1
|
Busby SJW, Browning DF. Transcription activation in Escherichia coli and Salmonella. EcoSal Plus 2024; 12:eesp00392020. [PMID: 38345370 PMCID: PMC11636354 DOI: 10.1128/ecosalplus.esp-0039-2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/23/2023] [Indexed: 12/13/2024]
Abstract
Promoter-specific activation of transcript initiation provides an important regulatory device in Escherichia coli and Salmonella. Here, we describe the different mechanisms that operate, focusing on how they have evolved to manage the "housekeeping" bacterial transcription machinery. Some mechanisms involve assisting the bacterial DNA-dependent RNA polymerase or replacing or remodeling one of its subunits. Others are directed to chromosomal DNA, improving promoter function, or relieving repression. We discuss how different activators work together at promoters and how the present complex network of transcription factors evolved.
Collapse
Affiliation(s)
- Stephen J. W. Busby
- School of Biosciences & Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Douglas F. Browning
- School of Biosciences & Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
- School of Biosciences, College of Health & Life Sciences, Aston University, Birmingham, United Kingdom
| |
Collapse
|
2
|
Kompaniiets D, Wang D, Yang Y, Hu Y, Liu B. Structure and molecular mechanism of bacterial transcription activation. Trends Microbiol 2024; 32:379-397. [PMID: 37903670 DOI: 10.1016/j.tim.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 11/01/2023]
Abstract
Transcription activation is an important checkpoint of regulation of gene expression which occurs in response to different intracellular and extracellular signals. The key elements in this signal transduction process are transcription activators, which determine when and how gene expression is activated. Recent structural studies on a considerable number of new transcription activation complexes (TACs) revealed the remarkable mechanistic diversity of transcription activation mediated by different factors, necessitating a review and re-evaluation of the transcription activation mechanisms. In this review, we present a comprehensive summary of transcription activation mechanisms and propose a new, elaborate, and systematic classification of transcription activation mechanisms, primarily based on the structural features of diverse TAC components.
Collapse
Affiliation(s)
- Dmytro Kompaniiets
- Section of Transcription and Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Dong Wang
- Section of Transcription and Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Yang Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Yangbo Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Bin Liu
- Section of Transcription and Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA.
| |
Collapse
|
3
|
Bouillet S, Bauer TS, Gottesman S. RpoS and the bacterial general stress response. Microbiol Mol Biol Rev 2024; 88:e0015122. [PMID: 38411096 PMCID: PMC10966952 DOI: 10.1128/mmbr.00151-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
SUMMARYThe general stress response (GSR) is a widespread strategy developed by bacteria to adapt and respond to their changing environments. The GSR is induced by one or multiple simultaneous stresses, as well as during entry into stationary phase and leads to a global response that protects cells against multiple stresses. The alternative sigma factor RpoS is the central GSR regulator in E. coli and conserved in most γ-proteobacteria. In E. coli, RpoS is induced under conditions of nutrient deprivation and other stresses, primarily via the activation of RpoS translation and inhibition of RpoS proteolysis. This review includes recent advances in our understanding of how stresses lead to RpoS induction and a summary of the recent studies attempting to define RpoS-dependent genes and pathways.
