1
|
Hu T, Ma H, Xiao Y, Sun R, Li C, Shan L, Zhang B. Chromosome-Level Genome Assembly of Five Emberiza Species Reveals the Genomic Characteristics and Intrinsic Drivers of Adaptive Radiation. Mol Ecol Resour 2025:e14063. [PMID: 39776321 DOI: 10.1111/1755-0998.14063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/28/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
Emberiza buntings (Aves: Emberizidae) exhibit extensive diversity and rapid diversification within the Old World, particularly in the eastern Palearctic, making them valuable models for studying rapid radiation among sympatric species. Despite their ecological and morphological diversity, there remains a significant gap in understanding the genomic underpinnings driving their rapid speciation. To fill this gap, we assembled high-quality chromosome-level genomes of five representative Emberiza species (E. aureola, E. pusilla, E. rustica, E. rutila and E. spodocephala). Comparative genomic analysis revealed distinct migration-related evolutionary adaptations in their genomes, including variations in lipid metabolism, oxidative stress response, locomotor ability and circadian regulation. These changes may facilitate the rapid occupation of emerging ecological niches and provide opportunities for species diversification. Additionally, these five species exhibited abnormal abundances of long terminal repeat retrotransposons (LTRs), comprising over 20% of their genomes, with insertion times corresponding to their divergence (~2.5 million years ago). The presence of LTRs influenced genome size, chromosomal structure and single-gene expression, suggesting their role in promoting the rapid diversification of Emberiza species. These findings offer valuable insights into the adaptive radiation of Emberiza and establish a robust theoretical foundation for further exploration of the patterns and mechanisms underlying their diversification.
Collapse
Affiliation(s)
- Tingli Hu
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Haohao Ma
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Yongxuan Xiao
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Ruolei Sun
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Chunlin Li
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Lei Shan
- School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Baowei Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| |
Collapse
|
2
|
McElroy KE, Masonbrink R, Chudalayandi S, Severin AJ, Serb JM. A chromosome-level genome assembly of the disco clam, Ctenoides ales. G3 (BETHESDA, MD.) 2024; 14:jkae115. [PMID: 38805695 PMCID: PMC11373642 DOI: 10.1093/g3journal/jkae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 12/22/2023] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
The bivalve subclass Pteriomorphia, which includes the economically important scallops, oysters, mussels, and ark clams, exhibits extreme ecological, morphological, and behavioral diversity. Among this diversity are five morphologically distinct eye types, making Pteriomorphia an excellent setting to explore the molecular basis for the evolution of novel traits. Of pteriomorphian bivalves, Limida is the only order lacking genomic resources, greatly limiting the potential phylogenomic analyses related to eyes and phototransduction. Here, we present a limid genome assembly, the disco clam, Ctenoides ales (C. ales), which is characterized by invaginated eyes, exceptionally long tentacles, and a flashing light display. This genome assembly was constructed with PacBio long reads and Dovetail Omni-CTM proximity-ligation sequencing. The final assembly is ∼2.3Gb and over 99% of the total length is contained in 18 pseudomolecule scaffolds. We annotated 41,064 protein coding genes and reported a BUSCO completeness of 91.9% for metazoa_obd10. Additionally, we report a complete and annotated mitochondrial genome, which also had been lacking from Limida. The ∼20Kb mitogenome has 12 protein coding genes, 22 tRNAs, 2 rRNA genes, and a 1,589 bp duplicated sequence containing the origin of replication. The C. ales nuclear genome size is substantially larger than other pteriomorphian genomes, mainly accounted for by transposable element sequences. We inventoried the genome for opsins, the signaling proteins that initiate phototransduction, and found that, unlike its closest eyed-relatives, the scallops, C. ales lacks duplication of the rhabdomeric Gq-protein-coupled opsin that is typically used for invertebrate vision. In fact, C. ales has uncharacteristically few opsins relative to the other pteriomorphian families, all of which have unique expansions of xenopsins, a recently discovered opsin subfamily. This chromosome-level assembly, along with the mitogenome, is a valuable resource for comparative genomics and phylogenetics in bivalves and particularly for the understudied but charismatic limids.
Collapse
Affiliation(s)
- Kyle E McElroy
- Department of Ecology, Evolutionary, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Rick Masonbrink
- Genome Informatics Facility, Iowa State University, Ames, IA 50011, USA
| | | | - Andrew J Severin
- Genome Informatics Facility, Iowa State University, Ames, IA 50011, USA
| | - Jeanne M Serb
- Department of Ecology, Evolutionary, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
3
|
Schnitzler CE, Chang ES, Waletich J, Quiroga-Artigas G, Wong WY, Nguyen AD, Barreira SN, Doonan LB, Gonzalez P, Koren S, Gahan JM, Sanders SM, Bradshaw B, DuBuc TQ, Febrimarsa, de Jong D, Nawrocki EP, Larson A, Klasfeld S, Gornik SG, Moreland RT, Wolfsberg TG, Phillippy AM, Mullikin JC, Simakov O, Cartwright P, Nicotra M, Frank U, Baxevanis AD. The genome of the colonial hydroid Hydractinia reveals that their stem cells use a toolkit of evolutionarily shared genes with all animals. Genome Res 2024; 34:498-513. [PMID: 38508693 PMCID: PMC11067881 DOI: 10.1101/gr.278382.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Hydractinia is a colonial marine hydroid that shows remarkable biological properties, including the capacity to regenerate its entire body throughout its lifetime, a process made possible by its adult migratory stem cells, known as i-cells. Here, we provide an in-depth characterization of the genomic structure and gene content of two Hydractinia species, Hydractinia symbiolongicarpus and Hydractinia echinata, placing them in a comparative evolutionary framework with other cnidarian genomes. We also generated and annotated a single-cell transcriptomic atlas for adult male H. symbiolongicarpus and identified cell-type markers for all major cell types, including key i-cell markers. Orthology analyses based on the markers revealed that Hydractinia's i-cells are highly enriched in genes that are widely shared amongst animals, a striking finding given that Hydractinia has a higher proportion of phylum-specific genes than any of the other 41 animals in our orthology analysis. These results indicate that Hydractinia's stem cells and early progenitor cells may use a toolkit shared with all animals, making it a promising model organism for future exploration of stem cell biology and regenerative medicine. The genomic and transcriptomic resources for Hydractinia presented here will enable further studies of their regenerative capacity, colonial morphology, and ability to distinguish self from nonself.
Collapse
Affiliation(s)
- Christine E Schnitzler
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080, USA
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
| | - E Sally Chang
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Justin Waletich
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080, USA
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
| | - Gonzalo Quiroga-Artigas
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080, USA
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier CEDEX 05, France
| | - Wai Yee Wong
- Department for Neurosciences and Developmental Biology, University of Vienna, 1030 Vienna, Austria
| | - Anh-Dao Nguyen
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sofia N Barreira
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Liam B Doonan
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway H91 W2TY, Ireland
| | - Paul Gonzalez
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sergey Koren
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - James M Gahan
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway H91 W2TY, Ireland
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Steven M Sanders
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Brian Bradshaw
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway H91 W2TY, Ireland
| | - Timothy Q DuBuc
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway H91 W2TY, Ireland
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania 19081, USA
| | - Febrimarsa
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway H91 W2TY, Ireland
- Pharmaceutical Biology Laboratory, Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Jawa Tengah 57169, Indonesia
| | - Danielle de Jong
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080, USA
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
| | - Eric P Nawrocki
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Alexandra Larson
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080, USA
| | - Samantha Klasfeld
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sebastian G Gornik
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway H91 W2TY, Ireland
- Center for Organismal Studies, University of Heidelberg, 69117 Heidelberg, Germany
| | - R Travis Moreland
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Tyra G Wolfsberg
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Adam M Phillippy
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - James C Mullikin
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
- NIH Intramural Sequencing Center, Rockville, Maryland 20852, USA
| | - Oleg Simakov
- Department for Neurosciences and Developmental Biology, University of Vienna, 1030 Vienna, Austria
| | - Paulyn Cartwright
- Department of Evolution and Ecology, University of Kansas, Lawrence, Kansas 66045, USA
| | - Matthew Nicotra
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Uri Frank
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway H91 W2TY, Ireland
| | - Andreas D Baxevanis
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
4
|
Zhao Y, Su C, He B, Nie R, Wang Y, Ma J, Song J, Yang Q, Hao J. Dispersal from the Qinghai-Tibet plateau by a high-altitude butterfly is associated with rapid expansion and reorganization of its genome. Nat Commun 2023; 14:8190. [PMID: 38081828 PMCID: PMC10713551 DOI: 10.1038/s41467-023-44023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Parnassius glacialis is a typical "Out of the QTP" alpine butterfly that originated on the Qinghai-Tibet Plateau (QTP) and dispersed into relatively low-altitude mountainous. Here we assemble a chromosome-level genome of P. glacialis and resequence 9 populations in order to explore the genome evolution and local adaptation of this species. These results indicated that the rapid accumulation and slow unequal recombination of transposable elements (TEs) contributed to the formation of its large genome. Several ribosomal gene families showed extensive expansion and selective evolution through transposon-mediated processed pseudogenes. Additionally, massive structural variations (SVs) of TEs affected the genetic differentiation of low-altitude populations. These low-altitude populations might have experienced a genetic bottleneck in the past and harbor genes with selective signatures which may be responsible for the potential adaptation to low-altitude environments. These results provide a foundation for understanding genome evolution and local adaptation for "Out of the QTP" of P. glacialis.
