shamu T, Giralt S, Jean SCS, Zhang Z, Fuks Z, Kolesnick R. Anti-ceramide Single-Chain Variable Fragment Mitigates Gastrointestinal-Acute Radiation Syndrome and Improves Marrow Reconstitution, Rendering Near-Normal 90-Day Autopsies. Int J Radiat Oncol Biol Phys 2024; 120:558-569. [PMID: 37815783 PMCID: PMC10947531 DOI: 10.1016/j.ijrobp.2023.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 07/18/2023] [Accepted: 07/29/2023] [Indexed: 10/11/2023]
Abstract
PURPOSE After September 11, 2001, nuclear threat prompted government agencies to develop medical countermeasures to mitigate two syndromes, the hematopoietic-acute radiation syndrome (H-ARS) and the higher-dose gastrointestinal-acute radiation syndrome (GI-ARS), both lethal within weeks. While repurposing leukemia drugs that enhance bone marrow repopulation successfully treats H-ARS, no mitigator potentially deliverable under mass casualty conditions preserves the GI tract. We recently reported that anti-ceramide single-chain variable fragment (scFv) mitigates GI-ARS lethality, abrogating ongoing small intestinal endothelial apoptosis to rescue Lgr5+ stem cells. Here, we examine long-term consequences of prevention of acute GI-ARS lethality. METHODS AND MATERIALS For these studies, C57BL/6J male mice were treated with 15 Gy whole body irradiation, the 90% GI-ARS lethal dose for this mouse strain. RESULTS Mice irradiated with 15 Gy alone or with 15 Gy + bone marrow transplantation (BMT) or anti-ceramide scFv, succumb to an ARS within 8 to 10 days. Autopsies reveal only mice receiving anti-ceramide scFv at 24 hours post-whole body irradiation display small intestinal rescue. No marrow reconstitution occurs in any group with attendant undetectable circulating blood elements. Mice receiving 15 Gy + BMT + scFv, however, normalize blood counts by day 12, suggesting that scFv also improves marrow reconstitution, a concept for which we provide experimental support. We show that at 14 Gy, the upper limit dose for H-ARS lethality before transition to GI-ARS lethality, anti-ceramide scFv markedly improves marrow take, reducing the quantity of marrow-conferring survival by more than 3-fold. Consistent with these findings, mice receiving 15 Gy + BMT + scFv exhibit prolonged survival. At day 90, before sacrifice, they display normal appearance, behavior, and serum biochemistries, and surprisingly, at full autopsy, near-normal physiology in all 42 tissues examined. CONCLUSIONS Anti-ceramide scFv mitigates GI-ARS lethality and improves marrow reconstitution rendering prolonged survival with near normal autopsies.
Collapse
Affiliation(s)
- Prashanth K B Nagesh
- Laboratory of Signal Transduction, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sebastien Monette
- Laboratory of Comparative Pathology, Rockefeller University, Weill Cornell Medicine and Memorial Sloan Kettering Cancer Center, New York, New York
| | - Tambudzai Shamu
- Laboratory of Signal Transduction, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sergio Giralt
- Division of Hematologic Malignancies, Adult BMT Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samantha C St Jean
- Laboratory of Comparative Pathology, Rockefeller University, Weill Cornell Medicine and Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zhigang Zhang
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zvi Fuks
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York; Champalimaud Center, Lisbon, Portugal
| | - Richard Kolesnick
- Laboratory of Signal Transduction, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
2
|
Kuo HC, Daniel AR, Driver LM, Lee CL, Kirsch DG. Histological assessment of intestinal injury by ionizing radiation. Methods Cell Biol 2023; 180:147-175. [PMID: 37890927 PMCID: PMC10755726 DOI: 10.1016/bs.mcb.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Given the potential risk of radiological terrorism and disasters, it is essential to develop plans to prepare for such events. In these hazardous scenarios, radiation-induced gastrointestinal (GI) syndrome is one of the many manifestations that may happen after the organism is exposed to a lethal dose of ionizing radiation. Therefore, it is critical to better understand how the intestinal tissues initiate and orchestrate regeneration following severe radiation injury. In this chapter, we aimed to provide several key considerations for researchers who utilize histological assessment to study radiation-induced intestinal injury. Rigor and reproducibility are critical in experimental design and can be achieved by maintaining proper radiation administration, maintaining consistency in sample collection, and selecting and using appropriate controls. We also provided technical details of histological preparation of the intestines with tips on dissecting, cleaning, fixing, and preserving. Step-by-step descriptions of both bundling and Swiss rolling are provided with discussion on how to choose between the two approaches. In the following section, we detailed several histological assessment methods and then provided suggestions on how to use histological assessment to study cellular dynamics in the small intestines. Finally, we touched on some non-histological assessments. We hope that the information provided in this chapter will contribute to the research society of radiation-induced intestinal injury with an ultimate goal of promoting the development of radiation countermeasures against the GI acute radiation syndrome.
