1
|
Waller RF, Carruthers VB. Adaptations and metabolic evolution of myzozoan protists across diverse lifestyles and environments. Microbiol Mol Biol Rev 2024; 88:e0019722. [PMID: 39387588 DOI: 10.1128/mmbr.00197-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
SUMMARYMyzozoans encompass apicomplexans and dinoflagellates that manifest diverse lifestyles in highly varied environments. They show enormous propensity to employ different metabolic programs and exploit different nutrient resources and niches, and yet, they share much core biology that underlies this evolutionary success and impact. This review discusses apicomplexan parasites of medical significance and the traits and properties they share with non-pathogenic myzozoans. These include the versatility of myzozoan plastids, which scale from fully photosynthetic organelles to the site of very select key metabolic pathways. Pivotal evolutionary innovations, such as the apical complex, have allowed myzozoans to shift from predatory to parasitic and other symbiotic lifestyles multiple times in both apicomplexan and dinoflagellate branches of the myzozoan evolutionary tree. Such traits, along with shared mechanisms for nutrient acquisition, appear to underpin the prosperity of myzozoans in their varied habitats. Understanding the mechanisms of these shared traits has the potential to spawn new strategic interventions against medically and veterinary relevant parasites within this grouping.
Collapse
Affiliation(s)
- Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Yazaki E, Uehara T, Sakamoto H, Inagaki Y. Dinotoms possess two evolutionary distinct autophagy-related ubiquitin-like conjugation systems. Protist 2024; 175:126067. [PMID: 39341116 DOI: 10.1016/j.protis.2024.126067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/29/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024]
Abstract
Autophagy is an intracellular degradation mechanism by which cytoplasmic materials are delivered to and degraded in the lysosome-fused autophagosome (autolysosome) and proposed to have been established at an early stage of eukaryotic evolution. Dinoflagellates harboring endosymbiotic diatoms (so-called "dinotoms"), which retain their own nuclei and mitochondria in addition to plastids, have been investigated as an intermediate toward the full integration of a eukaryotic phototroph into the host-controlled organelle (i.e., plastid) through endosymbiosis. Pioneering studies systematically evaluated the degree of host governance on several metabolic pathways in the endosymbiotic diatoms (ESDs). However, little attention has been paid to the impact of the endosymbiotic lifestyle on the autophagy operated in the ESDs. In this study, we searched for ATG3, ATG4, ATG5, ATG7, ATG8, ATG10, and ATG12, which are required for autophagosome formation, in the RNA-seq data from dinotoms Durinskia baltica and Kryptoperidinium foliaceum. We detected two evolutionally distinct sets of the ATG proteins in the dinotom species, one affiliated with the dinoflagellate homologs and the other with the diatom homologs in phylogenetic analyses. The results suggest that the ATG proteins descended from the diatom taken up by the dinoflagellate host persist for autophagosome formation and, most likely, autophagy.
Collapse
Affiliation(s)
- Euki Yazaki
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan; RIKEN iTHEMS, Wako, Saitama, Japan.
| | - Tadaaki Uehara
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hirokazu Sakamoto
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan
| | - Yuji Inagaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan; Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
3
|
Cooney EC, Jacobson DM, Wolfe GV, Bright KJ, Saldarriaga JF, Keeling PJ, Leander BS, Strom SL. Morphology, behavior, and phylogenomics of Oxytoxum lohmannii, Dinoflagellata. J Eukaryot Microbiol 2024; 71:e13050. [PMID: 39019843 PMCID: PMC11603288 DOI: 10.1111/jeu.13050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/19/2024]
Abstract
Dinoflagellates are an abundant and diverse group of protists representing a wealth of unique biology and ecology. While many dinoflagellates are photosynthetic or mixotrophic, many taxa are heterotrophs, often with complex feeding strategies. Compared to their photosynthetic counterparts, heterotrophic dinoflagellates remain understudied, as they are difficult to culture. One exception, a long-cultured isolate originally classified as Amphidinium but recently reclassified as Oxytoxum, has been the subject of a number of feeding, growth, and chemosensory studies. This lineage was recently determined to be closely related to Prorocentrum using phylogenetics of ribosomal RNA gene sequences, but the exact nature of this relationship remains unresolved. Using transcriptomes sequenced from culture and three single cells from the environment, we produce a robust phylogeny of 242 genes, revealing Oxytoxum is likely sister to the Prorocentrum clade, rather than nested within it. Molecular investigations uncover evidence of a reduced, nonphotosynthetic plastid and proteorhodopsin, a photoactive proton pump acquired horizontally from bacteria. We describe the ultrastructure of O. lohmannii, including densely packed trichocysts, and a new type of mucocyst. We observe that O. lohmannii feeds preferentially on cryptophytes using myzocytosis, but can also feed on various phytoflagellates using conventional phagocytosis. O. lohmannii is amenable to culture, providing an opportunity to better study heterotrophic dinoflagellate biology and feeding ecology.