Collapse
Affiliation(s)
- Youjie Zhao
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
- College of Big Data and Intelligent Engineering, Southwest Forestry University, Kunming, 650224, Yunnan, China
| | - Chengyong Su
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Bo He
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Ruie Nie
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Yunliang Wang
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Junye Ma
- State Key Laboratory of Palaeobiology and Stratigraphy, Center for Excellence in Life and Palaeoenvironment, Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jingyu Song
- College of Animal Science, Shandong Agricultural University, Taian, 271000, China
| | - Qun Yang
- State Key Laboratory of Palaeobiology and Stratigraphy, Center for Excellence in Life and Palaeoenvironment, Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, Nanjing, 210008, China.
- Nanjing College, University of Chinese Academy of Sciences, Nanjing, 211135, China.
| | - Jiasheng Hao
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
| |
Collapse
|
5
|
Lyu K, Xiao J, Lyu S, Liu R. Comparative Analysis of Transposable Elements in Strawberry Genomes of Different Ploidy Levels. Int J Mol Sci 2023; 24:16935. [PMID: 38069258 PMCID: PMC10706760 DOI: 10.3390/ijms242316935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Transposable elements (TEs) make up a large portion of plant genomes and play a vital role in genome structure, function, and evolution. Cultivated strawberry (Fragaria x ananassa) is one of the most important fruit crops, and its octoploid genome was formed through several rounds of genome duplications from diploid ancestors. Here, we built a pan-genome TE library for the Fragaria genus using ten published strawberry genomes at different ploidy levels, including seven diploids, one tetraploid, and two octoploids, and performed comparative analysis of TE content in these genomes. The TEs comprise 51.83% (F. viridis) to 60.07% (F. nilgerrensis) of the genomes. Long terminal repeat retrotransposons (LTR-RTs) are the predominant TE type in the Fragaria genomes (20.16% to 34.94%), particularly in F. iinumae (34.94%). Estimating TE content and LTR-RT insertion times revealed that species-specific TEs have shaped each strawberry genome. Additionally, the copy number of different LTR-RT families inserted in the last one million years reflects the genetic distance between Fragaria species. Comparing cultivated strawberry subgenomes to extant diploid ancestors showed that F. vesca and F. iinumae are likely the diploid ancestors of the cultivated strawberry, but not F. viridis. These findings provide new insights into the TE variations in the strawberry genomes and their roles in strawberry genome evolution.
Collapse
Affiliation(s)
- Keliang Lyu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (K.L.); (S.L.)
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Jiajing Xiao
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Shiheng Lyu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (K.L.); (S.L.)
| | - Renyi Liu
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| |
Collapse
|
6
|
Fourreau CJL, Kise H, Santander MD, Pirro S, Maronna MM, Poliseno A, Santos ME, Reimer JD. Genome sizes and repeatome evolution in zoantharians (Cnidaria: Hexacorallia: Zoantharia). PeerJ 2023; 11:e16188. [PMID: 37868064 PMCID: PMC10586311 DOI: 10.7717/peerj.16188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/06/2023] [Indexed: 10/24/2023] Open
Abstract
Across eukaryotes, large variations of genome sizes have been observed even between closely related species. Transposable elements as part of the repeated DNA have been proposed and confirmed as one of the most important contributors to genome size variation. However, the evolutionary implications of genome size variation and transposable element dynamics are not well understood. Together with phenotypic traits, they are commonly referred to as the "C-value enigma". The order Zoantharia are benthic cnidarians found from intertidal zones to the deep sea, and some species are particularly abundant in coral reefs. Despite their high ecological relevance, zoantharians have yet to be largely studied from the genomic point of view. This study aims at investigating the role of the repeatome (total content of repeated elements) in genome size variations across the order Zoantharia. To this end, whole-genomes of 32 zoantharian species representing five families were sequenced. Genome sizes were estimated and the abundances of different repeat classes were assessed. In addition, the repeat overlap between species was assessed by a sequence clustering method. The genome sizes in the dataset varied up to 2.4 fold magnitude. Significant correlations between genome size, repeated DNA content and transposable elements, respectively (Pearson's correlation test R2 = 0.47, p = 0.0016; R2 = 0.22, p = 0.05) were found, suggesting their involvement in the dynamics of genome expansion and reduction. In all species, long interspersed nuclear elements and DNA transposons were the most abundant identified elements. These transposable elements also appeared to have had a recent expansion event. This was in contrast to the comparative clustering analysis which revealed species-specific patterns of satellite elements' amplification. In summary, the genome sizes of zoantharians likely result from the complex dynamics of repeated elements. Finally, the majority of repeated elements (up to 70%) could not be annotated to a known repeat class, highlighting the need to further investigate non-model cnidarian genomes. More research is needed to understand how repeated DNA dynamics relate to zoantharian evolution and their biology.
Collapse
Affiliation(s)
- Chloé Julie Loïs Fourreau
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Hiroki Kise
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
- AIST Tsukuba Central, Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Mylena Daiana Santander
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Stacy Pirro
- Iridian Genomes, Bethesda, United States of America
| | - Maximiliano M. Maronna
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
- Faculdade de Ciências, Universidade Estadual Paulista (UNESP), Bauru, Brazil
| | - Angelo Poliseno
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Maria E.A. Santos
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
- Okinawa Institute of Science and Technology, Onna, Okinawa, Japan
| | - James Davis Reimer
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, United States of America
| |
Collapse
|
7
|
Schnitzler CE, Chang ES, Waletich J, Quiroga-Artigas G, Wong WY, Nguyen AD, Barreira SN, Doonan L, Gonzalez P, Koren S, Gahan JM, Sanders SM, Bradshaw B, DuBuc TQ, Febrimarsa, de Jong D, Nawrocki EP, Larson A, Klasfeld S, Gornik SG, Moreland RT, Wolfsberg TG, Phillippy AM, Mullikin JC, Simakov O, Cartwright P, Nicotra M, Frank U, Baxevanis AD. The genome of the colonial hydroid Hydractinia reveals their stem cells utilize a toolkit of evolutionarily shared genes with all animals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554815. [PMID: 37786714 PMCID: PMC10541594 DOI: 10.1101/2023.08.25.554815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Hydractinia is a colonial marine hydroid that exhibits remarkable biological properties, including the capacity to regenerate its entire body throughout its lifetime, a process made possible by its adult migratory stem cells, known as i-cells. Here, we provide an in-depth characterization of the genomic structure and gene content of two Hydractinia species, H. symbiolongicarpus and H. echinata, placing them in a comparative evolutionary framework with other cnidarian genomes. We also generated and annotated a single-cell transcriptomic atlas for adult male H. symbiolongicarpus and identified cell type markers for all major cell types, including key i-cell markers. Orthology analyses based on the markers revealed that Hydractinia's i-cells are highly enriched in genes that are widely shared amongst animals, a striking finding given that Hydractinia has a higher proportion of phylum-specific genes than any of the other 41 animals in our orthology analysis. These results indicate that Hydractinia's stem cells and early progenitor cells may use a toolkit shared with all animals, making it a promising model organism for future exploration of stem cell biology and regenerative medicine. The genomic and transcriptomic resources for Hydractinia presented here will enable further studies of their regenerative capacity, colonial morphology, and ability to distinguish self from non-self.