Collapse
Affiliation(s)
- Hsuan-Cheng Kuo
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, United States
| | - Andrea R Daniel
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States
| | - Lucy M Driver
- Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - Chang-Lung Lee
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States; Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - David G Kirsch
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, United States; Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States.
| |
Collapse
|
3
|
Kenchegowda D, Bolduc DL, Kurada L, Blakely WF. Severity scoring systems for radiation-induced GI injury - Prioritization for use of GI-ARS medical countermeasures. Int J Radiat Biol 2023:1-9. [PMID: 37172305 DOI: 10.1080/09553002.2023.2210669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
PURPOSE Severity scoring systems for ionizing radiation-induced gastrointestinal injury have been used in animal radiation models, human studies involving the use of radiation therapy, and radiation accidents. Various radiation exposure scenarios (i.e., total body irradiation, total abdominal irradiation, etc.) have been used to investigate ionizing radiation-induced gastrointestinal injury. These radiation-induced GI severity scoring systems are based on clinical signs and symptoms and gastrointestinal-specific biomarkers (i.e., citrulline, etc.). In addition, the time course for radiation-induced changes in blood citrulline levels were compared across various animal (i.e., mice, minipigs, Rhesus Macaque, etc.) and human model systems. CONCLUSIONS A worksheet tool was developed to prioritize individuals with severe life-threatening gastrointestinal acute radiation syndrome, based on the design of the Exposure and Symptom Tool addressing hematopoietic acute radiation syndrome, to rescue individuals from potential gastrointestinal acute radiation syndrome injury. This tool provides a triage diagnostic approach to assist first-responders to assess individuals suspected of showing gastrointestinal acute radiation syndrome severity to guide medical management, hence enhancing medical readiness for managing radiological casualties.
Collapse
Affiliation(s)
- Doreswamy Kenchegowda
- Biodosimetry Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - David L Bolduc
- Biodosimetry Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Lalitha Kurada
- Biodosimetry Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M Jackson Foundation, 6720A Rockledge Drive, Bethesda, MD USA
| | - William F Blakely
- Biodosimetry Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
4
|
Kim JK, Wu C, Del Latto M, Gao Y, Choi SH, Kierstead M, Gabriel Sauvé CE, Firat C, Perez AC, Sillanpaa J, Chen CT, Lawrence KE, Paty PB, Barriga FM, Wilkinson JE, Shia J, Sawyers CL, Lowe SW, García-Aguilar J, Romesser PB, Smith JJ. An immunocompetent rectal cancer model to study radiation therapy. CELL REPORTS METHODS 2022; 2:100353. [PMID: 36590695 PMCID: PMC9795330 DOI: 10.1016/j.crmeth.2022.100353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/18/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022]
Abstract
We describe a mouse model of rectal cancer (RC) involving rapid tumor organoid engraftment via orthotopic transplantation in an immunocompetent setting. This approach uses simple mechanical disruption to allow engraftment, avoiding the use of dextran sulfate sodium. The resulting RC tumors invaded from the mucosal surface and metastasized to distant organs. Histologically, the tumors closely resemble human RC and mirror remodeling of the tumor microenvironment in response to radiation. This murine RC model thus recapitulates key aspects of human RC pathogenesis and presents an accessible approach for more physiologically accurate, preclinical efficacy studies.
Collapse
Affiliation(s)
- Jin K. Kim
- Colorectal Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chao Wu
- Colorectal Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael Del Latto
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yajing Gao
- Colorectal Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Seo-Hyun Choi
- Colorectal Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Maria Kierstead
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Canan Firat
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Almudena Chaves Perez
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jussi Sillanpaa
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chin-Tung Chen
- Colorectal Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kayla E. Lawrence
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Philip B. Paty
- Colorectal Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Francisco M. Barriga
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - John E. Wilkinson
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jinru Shia
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Charles L. Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Scott W. Lowe
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Julio García-Aguilar
- Colorectal Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Paul B. Romesser
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Early Drug Development Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - J. Joshua Smith
- Colorectal Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
5
|
ACSL4 is essential for radiation-induced intestinal injury by initiating ferroptosis. Cell Death Discov 2022; 8:332. [PMID: 35869042 PMCID: PMC9307849 DOI: 10.1038/s41420-022-01127-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Lipid peroxidation-induced ferroptosis is a newly recognized type of programmed cell death. With the method of RNA sequencing, we found that irradiation (IR) markedly increased the expression of ferroptosis promotive genes, whereas reduced the expression of ferroptosis suppressive genes in murine intestine tissues, when compared with those of liver and lung tissues. By using ferroptosis inducer RSL-3 and inhibitor liproxstatin-1, we found that ferroptosis is essential for IR-induced intestinal injury. Acyl-CoA Synthetase Long-Chain Family Member 4 (ACSL4) is an important component for ferroptosis execution, and we found that ACSL4 expression was significantly upregulated in irradiated intestine tissues, but not in liver or lung tissues. Antibacterial and antifungal regents reduced the expression of ASCL4 and protected against tissue injury in irradiated intestine tissues. Further studies showed that troglitazone, a ACSL4 inhibitor, succeeded to suppresses intestine lipid peroxidation and tissue damage after IR.
Collapse
|
6
|
Garg S, Garg TK, Miousse IR, Wise SY, Fatanmi OO, Savenka AV, Basnakian AG, Singh VK, Hauer-Jensen M. Effects of Gamma-Tocotrienol on Partial-Body Irradiation-Induced Intestinal Injury in a Nonhuman Primate Model. Antioxidants (Basel) 2022; 11:1895. [PMID: 36290618 PMCID: PMC9598988 DOI: 10.3390/antiox11101895] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Exposure to high doses of radiation, accidental or therapeutic, often results in gastrointestinal (GI) injury. To date, there are no therapies available to mitigate GI injury after radiation exposure. Gamma-tocotrienol (GT3) is a promising radioprotector under investigation in nonhuman primates (NHP). We have shown that GT3 has radioprotective function in intestinal epithelial and crypt cells in NHPs exposed to 12 Gy total-body irradiation (TBI). Here, we determined GT3 potential in accelerating the GI recovery in partial-body irradiated (PBI) NHPs using X-rays, sparing 5% bone marrow. Sixteen rhesus macaques were treated with either vehicle or GT3 24 h prior to 12 Gy PBI. Structural injuries and crypt survival were examined in proximal jejunum on days 4 and 7. Plasma citrulline was assessed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Crypt cell proliferation and apoptotic cell death were evaluated using Ki-67 and TUNEL staining. PBI significantly decreased mucosal surface area and reduced villous height. Interestingly, GT3 increased crypt survival and enhanced stem cell proliferation at day 4; however, the effects seemed to be minimized by day 7. GT3 did not ameliorate a radiation-induced decrease in citrulline levels. These data suggest that X-rays induce severe intestinal injury post-PBI and that GT3 has minimal radioprotective effect in this novel model.