Collapse
Affiliation(s)
- Sophie Bouillet
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Taran S. Bauer
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Bouillet S, Hamdallah I, Majdalani N, Tripathi A, Gottesman S. A negative feedback loop is critical for recovery of RpoS after stress in Escherichia coli. PLoS Genet 2024; 20:e1011059. [PMID: 38466775 PMCID: PMC10957080 DOI: 10.1371/journal.pgen.1011059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/21/2024] [Accepted: 01/17/2024] [Indexed: 03/13/2024] Open
Abstract
RpoS is an alternative sigma factor needed for the induction of the general stress response in many gammaproteobacteria. Tight regulation of RpoS levels and activity is required for bacterial growth and survival under stress. In Escherichia coli, various stresses lead to higher levels of RpoS due to increased translation and decreased degradation. During non-stress conditions, RpoS is unstable, because the adaptor protein RssB delivers RpoS to the ClpXP protease. RpoS degradation is prevented during stress by the sequestration of RssB by anti-adaptors, each of which is induced in response to specific stresses. Here, we examined how the stabilization of RpoS is reversed during recovery of the cell from stress. We found that RpoS degradation quickly resumes after recovery from phosphate starvation, carbon starvation, and when transitioning from stationary phase back to exponential phase. This process is in part mediated by the anti-adaptor IraP, known to promote RpoS stabilization during phosphate starvation via the sequestration of adaptor RssB. The rapid recovery from phosphate starvation is dependent upon a feedback loop in which RpoS transcription of rssB, encoding the adaptor protein, plays a critical role. Crl, an activator of RpoS that specifically binds to and stabilizes the complex between the RNA polymerase and RpoS, is also required for the feedback loop to function efficiently, highlighting a critical role for Crl in restoring RpoS basal levels.
Collapse
Affiliation(s)
- Sophie Bouillet
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, United States of America
| | - Issam Hamdallah
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, United States of America
| | - Nadim Majdalani
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, United States of America
| | - Arti Tripathi
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, United States of America
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, United States of America
| |
Collapse
|
5
|
Bouillet S, Hamdallah I, Majdalani N, Tripathi A, Gottesman S. A negative feedback loop is critical for recovery of RpoS after stress in Escherichia coli.. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566509. [PMID: 38077006 PMCID: PMC10705548 DOI: 10.1101/2023.11.09.566509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
RpoS is an alternative sigma factor needed for the induction of the general stress response in many gammaproteobacteria. Tight regulation of RpoS levels and activity is required for bacterial growth and survival under stress. In Escherichia coli, various stresses lead to higher levels of RpoS due to increased translation and decreased degradation. During non-stress conditions, RpoS is unstable, because the adaptor protein RssB delivers RpoS to the ClpXP protease. RpoS degradation is prevented during stress by the sequestration of RssB by anti-adaptors, each of which is induced in response to specific stresses. Here, we examined how the stabilization of RpoS is reversed during recovery of the cell from stress. We found that RpoS degradation quickly resumes after recovery from phosphate starvation, carbon starvation, and when transitioning from stationary phase back to exponential phase. This process is in part mediated by the anti-adaptor IraP, known to promote RpoS stabilization during phosphate starvation via the sequestration of adaptor RssB. The rapid recovery from phosphate starvation is dependent upon a feedback loop in which RpoS transcription of rssB, encoding the adaptor protein, plays a critical role. Crl, an activator of RpoS that specifically binds to and stabilizes the complex between the RNA polymerase and RpoS, is also required for the feedback loop to function efficiently, highlighting a critical role for Crl in restoring RpoS basal levels.
Collapse
Affiliation(s)
- Sophie Bouillet
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Issam Hamdallah
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Nadim Majdalani
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Arti Tripathi
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| |
Collapse
|
6
|
Li J, Zhang H, Li D, Liu YJ, Bayer EA, Cui Q, Feng Y, Zhu P. Structure of the transcription open complex of distinct σ I factors. Nat Commun 2023; 14:6455. [PMID: 37833284 PMCID: PMC10575876 DOI: 10.1038/s41467-023-41796-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Bacterial σI factors of the σ70-family are widespread in Bacilli and Clostridia and are involved in the heat shock response, iron metabolism, virulence, and carbohydrate sensing. A multiplicity of σI paralogues in some cellulolytic bacteria have been shown to be responsible for the regulation of the cellulosome, a multienzyme complex that mediates efficient cellulose degradation. Here, we report two structures at 3.0 Å and 3.3 Å of two transcription open complexes formed by two σI factors, SigI1 and SigI6, respectively, from the thermophilic, cellulolytic bacterium, Clostridium thermocellum. These structures reveal a unique, hitherto-unknown recognition mode of bacterial transcriptional promoters, both with respect to domain organization and binding to promoter DNA. The key characteristics that determine the specificities of the σI paralogues were further revealed by comparison of the two structures. Consequently, the σI factors represent a distinct set of the σ70-family σ factors, thus highlighting the diversity of bacterial transcription.