Collapse
Affiliation(s)
- Christine E Schnitzler
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - E Sally Chang
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Justin Waletich
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Gonzalo Quiroga-Artigas
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier CEDEX 05, France
| | - Wai Yee Wong
- Department of Molecular Evolution and Development, Faculty of Life Science, University of Vienna, A-1090 Vienna, Austria
| | - Anh-Dao Nguyen
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sofia N Barreira
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Liam Doonan
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Paul Gonzalez
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sergey Koren
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James M Gahan
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway, Ireland
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Steven M Sanders
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Brian Bradshaw
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Timothy Q DuBuc
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway, Ireland
- Swarthmore College, Swarthmore, PA 19081, USA
| | - Febrimarsa
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Danielle de Jong
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Eric P Nawrocki
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexandra Larson
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
| | - Samantha Klasfeld
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sebastian G Gornik
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway, Ireland
- Centre for Organismal Studies, University of Heidelberg, Germany
| | - R Travis Moreland
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tyra G Wolfsberg
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam M Phillippy
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James C Mullikin
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
- NIH Intramural Sequencing Center, Rockville, MD 20852, USA
| | - Oleg Simakov
- Department of Molecular Evolution and Development, Faculty of Life Science, University of Vienna, A-1090 Vienna, Austria
| | - Paulyn Cartwright
- Department of Evolution and Ecology, University of Kansas, Lawrence, KS 66045, USA
| | - Matthew Nicotra
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Uri Frank
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Andreas D Baxevanis
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Puzakov MV, Puzakova LV, Shi S, Cheresiz SV. maT and mosquito transposons in cnidarians: evolutionary history and intraspecific differences. Funct Integr Genomics 2023; 23:244. [PMID: 37454326 DOI: 10.1007/s10142-023-01175-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Transposable elements exert a significant effect on the size and structure of eukaryotic genomes. Tc1/mariner superfamily elements represent the widely distributed and highly variable group of DNA transposons. Tc1/mariner elements include TLE/DD34-38E, MLE/DD34D, maT/DD37D, Visitor/DD41D, Guest/DD39D, mosquito/DD37E, and L18/DD37E families, all of which are well or less scarcely studied. However, more detailed research into the patterns of prevalence and diversity of Tc1/mariner transposons enables one to better understand the coevolution of the TEs and the eukaryotic genomes. We performed a detailed analysis of the maT/DD37D family in Cnidaria. The study of 77 genomic assemblies demonstrated that maT transposons are found in a limited number of cnidarian species belonging to classes Cubozoa (1 species), Hydrozoa (3 species) и Scyphozoa (5 species) only. The identified TEs were classified into 5 clades, with the representatives from Pelagiidae (class Scyphozoa) forming a separate clade of maT transposons, which has never been described previously. The potentially functional copies of maT transposons were identified in the hydrae. The phylogenetic analysis and the studies of distribution among the taxons and the evolutionary dynamics of the elements suggest that maT transposons of the cnidarians are the descendants of several independent invasion events occurring at different periods of time. We also established that the TEs of mosquito/DD37E family are found in Hydridae (class Hydrozoa) only. A comparison of maT and mosquito prevalence in two genomic assemblies of Hydra viridissima revealed obvious differences, thus demonstrating that each individual organism might carry a unique mobilome pattern. The results of the presented research make us better understand the diversity and evolution of Tc1/mariner transposons and their effect on the eukaryotic genomes.
Collapse
Affiliation(s)
- Mikhail V Puzakov
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Lenninsky Eve., 38, Moscow, Russia, 119991.
| | - Lyudmila V Puzakova
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Lenninsky Eve., 38, Moscow, Russia, 119991
| | - Shasha Shi
- College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Sergey V Cheresiz
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, Pirogova st., 1, Novosibirsk, Russia, 630090
- State Scientific Research Institute of Physiology and Basic Medicine, P.O. Box 237, Novosibirsk, Russia, 630117
| |
Collapse
|
9
|
Cazet JF, Siebert S, Little HM, Bertemes P, Primack AS, Ladurner P, Achrainer M, Fredriksen MT, Moreland RT, Singh S, Zhang S, Wolfsberg TG, Schnitzler CE, Baxevanis AD, Simakov O, Hobmayer B, Juliano CE. A chromosome-scale epigenetic map of the Hydra genome reveals conserved regulators of cell state. Genome Res 2023; 33:283-298. [PMID: 36639202 PMCID: PMC10069465 DOI: 10.1101/gr.277040.122] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
The epithelial and interstitial stem cells of the freshwater polyp Hydra are the best-characterized stem cell systems in any cnidarian, providing valuable insight into cell type evolution and the origin of stemness in animals. However, little is known about the transcriptional regulatory mechanisms that determine how these stem cells are maintained and how they give rise to their diverse differentiated progeny. To address such questions, a thorough understanding of transcriptional regulation in Hydra is needed. To this end, we generated extensive new resources for characterizing transcriptional regulation in Hydra, including new genome assemblies for Hydra oligactis and the AEP strain of Hydra vulgaris, an updated whole-animal single-cell RNA-seq atlas, and genome-wide maps of chromatin interactions, chromatin accessibility, sequence conservation, and histone modifications. These data revealed the existence of large kilobase-scale chromatin interaction domains in the Hydra genome that contain transcriptionally coregulated genes. We also uncovered the transcriptomic profiles of two previously molecularly uncharacterized cell types: isorhiza-type nematocytes and somatic gonad ectoderm. Finally, we identified novel candidate regulators of cell type-specific transcription, several of which have likely been conserved at least since the divergence of Hydra and the jellyfish Clytia hemisphaerica more than 400 million years ago.
Collapse
Affiliation(s)
- Jack F Cazet
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| | - Stefan Siebert
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
- Lyell Immunopharma, South San Francisco, California 94080, USA
| | - Hannah Morris Little
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| | - Philip Bertemes
- Institute of Zoology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck A-6020, Austria
| | - Abby S Primack
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| | - Peter Ladurner
- Institute of Zoology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck A-6020, Austria
| | - Matthias Achrainer
- Institute of Zoology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck A-6020, Austria
| | - Mark T Fredriksen
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - R Travis Moreland
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sumeeta Singh
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Suiyuan Zhang
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Tyra G Wolfsberg
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Christine E Schnitzler
- Whitney Laboratory for Marine Bioscience and Department of Biology, University of Florida, St. Augustine, Florida 32080, USA
| | - Andreas D Baxevanis
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Oleg Simakov
- Department of Molecular Evolution and Development, University of Vienna, 1010 Vienna, Austria
| | - Bert Hobmayer
- Institute of Zoology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck A-6020, Austria
| | - Celina E Juliano
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, USA;
| |
Collapse
|
10
|
Abstract
The detection and quantification of transposable elements (TE) are notoriously challenging despite their relevance in evolutionary genomics and molecular ecology. The main hurdle is caused by the dependence of numerous tools on genome assemblies, whose level of completion directly affects the comparability of the results across species or populations. dnaPipeTE, whose use is demonstrated here, tackles this issue by directly performing TE detection, classification, and quantification from unassembled short reads. This chapter details all the required steps to perform a comparative analysis of the TE content between two related species, starting from the installation of a recently containerized version of the program to the post-processing of the outputs.
Collapse
Affiliation(s)
- Clément Goubert
- Canadian Centre for Computational Genomics, McGill University, Montreal, QC, Canada.
- McGill Genome Centre, Montreal, QC, Canada.
- Human Genetics, McGill University, Montreal, QC, Canada.
| |
Collapse
|
11
|
Tursch A, Holstein TW. From injury to patterning—MAPKs and Wnt signaling in Hydra. Curr Top Dev Biol 2023; 153:381-417. [PMID: 36967201 DOI: 10.1016/bs.ctdb.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Hydra has a regenerative capacity that is not limited to individual organs but encompasses the entire body. Various global and integrative genome, transcriptome and proteome approaches have shown that many of the signaling pathways and transcription factors present in vertebrates are already present in Cnidaria, the sister group of Bilateria, and are also activated in regeneration. It is now possible to investigate one of the central questions of regeneration biology, i.e., how does the patterning system become activated by the injury signals that initiate regeneration. This review will present the current data obtained in Hydra and draw parallels with regeneration in Bilateria. Important findings of this global analysis are that the Wnt signaling pathway has a dual function in the regeneration process. In the early phase Wnt is activated generically and in a second phase of pattern formation it is activated in a position specific manner. Thus, Wnt signaling is part of the generic injury response, in which mitogen-activated protein kinases (MAPKs) are initially activated via calcium and reactive oxygen species (ROS). The MAPKs, p38, c-Jun N-terminal kinases (JNKs) and extracellular signal-regulated kinases (ERK) are essential for Wnt activation in Hydra head and foot regenerates. Furthermore, the antagonism between the ERK signaling pathway and stress-induced MAPKs results in a balanced induction of apoptosis and mitosis. However, the early Wnt genes are activated by MAPK signaling rather than apoptosis. Early Wnt gene activity is differentially integrated with a stable, β-Catenin-based gradient along the primary body axis maintaining axial polarity and activating further Wnts in the regenerating head. Because MAPKs and Wnts are highly evolutionarily conserved, we hypothesize that this mechanism is also present in vertebrates but may be activated to different degrees at the level of early Wnt gene integration.