Collapse
Affiliation(s)
- Elizabeth C. Cooney
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | | | - Gordon V. Wolfe
- Department of Biological SciencesCalifornia State University, ChicoChicoCaliforniaUSA
| | - Kelley J. Bright
- Shannon Point Marine CenterWestern Washington UniversityAnacortesUSA
| | - Juan F. Saldarriaga
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Patrick J. Keeling
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Brian S. Leander
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Suzanne L. Strom
- Shannon Point Marine CenterWestern Washington UniversityAnacortesUSA
| |
Collapse
|
4
|
Tang L, Tam NFY, Lam W, Lee TCH, Xu SJL, Lee CL, Lee FWF. Interpreting the complexities of the plastid genome in dinoflagellates: a mini-review of recent advances. PLANT MOLECULAR BIOLOGY 2024; 114:114. [PMID: 39432142 DOI: 10.1007/s11103-024-01511-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/22/2024] [Indexed: 10/22/2024]
Abstract
Photosynthetic dinoflagellates play crucial roles in global primary production and carbon fixation. Despite their success in filling various ecological niches, numerous mysteries about their plastid evolution and plastid genomes remain unsolved. The plastid genome of dinoflagellates presents one of the most complex lineages in the biological realm, mainly due to multiple endosymbiotic plastid events in their evolutionary history. Peridinin-containing dinoflagellates possess the most reduced and fragmented genome, with only a few genes located on multiple "minicircles", whereas replacement plastids in dinoflagellate lineages have undergone different degrees of endosymbiotic gene transfer. Recent advancements in high-throughput sequencing have improved our understanding of plastid genomes and plastid-encoded gene expression in many dinoflagellate species. Plastid transcripts of dinoflagellates exhibit two unconventional processing pathways: the addition of a 3' poly(U) tail and substitutional RNA editing. These pathways are widely employed across dinoflagellate lineages, which are possibly retained from the ancestral peridinin plastid. This mini-review summarizes the developments in the plastid genomes of dinoflagellates and pinpoints the research areas that necessitate further exploration, aiming to provide valuable insights into plastid evolution in these fascinating and important organisms.
Collapse
Affiliation(s)
- Lu Tang
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, China
| | - Nora Fung-Yee Tam
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Winnie Lam
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, China
| | - Thomas Chun-Hung Lee
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, China
| | - Steven Jing-Liang Xu
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, China
| | - Chak-Lam Lee
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, China
| | - Fred Wang-Fat Lee
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, China.
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
5
|
Lin S. A decade of dinoflagellate genomics illuminating an enigmatic eukaryote cell. BMC Genomics 2024; 25:932. [PMID: 39367346 PMCID: PMC11453091 DOI: 10.1186/s12864-024-10847-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
Dinoflagellates are a remarkable group of protists, not only for their association with harmful algal blooms and coral reefs but also for their numerous characteristics deviating from the rules of eukaryotic biology. Genome research on dinoflagellates has lagged due to their immense genome sizes in most species (~ 1-250 Gbp). Nevertheless, the last decade marked a fruitful era of dinoflagellate genomics, with 27 genomes sequenced and many insights attained. This review aims to synthesize information from these genomes, along with other omic data, to reflect on where we are now in understanding dinoflagellates and where we are heading in the future. The most notable insights from the decade-long genomics work include: (1) dinoflagellate genomes have been expanded in multiple times independently, probably by a combination of rampant retroposition, accumulation of repetitive DNA, and genome duplication; (2) Symbiodiniacean genomes are highly divergent, but share about 3,445 core unigenes concentrated in 219 KEGG pathways; (3) Most dinoflagellate genes are encoded unidirectionally and are not intron-poor; (4) The dinoflagellate nucleus has undergone extreme evolutionary changes, including complete or nearly complete loss of nucleosome and histone H1, and acquisition of dinoflagellate viral nuclear protein (DVNP); (5) Major basic nuclear protein (MBNP), histone-like protein (HLP), and bacterial HU-like protein (HCc) belong to the same protein family, and MBNP can be the unifying name; (6) Dinoflagellate gene expression is regulated by poorly understood mechanisms, but microRNA and other epigenetic mechanisms are likely important; (7) Over 50% of dinoflagellate genes are "dark" and their functions remain to be deciphered using functional genetics; (8) Initial insights into the genomic basis of parasitism and mutualism have emerged. The review then highlights functionally unique and interesting genes. Future research needs to obtain a finished genome, tackle large genomes, characterize the unknown genes, and develop a quantitative molecular ecological model for addressing ecological questions.
Collapse
Affiliation(s)
- Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, CT, 06340, USA.
| |
Collapse
|
6
|
Cooney EC, Holt CC, Hehenberger E, Adams JA, Leander BS, Keeling PJ. Investigation of heterotrophs reveals new insights in dinoflagellate evolution. Mol Phylogenet Evol 2024; 196:108086. [PMID: 38677354 DOI: 10.1016/j.ympev.2024.108086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Dinoflagellates are diverse and ecologically important protists characterized by many morphological and molecular traits that set them apart from other eukaryotes. These features include, but are not limited to, massive genomes organized using bacterially-derived histone-like proteins (HLPs) and dinoflagellate viral nucleoproteins (DVNP) rather than histones, and a complex history of photobiology with many independent losses of photosynthesis, numerous cases of serial secondary and tertiary plastid gains, and the presence of horizontally acquired bacterial rhodopsins and type II RuBisCo. Elucidating how this all evolved depends on knowing the phylogenetic relationships between dinoflagellate lineages. Half of these species are heterotrophic, but existing molecular data is strongly biased toward the photosynthetic dinoflagellates due to their amenability to cultivation and prevalence in culture collections. These biases make it impossible to interpret the evolution of photosynthesis, but may also affect phylogenetic inferences that impact our understanding of character evolution. Here, we address this problem by isolating individual cells from the Salish Sea and using single cell, culture-free transcriptomics to expand molecular data for dinoflagellates to include 27 more heterotrophic taxa, resulting in a roughly balanced representation. Using these data, we performed a comprehensive search for proteins involved in chromatin packaging, plastid function, and photoactivity across all dinoflagellates. These searches reveal that 1) photosynthesis was lost at least 21 times, 2) two known types of HLP were horizontally acquired around the same time rather than sequentially as previously thought; 3) multiple rhodopsins are present across the dinoflagellates, acquired multiple times from different donors; 4) kleptoplastic species have nucleus-encoded genes for proteins targeted to their temporary plastids and they are derived from multiple lineages, and 5) warnowiids are the only heterotrophs that retain a whole photosystem, although some photosynthesis-related electron transport genes are widely retained in heterotrophs, likely as part of the iron-sulfur cluster pathway that persists in non-photosynthetic plastids.