Collapse
Affiliation(s)
- Jie Li
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- Shandong Energy Institute, 266101, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, 266101, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Haonan Zhang
- University of Chinese Academy of Sciences, 100049, Beijing, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Dongyu Li
- University of Chinese Academy of Sciences, 100049, Beijing, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Ya-Jun Liu
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- Shandong Energy Institute, 266101, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, 266101, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 7610001, Rehovot, Israel
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 8499000, Beer-Sheva, Israel
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- Shandong Energy Institute, 266101, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, 266101, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China.
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China.
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China.
- Shandong Energy Institute, 266101, Qingdao, Shandong, China.
- Qingdao New Energy Shandong Laboratory, 266101, Qingdao, Shandong, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Ping Zhu
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
| |
Collapse
|
7
|
Grassmann AA, Tokarz R, Golino C, McLain MA, Groshong AM, Radolf JD, Caimano MJ. BosR and PlzA reciprocally regulate RpoS function to sustain Borrelia burgdorferi in ticks and mammals. J Clin Invest 2023; 133:e166710. [PMID: 36649080 PMCID: PMC9974103 DOI: 10.1172/jci166710] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
The RNA polymerase alternative σ factor RpoS in Borrelia burgdorferi (Bb), the Lyme disease pathogen, is responsible for programmatic-positive and -negative gene regulation essential for the spirochete's dual-host enzootic cycle. RpoS is expressed during tick-to-mammal transmission and throughout mammalian infection. Although the mammalian-phase RpoS regulon is well described, its counterpart during the transmission blood meal is unknown. Here, we used Bb-specific transcript enrichment by tick-borne disease capture sequencing (TBDCapSeq) to compare the transcriptomes of WT and ΔrpoS Bb in engorged nymphs and following mammalian host-adaptation within dialysis membrane chambers. TBDCapSeq revealed dramatic changes in the contours of the RpoS regulon within ticks and mammals and further confirmed that RpoS-mediated repression is specific to the mammalian-phase of Bb's enzootic cycle. We also provide evidence that RpoS-dependent gene regulation, including repression of tick-phase genes, is required for persistence in mice. Comparative transcriptomics of engineered Bb strains revealed that the Borrelia oxidative stress response regulator (BosR), a noncanonical Fur family member, and the cyclic diguanosine monophosphate (c-di-GMP) effector PlzA reciprocally regulate the function of RNA polymerase complexed with RpoS. BosR is required for RpoS-mediated transcription activation and repression in addition to its well-defined role promoting transcription of rpoS by the RNA polymerase alternative σ factor RpoN. During transmission, ligand-bound PlzA antagonizes RpoS-mediated repression, presumably acting through BosR.