Collapse
|
12
|
Li SF, She HB, Yang LL, Lan LN, Zhang XY, Wang LY, Zhang YL, Li N, Deng CL, Qian W, Gao WJ. Impact of LTR-Retrotransposons on Genome Structure, Evolution, and Function in Curcurbitaceae Species. Int J Mol Sci 2022; 23:ijms231710158. [PMID: 36077556 PMCID: PMC9456015 DOI: 10.3390/ijms231710158] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Long terminal repeat (LTR)-retrotransposons (LTR-RTs) comprise a major portion of many plant genomes and may exert a profound impact on genome structure, function, and evolution. Although many studies have focused on these elements in an individual species, their dynamics on a family level remains elusive. Here, we investigated the abundance, evolutionary dynamics, and impact on associated genes of LTR-RTs in 16 species in an economically important plant family, Cucurbitaceae. Results showed that full-length LTR-RT numbers and LTR-RT content varied greatly among different species, and they were highly correlated with genome size. Most of the full-length LTR-RTs were amplified after the speciation event, reflecting the ongoing rapid evolution of these genomes. LTR-RTs highly contributed to genome size variation via species-specific distinct proliferations. The Angela and Tekay lineages with a greater evolutionary age were amplified in Trichosanthes anguina, whereas a recent activity burst of Reina and another ancient round of Tekay activity burst were examined in Sechium edule. In addition, Tekay and Retand lineages belonging to the Gypsy superfamily underwent a recent burst in Gynostemma pentaphyllum. Detailed investigation of genes with intronic and promoter LTR-RT insertion showed diverse functions, but the term of metabolism was enriched in most species. Further gene expression analysis in G.pentaphyllum revealed that the LTR-RTs within introns suppress the corresponding gene expression, whereas the LTR-RTs within promoters exert a complex influence on the downstream gene expression, with the main function of promoting gene expression. This study provides novel insights into the organization, evolution, and function of LTR-RTs in Cucurbitaceae genomes.
Collapse
Affiliation(s)
- Shu-Fen Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Hong-Bing She
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Long-Long Yang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Li-Na Lan
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Xin-Yu Zhang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Li-Ying Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yu-Lan Zhang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Ning Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Chuan-Liang Deng
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Wei Qian
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (W.Q.); (W.-J.G.)
| | - Wu-Jun Gao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
- Correspondence: (W.Q.); (W.-J.G.)
| |
Collapse
|
13
|
Huang Y, Shukla H, Lee YCG. Species-specific chromatin landscape determines how transposable elements shape genome evolution. eLife 2022; 11:81567. [PMID: 35997258 PMCID: PMC9398452 DOI: 10.7554/elife.81567] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022] Open
Abstract
Transposable elements (TEs) are selfish genetic parasites that increase their copy number at the expense of host fitness. The ‘success’, or genome-wide abundance, of TEs differs widely between species. Deciphering the causes for this large variety in TE abundance has remained a central question in evolutionary genomics. We previously proposed that species-specific TE abundance could be driven by the inadvertent consequences of host-direct epigenetic silencing of TEs—the spreading of repressive epigenetic marks from silenced TEs into adjacent sequences. Here, we compared this TE-mediated local enrichment of repressive marks, or ‘the epigenetic effect of TEs’, in six species in the Drosophila melanogaster subgroup to dissect step-by-step the role of such effect in determining genomic TE abundance. We found that TE-mediated local enrichment of repressive marks is prevalent and substantially varies across and even within species. While this TE-mediated effect alters the epigenetic states of adjacent genes, we surprisingly discovered that the transcription of neighboring genes could reciprocally impact this spreading. Importantly, our multi-species analysis provides the power and appropriate phylogenetic resolution to connect species-specific host chromatin regulation, TE-mediated epigenetic effects, the strength of natural selection against TEs, and genomic TE abundance unique to individual species. Our findings point toward the importance of host chromatin landscapes in shaping genome evolution through the epigenetic effects of a selfish genetic parasite. All the instructions required for life are encoded in the set of DNA present in a cell. It therefore seems natural to think that every bit of this genetic information should serve the organism. And yet most species carry parasitic ‘transposable’ sequences, or transposons, whose only purpose is to multiply and insert themselves at other positions in the genome. It is possible for cells to suppress these selfish elements. Chemical marks can be deposited onto the DNA to temporarily ‘silence’ transposons and prevent them from being able to move and replicate. However, this sometimes comes at a cost: the repressive chemical modifications can spread to nearby genes that are essential for the organism and perturb their function. Strangely, the prevalence of transposons varies widely across the tree of life. These sequences form the majority of the genome of certain species – in fact, they represent about half of the human genetic information. But their abundance is much lower in other organisms, forming a measly 6% of the genome of puffer fish for instance. Even amongst fruit fly species, the prevalence of transposable elements can range between 2% and 25%. What explains such differences? Huang et al. set out to examine this question through the lens of transposon silencing, systematically comparing how this process impacts nearby regions in six species of fruit flies. This revealed variations in the strength of the side effects associated with transposon silencing, resulting in different levels of perturbation on neighbouring genes. A stronger impact was associated with the species having fewer transposons in its genome, suggesting that an evolutionary pressure is at work to keep the abundance of transposons at a low level in these species. Further analyses showed that the genes which determine how silencing marks are distributed may also be responsible for the variations in the impact of transposon silencing. They could therefore be the ones driving differences in the abundance of transposons between species. Overall, this work sheds light on the complex mechanisms shaping the evolution of genomes, and it may help to better understand how transposons are linked to processes such as aging and cancer.
Collapse
Affiliation(s)
- Yuheng Huang
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, United States
| | - Harsh Shukla
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, United States
| | - Yuh Chwen G Lee
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, United States
| |
Collapse
|
14
|
Santander MD, Maronna MM, Ryan JF, Andrade SCS. The state of Medusozoa genomics: current evidence and future challenges. Gigascience 2022; 11:6586816. [PMID: 35579552 PMCID: PMC9112765 DOI: 10.1093/gigascience/giac036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/18/2022] [Accepted: 03/15/2022] [Indexed: 12/13/2022] Open
Abstract
Medusozoa is a widely distributed ancient lineage that harbors one-third of Cnidaria diversity divided into 4 classes. This clade is characterized by the succession of stages and modes of reproduction during metagenic lifecycles, and includes some of the most plastic body plans and life cycles among animals. The characterization of traditional genomic features, such as chromosome numbers and genome sizes, was rather overlooked in Medusozoa and many evolutionary questions still remain unanswered. Modern genomic DNA sequencing in this group started in 2010 with the publication of the Hydra vulgaris genome and has experienced an exponential increase in the past 3 years. Therefore, an update of the state of Medusozoa genomics is warranted. We reviewed different sources of evidence, including cytogenetic records and high-throughput sequencing projects. We focused on 4 main topics that would be relevant for the broad Cnidaria research community: (i) taxonomic coverage of genomic information; (ii) continuity, quality, and completeness of high-throughput sequencing datasets; (iii) overview of the Medusozoa specific research questions approached with genomics; and (iv) the accessibility of data and metadata. We highlight a lack of standardization in genomic projects and their reports, and reinforce a series of recommendations to enhance future collaborative research.
Collapse
Affiliation(s)
- Mylena D Santander
- Correspondence address. Mylena D. Santander, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade São Paulo, 277 Rua do Matão, Cidade Universitária, São Paulo 05508-090, Brazil. E-mail:
| | - Maximiliano M Maronna
- Correspondence address. Maximiliano M. Maronna, Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, 101 Rua do Matão Cidade Universitária, São Paulo 05508-090, Brazil. E-mail:
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St. Augustine, FL 32080, USA,Department of Biology, University of Florida, 220 Bartram Hall, Gainesville, FL 32611, USA
| | - Sónia C S Andrade
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade São Paulo, 277 Rua do Matão, Cidade Universitária, São Paulo 05508-090, Brazil
| |
Collapse
|
15
|
Nguyen A, Wang W, Chong E, Chatla K, Bachtrog D. Transposable element accumulation drives size differences among polymorphic Y Chromosomes in Drosophila. Genome Res 2022; 32:1074-1088. [PMID: 35501131 DOI: 10.1101/gr.275996.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 04/15/2022] [Indexed: 11/24/2022]
Abstract
Y Chromosomes of many species are gene poor and show low levels of nucleotide variation, yet often display high amounts of structural diversity. Dobzhansky cataloged several morphologically distinct Y Chromosomes in Drosophila pseudoobscura that differ in size and shape, but the molecular causes of their dramatic size differences are unclear. Here we use cytogenetics and long-read sequencing to study the sequence content of polymorphic Y Chromosomes in D. pseudoobscura We show that Y Chromosomes differ almost 2-fold in size, ranging from 30 to 60 Mb. Most of this size difference is caused by a handful of active transposable elements (TEs) that have recently expanded on the largest Y Chromosome, with different elements being responsible for Y expansion on differently sized D. pseudoobscura Y's. We show that Y Chromosomes differ in their heterochromatin enrichment, expression of Y-enriched TEs, and also influence expression of dozens of autosomal and X-linked genes. The same helitron element that showed the most drastic amplification on the largest Y in D. pseudoobscura independently amplified on a polymorphic large Y Chromosome in D. affinis, suggesting that some TEs are inherently more prone to become deregulated on Y Chromosomes.
