1
|
Young B, Seifert SN, Lawson C, Koehler H. Exploring the genomic basis of Mpox virus-host transmission and pathogenesis. mSphere 2024; 9:e0057624. [PMID: 39540739 DOI: 10.1128/msphere.00576-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Mpox disease, caused by the monkeypox virus (MPXV), was recently classified as a public health emergency of international concern due to its high lethality and pandemic potential. MPXV is a zoonotic disease that emerged and is primarily spread by small rodents. Historically, it was considered mainly zoonotic and not likely to sustain human-to-human transmission. However, the worldwide outbreak of Clade IIb MPXV from 2020 to 2022 and ongoing Clade I MPXV epidemics in the Democratic Republic of the Congo and surrounding areas are a warning that human-adapted MPXVs will continually arise. Understanding the viral genetic determinants of host range, pathogenesis, and immune evasion is imperative for developing control strategies and predicting the future of Mpox. Here, we delve into the MPXV genome to detail genes involved in host immune evasion strategies for this zoonotic rodent-borne and human-circulating virus. We compare MPXV gene content to related Orthopoxviruses, which have narrow host ranges, to identify potential genes involved in species-specific pathogenesis and host tropism. In addition, we cover the key virulence factor differences that distinguish the MPXV clade lineages. Finally, we dissect how genomic reduction of Orthopoxviruses, through various molecular mechanisms, is contributing to the generation of novel MPXV lineages with increased human adaptation. This review aims to highlight gene content that defines the MPXV species, MPXV clades, and novel MPXV lineages that have culminated in this virus being elevated to a public health emergency of national concern.
Collapse
Affiliation(s)
- Brayden Young
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
- Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Stephanie N Seifert
- Paul G. Allen School for Global Heath, Washington State University, Pullman, Washington, USA
| | - Crystal Lawson
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
- Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Heather Koehler
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
- Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
2
|
Yi XM, Lei YL, Li M, Zhong L, Li S. The monkeypox virus-host interplays. CELL INSIGHT 2024; 3:100185. [PMID: 39144256 PMCID: PMC11321328 DOI: 10.1016/j.cellin.2024.100185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 08/16/2024]
Abstract
Monkeypox virus (MPXV) is a DNA virus belonging to the Orthopoxvirus genus within the Poxviridae family which can cause a zoonotic infection. The unexpected non-endemic outbreak of mpox in 2022 is considered as a new global threat. It is imperative to take proactive measures, including enhancing our understanding of MPXV's biology and pathogenesis, and developing novel antiviral strategies. The host immune responses play critical roles in defensing against MPXV infection while the virus has also evolved multiple strategies for immune escape. This review summarizes the biological features, antiviral immunity, immune evasion mechanisms, pathogenicity, and prevention strategies for MPXV.
Collapse
Affiliation(s)
- Xue-Mei Yi
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ya-Li Lei
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Mi Li
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Li Zhong
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Shu Li
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
3
|
Azar F, Deforges J, Demeusoit C, Kleinpeter P, Remy C, Silvestre N, Foloppe J, Fend L, Spring-Giusti C, Quéméneur E, Marchand JB. TG6050, an oncolytic vaccinia virus encoding interleukin-12 and anti-CTLA-4 antibody, favors tumor regression via profound immune remodeling of the tumor microenvironment. J Immunother Cancer 2024; 12:e009302. [PMID: 39060022 DOI: 10.1136/jitc-2024-009302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND TG6050 was designed as an improved oncolytic vector, combining the intrinsic properties of vaccinia virus to selectively replicate in tumors with the tumor-restricted expression of recombinant immune effectors to modify the tumor immune phenotype. These properties might be of particular interest for "cold" tumors, either poorly infiltrated or infiltrated with anergic T cells. METHODS TG6050, an oncolytic vaccinia virus encodes single-chain human interleukin-12 (hIL-12) and full-length anti-cytotoxic T-lymphocyte-associated antigen-4 (@CTLA-4) monoclonal antibody. The relevant properties of TG6050 (replication, cytopathy, transgenes expression and functionality) were extensively characterized in vitro. The biodistribution and pharmacokinetics of the viral vector, @CTLA-4 and IL-12, as well as antitumoral activities (alone or combined with immune checkpoint inhibitors) were investigated in several "hot" (highly infiltrated) and "cold" (poorly infiltrated) syngeneic murine tumor models. The mechanism of action was deciphered by monitoring both systemic and intratumoral immune responses, and by tumor transcriptome analysis. The safety of TG6050 after repeated intravenous administrations was evaluated in cynomolgus monkeys, with a focus on the level of circulating IL-12. RESULTS Multiplication and propagation of TG6050 in tumor cells in vitro and in vivo were associated with local expression of functional IL-12 and @CTLA-4. This dual mechanism translated into a strong antitumoral activity in both "cold" and "hot" tumor models (B16F10, LLC1 or EMT6, CT26, respectively) that was further amplified when combined with anti-programmed cell death protein-1. Analysis of changes in the tumor microenvironment (TME) after treatment with TG6050 showed increases in interferon-gamma, of CD8+T cells, and of M1/M2 macrophages ratio, as well as a drastic decrease of regulatory T cells. These local modifications were observed alongside bolstering a systemic and specific antitumor adaptive immune response. In toxicology studies, TG6050 did not display any observable adverse effects in cynomolgus monkeys. CONCLUSIONS TG6050 effectively delivers functional IL-12 and @CTLA-4 into the tumor, resulting in strong antitumor activity. The shift towards an inflamed TME correlated with a boost in systemic antitumor T cells. The solid preclinical data and favorable benefit/risk ratio paved the way for the clinical evaluation of TG6050 in metastatic non-small cell lung cancer (NCT05788926 trial in progress).