Collapse
Affiliation(s)
- Elizabeth C Cooney
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver, BC V6T 1Z4, Canada; Hakai Institute, 1747 Hyacinthe Bay Rd., Heriot Bay, BC V0P 1H0, Canada.
| | - Corey C Holt
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver, BC V6T 1Z4, Canada; Hakai Institute, 1747 Hyacinthe Bay Rd., Heriot Bay, BC V0P 1H0, Canada.
| | - Elisabeth Hehenberger
- Institute of Parasitology, Biology Centre Czech Academy of Sciences, České Budějovice, Czech Republic.
| | - Jayd A Adams
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver, BC V6T 1Z4, Canada.
| | - Brian S Leander
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver, BC V6T 1Z4, Canada; Department of Zoology, University of British Columbia, 4200 - 6270, University Blvd., Vancouver, BC V6T 1Z4, Canada.
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
7
|
Novák Vanclová AM, Nef C, Füssy Z, Vancl A, Liu F, Bowler C, Dorrell RG. New plastids, old proteins: repeated endosymbiotic acquisitions in kareniacean dinoflagellates. EMBO Rep 2024; 25:1859-1885. [PMID: 38499810 PMCID: PMC11014865 DOI: 10.1038/s44319-024-00103-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 03/20/2024] Open
Abstract
Dinoflagellates are a diverse group of ecologically significant micro-eukaryotes that can serve as a model system for plastid symbiogenesis due to their susceptibility to plastid loss and replacement via serial endosymbiosis. Kareniaceae harbor fucoxanthin-pigmented plastids instead of the ancestral peridinin-pigmented ones and support them with a diverse range of nucleus-encoded plastid-targeted proteins originating from the haptophyte endosymbiont, dinoflagellate host, and/or lateral gene transfers (LGT). Here, we present predicted plastid proteomes from seven distantly related kareniaceans in three genera (Karenia, Karlodinium, and Takayama) and analyze their evolutionary patterns using automated tree building and sorting. We project a relatively limited ( ~ 10%) haptophyte signal pointing towards a shared origin in the family Chrysochromulinaceae. Our data establish significant variations in the functional distributions of these signals, emphasizing the importance of micro-evolutionary processes in shaping the chimeric proteomes. Analysis of plastid genome sequences recontextualizes these results by a striking finding the extant kareniacean plastids are in fact not all of the same origin, as two of the studied species (Karlodinium armiger, Takayama helix) possess plastids from different haptophyte orders than the rest.
Collapse
Affiliation(s)
- Anna Mg Novák Vanclová
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France.
- Institute Jacques Monod, Paris, France.
| | - Charlotte Nef
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Zoltán Füssy
- Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
| | - Adél Vancl
- Faculty of Mathematics and Physics, Charles University, Prague, Czechia
| | - Fuhai Liu
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- Centre de Recherches Interdisciplinaires, Paris, France
- Tsinghua-UC Berkeley Shenzhen Institute, Shenzhen, China
| | - Chris Bowler
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Richard G Dorrell
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France.
- CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative - UMR 7238, Sorbonne Université, Paris, France.
| |
Collapse
|
8
|
Harada R, Hirakawa Y, Yabuki A, Kim E, Yazaki E, Kamikawa R, Nakano K, Eliáš M, Inagaki Y. Encyclopedia of Family A DNA Polymerases Localized in Organelles: Evolutionary Contribution of Bacteria Including the Proto-Mitochondrion. Mol Biol Evol 2024; 41:msae014. [PMID: 38271287 PMCID: PMC10877234 DOI: 10.1093/molbev/msae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
DNA polymerases synthesize DNA from deoxyribonucleotides in a semiconservative manner and serve as the core of DNA replication and repair machinery. In eukaryotic cells, there are 2 genome-containing organelles, mitochondria, and plastids, which were derived from an alphaproteobacterium and a cyanobacterium, respectively. Except for rare cases of genome-lacking mitochondria and plastids, both organelles must be served by nucleus-encoded DNA polymerases that localize and work in them to maintain their genomes. The evolution of organellar DNA polymerases has yet to be fully understood because of 2 unsettled issues. First, the diversity of organellar DNA polymerases has not been elucidated in the full spectrum of eukaryotes. Second, it is unclear when the DNA polymerases that were used originally in the endosymbiotic bacteria giving rise to mitochondria and plastids were discarded, as the organellar DNA polymerases known to date show no phylogenetic affinity to those of the extant alphaproteobacteria or cyanobacteria. In this study, we identified from diverse eukaryotes 134 family A DNA polymerase sequences, which were classified into 10 novel types, and explored their evolutionary origins. The subcellular localizations of selected DNA polymerases were further examined experimentally. The results presented here suggest that the diversity of organellar DNA polymerases has been shaped by multiple transfers of the PolI gene from phylogenetically broad bacteria, and their occurrence in eukaryotes was additionally impacted by secondary plastid endosymbioses. Finally, we propose that the last eukaryotic common ancestor may have possessed 2 mitochondrial DNA polymerases, POP, and a candidate of the direct descendant of the proto-mitochondrial DNA polymerase I, rdxPolA, identified in this study.