Collapse
Affiliation(s)
| | - Rafal Tokarz
- Center for Infection and Immunity and
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Caroline Golino
- Department of Medicine, UConn Health, Farmington, Connecticut, USA
| | | | - Ashley M. Groshong
- Department of Medicine, UConn Health, Farmington, Connecticut, USA
- Department of Pediatrics
| | - Justin D. Radolf
- Department of Medicine, UConn Health, Farmington, Connecticut, USA
- Department of Pediatrics
- Department of Molecular Biology and Biophysics
- Department of Genetics and Genome Sciences, and
- Department of Immunology, UConn Health, Farmington, Connecticut, USA
| | - Melissa J. Caimano
- Department of Medicine, UConn Health, Farmington, Connecticut, USA
- Department of Pediatrics
- Department of Molecular Biology and Biophysics
| |
Collapse
|
8
|
Wu X, Yu C, Mu W, Gu Z, Feng Y, Zhang Y. The structural mechanism for transcription activation by Caulobacter crescentus GcrA. Nucleic Acids Res 2023; 51:1960-1970. [PMID: 36715319 PMCID: PMC9976885 DOI: 10.1093/nar/gkad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/28/2022] [Accepted: 01/05/2023] [Indexed: 01/31/2023] Open
Abstract
Canonical bacterial transcription activators bind to their cognate cis elements at the upstream of transcription start site (TSS) in a form of dimer. Caulobacter crescentus GcrA, a non-canonical transcription activator, can activate transcription from promoters harboring its cis element at the upstream or downstream of TSS in a form of monomer. We determined two cryo-EM structures of C. crescentus GcrA-bound transcription activation complexes, GcrA TACU and GcrA TACD, which comprise GcrA, RNAP, σ70 and promoter DNA with GcrA cis elements at either the upstream or downstream of TSS at 3.6 and 3.8 Å, respectively. In the GcrA-TACU structure, GcrA makes bipartite interactions with both σ70 domain 2 (σ702) and its cis element, while in the GcrA-TACD structure, GcrA retains interaction with σ702 but loses the interaction with its cis element. Our results suggest that GcrA likely forms a functionally specialized GcrA-RNAP-σA holoenzyme, in which GcrA first locates its cis element and then facilitates RNAP to load on core promoter at its proximal region. The sequence-specific interaction of GcrA and DNA is disrupted either at the stage of RPo formation or promoter escape depending on the location of GcrA cis elements relative to TSS.
Collapse
Affiliation(s)
- Xiaoxian Wu
- Key Laboratory of Synthetic Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chengzhi Yu
- Key Laboratory of Synthetic Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhui Mu
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Zhanxi Gu
- Key Laboratory of Synthetic Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Feng
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
9
|
Structural basis of transcriptional regulation by a nascent RNA element, HK022 putRNA. Nat Commun 2022; 13:4668. [PMID: 35970830 PMCID: PMC9378689 DOI: 10.1038/s41467-022-32315-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/26/2022] [Indexed: 12/16/2022] Open
Abstract
Transcription, in which RNA polymerases (RNAPs) produce RNA from DNA, is the first step of gene expression. As such, it is highly regulated either by trans-elements like protein factors and/or by cis-elements like specific sequences on the DNA. Lambdoid phage HK022 contains a cis-element, put, which suppresses pausing and termination during transcription of the early phage genes. The putRNA transcript solely performs the anti-pausing/termination activities by interacting directly with the E.coli RNAP elongation complex (EC) by an unknown structural mechanism. In this study, we reconstituted putRNA-associated ECs and determined the structures using cryo-electron microscopy. The determined structures of putRNA-associated EC, putRNA-absent EC, and σ70-bound EC suggest that the putRNA interaction with the EC counteracts swiveling, a conformational change previously identified to promote pausing and σ70 might modulate putRNA folding via σ70-dependent pausing during elongation.
Collapse
|
10
|
Wood DM, Dobson RC, Horne CR. Using cryo-EM to uncover mechanisms of bacterial transcriptional regulation. Biochem Soc Trans 2021; 49:2711-2726. [PMID: 34854920 PMCID: PMC8786299 DOI: 10.1042/bst20210674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022]
Abstract
Transcription is the principal control point for bacterial gene expression, and it enables a global cellular response to an intracellular or environmental trigger. Transcriptional regulation is orchestrated by transcription factors, which activate or repress transcription of target genes by modulating the activity of RNA polymerase. Dissecting the nature and precise choreography of these interactions is essential for developing a molecular understanding of transcriptional regulation. While the contribution of X-ray crystallography has been invaluable, the 'resolution revolution' of cryo-electron microscopy has transformed our structural investigations, enabling large, dynamic and often transient transcription complexes to be resolved that in many cases had resisted crystallisation. In this review, we highlight the impact cryo-electron microscopy has had in gaining a deeper understanding of transcriptional regulation in bacteria. We also provide readers working within the field with an overview of the recent innovations available for cryo-electron microscopy sample preparation and image reconstruction of transcription complexes.