Collapse
|
16
|
Simakov O, Bredeson J, Berkoff K, Marletaz F, Mitros T, Schultz DT, O’Connell BL, Dear P, Martinez DE, Steele RE, Green RE, David CN, Rokhsar DS. Deeply conserved synteny and the evolution of metazoan chromosomes. SCIENCE ADVANCES 2022; 8:eabi5884. [PMID: 35108053 PMCID: PMC8809688 DOI: 10.1126/sciadv.abi5884] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 12/10/2021] [Indexed: 05/04/2023]
Abstract
Animal genomes show networks of deeply conserved gene linkages whose phylogenetic scope and chromosomal context remain unclear. Here, we report chromosome-scale conservation of synteny among bilaterians, cnidarians, and sponges and use comparative analysis to reconstruct ancestral chromosomes across major animal groups. Comparisons among diverse metazoans reveal the processes of chromosome evolution that produced contemporary karyotypes from their Precambrian progenitors. On the basis of these findings, we introduce a simple algebraic representation of chromosomal change and use it to establish a unified systematic framework for metazoan chromosome evolution. We find that fusion-with-mixing, a previously unappreciated mode of chromosome change, has played a central role. We find that relicts of several metazoan chromosomal units are preserved in unicellular eukaryotes. These conserved pre-metazoan linkages include the chromosomal unit that encodes the most diverse set of metazoan homeobox genes, suggesting a candidate genomic context for the early diversification of this key gene family.
Collapse
Affiliation(s)
- Oleg Simakov
- Department for Neurosciences and Developmental
Biology, University of Vienna, Vienna 1010, Austria
| | - Jessen Bredeson
- Department of Molecular and Cell Biology, University
of California, Berkeley, Berkeley, CA 94720, USA
| | - Kodiak Berkoff
- Department of Molecular and Cell Biology, University
of California, Berkeley, Berkeley, CA 94720, USA
| | - Ferdinand Marletaz
- Molecular Genetics Unit, Okinawa Institute of Science
and Technology Graduate University, 1919-1, Tancha, Onna, Okinawa 904-0495,
Japan
- Division of Biosciences, University College London,
Gower St., London WC1E 6BT, UK
| | - Therese Mitros
- Department of Molecular and Cell Biology, University
of California, Berkeley, Berkeley, CA 94720, USA
| | - Darrin T. Schultz
- Department of Biomolecular Engineering, University of
California, Santa Cruz, Santa Cruz, CA 95064, USA
- Monterey Bay Aquarium Research Institute, Moss
Landing, CA 95039, USA
| | - Brendan L. O’Connell
- Department of Biomolecular Engineering, University of
California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Paul Dear
- Mote Research Ltd, Babraham Hall, Babraham, Cambridge
CB2 4AT, UK
| | | | - Robert E. Steele
- Department of Biological Chemistry, University of
California, Irvine, Irvine, CA 92697-1700, USA
| | - Richard E. Green
- Department of Biomolecular Engineering, University of
California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Charles N. David
- Faculty of Biology, Ludwig Maximilian University of
Munich, Munich 80539, Germany
| | - Daniel S. Rokhsar
- Department of Molecular and Cell Biology, University
of California, Berkeley, Berkeley, CA 94720, USA
- Molecular Genetics Unit, Okinawa Institute of Science
and Technology Graduate University, 1919-1, Tancha, Onna, Okinawa 904-0495,
Japan
- Chan Zuckerberg Biohub, 499 Illinois St., San
Francisco, CA 94158, USA
- U.S. Department of Energy Joint Genome Institute,
Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720,
USA
| |
Collapse
|
17
|
Ying H, Hayward DC, Klimovich A, Bosch TCG, Baldassarre L, Neeman T, Forêt S, Huttley G, Reitzel AM, Fraune S, Ball EE, Miller DJ. The role of DNA methylation in genome defense in Cnidaria and other invertebrates. Mol Biol Evol 2022; 39:6516040. [PMID: 35084499 PMCID: PMC8857917 DOI: 10.1093/molbev/msac018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Considerable attention has recently been focused on the potential involvement of DNA methylation in regulating gene expression in cnidarians. Much of this work has been centered on corals, in the context of changes in methylation perhaps facilitating adaptation to higher seawater temperatures and other stressful conditions. Although first proposed more than 30 years ago, the possibility that DNA methylation systems function in protecting animal genomes against the harmful effects of transposon activity has largely been ignored since that time. Here, we show that transposons are specifically targeted by the DNA methylation system in cnidarians, and that the youngest transposons (i.e., those most likely to be active) are most highly methylated. Transposons in longer and highly active genes were preferentially methylated and, as transposons aged, methylation levels declined, reducing the potentially harmful side effects of CpG methylation. In Cnidaria and a range of other invertebrates, correlation between the overall extent of methylation and transposon content was strongly supported. Present transposon burden is the dominant factor in determining overall level of genomic methylation in a range of animals that diverged in or before the early Cambrian, suggesting that genome defense represents the ancestral role of CpG methylation.
Collapse
Affiliation(s)
- Hua Ying
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - David C Hayward
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | | | - Thomas C G Bosch
- Zoological Institute, Christian Albrechts University, Kiel, Germany.,Collaborative Research Center for the Origin and Function of Metaorganisms, Christian Albrechts University, Kiel, Germany
| | - Laura Baldassarre
- Department of Zoology and Organismal Interactions, Heinrich-Heine-University Düsseldorf, Germany
| | - Teresa Neeman
- Biological Data Institute, Australian National University, Canberra, ACT, Australia
| | - Sylvain Forêt
- Research School of Biology, Australian National University, Canberra, ACT, Australia.,ARC Centre of Excellence for Coral Reef Studies, Australian National University, Canberra, ACT, Australia
| | - Gavin Huttley
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina, Charlotte, USA
| | - Sebastian Fraune
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Eldon E Ball
- Research School of Biology, Australian National University, Canberra, ACT, Australia.,ARC Centre of Excellence for Coral Reef Studies, Australian National University, Canberra, ACT, Australia
| | - David J Miller
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia.,College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia.,Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia.,Marine Climate Change Unit, Okinawa Institute of Science and Technology, Japan
| |
Collapse
|
18
|
Zhang X, Jacobs D. OUP accepted manuscript. Genome Biol Evol 2022; 14:6519162. [PMID: 35104341 PMCID: PMC8857923 DOI: 10.1093/gbe/evab284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2021] [Indexed: 11/14/2022] Open
Abstract
DNA methylation, an important component of eukaryotic epigenetics, varies in pattern and function across Metazoa. Notably, bilaterian vertebrates and invertebrates differ dramatically in gene body methylation (GbM). Using the frequency of cytosine-phospho-guanines (CpGs), which are lost through mutation when methylated, we report the first broad survey of DNA methylation in Cnidaria, the ancient sister group to Bilateria. We find that: 1) GbM differentially relates to expression categories as it does in most bilaterian invertebrates, but distributions of GbM are less discretely bimodal. 2) Cnidarians generally have lower CpG frequencies on gene bodies than bilaterian invertebrates potentially suggesting a compensatory mechanism to replace CpG lost to mutation in Bilateria that is lacking in Cnidaria. 3) GbM patterns show some consistency within taxonomic groups such as the Scleractinian corals; however, GbM patterns variation across a range of taxonomic ranks in Cnidaria suggests active evolutionary change in GbM within Cnidaria. 4) Some but not all GbM variation is associated with life history change and genome expansion, whereas GbM loss is evident in endoparasitic cnidarians. 5) Cnidarian repetitive elements are less methylated than gene bodies, and methylation of both correlate with genome repeat content. 6) These observations reinforce claims that GbM evolved in stem Metazoa. Thus, this work supports overlap between DNA methylation processes in Cnidaria and Bilateria, provides a framework to compare methylation within and between Cnidaria and Bilateria, and demonstrates the previously unknown rapid evolution of cnidarian methylation.