Collapse
Affiliation(s)
- Ryo Harada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yoshihisa Hirakawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Akinori Yabuki
- Deep-Sea Biodiversity Research Group, Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Eunsoo Kim
- Division of EcoScience, Ewha Womans University, Seoul, South Korea
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | - Euki Yazaki
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization, Tsukuba, Japan
- Interdisciplinary Theoretical and Mathematical Sciences program (iTHEMS), RIKEN, Wako, Saitama, Japan
| | - Ryoma Kamikawa
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kentaro Nakano
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Yuji Inagaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
9
|
Füssy Z, Oborník M. Complex Endosymbioses I: From Primary to Complex Plastids, Serial Endosymbiotic Events. Methods Mol Biol 2024; 2776:21-41. [PMID: 38502496 DOI: 10.1007/978-1-0716-3726-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
A considerable part of the diversity of eukaryotic phototrophs consists of algae with plastids that evolved from endosymbioses between two eukaryotes. These complex plastids are characterized by a high number of envelope membranes (more than two) and some of them contain a residual nucleus of the endosymbiotic alga called a nucleomorph. Complex plastid-bearing algae are thus chimeric cell assemblies, eukaryotic symbionts living in a eukaryotic host. In contrast, the primary plastids of the Archaeplastida (plants, green algae, red algae, and glaucophytes) possibly evolved from a single endosymbiosis with a cyanobacterium and are surrounded by two membranes. Complex plastids have been acquired several times by unrelated groups of eukaryotic heterotrophic hosts, suggesting that complex plastids are somewhat easier to obtain than primary plastids. Evidence suggests that complex plastids arose twice independently in the green lineage (euglenophytes and chlorarachniophytes) through secondary endosymbiosis, and four times in the red lineage, first through secondary endosymbiosis in cryptophytes, then by higher-order events in stramenopiles, alveolates, and haptophytes. Engulfment of primary and complex plastid-containing algae by eukaryotic hosts (secondary, tertiary, and higher-order endosymbioses) is also responsible for numerous plastid replacements in dinoflagellates. Plastid endosymbiosis is accompanied by massive gene transfer from the endosymbiont to the host nucleus and cell adaptation of both endosymbiotic partners, which is related to the trophic switch to phototrophy and loss of autonomy of the endosymbiont. Such a process is essential for the metabolic integration and division control of the endosymbiont in the host. Although photosynthesis is the main advantage of acquiring plastids, loss of photosynthesis often occurs in algae with complex plastids. This chapter summarizes the essential knowledge of the acquisition, evolution, and function of complex plastids.
Collapse
Affiliation(s)
- Zoltán Füssy
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Miroslav Oborník
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.
| |
Collapse
|
10
|
Miyagishima SY. Taming the perils of photosynthesis by eukaryotes: constraints on endosymbiotic evolution in aquatic ecosystems. Commun Biol 2023; 6:1150. [PMID: 37952050 PMCID: PMC10640588 DOI: 10.1038/s42003-023-05544-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023] Open
Abstract
An ancestral eukaryote acquired photosynthesis by genetically integrating a cyanobacterial endosymbiont as the chloroplast. The chloroplast was then further integrated into many other eukaryotic lineages through secondary endosymbiotic events of unicellular eukaryotic algae. While photosynthesis enables autotrophy, it also generates reactive oxygen species that can cause oxidative stress. To mitigate the stress, photosynthetic eukaryotes employ various mechanisms, including regulating chloroplast light absorption and repairing or removing damaged chloroplasts by sensing light and photosynthetic status. Recent studies have shown that, besides algae and plants with innate chloroplasts, several lineages of numerous unicellular eukaryotes engage in acquired phototrophy by hosting algal endosymbionts or by transiently utilizing chloroplasts sequestrated from algal prey in aquatic ecosystems. In addition, it has become evident that unicellular organisms engaged in acquired phototrophy, as well as those that feed on algae, have also developed mechanisms to cope with photosynthetic oxidative stress. These mechanisms are limited but similar to those employed by algae and plants. Thus, there appear to be constraints on the evolution of those mechanisms, which likely began by incorporating photosynthetic cells before the establishment of chloroplasts by extending preexisting mechanisms to cope with oxidative stress originating from mitochondrial respiration and acquiring new mechanisms.
Collapse
Affiliation(s)
- Shin-Ya Miyagishima
- Department of Gene Function and Phenomics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
- The Graduate University for Advanced Studies, SOKENDAI, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
| |
Collapse
|
11
|
Holt CC, Hehenberger E, Tikhonenkov DV, Jacko-Reynolds VKL, Okamoto N, Cooney EC, Irwin NAT, Keeling PJ. Multiple parallel origins of parasitic Marine Alveolates. Nat Commun 2023; 14:7049. [PMID: 37923716 PMCID: PMC10624901 DOI: 10.1038/s41467-023-42807-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/20/2023] [Indexed: 11/06/2023] Open
Abstract
Microbial eukaryotes are important components of marine ecosystems, and the Marine Alveolates (MALVs) are consistently both abundant and diverse in global environmental sequencing surveys. MALVs are dinoflagellates that are thought to be parasites of other protists and animals, but the lack of data beyond ribosomal RNA gene sequences from all but a few described species means much of their biology and evolution remain unknown. Using single-cell transcriptomes from several MALVs and their free-living relatives, we show that MALVs evolved independently from two distinct, free-living ancestors and that their parasitism evolved in parallel. Phylogenomics shows one subgroup (MALV-II and -IV, or Syndiniales) is related to a novel lineage of free-living, eukaryovorous predators, the eleftherids, while the other (MALV-I, or Ichthyodinida) is related to the free-living predator Oxyrrhis and retains proteins targeted to a non-photosynthetic plastid. Reconstructing the evolution of photosynthesis, plastids, and parasitism in early-diverging dinoflagellates shows a number of parallels with the evolution of their apicomplexan sisters. In both groups, similar forms of parasitism evolved multiple times and photosynthesis was lost many times. By contrast, complete loss of the plastid organelle is infrequent and, when this does happen, leaves no residual genes.