Collapse
Affiliation(s)
- Sarita Garg
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Tarun K. Garg
- UAMS Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Isabelle R. Miousse
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Stephen Y. Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Oluseyi O. Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Alena V. Savenka
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alexei G. Basnakian
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- John L. McClellan Memorial VA Hospital, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Vijay K. Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
7
|
Orzechowska-Licari EJ, LaComb JF, Giarrizzo M, Yang VW, Bialkowska AB. Intestinal Epithelial Regeneration in Response to Ionizing Irradiation. J Vis Exp 2022:10.3791/64028. [PMID: 35969101 PMCID: PMC9631267 DOI: 10.3791/64028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
The intestinal epithelium consists of a single layer of cells yet contains multiple types of terminally differentiated cells, which are generated by the active proliferation of intestinal stem cells located at the bottom of intestinal crypts. However, during events of acute intestinal injury, these active intestinal stem cells undergo cell death. Gamma irradiation is a widely used colorectal cancer treatment, which, while therapeutically efficacious, has the side effect of depleting the active stem cell pool. Indeed, patients frequently experience gastrointestinal radiation syndrome while undergoing radiotherapy, in part due to active stem cell depletion. The loss of active intestinal stem cells in intestinal crypts activates a pool of typically quiescent reserve intestinal stem cells and induces dedifferentiation of secretory and enterocyte precursor cells. If not for these cells, the intestinal epithelium would lack the ability to recover from radiotherapy and other such major tissue insults. New advances in lineage-tracing technologies allow tracking of the activation, differentiation, and migration of cells during regeneration and have been successfully employed for studying this in the gut. This study aims to depict a method for the analysis of cells within the mouse intestinal epithelium following radiation injury.
Collapse
Affiliation(s)
| | - Joseph F LaComb
- Department of Medicine, Renaissance School of Medicine at Stony Brook University
| | - Michael Giarrizzo
- Department of Medicine, Renaissance School of Medicine at Stony Brook University
| | - Vincent W Yang
- Department of Medicine, Renaissance School of Medicine at Stony Brook University; Department of Physiology and Biophysics, Renaissance School of Medicine at Stony Brook University
| | | |
Collapse
|
8
|
Metformin Protects the Intestinal Barrier by Activating Goblet Cell Maturation and Epithelial Proliferation in Radiation-Induced Enteropathy. Int J Mol Sci 2022; 23:ijms23115929. [PMID: 35682612 PMCID: PMC9180746 DOI: 10.3390/ijms23115929] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Radiotherapy or accidental exposure to high-dose radiation can cause severe damage to healthy organs. The gastrointestinal (GI) tract is a radiation-sensitive organ of the body. The intestinal barrier is the first line of defense in the GI tract, and consists of mucus secreted by goblet cells and a monolayer of epithelium. Intestinal stem cells (ISCs) help in barrier maintenance and intestinal function after injury by regulating efficient regeneration of the epithelium. The Wnt/β-catenin pathway plays a critical role in maintaining the intestinal epithelium and regulates ISC self-renewal. Metformin is the most widely used antidiabetic drug in clinical practice, and its anti-inflammatory, antioxidative, and antiapoptotic effects have also been widely studied. In this study, we investigated whether metformin alleviated radiation-induced enteropathy by focusing on its role in protecting the epithelial barrier. We found that metformin alleviated radiation-induced enteropathy, with increased villi length and crypt numbers, and restored the intestinal barrier function in the irradiated intestine. In a radiation-induced enteropathy mouse model, metformin treatment increased tight-junction expression in the epithelium and inhibited bacterial translocation to mesenteric lymph nodes. Metformin increased the number of ISCs from radiation toxicity and enhanced epithelial repair by activating Wnt/β-catenin signaling. These data suggested that metformin may be a potential therapeutic agent for radiation-induced enteropathy.
Collapse
|
9
|
Son B, Kim TR, Park JH, Yun SI, Choi H, Choi JW, Jeon C, Park HO. SAMiRNA Targeting Amphiregulin Alleviate Total-Body-Irradiation-Induced Renal Fibrosis. Radiat Res 2022; 197:471-479. [PMID: 35148406 DOI: 10.1667/rade-21-00220.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/05/2022] [Indexed: 11/12/2022]
Abstract
Fibrosis is a serious unintended side effect of radiation therapy. In this study, we aimed to investigate whether amphiregulin (AREG) plays a critical role in fibrosis development after total-body irradiation (TBI). We found that the expression of AREG and fibrotic markers, such as α-smooth muscle actin (α-SMA) and collagen type I alpha 1 (COL1α1), was elevated in the kidneys of 6 Gy TBI mice. Expression of AREG and α-SMA was mainly elevated in the proximal and distal tubules of the kidney in response to TBI, which was confirmed by immunofluorescence staining. Knockdown of Areg mRNA using self-assembled-micelle inhibitory RNA (SAMiRNA) significantly reduced the expression of fibrotic markers, including α-SMA and COL1α1, and inflammatory regulators. Finally, intravenous injections of SAMiRNA targeting mouse Areg mRNA (SAMiRNA-mAREG) diminished radiation-induced collagen accumulation in the renal cortex and medulla. Taken together, the results of the present study suggest that blocking of AREG signaling via SAMiRNA-mAREG treatment could be a promising therapeutic approach to alleviate radiation-induced kidney fibrosis.