Collapse
Affiliation(s)
- Fadi Azar
- Transgene SA, Illkirch-Graffenstaden, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Yang S, Wang Y, Yu F, Cheng R, Zhang Y, Zhou D, Ren X, Deng Z, Zhao H. Structural and functional insights into the modulation of T cell costimulation by monkeypox virus protein M2. Nat Commun 2023; 14:5186. [PMID: 37626059 PMCID: PMC10457294 DOI: 10.1038/s41467-023-40748-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
The rapid spread of monkeypox in multiple countries has resulted in a global public health threat and has caused international concerns since May 2022. Poxvirus encoded M2 protein is a member of the poxvirus immune evasion family and plays roles in host immunomodulation via the regulation of innate immune response mediated by the NF-κB pathway and adaptive immune response mediated by B7 ligands. However, the interaction of monkeypox virus (MPXV) M2 with B7 ligands and structural insight into poxviral M2 function have remained elusive. Here we reveal that MPXV M2, co-existing as a hexamer and a heptamer, recognizes human B7.1 and B7.2 (hB7.1/2) with high avidities. The binding of oligomeric MPXV M2 interrupts the interactions of hB7.1/2 with CD28 and CTLA4 and subverts T cell activation mediated by B7.1/2 costimulatory signals. Cryo-EM structures of M2 in complex with hB7.1/2 show that M2 binds to the shallow concave face of hB7.1/2 and displays sterically competition with CD28 and CTLA4 for the binding to hB7.1/2. Our findings provide structural mechanisms of poxviral M2 function and immune evasion deployed by poxviruses.
Collapse
Affiliation(s)
- Shangyu Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yong Wang
- Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Feiyang Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Rao Cheng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yiwei Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Dan Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xuanxiu Ren
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Zengqin Deng
- Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China.
| | - Haiyan Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Iyer RF, Edwards DM, Kolb P, Raué HP, Nelson CA, Epperson ML, Slifka MK, Nolz JC, Hengel H, Fremont DH, Früh K. The secreted protein Cowpox Virus 14 contributes to viral virulence and immune evasion by engaging Fc-gamma-receptors. PLoS Pathog 2022; 18:e1010783. [PMID: 36121874 PMCID: PMC9521928 DOI: 10.1371/journal.ppat.1010783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 09/29/2022] [Accepted: 07/29/2022] [Indexed: 11/19/2022] Open
Abstract
The genome of cowpoxvirus (CPXV) could be considered prototypical for orthopoxviridae (OXPV) since it contains many open reading frames (ORFs) absent or lost in other OPXV, including vaccinia virus (VACV). These additional ORFs are non-essential for growth in vitro but are expected to contribute to the broad host range, virulence and immune evasion characteristics of CPXV. For instance, unlike VACV, CPXV encodes proteins that interfere with T cell stimulation, either directly or by preventing antigen presentation or co-stimulation. When studying the priming of naïve T cells, we discovered that CPXV, but not VACV, encodes a secreted factor that interferes with activation and proliferation of naïve CD8+ and CD4+ T cells, respectively, in response to anti-CD3 antibodies, but not to other stimuli. Deletion mapping revealed that the inhibitory protein is encoded by CPXV14, a small secreted glycoprotein belonging to the poxvirus immune evasion (PIE) family and containing a smallpoxvirus encoded chemokine receptor (SECRET) domain that mediates binding to chemokines. We demonstrate that CPXV14 inhibition of antibody-mediated T cell activation depends on the presence of Fc-gamma receptors (FcγRs) on bystander cells. In vitro, CPXV14 inhibits FcγR-activation by antigen/antibody complexes by binding to FcγRs with high affinity and immobilized CPXV14 can trigger signaling through FcγRs, particularly the inhibitory FcγRIIB. In vivo, CPXV14-deleted virus showed reduced viremia and virulence resulting in reduced weight loss and death compared to wildtype virus whereas both antibody and CD8+ T cell responses were increased in the absence of CPXV14. Furthermore, no impact of CPXV14-deletion on virulence was observed in mice lacking the inhibitory FcγRIIB. Taken together our results suggest that CPXV14 contributes to virulence and immune evasion by binding to host FcγRs.