Collapse
Affiliation(s)
- Corey C Holt
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.
- Hakai Institute, Heriot Bay, British Columbia, Canada.
| | - Elisabeth Hehenberger
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.
- Institute of Parasitology, Biology Centre Czech Academy of Sciences, České Budějovice, Czech Republic.
| | - Denis V Tikhonenkov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
- AquaBioSafe Laboratory, University of Tyumen, Tyumen, Russia
| | | | - Noriko Okamoto
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Hakai Institute, Heriot Bay, British Columbia, Canada
| | - Elizabeth C Cooney
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Hakai Institute, Heriot Bay, British Columbia, Canada
| | - Nicholas A T Irwin
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Merton College, University of Oxford, Oxford, UK
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
12
|
Park E, Cooney E, Heng Phua Y, Horiguchi T, Husnik F, Keeling P, Wakeman K, Leander B. Phylogenomics shows that novel tapeworm-like traits of haplozoan parasites evolved from within the Peridiniales (Dinoflagellata). Mol Phylogenet Evol 2023:107859. [PMID: 37329929 DOI: 10.1016/j.ympev.2023.107859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023]
Abstract
Haplozoans are intestinal parasites of marine annelids with bizarre traits, including a differentiated and dynamic trophozoite stage that resembles the scolex and strobila of tapeworms. Described originally as "Mesozoa", comparative ultrastructural data and molecular phylogenetic analyses have shown that haplozoans are aberrant dinoflagellates; however, these data failed to resolve the phylogenetic position of haplozoans within this diverse group of protists. Several hypotheses for the phylogenetic position of haplozoans have been proposed: (1) within the Gymnodiniales based on tabulation patterns on the trophozoites, (2) within the Blastodiniales based on the parasitic life cycle, and (3) part of a new lineage of dinoflagellates that reflects the highly modified morphology. Here, we demonstrate the phylogenetic position of haplozoans by using three single-trophozoite transcriptomes representing two species: Haplozoon axiothellae and two isolates of H. pugnus collected from the Northwestern and Northeastern Pacific Ocean. Unexpectedly, our phylogenomic analysis of 241 genes showed that these parasites are unambiguously nested within the Peridiniales, a clade of single-celled flagellates that is well represented in marine phytoplankton communities around the world. Although the intestinal trophozoites of Haplozoon species do not show any peridinioid characteristics, we suspect that uncharacterized life cycle stages may reflect their evolutionary history within the Peridiniales.
Collapse
Affiliation(s)
- Eunji Park
- Department of Botany, University of British Columbia, Vancouver, Canada; Department of Zoology, University of British Columbia, Vancouver, Canada; Hakai Institute, British Columbia, Canada.
| | - Elizabeth Cooney
- Department of Botany, University of British Columbia, Vancouver, Canada; Hakai Institute, British Columbia, Canada
| | - Yong Heng Phua
- Okinawa Institute of Science and Technology, Okinawa, Japan
| | | | - Filip Husnik
- Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Patrick Keeling
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Kevin Wakeman
- Institute for the Advancement of Higher Education, Hokkaido University, Sapporo, Japan; Graduate School of Science, Hokkaido University, Sapporo, Japan
| | - Brian Leander
- Department of Botany, University of British Columbia, Vancouver, Canada; Department of Zoology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
13
|
Cooney EC, Leander BS, Keeling PJ. Phylogenomics shows unique traits in Noctilucales are derived rather than ancestral. PNAS NEXUS 2022; 1:pgac202. [PMID: 36714854 PMCID: PMC9802342 DOI: 10.1093/pnasnexus/pgac202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/19/2022] [Indexed: 02/01/2023]
Abstract
Dinoflagellates are a diverse protist group possessing many unique traits. These include (but are not limited to) expansive genomes packaged into permanently condensed chromosomes, photosynthetic or cryptic plastids acquired vertically or horizontally in serial endosymbioses, and a ruffle-like transverse flagellum attached along its length to the cell. When reconstructing character evolution, early branching lineages with unusual features that distinguish them from the rest of the group have proven useful for inferring ancestral states. The Noctilucales are one such lineage, possessing relaxed chromosomes in some life stages and a trailing, thread-like transverse flagellum. However, most of the cellular and molecular data for the entire group come from a single cultured species, Noctiluca scintillans, and because its phylogenetic position is unresolved it remains unclear if these traits are ancestral or derived. Here, we use single cell transcriptomics to characterize three diverse Noctilucales genera: Spatulodinium, Kofoidinium, and a new lineage, Fabadinium gen. nov. We also provide transcriptomes for undescribed species in Amphidinium and Abediniales, critical taxa for clarifying the phylogenetic position of Noctilucales. Phylogenomic analyses suggests that the Noctilucales are sister to Amphidinium rather than an independent branch outside the core dinoflagellates. This topology is consistent with observations of shared characteristics between some members of Noctilucales and Amphidinium and provides the most compelling evidence to date that the unusual traits within this group are derived rather than ancestral. We also confirm that Spatulodinium plastids are photosynthetic and of ancestral origin, and show that all non-photosynthetic Noctilucales retain plastid genes indicating a cryptic organelle.