Collapse
Affiliation(s)
- Beomseok Son
- siRNAgen Therapeutics, Daejeon 34302, Republic of Korea
| | - Tae Rim Kim
- siRNAgen Therapeutics, Daejeon 34302, Republic of Korea
| | - Jun Hong Park
- siRNAgen Therapeutics, Daejeon 34302, Republic of Korea
| | - Sung-Il Yun
- siRNAgen Therapeutics, Daejeon 34302, Republic of Korea
| | - Hanjoo Choi
- siRNAgen Therapeutics, Daejeon 34302, Republic of Korea
| | - Ji Woo Choi
- siRNAgen Therapeutics, Daejeon 34302, Republic of Korea
| | | | - Han-Oh Park
- siRNAgen Therapeutics, Daejeon 34302, Republic of Korea
| |
Collapse
|
10
|
Liao W, Khan I, Huang G, Chen S, Liu L, Leong WK, Li XA, Wu J, Wendy Hsiao WL. Bifidobacterium animalis: the missing link for the cancer-preventive effect of Gynostemma pentaphyllum. Gut Microbes 2022; 13:1847629. [PMID: 33228450 PMCID: PMC8381792 DOI: 10.1080/19490976.2020.1847629] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Colorectal cancer (CRC) ranks the third most common cancer type in both men and women. Besides the known genetic and epigenetic changes in the gut epithelial cells, we now know that disturbed gut microbes could also contribute to the onset and progression of CRC. Hence, keeping a balanced gut microbiota (GM) has become a novel pursue in the medical field, particularly in the area of gastrointestinal disorders. Gynostemma pentaphyllum (Gp) is a dietary herbal medicine. In our previous study, Gp saponins (GpS) displayed prebiotic and cancer-preventive properties through the modulation of GM in ApcMin/+ mice. However, the specific group(s) of GM links to the health effects of GpS remains unknown. To track down the missing link, we first investigated and found that inoculation with fecal materials from GpS-treated ApcMin/+ mice effectively reduces polyps in ApcMin/+ mice. From the same source of the fecal sample, we successfully isolated 16 bacterial species. Out of the 16 bacteria, Bifidobacterium animalis stands out as the responder to the GpS-growth stimulus. Biochemical and RNAseq analysis demonstrated that GpS enhanced expressions of a wide range of genes encoding biogenesis and metabolic pathways in B. animalis culture. Moreover, we found that colonization of B. animalis markedly reduces the polyp burden in ApcMin/+ mice. These findings reveal a mutualistic interaction between the prebiotic and a probiotic to achieve anticancer and cancer-preventive activities. Our result, for the first time, unveils the anticancer function of B. animalis and extend the probiotic horizon of B. animalis.
Collapse
Affiliation(s)
- Weilin Liao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR
| | - Guoxin Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR
| | - Shengshuang Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR
| | - Wai Kit Leong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR
| | - Xiao Ang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR
| | - Jianlin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR
| | - W. L. Wendy Hsiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR,CONTACT W. L. Wendy Hsiao State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR
| |
Collapse
|
11
|
Challenges and opportunities targeting mechanisms of epithelial injury and recovery in acute intestinal graft-versus-host disease. Mucosal Immunol 2022; 15:605-619. [PMID: 35654837 PMCID: PMC9259481 DOI: 10.1038/s41385-022-00527-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/21/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023]
Abstract
Despite advances in immunosuppressive prophylaxis and overall supportive care, gastrointestinal (GI) graft-versus-host disease (GVHD) remains a major, lethal side effect after allogeneic hematopoietic stem cell transplantation (allo-HSCT). It has become increasingly clear that the intestinal epithelium, in addition to being a target of transplant-related toxicity and GVHD, plays an important role in the onset of GVHD. Over the last two decades, increased understanding of the epithelial constituents and their microenvironment has led to the development of novel prophylactic and therapeutic interventions, with the potential to protect the intestinal epithelium from GVHD-associated damage and promote its recovery following insult. In this review, we will discuss intestinal epithelial injury and the role of the intestinal epithelium in GVHD pathogenesis. In addition, we will highlight possible approaches to protect the GI tract from damage posttransplant and to stimulate epithelial regeneration, in order to promote intestinal recovery. Combined treatment modalities integrating immunomodulation, epithelial protection, and induction of regeneration may hold the key to unlocking mucosal recovery and optimizing therapy for acute intestinal GVHD.
Collapse
|
12
|
Pan Y, Tang W, Fan W, Zhang J, Chen X. Development of nanotechnology-mediated precision radiotherapy for anti-metastasis and radioprotection. Chem Soc Rev 2022; 51:9759-9830. [DOI: 10.1039/d1cs01145f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Radiotherapy (RT), including external beam RT and internal radiation therapy, uses high-energy ionizing radiation to kill tumor cells.