Collapse
Affiliation(s)
- Ravi F. Iyer
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - David M. Edwards
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Philipp Kolb
- Institute of Virology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hans-Peter Raué
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Chris A. Nelson
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Megan L. Epperson
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Mark K. Slifka
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Jeffrey C. Nolz
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Hartmut Hengel
- Institute of Virology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daved H. Fremont
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Klaus Früh
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| |
Collapse
|
6
|
Depierreux DM, Altenburg AF, Soday L, Fletcher-Etherington A, Antrobus R, Ferguson BJ, Weekes MP, Smith GL. Selective modulation of cell surface proteins during vaccinia infection: A resource for identifying viral immune evasion strategies. PLoS Pathog 2022; 18:e1010612. [PMID: 35727847 PMCID: PMC9307158 DOI: 10.1371/journal.ppat.1010612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 07/22/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022] Open
Abstract
The interaction between immune cells and virus-infected targets involves multiple plasma membrane (PM) proteins. A systematic study of PM protein modulation by vaccinia virus (VACV), the paradigm of host regulation, has the potential to reveal not only novel viral immune evasion mechanisms, but also novel factors critical in host immunity. Here, >1000 PM proteins were quantified throughout VACV infection, revealing selective downregulation of known T and NK cell ligands including HLA-C, downregulation of cytokine receptors including IFNAR2, IL-6ST and IL-10RB, and rapid inhibition of expression of certain protocadherins and ephrins, candidate activating immune ligands. Downregulation of most PM proteins occurred via a proteasome-independent mechanism. Upregulated proteins included a decoy receptor for TRAIL. Twenty VACV-encoded PM proteins were identified, of which five were not recognised previously as such. Collectively, this dataset constitutes a valuable resource for future studies on antiviral immunity, host-pathogen interaction, poxvirus biology, vector-based vaccine design and oncolytic therapy. Vaccinia virus (VACV) is the vaccine used to eradicate smallpox and an excellent model for studying host-pathogen interactions. Many VACV-mediated immune evasion strategies are known, however how immune cells recognise VACV-infected cells is incompletely understood because of the complexity of surface proteins regulating such interactions. Here, a systematic study of proteins on the cell surface at different times during infection with VACV is presented. This shows not only the precise nature and kinetics of appearance of VACV proteins, but also the selective alteration of cellular surface proteins. The latter thereby identified potential novel immune evasion strategies and host proteins regulating immune activation. Comprehensive comparisons with published datasets provided further insight into mechanisms used to regulate surface protein expression. Such comparisons also identified proteins that are targeted by both VACV and human cytomegalovirus (HCMV), and which are therefore likely to represent host proteins regulating immune recognition and activation. Collectively, this work provides a valuable resource for studying viral immune evasion mechanisms and novel host proteins critical in host immunity.
Collapse
Affiliation(s)
| | | | - Lior Soday
- Cambridge Institute for Medical Research, University of Cambridge, United Kingdom
| | | | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, United Kingdom
| | | | - Michael P. Weekes
- Cambridge Institute for Medical Research, University of Cambridge, United Kingdom
- * E-mail: (MPW); (GLS)
| | - Geoffrey L. Smith
- Department of Pathology, University of Cambridge, United Kingdom
- * E-mail: (MPW); (GLS)
| |
Collapse
|
7
|
Platelets in COVID-19 disease: friend, foe, or both? Pharmacol Rep 2022; 74:1182-1197. [PMID: 36463349 PMCID: PMC9726679 DOI: 10.1007/s43440-022-00438-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 12/07/2022]
Abstract
Immuno-thrombosis of COVID-19 results in the activation of platelets and coagulopathy. Antiplatelet therapy has been widely used in COVID-19 patients to prevent thrombotic events. However, recent analysis of clinical trials does not support the major effects of antiplatelet therapy on mortality in hospitalized COVID-19 patients, despite the indisputable evidence for an increased risk of thrombotic complications in COVID-19 disease. This apparent paradox calls for an explanation. Platelets have an important role in sensing and orchestrating host response to infection, and several platelet functions related to host defense response not directly related to their well-known hemostatic function are emerging. In this paper, we aim to review the evidence supporting the notion that platelets have protective properties in maintaining endothelial barrier integrity in the course of an inflammatory response, and this role seems to be of particular importance in the lung. It might, thus, well be that the inhibition of platelet function, if affecting the protective aspect of platelet activity, might diminish clinical benefits resulting from the inhibition of the pro-thrombotic phenotype of platelets in immuno-thrombosis of COVID-19. A better understanding of the platelet-dependent mechanisms involved in the preservation of the endothelial barrier is necessary to design the antiplatelet therapeutic strategies that inhibit the pro-thrombotic activity of platelets without effects on the vaso-protective function of platelets safeguarding the pulmonary endothelial barrier during multicellular host defense in pulmonary circulation.