Collapse
Affiliation(s)
- David M. Wood
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Renwick C.J. Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, Australia
| | - Christopher R. Horne
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
11
|
Travis BA, Schumacher MA. Diverse molecular mechanisms of transcription regulation by the bacterial alarmone ppGpp. Mol Microbiol 2021; 117:252-260. [PMID: 34894005 PMCID: PMC9304144 DOI: 10.1111/mmi.14860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/30/2022]
Abstract
Bacteria must rapidly detect and respond to stressful environmental conditions. Guanosine tetraphosphate (ppGpp) is a universal stress signal that, in most bacteria, drives the reprograming of transcription at a global level. However, recent studies have revealed that the molecular mechanisms utilized by ppGpp to rewire bacterial transcriptomes are unexpectedly diverse. In Proteobacteria, ppGpp regulates the expression of hundreds of genes by directly binding to two sites on RNA polymerase (RNAP), one in combination with the transcription factor, DksA. Conversely, ppGpp indirectly regulates transcription in Firmicutes by controlling GTP levels. In this case, ppGpp inhibits enzymes that salvage and synthesize GTP, which indirectly represses transcription from rRNA and other promoters that use GTP for initiation. More recently, two different mechanisms of transcription regulation involving the direct binding of transcription factors by ppGpp have been described. First, in Francisella tularensis, ppGpp was shown to modulate the formation of a tripartite transcription factor complex that binds RNAP and activates virulence genes. Second, in Firmicutes, ppGpp allosterically regulates the transcription repressor, PurR, which controls purine biosynthesis genes. The diversity in bacterial ppGpp signaling revealed in these studies suggests the likelihood that additional paradigms in ppGpp-mediated transcription regulation await discovery.
Collapse
Affiliation(s)
- Brady A Travis
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| | - Maria A Schumacher
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
12
|
Qi Q, Angermayr SA, Bollenbach T. Uncovering Key Metabolic Determinants of the Drug Interactions Between Trimethoprim and Erythromycin in Escherichia coli. Front Microbiol 2021; 12:760017. [PMID: 34745067 PMCID: PMC8564399 DOI: 10.3389/fmicb.2021.760017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022] Open
Abstract
Understanding interactions between antibiotics used in combination is an important theme in microbiology. Using the interactions between the antifolate drug trimethoprim and the ribosome-targeting antibiotic erythromycin in Escherichia coli as a model, we applied a transcriptomic approach for dissecting interactions between two antibiotics with different modes of action. When trimethoprim and erythromycin were combined, the transcriptional response of genes from the sulfate reduction pathway deviated from the dominant effect of trimethoprim on the transcriptome. We successfully altered the drug interaction from additivity to suppression by increasing the sulfate level in the growth environment and identified sulfate reduction as an important metabolic determinant that shapes the interaction between the two drugs. Our work highlights the potential of using prioritization of gene expression patterns as a tool for identifying key metabolic determinants that shape drug-drug interactions. We further demonstrated that the sigma factor-binding protein gene crl shapes the interactions between the two antibiotics, which provides a rare example of how naturally occurring variations between strains of the same bacterial species can sometimes generate very different drug interactions.