Collapse
Affiliation(s)
- Yuanbo Pan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Wei Tang
- Departments of Pharmacy and Diagnostic Radiology, Nanomedicine Translational Research Program, Faculty of Science and Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117544, Singapore
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
13
|
Wang B, Jin YX, Dong JL, Xiao HW, Zhang SQ, Li Y, Chen ZY, Yang XD, Fan SJ, Cui M. Low-Intensity Exercise Modulates Gut Microbiota to Fight Against Radiation-Induced Gut Toxicity in Mouse Models. Front Cell Dev Biol 2021; 9:706755. [PMID: 34746120 PMCID: PMC8566984 DOI: 10.3389/fcell.2021.706755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022] Open
Abstract
Radiation-induced gastrointestinal (GI) tract toxicity halts radiotherapy and degrades the prognosis of cancer patients. Physical activity defined as “any bodily movement produced by skeletal muscle that requires energy expenditure” is a beneficial lifestyle modification for health. Here, we investigate whether walking, a low-intensity form of exercise, could alleviate intestinal radiation injury. Short-term (15 days) walking protected against radiation-induced GI tract toxicity in both male and female mice, as judged by longer colons, denser intestinal villi, more goblet cells, and lower expression of inflammation-related genes in the small intestines. High-throughput sequencing and untargeted metabolomics analysis showed that walking restructured the gut microbiota configuration, such as elevated Akkermansia muciniphila, and reprogramed the gut metabolome of irradiated mice. Deletion of gut flora erased the radioprotection of walking, and the abdomen local irradiated recipients who received fecal microbiome from donors with walking treatment exhibited milder intestinal toxicity. Oral gavage of A. muciniphila mitigated the radiation-induced GI tract injury. Importantly, walking did not change the tumor growth after radiotherapy. Together, our findings provide novel insights into walking and underpin that walking is a safe and effective form to protect against GI syndrome of patients with radiotherapy without financial burden in a preclinical setting.
Collapse
Affiliation(s)
- Bin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yu-Xiao Jin
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Department of Anesthesiology, Changshu No. 2 People's Hospital, Changshu, China
| | - Jia-Li Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hui-Wen Xiao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Shu-Qin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Zhi-Yuan Chen
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiao-Dong Yang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Sai-Jun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Ming Cui
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
14
|
Shi T, Jiang J, Gao M, Ma R, Chen X, Zhang R, Xu J, Wang W, Xu S, Liu X, Zheng H, Wang C, Li L, Li R. Editing flagellin derivatives for exploration of potent radioprotective agents. Eur J Pharmacol 2021; 907:174259. [PMID: 34153338 DOI: 10.1016/j.ejphar.2021.174259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/01/2021] [Accepted: 06/11/2021] [Indexed: 11/30/2022]
Abstract
Exploration of medical radiation countermeasures (MRCs) has great implications in protection of mammals from radiation damages. While flagellin has been recently reported to show radioprotective effects, the relationships between flagellin structure and radioprotective activity are rarely explored. Herein, we deliberately edited the amino acid sequence of flagellin in its binding domain with toll-like receptor 5 (TLR5) for exploration of potent flagellin derivatives (Fds). An in vitro screening paradigm was developed to examine the radioprotective effects of six engineered Fds. Notably, mutation of 103 threonine on flagellin into asparagine resulted in a potent MRC candidate (Fd-T103N) displaying 1.28-fold increment of interactions with TLR5. Fd-T103N was able to further activate NF-κB pathway, induce immune protective cytokine (e.g. G-CSF) release, and significantly ameliorate γ-irradiation induced cell death. The protection effects of Fd-T103N were further validated in mice exposed to 10 Gy γ-irradiations. Compared to parent flagellin, Fd-T103N treatment showed higher G-CSF release in mouse blood, lower intestine damages, and 13% increments of mouse survival rates. In short, the established predictive paradigm could greatly reduce the labor-, time- and animal-costs in exploration of MRC candidates. Fd-T103N is a promising candidate of investigational new drug for radioprotection.
Collapse
Affiliation(s)
- Tong Shi
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Jun Jiang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Meng Gao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Ronglin Ma
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Xuejun Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Ruihua Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Jianfu Xu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Weili Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Shujuan Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Xi Liu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Chen Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Liqin Li
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
15
|
Design, Synthesis, and Biological Evaluation of a Novel Aminothiol Compound as Potential Radioprotector. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4714649. [PMID: 34471464 PMCID: PMC8405339 DOI: 10.1155/2021/4714649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/02/2021] [Indexed: 12/14/2022]
Abstract
The risk of radiation damage has increased with the rapid development of nuclear technology and radiotherapy. Hence, research on radioprotective agents is of utmost importance. In the present study, a novel aminothiol compound 12, containing a linear alkylamino backbone and three terminal thiols, was synthesized. Owing to the appropriate capped groups in the chains, it has an improved permeability and oral bioavailability compared to other radioprotective agents. Oral administration of compound 12 improved the survival of mice that received lethal doses of γ-irradiation. Experimental results demonstrated that compound 12 not only mitigated total body irradiation-induced hematopoietic injury by increasing the frequencies of hematopoietic stem and progenitor cells but also prevented abdominal irradiation-induced intestinal injury by increasing the survival of Lgr5+ intestinal cells, lysozyme+ Paneth cells, and Ki67+ cells. In addition, compound 12 decreased oxidative stress by upregulating the expression of Nrf2 and NQO1 and downregulating the expression of NOX1. Further, compound 12 inhibited γ-irradiation-induced DNA damage and alleviated G2/M phase arrest. Moreover, compound 12 decreased the levels of p53 and Bax and increased the level of Bcl-2, demonstrating that it may suppress radiation-induced apoptosis via the p53 pathway. These results indicate that compound 12 has the possibility of preventing radiation injury and can be a potential radioprotector for clinical applications.