Collapse
Affiliation(s)
| | - Brian S Leander
- Department of Botany, University of British Columbia, British Columbia, Vancouver V6T 1Z4, Canada,Department of Zoology, University of British Columbia, British Columbia, Vancouver V6T 1Z4, Canada
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, British Columbia, Vancouver V6T 1Z4, Canada
| |
Collapse
|
14
|
Chen Y, Shah S, Dougan KE, van Oppen MJH, Bhattacharya D, Chan CX. Improved Cladocopium goreaui Genome Assembly Reveals Features of a Facultative Coral Symbiont and the Complex Evolutionary History of Dinoflagellate Genes. Microorganisms 2022; 10:microorganisms10081662. [PMID: 36014080 PMCID: PMC9412976 DOI: 10.3390/microorganisms10081662] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Dinoflagellates of the family Symbiodiniaceae are crucial photosymbionts in corals and other marine organisms. Of these, Cladocopium goreaui is one of the most dominant symbiont species in the Indo-Pacific. Here, we present an improved genome assembly of C. goreaui combining new long-read sequence data with previously generated short-read data. Incorporating new full-length transcripts to guide gene prediction, the C. goreaui genome (1.2 Gb) exhibits a high extent of completeness (82.4% based on BUSCO protein recovery) and better resolution of repetitive sequence regions; 45,322 gene models were predicted, and 327 putative, topologically associated domains of the chromosomes were identified. Comparison with other Symbiodiniaceae genomes revealed a prevalence of repeats and duplicated genes in C. goreaui, and lineage-specific genes indicating functional innovation. Incorporating 2,841,408 protein sequences from 96 taxonomically diverse eukaryotes and representative prokaryotes in a phylogenomic approach, we assessed the evolutionary history of C. goreaui genes. Of the 5246 phylogenetic trees inferred from homologous protein sets containing two or more phyla, 35–36% have putatively originated via horizontal gene transfer (HGT), predominantly (19–23%) via an ancestral Archaeplastida lineage implicated in the endosymbiotic origin of plastids: 10–11% are of green algal origin, including genes encoding photosynthetic functions. Our results demonstrate the utility of long-read sequence data in resolving structural features of a dinoflagellate genome, and highlight how genetic transfer has shaped genome evolution of a facultative symbiont, and more broadly of dinoflagellates.
Collapse
Affiliation(s)
- Yibi Chen
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sarah Shah
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Katherine E. Dougan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Madeleine J. H. van Oppen
- School of Bioscience, The University of Melbourne, Parkville, VIC 3010, Australia
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Correspondence:
| |
Collapse
|
15
|
Matsuo E, Morita K, Nakayama T, Yazaki E, Sarai C, Takahashi K, Iwataki M, Inagaki Y. Comparative Plastid Genomics of Green-Colored Dinoflagellates Unveils Parallel Genome Compaction and RNA Editing. FRONTIERS IN PLANT SCIENCE 2022; 13:918543. [PMID: 35898209 PMCID: PMC9309888 DOI: 10.3389/fpls.2022.918543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Dinoflagellates possess plastids that are diverse in both pigmentation and evolutionary background. One of the plastid types found in dinoflagellates is pigmented with chlorophylls a and b (Chl a + b) and originated from the endosymbionts belonging to a small group of green algae, Pedinophyceae. The Chl a + b-containing plastids have been found in three distantly related dinoflagellates Lepidodinium spp., strain MGD, and strain TGD, and were proposed to be derived from separate partnerships between a dinoflagellate (host) and a pedinophycean green alga (endosymbiont). Prior to this study, a plastid genome sequence was only available for L. chlorophorum, which was reported to bear the features that were not found in that of the pedinophycean green alga Pedinomonas minor, a putative close relative of the endosymbiont that gave rise to the current Chl a + b-containing plastid. In this study, we sequenced the plastid genomes of strains MGD and TGD to compare with those of L. chlorophorum as well as pedinophycean green algae. The mapping of the RNA-seq reads on the corresponding plastid genome identified RNA editing on plastid gene transcripts in the three dinoflagellates. Further, the comparative plastid genomics revealed that the plastid genomes of the three dinoflagellates achieved several features, which are not found in or much less obvious than the pedinophycean plastid genomes determined to date, in parallel.
Collapse
Affiliation(s)
- Eriko Matsuo
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kounosuke Morita
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Takuro Nakayama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| | | | - Chihiro Sarai
- Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| | - Kazuya Takahashi
- Asian Natural Environmental Science Center, The University of Tokyo, Tokyo, Japan
| | - Mitsunori Iwataki
- Asian Natural Environmental Science Center, The University of Tokyo, Tokyo, Japan
| | - Yuji Inagaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
16
|
Judd M, Place AR. A Strategy for Gene Knockdown in Dinoflagellates. Microorganisms 2022; 10:microorganisms10061131. [PMID: 35744649 PMCID: PMC9228228 DOI: 10.3390/microorganisms10061131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Dinoflagellates are unicellular protists that display unusual nuclear features such as large genomes, condensed chromosomes and multiple gene copies organized as tandem gene arrays. Genetic regulation is believed to be controlled at the translational rather than transcriptional level. An important player in this process is initiation factor eIF4E which binds the 7-methylguanosine cap structure (m7G) at the 5′-end of mRNA. Transcriptome analysis of eleven dinoflagellate species has established that each species encodes between eight to fifteen eIF4E family members. Determining the role of eIF4E family members in gene expression requires a method of knocking down their expression. In other eukaryotes this can be accomplished using translational blocking morpholinos that bind to complementary strands of RNA, therefore inhibiting the mRNA processing. Previously, unmodified morpholinos lacked the ability to pass through cell membranes, however peptide-based reagents have been used to deliver substances into the cytosol of cells by an endocytosis-mediated process without damaging the cell membrane. We have successfully delivered fluorescently-tagged morpholinos to the cytosol of Amphidinium carterae by using a specific cell penetrating peptide with the goal to target an eIF4e-1a sequence to inhibit translation. Specific eIF4e knockdown success (up to 42%) has been characterized via microscopy and western blot analysis.