Collapse
Affiliation(s)
- Qin Qi
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- Institute for Biological Physics, University of Cologne, Cologne, Germany
| | | | - Tobias Bollenbach
- Institute for Biological Physics, University of Cologne, Cologne, Germany
- Center for Data and Simulation Science, University of Cologne, Cologne, Germany
| |
Collapse
|
13
|
Structural visualization of transcription activated by a multidrug-sensing MerR family regulator. Nat Commun 2021; 12:2702. [PMID: 33976201 PMCID: PMC8113463 DOI: 10.1038/s41467-021-22990-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 04/08/2021] [Indexed: 01/25/2023] Open
Abstract
Bacterial RNA polymerase (RNAP) holoenzyme initiates transcription by recognizing the conserved -35 and -10 promoter elements that are optimally separated by a 17-bp spacer. The MerR family of transcriptional regulators activate suboptimal 19-20 bp spacer promoters in response to myriad cellular signals, ranging from heavy metals to drug-like compounds. The regulation of transcription by MerR family regulators is not fully understood. Here we report one crystal structure of a multidrug-sensing MerR family regulator EcmrR and nine cryo-electron microscopy structures that capture the EcmrR-dependent transcription process from promoter opening to initial transcription to RNA elongation. These structures reveal that EcmrR is a dual ligand-binding factor that reshapes the suboptimal 19-bp spacer DNA to enable optimal promoter recognition, sustains promoter remodeling to stabilize initial transcribing complexes, and finally dissociates from the promoter to reverse DNA remodeling and facilitate the transition to elongation. Our findings yield a comprehensive model for transcription regulation by MerR family factors and provide insights into the transition from transcription initiation to elongation.
Collapse
|
14
|
Wang Z, Zhao S, Li Y, Zhang K, Mo F, Zhang J, Hou Y, He L, Liu Z, Wang Y, Xu Y, Wang H, Buck M, Matthews SJ, Liu B. RssB-mediated σ S Activation is Regulated by a Two-Tier Mechanism via Phosphorylation and Adaptor Protein - IraD. J Mol Biol 2021; 433:166757. [PMID: 33346011 DOI: 10.1016/j.jmb.2020.166757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 11/15/2022]
Abstract
Regulation of bacterial stress responding σS is a sophisticated process and mediated by multiple interacting partners. Controlled proteolysis of σS is regulated by RssB which maintains minimal level of σS during exponential growth but then elevates σS level while facing stresses. Bacteria developed different strategies to regulate activity of RssB, including phosphorylation of itself and production of anti-adaptors. However, the function of phosphorylation is controversial and the mechanism of anti-adaptors preventing RssB-σS interaction remains elusive. Here, we demonstrated the impact of phosphorylation on the activity of RssB and built the RssB-σS complex model. Importantly, we showed that the phosphorylation site - D58 is at the interface of RssB-σS complex. Hence, mutation or phosphorylation of D58 would weaken the interaction of RssB with σS. We found that the anti-adaptor protein IraD has higher affinity than σS to RssB and its binding interface on RssB overlaps with that for σS. And IraD-RssB complex is preferred over RssB-σS in solution, regardless of the phosphorylation state of RssB. Our study suggests that RssB possesses a two-tier mechanism for regulating σS. First, phosphorylation of RssB provides a moderate and reversible tempering of its activity, followed by a specific and robust inhibition via the anti-adaptor interaction.
Collapse
Affiliation(s)
- Zhihao Wang
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China; Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Siyu Zhao
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China
| | - Yanqing Li
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China
| | - Kaining Zhang
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China
| | - Fei Mo
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiye Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yajing Hou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Langchong He
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhijun Liu
- National Facility for Protein Science, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yawen Wang
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China
| | - Yingqi Xu
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Hongliang Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Martin Buck
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Steve J Matthews
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Bing Liu
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China; Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, SW7 2AZ London, United Kingdom; Instrument Analysis Center of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| |
Collapse
|
15
|