Collapse
|
16
|
Segers C, Mysara M, Claesen J, Baatout S, Leys N, Lebeer S, Verslegers M, Mastroleo F. Intestinal mucositis precedes dysbiosis in a mouse model for pelvic irradiation. ISME COMMUNICATIONS 2021; 1:24. [PMID: 36737646 PMCID: PMC9723693 DOI: 10.1038/s43705-021-00024-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/12/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
Pelvic radiotherapy is known to evoke intestinal mucositis and dysbiosis. Currently, there are no effective therapies available to mitigate these injuries, which is partly due to a lack of insight into the events causing mucositis and dysbiosis. Here, the complex interplay between the murine host and its microbiome following pelvic irradiation was mapped by characterizing intestinal mucositis along with extensive 16S microbial profiling. We demonstrated important morphological and inflammatory implications within one day after exposure, thereby impairing intestinal functionality and inducing translocation of intraluminal bacteria into mesenteric lymph nodes as innovatively quantified by flow cytometry. Concurrent 16S microbial profiling revealed a delayed impact of pelvic irradiation on beta diversity. Analysis of composition of microbiomes identified biomarkers for pelvic irradiation. Among them, members of the families Ruminococcaceae, Lachnospiraceae and Porphyromonadaceae were differentially affected. Altogether, our unprecedented findings showed how pelvic irradiation evoked structural and functional changes in the intestine, which secondarily resulted in a microbiome shift. Therefore, the presented in vivo irradiation-gut-microbiome platform allows further research into the pathobiology of pelvic irradiation-induced intestinal mucositis and resultant dysbiosis, as well as the exploration of mitigating treatments including drugs and food supplements.
Collapse
Affiliation(s)
- Charlotte Segers
- Interdisciplinary Biosciences group, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Mohamed Mysara
- Interdisciplinary Biosciences group, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| | - Jürgen Claesen
- Interdisciplinary Biosciences group, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
- Department of Epidemiology and Data Science, Amsterdam UMC, VU University Amsterdam, Amsterdam, The Netherlands
| | - Sarah Baatout
- Interdisciplinary Biosciences group, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
- Department of Biotechnology, University of Ghent, Ghent, Belgium
| | - Natalie Leys
- Interdisciplinary Biosciences group, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| | - Sarah Lebeer
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Mieke Verslegers
- Interdisciplinary Biosciences group, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| | - Felice Mastroleo
- Interdisciplinary Biosciences group, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium.
| |
Collapse
|
17
|
Li S, Shao L, Xu T, Jiang X, Yang G, Dong L. An indispensable tool: Exosomes play a role in therapy for radiation damage. Biomed Pharmacother 2021; 137:111401. [PMID: 33761615 DOI: 10.1016/j.biopha.2021.111401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/19/2022] Open
Abstract
Radiotherapy is one of the three main treatments for tumors. Almost 70% of tumor patients undergo radiotherapy at different periods. Although radiotherapy can enhance the local control rate of tumors and patients' quality of life, normal tissues often show radiation damage following radiotherapy. In recent years, several studies have shown that exosomes could be biomarkers for diseases and be involved in the treatment of radiation damage. Exosomes are nanoscale vesicles containing complex miRNAs and proteins. They can regulate the inflammatory response, enhance the regeneration effect of damaged tissue, and promote the repair of damaged tissues and cells, extending their survival time. In addition, their functions are achieved by paracrine signaling. In this review, we discuss the potential of exosomes as biomarkers and introduce the impact of exosomes on radiation damage in different organs and the hematopoietic system in detail.
Collapse
Affiliation(s)
- Sijia Li
- Department of Radiation Oncology and Therapy, Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Jilin, Changchun, 130000, China.
| | - Lihong Shao
- Department of Radiation Oncology and Therapy, Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Jilin, Changchun, 130000, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China.
| | - Tiankai Xu
- Department of Radiation Oncology and Therapy, Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Jilin, Changchun, 130000, China.
| | - Xin Jiang
- Department of Radiation Oncology and Therapy, Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Jilin, Changchun, 130000, China.
| | - Guozi Yang
- Department of Radiation Oncology and Therapy, Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Jilin, Changchun, 130000, China.
| | - Lihua Dong
- Department of Radiation Oncology and Therapy, Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Jilin, Changchun, 130000, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
18
|
Mantuano A, Lemos Mota C, Salata C, Pickler A, Alexandre Gonçalves Magalhães L, de Almeida CE. A pilot study of a postal dosimetry system using the Fricke dosimeter for research irradiators. Phys Med 2021; 84:214-219. [PMID: 33752946 DOI: 10.1016/j.ejmp.2021.02.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/27/2021] [Accepted: 02/28/2021] [Indexed: 11/26/2022] Open
Abstract
Cobalt-60 irradiators and soft X-ray machines are frequently used for research purposes, but the dosimetry is not always performed using the recommended protocols. This may lead to confusing and untrustworthy results within the conducted research. Postal dosimetry systems have already been approved by the IAEA, with thermoluminescence dosimeters (TLD) and optically stimulated luminescence (OSL) as the most commonly used dosimeter systems in these cases. The present study tests the Fricke dosimeter properties as a potential system to be used in postal dosimetry for a project using research irradiators. The Fricke solution was prepared according to the literature, and the linearity and fading tests were performed accordingly. All calculated doses were measured using a NE2571 Farmer ionization chamber as a reference. Doses ranging from 25 to 300 Gy were delivered by a research irradiator, with 150 kV and 22 mA to the Fricke solutions inside polyethylene (PE) bags (4 × 4 × 0.2 cm3). The results compared with the ionization chamber showed a linear response to the range of doses used. Fading tests showed no significant difference for the absorbed doses over 9 days, with a maximum difference of 1.5% found between days 0 and 3. The Fricke dosimeter presented good linearity, for low and high doses, and low uncertainties for the fading even for 9 days after irradiation. These preliminary results are motivating, and as the next step, we intend to design a postal dosimetry system using the PE bags of Fricke solution.