Collapse
|
17
|
Marinov GK, Chen X, Wu T, He C, Grossman AR, Kundaje A, Greenleaf WJ. The chromatin organization of a chlorarachniophyte nucleomorph genome. Genome Biol 2022; 23:65. [PMID: 35232465 PMCID: PMC8887012 DOI: 10.1186/s13059-022-02639-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/17/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Nucleomorphs are remnants of secondary endosymbiotic events between two eukaryote cells wherein the endosymbiont has retained its eukaryotic nucleus. Nucleomorphs have evolved at least twice independently, in chlorarachniophytes and cryptophytes, yet they have converged on a remarkably similar genomic architecture, characterized by the most extreme compression and miniaturization among all known eukaryotic genomes. Previous computational studies have suggested that nucleomorph chromatin likely exhibits a number of divergent features. RESULTS In this work, we provide the first maps of open chromatin, active transcription, and three-dimensional organization for the nucleomorph genome of the chlorarachniophyte Bigelowiella natans. We find that the B. natans nucleomorph genome exists in a highly accessible state, akin to that of ribosomal DNA in some other eukaryotes, and that it is highly transcribed over its entire length, with few signs of polymerase pausing at transcription start sites (TSSs). At the same time, most nucleomorph TSSs show very strong nucleosome positioning. Chromosome conformation (Hi-C) maps reveal that nucleomorph chromosomes interact with one other at their telomeric regions and show the relative contact frequencies between the multiple genomic compartments of distinct origin that B. natans cells contain. CONCLUSIONS We provide the first study of a nucleomorph genome using modern functional genomic tools, and derive numerous novel insights into the physical and functional organization of these unique genomes.
Collapse
Affiliation(s)
- Georgi K Marinov
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA.
| | - Xinyi Chen
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Tong Wu
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Arthur R Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- Department of Computer Science, Stanford University, Stanford, CA, 94305, USA
| | - William James Greenleaf
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA.
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, 94305, USA.
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
18
|
Uthanumallian K, Iha C, Repetti SI, Chan CX, Bhattacharya D, Duchene S, Verbruggen H. Tightly Constrained Genome Reduction and Relaxation of Purifying Selection during Secondary Plastid Endosymbiosis. Mol Biol Evol 2022; 39:msab295. [PMID: 34613411 PMCID: PMC8763093 DOI: 10.1093/molbev/msab295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Endosymbiosis, the establishment of a former free-living prokaryotic or eukaryotic cell as an organelle inside a host cell, can dramatically alter the genomic architecture of the endosymbiont. Plastids or chloroplasts, the light-harvesting organelle of photosynthetic eukaryotes, are excellent models to study this phenomenon because plastid origin has occurred multiple times in evolution. Here, we investigate the genomic signature of molecular processes acting through secondary plastid endosymbiosis-the origination of a new plastid from a free-living eukaryotic alga. We used phylogenetic comparative methods to study gene loss and changes in selective regimes on plastid genomes, focusing on green algae that have given rise to three independent lineages with secondary plastids (euglenophytes, chlorarachniophytes, and Lepidodinium). Our results show an overall increase in gene loss associated with secondary endosymbiosis, but this loss is tightly constrained by the retention of genes essential for plastid function. The data show that secondary plastids have experienced temporary relaxation of purifying selection during secondary endosymbiosis. However, this process is tightly constrained, with selection relaxed only relative to the background in primary plastids. Purifying selection remains strong in absolute terms even during the endosymbiosis events. Selection intensity rebounds to pre-endosymbiosis levels following endosymbiosis events, demonstrating the changes in selection efficiency during different origin phases of secondary plastids. Independent endosymbiosis events in the euglenophytes, chlorarachniophytes, and Lepidodinium differ in their degree of relaxation of selection, highlighting the different evolutionary contexts of these events. This study reveals the selection-drift interplay during secondary endosymbiosis and evolutionary parallels during organellogenesis.
Collapse
Affiliation(s)
| | - Cintia Iha
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Sonja I Repetti
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | | | - Sebastian Duchene
- Deptartment of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
19
|
Yoshinaga M, Inagaki Y. Ubiquity and Origins of Structural Maintenance of Chromosomes (SMC) Proteins in Eukaryotes. Genome Biol Evol 2021; 13:evab256. [PMID: 34894224 PMCID: PMC8665677 DOI: 10.1093/gbe/evab256] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2021] [Indexed: 12/03/2022] Open
Abstract
Structural maintenance of chromosomes (SMC) protein complexes are common in Bacteria, Archaea, and Eukaryota. SMC proteins, together with the proteins related to SMC (SMC-related proteins), constitute a superfamily of ATPases. Bacteria/Archaea and Eukaryotes are distinctive from one another in terms of the repertory of SMC proteins. A single type of SMC protein is dimerized in the bacterial and archaeal complexes, whereas eukaryotes possess six distinct SMC subfamilies (SMC1-6), constituting three heterodimeric complexes, namely cohesin, condensin, and SMC5/6 complex. Thus, to bridge the homodimeric SMC complexes in Bacteria and Archaea to the heterodimeric SMC complexes in Eukaryota, we need to invoke multiple duplications of an SMC gene followed by functional divergence. However, to our knowledge, the evolution of the SMC proteins in Eukaryota had not been examined for more than a decade. In this study, we reexamined the ubiquity of SMC1-6 in phylogenetically diverse eukaryotes that cover the major eukaryotic taxonomic groups recognized to date and provide two novel insights into the SMC evolution in eukaryotes. First, multiple secondary losses of SMC5 and SMC6 occurred in the eukaryotic evolution. Second, the SMC proteins constituting cohesin and condensin (i.e., SMC1-4), and SMC5 and SMC6 were derived from closely related but distinct ancestral proteins. Based on the above-mentioned findings, we discuss how SMC1-6 have diverged from the archaeal homologs.