Travis BA, Ramsey KM, Prezioso SM, Tallo T, Wandzilak JM, Hsu A, Borgnia M, Bartesaghi A, Dove SL, Brennan RG, Schumacher MA. Structural Basis for Virulence Activation of Francisella tularensis. Mol Cell 2021; 81:139-152.e10. [PMID: 33217319 PMCID: PMC7959165 DOI: 10.1016/j.molcel.2020.10.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/25/2020] [Accepted: 10/22/2020] [Indexed: 01/25/2023]
Abstract
The bacterium Francisella tularensis (Ft) is one of the most infectious agents known. Ft virulence is controlled by a unique combination of transcription regulators: the MglA-SspA heterodimer, PigR, and the stress signal, ppGpp. MglA-SspA assembles with the σ70-associated RNAP holoenzyme (RNAPσ70), forming a virulence-specialized polymerase. These factors activate Francisella pathogenicity island (FPI) gene expression, which is required for virulence, but the mechanism is unknown. Here we report FtRNAPσ70-promoter-DNA, FtRNAPσ70-(MglA-SspA)-promoter DNA, and FtRNAPσ70-(MglA-SspA)-ppGpp-PigR-promoter DNA cryo-EM structures. Structural and genetic analyses show MglA-SspA facilitates σ70 binding to DNA to regulate virulence and virulence-enhancing genes. Our Escherichia coli RNAPσ70-homodimeric EcSspA structure suggests this is a general SspA-transcription regulation mechanism. Strikingly, our FtRNAPσ70-(MglA-SspA)-ppGpp-PigR-DNA structure reveals ppGpp binding to MglA-SspA tethers PigR to promoters. PigR in turn recruits FtRNAP αCTDs to DNA UP elements. Thus, these studies unveil a unique mechanism for Ft pathogenesis involving a virulence-specialized RNAP that employs two (MglA-SspA)-based strategies to activate virulence genes.
Collapse
Affiliation(s)
- Brady A Travis
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kathryn M Ramsey
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Cell and Molecular Biology and Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Samantha M Prezioso
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas Tallo
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jamie M Wandzilak
- Department of Cell and Molecular Biology and Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Allen Hsu
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Mario Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Alberto Bartesaghi
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA; Department of Computer Science, Duke University, Durham, NC 27708, USA
| | - Simon L Dove
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Richard G Brennan
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Maria A Schumacher
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
16
|
Diverse and unified mechanisms of transcription initiation in bacteria. Nat Rev Microbiol 2020; 19:95-109. [PMID: 33122819 DOI: 10.1038/s41579-020-00450-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 12/21/2022]
Abstract
Transcription of DNA is a fundamental process in all cellular organisms. The enzyme responsible for transcription, RNA polymerase, is conserved in general architecture and catalytic function across the three domains of life. Diverse mechanisms are used among and within the different branches to regulate transcription initiation. Mechanistic studies of transcription initiation in bacteria are especially amenable because the promoter recognition and melting steps are much less complicated than in eukaryotes or archaea. Also, bacteria have critical roles in human health as pathogens and commensals, and the bacterial RNA polymerase is a proven target for antibiotics. Recent biophysical studies of RNA polymerases and their inhibition, as well as transcription initiation and transcription factors, have detailed the mechanisms of transcription initiation in phylogenetically diverse bacteria, inspiring this Review to examine unifying and diverse themes in this process.
Collapse
|
17
|
Zuo Y, De S, Feng Y, Steitz TA. Structural Insights into Transcription Initiation from De Novo RNA Synthesis to Transitioning into Elongation. iScience 2020; 23:101445. [PMID: 32829286 PMCID: PMC7452309 DOI: 10.1016/j.isci.2020.101445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/27/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
In bacteria, the dissociable σ subunit of the RNA polymerase (RNAP) is responsible for initiating RNA synthesis from specific DNA sites. As nascent RNA grows, downstream DNA unwinds and is pulled into the RNAP, causing stress accumulation and initiation complex destabilization. Processive transcription elongation requires at least partial separation of the σ factor from the RNAP core enzyme. Here, we present a series of transcription complexes captured between the early initiation and elongation phases via in-crystal RNA synthesis and cleavage. Crystal structures of these complexes indicate that stress accumulation during transcription initiation is not due to clashing of the growing nascent RNA with the σ3.2 loop, but results from scrunching of the template strand DNA that is contained inside the RNAP by the σ3 domain. Our results shed light on how scrunching of template-strand DNA drives both abortive initiation and σ-RNAP core separation to transition transcription from initiation to elongation.