Collapse
Affiliation(s)
- Andrea Mantuano
- Radiological Sciences Department, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil.
| | - Carla Lemos Mota
- Radiological Sciences Department, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil; Physics Department, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Camila Salata
- Radiological Sciences Department, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil; Department of Medical and Research Facilities, National Nuclear Energy Authority (CNEN), Rio de Janeiro, Brazil
| | - Arissa Pickler
- Radiological Sciences Department, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | | | - Carlos E de Almeida
- Radiological Sciences Department, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Gillespie MA, Steele CW, Lannagan TR, Sansom OJ, Roxburgh CS. Pre-clinical modelling of rectal cancer to develop novel radiotherapy-based treatment strategies. Oncol Rev 2021; 15:511. [PMID: 34249240 PMCID: PMC8237517 DOI: 10.4081/oncol.2021.511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 05/17/2021] [Indexed: 12/15/2022] Open
Abstract
Pre-operative chemoradiotherapy reduces local recurrence rates in locally advanced rectal cancer. 10-20% of patients undergo complete response to chemoradiotherapy, however, many patients show no response. The mechanisms underlying this are poorly understood; identifying molecular and immunological factors underpinning heterogeneous responses to chemoradiotherapy, will promote development of treatment strategies to improve responses and overcome resistance mechanisms. This review describes the advances made in pre-clinical modelling of colorectal cancer, including genetically engineered mouse models, transplantation models, patient derived organoids and radiotherapy platforms to study responses to chemoradiotherapy. Relevant literature was identified through the PubMed and MEDLINE databases, using the following keywords: rectal cancer; mouse models; organoids; neo-adjuvant treatment; radiotherapy; chemotherapy. By delineating the advantages and disadvantages of available models, we discuss how modelling techniques can be utilized to address current research priorities in locally advanced rectal cancer. We provide unique insight into the potential application of pre-clinical models in the development of novel neo-adjuvant treatment strategies, which will hopefully guide future clinical trials.
Collapse
Affiliation(s)
- Michael A. Gillespie
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | | | - Owen J. Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Campbell S.D. Roxburgh
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
20
|
Serrano Martinez P, Giuranno L, Vooijs M, Coppes RP. The Radiation-Induced Regenerative Response of Adult Tissue-Specific Stem Cells: Models and Signaling Pathways. Cancers (Basel) 2021; 13:cancers13040855. [PMID: 33670536 PMCID: PMC7921940 DOI: 10.3390/cancers13040855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/10/2021] [Accepted: 02/14/2021] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy is involved in the treatment of many cancers, but damage induced to the surrounding normal tissue is often inevitable. Evidence suggests that the maintenance of homeostasis and regeneration of the normal tissue is driven by specific adult tissue stem/progenitor cells. These tasks involve the input from several signaling pathways. Irradiation also targets these stem/progenitor cells, triggering a cellular response aimed at achieving tissue regeneration. Here we discuss the currently used in vitro and in vivo models and the involved specific tissue stem/progenitor cell signaling pathways to study the response to irradiation. The combination of the use of complex in vitro models that offer high in vivo resemblance and lineage tracing models, which address organ complexity constitute potential tools for the study of the stem/progenitor cellular response post-irradiation. The Notch, Wnt, Hippo, Hedgehog, and autophagy signaling pathways have been found as crucial for driving stem/progenitor radiation-induced tissue regeneration. We review how these signaling pathways drive the response of solid tissue-specific stem/progenitor cells to radiotherapy and the used models to address this.
Collapse
Affiliation(s)
- Paola Serrano Martinez
- Department of Biomedical Sciences of Cells and Systems-Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands;
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Lorena Giuranno
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands;
| | - Marc Vooijs
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands;
- Correspondence: (M.V.); (R.P.C.)
| | - Robert P. Coppes
- Department of Biomedical Sciences of Cells and Systems-Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands;
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
- Correspondence: (M.V.); (R.P.C.)
| |
Collapse
|
21
|
Zhang X, Chen X, Wang L, He C, Shi Z, Fu Q, Xu W, Zhang S, Hu S. Review of the Efficacy and Mechanisms of Traditional Chinese Medicines as a Therapeutic Option for Ionizing Radiation Induced Damage. Front Pharmacol 2021; 12:617559. [PMID: 33658941 PMCID: PMC7917257 DOI: 10.3389/fphar.2021.617559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Ionizing radiation damage refers to acute, delayed, or chronic tissue damage associated with ionizing radiation. Specific or effective therapeutic options for systemic injuries induced by ionizing radiation have not been developed. Studies have shown that Chinese herbal Medicine or Chinese Herbal Prescription exhibit preventive properties against radiation damage. These medicines inhibit tissue injuries and promote repair with very minimal side effects. This study reviews traditional Chinese herbal medicines and prescriptions with radiation protective effects as well as their mechanisms of action. The information obtained will guide the development of alternative radioprotectants.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoying Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Changhao He
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhongyu Shi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qian Fu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenhui Xu
- Beijing Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shujing Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Sumin Hu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
22
|
Zhu J, Tian L, Li H, Hao J, Wang S, Li J, Zhang J. Radiation-induced gastrointestinal syndrome is alleviated in NDRG2-deficient mice. J Gastrointest Oncol 2021; 12:100-111. [PMID: 33708428 DOI: 10.21037/jgo-20-564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background Radiation-induced gastrointestinal syndrome (GIS) often occurs after therapeutic or accidental exposure to high doses of radiation. Unfortunately, there are still no effective medical treatments for GIS. N-Myc downstream regulated gene 2 (NDRG2), is a tumor suppressor gene and promotes cell apoptosis and differentiation. The aim of our study was to identify the role of NDRG2 in the progression of GIS and explore the potential mechanism. Methods We generated Ndrg2ΔG mice, lacking NDRG2 specifically in the intestinal epithelium. Survival analysis was performed to validate the effect of NDRG2 on GIS, and other common indicators (body weight loss and diarrhea) were used for the assessment of GIS. Enzyme-linked immunosorbent assay (ELISA) and reverse transcription-polymerase chain reaction (RT-PCR) were conducted to obtain the expression of pro-inflammatory interleukin (IL)-1β, IL-6, and tumor necrosis factor alpha (TNF-α). TUNNEL and western blotting were further adopted to determine the relationship between NDRG2 and apoptosis. Finally, we performed histology and immunohistochemistry assays to explore the morphological alternations and changes of proliferation-related molecules, including Ki-67 and proliferating cell nuclear antigen (PCNA). Results We found that after 8 gray of total body ɤ-irradiation (TBI), the deletion of NDRG2 in the intestine revealed longer survival time, considerably milder symptoms of GIS, and milder damage to jejunal tissue, compared with the WT mice. Moreover, the Ndrg2ΔG mice significantly inhibited the expression of pro-inflammatory IL-1β, IL-6, and TNF-α, which were typically increased by irradiation. Apoptosis of the epithelial cells in the Ndrg2ΔG mice was significantly milder while the ratio of proliferation cells was larger in the epithelium of mice 8 days after TBI when compared with the WT mice. Conclusions These findings all indicated that NDRG2 deficiency in the intestine protects mice against radiation-induced GIS mainly through promoting proliferation and suppressing apoptosis of epithelial cells.