Collapse
Affiliation(s)
- Xinhui Zhang
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
| | - David Jacobs
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
- Corresponding author: E-mail:
| |
Collapse
|
19
|
Lehmann R, Kovařík A, Ocalewicz K, Kirtiklis L, Zuccolo A, Tegner JN, Wanzenböck J, Bernatchez L, Lamatsch DK, Symonová R. DNA Transposon Expansion is Associated with Genome Size Increase in Mudminnows. Genome Biol Evol 2021; 13:6380143. [PMID: 34599322 PMCID: PMC8557787 DOI: 10.1093/gbe/evab228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 12/20/2022] Open
Abstract
Genome sizes of eukaryotic organisms vary substantially, with whole-genome duplications (WGD) and transposable element expansion acting as main drivers for rapid genome size increase. The two North American mudminnows, Umbra limi and Umbra pygmaea, feature genomes about twice the size of their sister lineage Esocidae (e.g., pikes and pickerels). However, it is unknown whether all Umbra species share this genome expansion and which causal mechanisms drive this expansion. Using flow cytometry, we find that the genome of the European mudminnow is expanded similarly to both North American species, ranging between 4.5 and 5.4 pg per diploid nucleus. Observed blocks of interstitially located telomeric repeats in U. limi suggest frequent Robertsonian rearrangements in its history. Comparative analyses of transcriptome and genome assemblies show that the genome expansion in Umbra is driven by the expansion of DNA transposon and unclassified repeat sequences without WGD. Furthermore, we find a substantial ongoing expansion of repeat sequences in the Alaska blackfish Dallia pectoralis, the closest relative to the family Umbridae, which might mark the beginning of a similar genome expansion. Our study suggests that the genome expansion in mudminnows, driven mainly by transposon expansion, but not WGD, occurred before the separation into the American and European lineage.
Collapse
Affiliation(s)
- Robert Lehmann
- Division of Biological and Environmental Sciences & Engineering, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Aleš Kovařík
- Laboratory of Molecular Epigenetics, Institute of Biophysics, Czech Academy of Science, Brno, Czech Republic
| | - Konrad Ocalewicz
- Department of Marine Biology and Ecology, Institute of Oceanography, Faculty of Oceanography and Geography, University of Gdansk, Gdansk, Poland
| | - Lech Kirtiklis
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
| | - Andrea Zuccolo
- Center for Desert Agriculture, Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.,Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Jesper N Tegner
- Division of Biological and Environmental Sciences & Engineering, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Josef Wanzenböck
- Research Department for Limnology Mondsee, University of Innsbruck, Mondsee, Austria
| | - Louis Bernatchez
- Department of Biology, IBIS (Institut de Biologie Intégrative et des Systèmes), Université Laval, Québec, QC, Canada
| | - Dunja K Lamatsch
- Research Department for Limnology Mondsee, University of Innsbruck, Mondsee, Austria
| | - Radka Symonová
- Department of Bioinformatics, Wissenschaftzentrum Weihenstephan, Technische Universität München, Freising, Germany.,Department of Biology, Faculty of Biology, University of Hradec Kralove, Czech Republic
| |
Collapse
|
20
|
Oggenfuss U, Badet T, Wicker T, Hartmann FE, Singh NK, Abraham L, Karisto P, Vonlanthen T, Mundt C, McDonald BA, Croll D. A population-level invasion by transposable elements triggers genome expansion in a fungal pathogen. eLife 2021; 10:e69249. [PMID: 34528512 PMCID: PMC8445621 DOI: 10.7554/elife.69249] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/28/2021] [Indexed: 12/16/2022] Open
Abstract
Genome evolution is driven by the activity of transposable elements (TEs). The spread of TEs can have deleterious effects including the destabilization of genome integrity and expansions. However, the precise triggers of genome expansions remain poorly understood because genome size evolution is typically investigated only among deeply divergent lineages. Here, we use a large population genomics dataset of 284 individuals from populations across the globe of Zymoseptoria tritici, a major fungal wheat pathogen. We built a robust map of genome-wide TE insertions and deletions to track a total of 2456 polymorphic loci within the species. We show that purifying selection substantially depressed TE frequencies in most populations, but some rare TEs have recently risen in frequency and likely confer benefits. We found that specific TE families have undergone a substantial genome-wide expansion from the pathogen's center of origin to more recently founded populations. The most dramatic increase in TE insertions occurred between a pair of North American populations collected in the same field at an interval of 25 years. We find that both genome-wide counts of TE insertions and genome size have increased with colonization bottlenecks. Hence, the demographic history likely played a major role in shaping genome evolution within the species. We show that both the activation of specific TEs and relaxed purifying selection underpin this incipient expansion of the genome. Our study establishes a model to recapitulate TE-driven genome evolution over deeper evolutionary timescales.
Collapse
Affiliation(s)
- Ursula Oggenfuss
- Laboratory of Evolutionary Genetics, Institute of Biology, University of NeuchâtelNeuchatelSwitzerland
| | - Thomas Badet
- Laboratory of Evolutionary Genetics, Institute of Biology, University of NeuchâtelNeuchatelSwitzerland
| | - Thomas Wicker
- Institute for Plant and Microbial Biology, University of ZurichZurichSwitzerland
| | - Fanny E Hartmann
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-SaclayOrsayFrance
- Plant Pathology, Institute of Integrative Biology, ETH ZurichZurichSwitzerland
| | - Nikhil Kumar Singh
- Laboratory of Evolutionary Genetics, Institute of Biology, University of NeuchâtelNeuchatelSwitzerland
| | - Leen Abraham
- Laboratory of Evolutionary Genetics, Institute of Biology, University of NeuchâtelNeuchatelSwitzerland
| | - Petteri Karisto
- Plant Pathology, Institute of Integrative Biology, ETH ZurichZurichSwitzerland
| | - Tiziana Vonlanthen
- Plant Pathology, Institute of Integrative Biology, ETH ZurichZurichSwitzerland
| | - Christopher Mundt
- Department of Botany and Plant Pathology, Oregon State UniversityCorvallisUnited States
| | - Bruce A McDonald
- Plant Pathology, Institute of Integrative Biology, ETH ZurichZurichSwitzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of NeuchâtelNeuchatelSwitzerland
| |
Collapse
|
21
|
Stelzer CP, Blommaert J, Waldvogel AM, Pichler M, Hecox-Lea B, Mark Welch DB. Comparative analysis reveals within-population genome size variation in a rotifer is driven by large genomic elements with highly abundant satellite DNA repeat elements. BMC Biol 2021; 19:206. [PMID: 34530817 PMCID: PMC8447722 DOI: 10.1186/s12915-021-01134-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/27/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Eukaryotic genomes are known to display an enormous variation in size, but the evolutionary causes of this phenomenon are still poorly understood. To obtain mechanistic insights into such variation, previous studies have often employed comparative genomics approaches involving closely related species or geographically isolated populations within a species. Genome comparisons among individuals of the same population remained so far understudied-despite their great potential in providing a microevolutionary perspective to genome size evolution. The rotifer Brachionus asplanchnoidis represents one of the most extreme cases of within-population genome size variation among eukaryotes, displaying almost twofold variation within a geographic population. RESULTS Here, we used a whole-genome sequencing approach to identify the underlying DNA sequence differences by assembling a high-quality reference genome draft for one individual of the population and aligning short reads of 15 individuals from the same geographic population including the reference individual. We identified several large, contiguous copy number variable regions (CNVs), up to megabases in size, which exhibited striking coverage differences among individuals, and whose coverage overall scaled with genome size. CNVs were of remarkably low complexity, being mainly composed of tandemly repeated satellite DNA with only a few interspersed genes or other sequences, and were characterized by a significantly elevated GC-content. CNV patterns in offspring of two parents with divergent genome size and CNV patterns in several individuals from an inbred line differing in genome size demonstrated inheritance and accumulation of CNVs across generations. CONCLUSIONS By identifying the exact genomic elements that cause within-population genome size variation, our study paves the way for studying genome size evolution in contemporary populations rather than inferring patterns and processes a posteriori from species comparisons.
Collapse
Affiliation(s)
- C P Stelzer
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria.
| | - J Blommaert
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - A M Waldvogel
- Institute of Zoology, University of Cologne, Cologne, Germany
| | - M Pichler
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | - B Hecox-Lea
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - D B Mark Welch
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| |
Collapse
|
22
|
Buitrago-López C, Mariappan KG, Cárdenas A, Gegner HM, Voolstra CR. The Genome of the Cauliflower Coral Pocillopora verrucosa. Genome Biol Evol 2021; 12:1911-1917. [PMID: 32857844 PMCID: PMC7594246 DOI: 10.1093/gbe/evaa184] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Climate change and ocean warming threaten the persistence of corals worldwide. Genomic resources are critical to study the evolutionary trajectory, adaptive potential, and genetic distinctiveness of coral species. Here, we provide a reference genome of the cauliflower coral Pocillopora verrucosa, a broadly prevalent reef-building coral with important ecological roles in the maintenance of reefs across the Red Sea, the Indian Ocean, and the Pacific Ocean. The genome has an assembly size of 380,505,698 bp with a scaffold N50 of 333,696 bp and a contig N50 of 75,704 bp. The annotation of the assembled genome returned 27,439 gene models of which 89.88% have evidence of transcription from RNA-Seq data and 97.87% show homology to known genes. A high proportion of the genome (41.22%) comprised repetitive elements in comparison to other cnidarian genomes, in particular in relation to the small genome size of P. verrucosa.