Collapse
|
8
|
Lin LCW, Croft SN, Croft NP, Wong YC, Smith SA, Tang SS, Purcell AW, Tscharke DC. Direct Priming of CD8 + T Cells Persists in the Face of Cowpox Virus Inhibitors of Antigen Presentation. J Virol 2021; 95:JVI.00186-21. [PMID: 33692206 PMCID: PMC8139650 DOI: 10.1128/jvi.00186-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/27/2021] [Indexed: 11/30/2022] Open
Abstract
Vaccinia virus (VACV) was the vaccine used to eradicate smallpox and is being repurposed as a vaccine vector. CD8+ T cells are key anti-viral mediators, but require priming to become effector or memory cells. Priming requires an interaction with dendritic cells that are either infected (direct priming), or that have acquired virus proteins but remain uninfected (cross priming). To investigate CD8+ T cell priming pathways for VACV, we engineered the virus to express CPXV12 and CPXV203, two inhibitors of antigen presentation encoded by cowpox virus. These intracellular proteins would be expected to block direct but not cross priming. The inhibitors had diverse impacts on the size of anti-VACV CD8+ T cell responses across epitopes and by different infection routes in mice, superficially suggesting variable use of direct and cross priming. However, when we then tested a form of antigen that requires direct priming, we found surprisingly that CD8+ T cell responses were not diminished by co-expression with CPXV12 and CPXV203. We then directly quantified the impact of CPXV12 and CPXV203 on viral antigen presentation using mass spectrometry, which revealed strong, but incomplete inhibition of antigen presentation by the CPXV proteins. Therefore, direct priming of CD8+ T cells by poxviruses is robust enough to withstand highly potent viral inhibitors of antigen presentation. This is a reminder of the limits of viral immune evasion and shows that viral inhibitors of antigen presentation cannot be assumed to dissect cleanly direct and cross priming of anti-viral CD8+ T cells.ImportanceCD8+ T cells are key to anti-viral immunity, so it is important to understand how they are activated. Many viruses have proteins that protect infected cells from T cell attack by interfering with the process that allows virus infection to be recognised by CD8+ T cells. It is thought that these proteins would also stop infected cells from activating T cells in the first place. However, we show here that this is not the case for two very powerful inhibitory proteins from cowpox virus. This demonstrates the flexibility and robustness of immune processes that turn on the immune responses required to fight infection.
Collapse
Affiliation(s)
- Leon C. W. Lin
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Sarah N. Croft
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Nathan P. Croft
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Yik Chun Wong
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Stewart A. Smith
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Swee-Seong Tang
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Anthony W. Purcell
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - David C. Tscharke
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
9
|
Directed attenuation to enhance vaccine immunity. PLoS Comput Biol 2021; 17:e1008602. [PMID: 33524036 PMCID: PMC7877766 DOI: 10.1371/journal.pcbi.1008602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 02/11/2021] [Accepted: 12/02/2020] [Indexed: 12/24/2022] Open
Abstract
Many viral infections can be prevented by immunizing with live, attenuated vaccines. Early methods of attenuation were hit-and-miss, now much improved by genetic engineering. However, even current methods operate on the principle of genetic harm, reducing the virus’s ability to grow. Reduced viral growth has the undesired side-effect of reducing the host immune response below that of infection with wild-type. Might some methods of attenuation instead lead to an increased immune response? We use mathematical models of the dynamics of virus with innate and adaptive immunity to explore the tradeoff between attenuation of virus pathology and immunity. We find that modification of some virus immune-evasion pathways can indeed reduce pathology yet enhance immunity. Thus, attenuated vaccines can, in principle, be directed to be safe yet create better immunity than is elicited by the wild-type virus. Live attenuated virus vaccines are among the most effective interventions to combat viral infections. Historically, the mechanism of attenuation has involved genetically reducing the viral growth rate, often achieved by adapting the virus to grow in a novel condition. More recent attenuation methods use genetic engineering but also are thought to impair viral growth rate. These classical attenuations typically result in a tradeoff whereby attenuation depresses the within-host viral load and pathology (which is beneficial to vaccine design), but reduces immunity (which is not beneficial). We use models to explore ways of directing the attenuation of a virus to avoid this tradeoff. We show that directed attenuation by interfering with (some) viral immune-evasion pathways can yield a mild infection but elicit higher levels of immunity than of the wild-type virus.
Collapse
|