Collapse
Affiliation(s)
- Yuhong Zuo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Swastik De
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Howard Hughes Medical Institute, New Haven, CT 06510, USA
| | - Yingang Feng
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao, Shandong 266101, China
| | - Thomas A. Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Howard Hughes Medical Institute, New Haven, CT 06510, USA
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
18
|
Vishwakarma RK, Brodolin K. The σ Subunit-Remodeling Factors: An Emerging Paradigms of Transcription Regulation. Front Microbiol 2020; 11:1798. [PMID: 32849409 PMCID: PMC7403470 DOI: 10.3389/fmicb.2020.01798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/09/2020] [Indexed: 11/13/2022] Open
Abstract
Transcription initiation is a key checkpoint and highly regulated step of gene expression. The sigma (σ) subunit of RNA polymerase (RNAP) controls all transcription initiation steps, from recognition of the -10/-35 promoter elements, upon formation of the closed promoter complex (RPc), to stabilization of the open promoter complex (RPo) and stimulation of the primary steps in RNA synthesis. The canonical mechanism to regulate σ activity upon transcription initiation relies on activators that recognize specific DNA motifs and recruit RNAP to promoters. This mini-review describes an emerging group of transcriptional regulators that form a complex with σ or/and RNAP prior to promoter binding, remodel the σ subunit conformation, and thus modify RNAP activity. Such strategy is widely used by bacteriophages to appropriate the host RNAP. Recent findings on RNAP-binding protein A (RbpA) from Mycobacterium tuberculosis and Crl from Escherichia coli suggest that activator-driven changes in σ conformation can be a widespread regulatory mechanism in bacteria.
Collapse
Affiliation(s)
- Rishi Kishore Vishwakarma
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, Montpellier, France
| | - Konstantin Brodolin
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, Montpellier, France
| |
Collapse
|
19
|
Xu J, Cui K, Shen L, Shi J, Li L, You L, Fang C, Zhao G, Feng Y, Yang B, Zhang Y. Crl activates transcription by stabilizing active conformation of the master stress transcription initiation factor. eLife 2019; 8:50928. [PMID: 31846423 PMCID: PMC6917491 DOI: 10.7554/elife.50928] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/03/2019] [Indexed: 12/20/2022] Open
Abstract
σS is a master transcription initiation factor that protects bacterial cells from various harmful environmental stresses including antibiotic pressure. Although its mechanism remains unclear, it is known that full activation of σS-mediated transcription requires a σS-specific activator, Crl. In this study, we determined a 3.80 Å cryo-EM structure of an Escherichia coli transcription activation complex (E. coli Crl-TAC) comprising E. coli σS-RNA polymerase (σS-RNAP) holoenzyme, Crl, and a nucleic-acid scaffold. The structure reveals that Crl interacts with domain 2 of σS (σS2) and the RNAP core enzyme, but does not contact promoter DNA. Results from subsequent hydrogen-deuterium exchange mass spectrometry (HDX-MS) indicate that Crl stabilizes key structural motifs within σS2 to promote the assembly of the σS-RNAP holoenzyme and also to facilitate formation of an RNA polymerase–promoter DNA open complex (RPo). Our study demonstrates a unique DNA contact-independent mechanism of transcription activation, thereby defining a previously unrecognized mode of transcription activation in cells.
Collapse
Affiliation(s)
- Juncao Xu
- Key Laboratory of Synthetic Biology,CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Kaijie Cui
- University of Chinese Academy of Sciences, Beijing, China.,Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Liqiang Shen
- Key Laboratory of Synthetic Biology,CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jing Shi
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingting Li
- Key Laboratory of Synthetic Biology,CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Linlin You
- Key Laboratory of Synthetic Biology,CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chengli Fang
- Key Laboratory of Synthetic Biology,CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guoping Zhao
- Key Laboratory of Synthetic Biology,CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China.,Department of Microbiology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, China.,State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, China.,Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yu Feng
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bei Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology,CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|