Collapse
Affiliation(s)
- Carol Buitrago-López
- Red Sea Research Center, Division of Biological BESE, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Kiruthiga G Mariappan
- Red Sea Research Center, Division of Biological BESE, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Anny Cárdenas
- Department of Biology, University of Konstanz, Germany
| | - Hagen M Gegner
- Red Sea Research Center, Division of Biological BESE, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Centre for Organismal Studies (COS), University of Heidelberg, Germany
| | - Christian R Voolstra
- Red Sea Research Center, Division of Biological BESE, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Department of Biology, University of Konstanz, Germany
| |
Collapse
|
23
|
Fouché S, Oggenfuss U, Chanclud E, Croll D. A devil's bargain with transposable elements in plant pathogens. Trends Genet 2021; 38:222-230. [PMID: 34489138 DOI: 10.1016/j.tig.2021.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 02/08/2023]
Abstract
Transposable elements (TEs) spread in genomes through self-copying mechanisms and are a major cause of genome expansions. Plant pathogens have finely tuned the expression of virulence factors to rely on epigenetic control targeted at nearby TEs. Stress experienced during the plant infection process leads to derepression of TEs and concurrently allows the expression of virulence factors. We argue that the derepression of TEs elements causes an evolutionary conflict by favoring TEs that can be reactivated. Active TEs and recent genome size expansions indicate that plant pathogens could face long-term consequences from the short-term benefit of fine-tuning the infection process. Hence, encoding key virulence factors close to TEs under epigenetic control constitutes a devil's bargain for pathogens.
Collapse
Affiliation(s)
- Simone Fouché
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland; Department of Organismal Biology - Systematic Biology, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| | - Ursula Oggenfuss
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Emilie Chanclud
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland.
| |
Collapse
|
24
|
Heath-Heckman E, Nishiguchi M. Leveraging Short-Read Sequencing to Explore the Genomics of Sepiolid Squid. Integr Comp Biol 2021; 61:1753-1761. [PMID: 34191015 DOI: 10.1093/icb/icab152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Due to their large size (∼3-5 Gb) and high repetitive content, the study of cephalopod genomes has historically been problematic. However, with the recent sequencing of several cephalopod genomes, including the Hawaiian bobtail squid (Euprymna scolopes), whole-genome studies of these molluscs are now possible. Of particular interest are the sepiolid or bobtail squids, many of which develop photophores in which bioluminescent bacterial symbionts reside. The variable presence of the symbiosis throughout the family allows us to determine regions of the genome that are under selection in symbiotic lineages, potentially providing a mechanism for identifying genes instrumental in the evolution of these mutualistic associations. To this end, we have used high-throughput sequencing to generate sequence from five bobtail squid genomes, four of which maintain symbioses with luminescent bacteria (E. hyllebergi, E. albatrossae, E. scolopes and Rondeletiola minor), and one of which does not (Sepietta neglecta). When we performed K-mer based heterozygosity and genome size estimations, we found that the Euprymna genus has a higher predicted genome size than other bobtail squid (∼ 5 Gb as compared to ∼ 4 Gb) and lower genomic heterozygosity. When we analyzed the repetitive content of the genomes, we found that genomes in the genus Euprymna appear to have recently acquired a significant quantity of LINE elements that are not found in its sister genus Rondeletiola or the closely related Sepietta. Using Abyss-2.0 and then Chromosomer with the published E. scolopes genome as a reference, we generated E. hyllebergi and E. albatrossae genomes of 1.54-1.57 Gb in size, but containing over 78-81% of eukaryotic single-copy othologs. The data we have generated will enable future whole-genome comparisons between these species to determine gene and regulatory content that differs between symbiotic and non-symbiotic lineages, as well as genes associated with symbiosis that are under selection.
Collapse
Affiliation(s)
| | - Michele Nishiguchi
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, USA
| |
Collapse
|
25
|
Stelzer CP, Pichler M, Hatheuer A. Linking genome size variation to population phenotypic variation within the rotifer, Brachionus asplanchnoidis. Commun Biol 2021; 4:596. [PMID: 34011946 PMCID: PMC8134563 DOI: 10.1038/s42003-021-02131-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/19/2021] [Indexed: 11/17/2022] Open
Abstract
Eukaryotic organisms usually contain much more genomic DNA than expected from their biological complexity. In explaining this pattern, selection-based hypotheses suggest that genome size evolves through selection acting on correlated life history traits, implicitly assuming the existence of phenotypic effects of (extra) genomic DNA that are independent of its information content. Here, we present conclusive evidence of such phenotypic effects within a well-mixed natural population that shows heritable variation in genome size. We found that genome size is positively correlated with body size, egg size, and embryonic development time in a population of the monogonont rotifer Brachionus asplanchnoidis. The effect on embryonic development time was mediated partly by an indirect effect (via egg size), and a direct effect, the latter indicating an increased replication cost of the larger amounts of DNA during mitosis. Our results suggest that selection-based change of genome size can operate in this population, provided it is strong enough to overcome drift or mutational change of genome size.
Collapse
Affiliation(s)
| | - Maria Pichler
- University of Innsbruck, Mondseestr. 9, 5310, Mondsee, Austria
| | - Anita Hatheuer
- University of Innsbruck, Mondseestr. 9, 5310, Mondsee, Austria
| |
Collapse
|
26
|
Krak K, Caklová P, Kopecký D, Blattner FR, Mahelka V. Horizontally Acquired nrDNAs Persist in Low Amounts in Host Hordeum Genomes and Evolve Independently of Native nrDNA. FRONTIERS IN PLANT SCIENCE 2021; 12:672879. [PMID: 34079572 PMCID: PMC8165317 DOI: 10.3389/fpls.2021.672879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Nuclear ribosomal DNA (nrDNA) has displayed extraordinary dynamics during the evolution of plant species. However, the patterns and evolutionary significance of nrDNA array expansion or contraction are still relatively unknown. Moreover, only little is known of the fate of minority nrDNA copies acquired between species via horizontal transfer. The barley genus Hordeum (Poaceae) represents a good model for such a study, as species of section Stenostachys acquired nrDNA via horizontal transfer from at least five different panicoid genera, causing long-term co-existence of native (Hordeum-like) and non-native (panicoid) nrDNAs. Using quantitative PCR, we investigated copy number variation (CNV) of nrDNA in the diploid representatives of the genus Hordeum. We estimated the copy number of the foreign, as well as of the native ITS types (ribotypes), and followed the pattern of their CNV in relation to the genus' phylogeny, species' genomes size and the number of nrDNA loci. For the native ribotype, we encountered an almost 19-fold variation in the mean copy number among the taxa analysed, ranging from 1689 copies (per 2C content) in H. patagonicum subsp. mustersii to 31342 copies in H. murinum subsp. glaucum. The copy numbers did not correlate with any of the genus' phylogeny, the species' genome size or the number of nrDNA loci. The CNV was high within the recognised groups (up to 13.2 × in the American I-genome species) as well as between accessions of the same species (up to 4×). Foreign ribotypes represent only a small fraction of the total number of nrDNA copies. Their copy numbers ranged from single units to tens and rarely hundreds of copies. They amounted, on average, to between 0.1% (Setaria ribotype) and 1.9% (Euclasta ribotype) of total nrDNA. None of the foreign ribotypes showed significant differences with respect to phylogenetic groups recognised within the sect. Stenostachys. Overall, no correlation was found between copy numbers of native and foreign nrDNAs suggesting the sequestration and independent evolution of native and non-native nrDNA arrays. Therefore, foreign nrDNA in Hordeum likely poses a dead-end by-product of horizontal gene transfer events.
Collapse
Affiliation(s)
- Karol Krak
- Czech Academy of Sciences, Institute of Botany, Prùhonice, Czechia
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague 6, Czechia
| | - Petra Caklová
- Czech Academy of Sciences, Institute of Botany, Prùhonice, Czechia
| | - David Kopecký
- Czech Academy of Sciences, Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Frank R. Blattner
- Experimental Taxonomy, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
- German Centre of Integrative Biodiversity Research (iDiv) Halle–Jena–Leipzig, Leipzig, Germany
| | - Václav Mahelka
- Czech Academy of Sciences, Institute of Botany, Prùhonice, Czechia
| |
Collapse
|
27
|
An Interesting Molecule: γ-Aminobutyric Acid. What Can We Learn from Hydra Polyps? Brain Sci 2021; 11:brainsci11040437. [PMID: 33805330 PMCID: PMC8067216 DOI: 10.3390/brainsci11040437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 01/14/2023] Open
Abstract
Neuronal excitability is controlled primarily by γ-aminobutyric acid (GABA) in the central and peripheral nervous systems of vertebrate as well as invertebrate organisms. Besides its recognized neurotransmitter functions, GABA also plays a fundamental role in neurogenesis and synaptogenesis during embryonic development. In addition, GABAergic mechanisms are also involved in disorders of various peripheral tissues, ranging from diabetes to hypothyroidism to inflammatory responses. The discovery of the molecule and the history of its biosynthetic pathways in vertebrate and invertebrate phyla are summarized here. The occurrence and distribution of GABA, GABA-synthesizing enzymes, and receptors to GABA in the freshwater polyp Hydra vulgaris (Cnidaria: Hydrozoa), endowed with an early evolved nervous system, are discussed in relation to possible interactions with the microbiota, a stable component of Hydra polyps; their contribution to the evolution of nervous systems through microbe-neuronal interactions is proposed.