Collapse
Affiliation(s)
- Jun Zhu
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lianlian Tian
- Department of Pediatrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Huichen Li
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, China
| | - Jun Hao
- Department of Experiment Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shuai Wang
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jipeng Li
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jian Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
23
|
Cell fate specification and differentiation in the adult mammalian intestine. Nat Rev Mol Cell Biol 2020; 22:39-53. [PMID: 32958874 DOI: 10.1038/s41580-020-0278-0] [Citation(s) in RCA: 332] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2020] [Indexed: 01/08/2023]
Abstract
Intestinal stem cells at the bottom of crypts fuel the rapid renewal of the different cell types that constitute a multitasking tissue. The intestinal epithelium facilitates selective uptake of nutrients while acting as a barrier for hostile luminal contents. Recent discoveries have revealed that the lineage plasticity of committed cells - combined with redundant sources of niche signals - enables the epithelium to efficiently repair tissue damage. New approaches such as single-cell transcriptomics and the use of organoid models have led to the identification of the signals that guide fate specification of stem cell progeny into the six intestinal cell lineages. These cell types display context-dependent functionality and can adapt to different requirements over their lifetime, as dictated by their microenvironment. These new insights into stem cell regulation and fate specification could aid the development of therapies that exploit the regenerative capacity and functionality of the gut.
Collapse
|
24
|
Khodamoradi E, Hoseini-Ghahfarokhi M, Amini P, Motevaseli E, Shabeeb D, Musa AE, Najafi M, Farhood B. Targets for protection and mitigation of radiation injury. Cell Mol Life Sci 2020; 77:3129-3159. [PMID: 32072238 PMCID: PMC11104832 DOI: 10.1007/s00018-020-03479-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023]
Abstract
Protection of normal tissues against toxic effects of ionizing radiation is a critical issue in clinical and environmental radiobiology. Investigations in recent decades have suggested potential targets that are involved in the protection against radiation-induced damages to normal tissues and can be proposed for mitigation of radiation injury. Emerging evidences have been shown to be in contrast to an old dogma in radiation biology; a major amount of reactive oxygen species (ROS) production and cell toxicity occur during some hours to years after exposure to ionizing radiation. This can be attributed to upregulation of inflammatory and fibrosis mediators, epigenetic changes and disruption of the normal metabolism of oxygen. In the current review, we explain the cellular and molecular changes following exposure of normal tissues to ionizing radiation. Furthermore, we review potential targets that can be proposed for protection and mitigation of radiation toxicity.
Collapse
Affiliation(s)
- Ehsan Khodamoradi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mojtaba Hoseini-Ghahfarokhi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Peyman Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Dheyauldeen Shabeeb
- Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
- Misan Radiotherapy Center, Misan, Iraq
| | - Ahmed Eleojo Musa
- Department of Medical Physics, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
25
|
Curran M, Mairesse M, Matas-Céspedes A, Bareham B, Pellegrini G, Liaunardy A, Powell E, Sargeant R, Cuomo E, Stebbings R, Betts CJ, Saeb-Parsy K. Recent Advancements and Applications of Human Immune System Mice in Preclinical Immuno-Oncology. Toxicol Pathol 2019; 48:302-316. [PMID: 31847725 DOI: 10.1177/0192623319886304] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significant advances in immunotherapies have resulted in the increasing need of predictive preclinical models to improve immunotherapeutic drug development, treatment combination, and to prevent or minimize toxicity in clinical trials. Immunodeficient mice reconstituted with human immune system (HIS), termed humanized mice or HIS mice, permit detailed analysis of human immune biology, development, and function. Although this model constitutes a great translational model, some aspects need to be improved as the incomplete engraftment of immune cells, graft versus host disease and the lack of human cytokines and growth factors. In this review, we discuss current HIS platforms, their pathology, and recent advances in their development to improve the quality of human immune cell reconstitution. We also highlight new technologies that can be used to better understand these models and how improved characterization is needed for their application in immuno-oncology safety, efficacy, and new modalities therapy development.
Collapse
Affiliation(s)
- Michelle Curran
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom.,Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Maelle Mairesse
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Alba Matas-Céspedes
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom.,Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Bethany Bareham
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Giovanni Pellegrini
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ardi Liaunardy
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Edward Powell
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Rebecca Sargeant
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Emanuela Cuomo
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Richard Stebbings
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Catherine J Betts
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|