Collapse
|
28
|
Abstract
Transposable elements (TEs) are mobile DNA sequences that propagate within genomes. Through diverse invasion strategies, TEs have come to occupy a substantial fraction of nearly all eukaryotic genomes, and they represent a major source of genetic variation and novelty. Here we review the defining features of each major group of eukaryotic TEs and explore their evolutionary origins and relationships. We discuss how the unique biology of different TEs influences their propagation and distribution within and across genomes. Environmental and genetic factors acting at the level of the host species further modulate the activity, diversification, and fate of TEs, producing the dramatic variation in TE content observed across eukaryotes. We argue that cataloging TE diversity and dissecting the idiosyncratic behavior of individual elements are crucial to expanding our comprehension of their impact on the biology of genomes and the evolution of species.
Collapse
Affiliation(s)
- Jonathan N Wells
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850; ,
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850; ,
| |
Collapse
|
29
|
Hamada M, Satoh N, Khalturin K. A Reference Genome from the Symbiotic Hydrozoan, Hydra viridissima. G3 (BETHESDA, MD.) 2020; 10:3883-3895. [PMID: 32900905 PMCID: PMC7642931 DOI: 10.1534/g3.120.401411] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/03/2020] [Indexed: 11/18/2022]
Abstract
Various Hydra species have been employed as model organisms since the 18th century. Introduction of transgenic and knock-down technologies made them ideal experimental systems for studying cellular and molecular mechanisms involved in regeneration, body-axis formation, senescence, symbiosis, and holobiosis. In order to provide an important reference for genetic studies, the Hydra magnipapillata genome (species name has been changed to H. vulgaris) was sequenced a decade ago (Chapman et al., 2010) and the updated genome assembly, Hydra 2.0, was made available by the National Human Genome Research Institute in 2017. While H. vulgaris belongs to the non-symbiotic brown hydra lineage, the green hydra, Hydra viridissima, harbors algal symbionts and belongs to an early diverging clade that separated from the common ancestor of brown and green hydra lineages at least 100 million years ago (Schwentner and Bosch 2015; Khalturin et al., 2019). While interspecific interactions between H. viridissima and endosymbiotic unicellular green algae of the genus Chlorella have been a subject of interest for decades, genomic information about green hydras was nonexistent. Here we report a draft 280-Mbp genome assembly for Hydra viridissima strain A99, with a scaffold N50 of 1.1 Mbp. The H. viridissima genome contains an estimated 21,476 protein-coding genes. Comparative analysis of Pfam domains and orthologous proteins highlights characteristic features of H. viridissima, such as diversification of innate immunity genes that are important for host-symbiont interactions. Thus, the H. viridissima assembly provides an important hydrozoan genome reference that will facilitate symbiosis research and better comparisons of metazoan genome architectures.
Collapse
Affiliation(s)
- Mayuko Hamada
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
- Ushimado Marine Institute, Okayama University, Setouchi, Okayama 701-4303, Japan
- Zoological Institute, Kiel University, Kiel 24118, Germany
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Konstantin Khalturin
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
30
|
Palazzo AF, Koonin EV. Functional Long Non-coding RNAs Evolve from Junk Transcripts. Cell 2020; 183:1151-1161. [PMID: 33068526 DOI: 10.1016/j.cell.2020.09.047] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/20/2020] [Accepted: 09/17/2020] [Indexed: 12/30/2022]
Abstract
Transcriptome studies reveal pervasive transcription of complex genomes, such as those of mammals. Despite popular arguments for functionality of most, if not all, of these transcripts, genome-wide analysis of selective constraints indicates that most of the produced RNA are junk. However, junk is not garbage. On the contrary, junk transcripts provide the raw material for the evolution of diverse long non-coding (lnc) RNAs by non-adaptive mechanisms, such as constructive neutral evolution. The generation of many novel functional entities, such as lncRNAs, that fuels organismal complexity does not seem to be driven by strong positive selection. Rather, the weak selection regime that dominates the evolution of most multicellular eukaryotes provides ample material for functional innovation with relatively little adaptation involved.
Collapse
Affiliation(s)
- Alexander F Palazzo
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada.
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
31
|
Gamez S, Srivastav S, Akbari OS, Lau NC. Diverse Defenses: A Perspective Comparing Dipteran Piwi-piRNA Pathways. Cells 2020; 9:E2180. [PMID: 32992598 PMCID: PMC7601171 DOI: 10.3390/cells9102180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Animals face the dual threat of virus infections hijacking cellular function and transposons proliferating in germline genomes. For insects, the deeply conserved RNA interference (RNAi) pathways and other chromatin regulators provide an important line of defense against both viruses and transposons. For example, this innate immune system displays adaptiveness to new invasions by generating cognate small RNAs for targeting gene silencing measures against the viral and genomic intruders. However, within the Dipteran clade of insects, Drosophilid fruit flies and Culicids mosquitoes have evolved several unique mechanistic aspects of their RNAi defenses to combat invading transposons and viruses, with the Piwi-piRNA arm of the RNAi pathways showing the greatest degree of novel evolution. Whereas central features of Piwi-piRNA pathways are conserved between Drosophilids and Culicids, multiple lineage-specific innovations have arisen that may reflect distinct genome composition differences and specific ecological and physiological features dividing these two branches of Dipterans. This perspective review focuses on the most recent findings illuminating the Piwi/piRNA pathway distinctions between fruit flies and mosquitoes, and raises open questions that need to be addressed in order to ameliorate human diseases caused by pathogenic viruses that mosquitoes transmit as vectors.
Collapse
Affiliation(s)
- Stephanie Gamez
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, CA 92093, USA; (S.G.); (O.S.A.)
| | - Satyam Srivastav
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA;
| | - Omar S. Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, CA 92093, USA; (S.G.); (O.S.A.)
| | - Nelson C. Lau
- Department of Biochemistry and Genome Science Institute, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
32
|
The evolutionary history of mariner elements in stalk-eyed flies reveals the horizontal transfer of transposons from insects into the genome of the cnidarian Hydra vulgaris. PLoS One 2020; 15:e0235984. [PMID: 32658920 PMCID: PMC7357744 DOI: 10.1371/journal.pone.0235984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/25/2020] [Indexed: 11/19/2022] Open
Abstract
The stalk-eyed flies (Diopsidae, Diptera) are a family of approximately 100 species of calypterate dipterans, characterised by extended head capsules. Species within the family have previously been shown to possess six subfamilies of mariner transposons, with nucleotide substitution patterns suggesting that at least two subfamilies are currently active. The vertumnana subfamily has been shown to have been involved in a horizontal transfer event involving Diopsidae and a second dipteran family in the Tephritidae. Presented here are cloned and sequenced mariner elements from three further diopsid species, in addition to a bioinformatic analysis of mariner elements identified in transcriptomic and genomic data from the genus Teleopsis. The newly identified mariner elements predominantly fall into previously recognised subfamilies, however the publicly available Teleopsis data also revealed a novel subfamily. Three of the seven identified subfamilies are shown to have undergone horizontal transfer, two of which appear to involve diopsid donor species. One recipient group of a diopsid mariner is the Bactrocera genus of tephritid flies, the transfer of which was previously proposed in an earlier study of diopsid mariner elements. The second horizontal transfer, of the mauritiana subfamily, can be traced from the Teleopsis genus to the cnidarian Hydra vulgaris. The mauritiana elements are shown to be active in the recipient H. vulgaris and transposase expression is observed in all body tissues examined in both species. The increased diversity of diopsid mariner elements points to a minimum of four subfamilies being present in the ancestral genome. Both vertical inheritance and stochastic loss of TEs have subsequently occurred within the diopsid radiation. The TE complement of H. vulgaris contains at least two mariner subfamilies of insect origin. Despite the phylogenetic distance between donor and recipient species, both subfamilies are shown to be active and proliferating within H. vulgaris.
Collapse
|