Collapse
Affiliation(s)
- Mari Yoshinaga
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Yuji Inagaki
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
20
|
Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae. Nat Commun 2021; 12:6651. [PMID: 34789758 PMCID: PMC8599508 DOI: 10.1038/s41467-021-26918-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 10/29/2021] [Indexed: 12/27/2022] Open
Abstract
The endosymbiotic origin of plastids from cyanobacteria gave eukaryotes photosynthetic capabilities and launched the diversification of countless forms of algae. These primary plastids are found in members of the eukaryotic supergroup Archaeplastida. All known archaeplastids still retain some form of primary plastids, which are widely assumed to have a single origin. Here, we use single-cell genomics from natural samples combined with phylogenomics to infer the evolutionary origin of the phylum Picozoa, a globally distributed but seemingly rare group of marine microbial heterotrophic eukaryotes. Strikingly, the analysis of 43 single-cell genomes shows that Picozoa belong to Archaeplastida, specifically related to red algae and the phagotrophic rhodelphids. These picozoan genomes support the hypothesis that Picozoa lack a plastid, and further reveal no evidence of an early cryptic endosymbiosis with cyanobacteria. These findings change our understanding of plastid evolution as they either represent the first complete plastid loss in a free-living taxon, or indicate that red algae and rhodelphids obtained their plastids independently of other archaeplastids.
Collapse
|
21
|
Abstract
The origin of plastids (chloroplasts) by endosymbiosis stands as one of the most important events in the history of eukaryotic life. The genetic, biochemical, and cell biological integration of a cyanobacterial endosymbiont into a heterotrophic host eukaryote approximately a billion years ago paved the way for the evolution of diverse algal groups in a wide range of aquatic and, eventually, terrestrial environments. Plastids have on multiple occasions also moved horizontally from eukaryote to eukaryote by secondary and tertiary endosymbiotic events. The overall picture of extant photosynthetic diversity can best be described as “patchy”: Plastid-bearing lineages are spread far and wide across the eukaryotic tree of life, nested within heterotrophic groups. The algae do not constitute a monophyletic entity, and understanding how, and how often, plastids have moved from branch to branch on the eukaryotic tree remains one of the most fundamental unsolved problems in the field of cell evolution. In this review, we provide an overview of recent advances in our understanding of the origin and spread of plastids from the perspective of comparative genomics. Recent years have seen significant improvements in genomic sampling from photosynthetic and nonphotosynthetic lineages, both of which have added important pieces to the puzzle of plastid evolution. Comparative genomics has also allowed us to better understand how endosymbionts become organelles.
Collapse
Affiliation(s)
- Shannon J Sibbald
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - John M Archibald
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
22
|
Signs of the plastid: Enzymes involved in plastid-localized metabolic pathways in a eugregarine species. Parasitol Int 2021; 83:102364. [PMID: 33915268 DOI: 10.1016/j.parint.2021.102364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/02/2021] [Accepted: 04/07/2021] [Indexed: 11/21/2022]
Abstract
Apicomplexa mainly comprises parasitic species and some of them, which infect and cause severe diseases to humans and livestock, have been extensively studied due to the clinical and industrial importance. Besides, apicomplexans are a popular subject of the studies focusing on the evolution initiated by a secondary loss of photosynthesis. By interpreting the position in the tree of eukaryotes and lifestyles of the phylogenetic relatives parsimoniously, the extant apicomplexans are predicted to be the descendants of a parasite bearing a non-photosynthetic (cryptic) plastid. The plastid-bearing characteristic for the ancestral apicomplexan is further strengthened by non-photosynthetic plastids found in the extant apicomplexans. The research on apicomplexan members infecting invertebrates is much less advanced than that on the pathogens to humans and livestock. Gregarines are apicomplexans that infect diverse invertebrates and recent studies based on transcriptome data revealed the presence of cryptic plastids in a subset of the species investigated. In this study, we isolated gregarine-like organisms (GLOs) from three arthropod species and conducted transcriptome analyses on the isolated cells. A transcriptome-based, multi-gene phylogenetic analysis clearly indicated that all of the three GLOs are eugregarines. Significantly, the transcriptome data from the GLO in a centipede appeared to contain the transcripts encoding enzymes involved in the non-mevalonate pathway for isopentenyl diphosphate biosynthesis and C5 pathway for heme biosynthesis. The enzymes involved in the two plastid-localized metabolic pathways circumstantially but strongly suggest that the particular GLO possesses a cryptic plastid. The evolution of cryptic plastids in eugregarines is revised by incorporating the new data obtained from the three GLOs in this study.
Collapse
|
23
|
Baluška F, Miller WB, Reber AS. Biomolecular Basis of Cellular Consciousness via Subcellular Nanobrains. Int J Mol Sci 2021; 22:ijms22052545. [PMID: 33802617 PMCID: PMC7961929 DOI: 10.3390/ijms22052545] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cells emerged at the very beginning of life on Earth and, in fact, are coterminous with life. They are enclosed within an excitable plasma membrane, which defines the outside and inside domains via their specific biophysical properties. Unicellular organisms, such as diverse protists and algae, still live a cellular life. However, fungi, plants, and animals evolved a multicellular existence. Recently, we have developed the cellular basis of consciousness (CBC) model, which proposes that all biological awareness, sentience and consciousness are grounded in general cell biology. Here we discuss the biomolecular structures and processes that allow for and maintain this cellular consciousness from an evolutionary perspective.
Collapse
Affiliation(s)
- František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, 53115 Bonn, Germany
- Correspondence:
| | | | - Arthur S. Reber
- Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| |
Collapse
|
24
|
Koreny L, Zeeshan M, Barylyuk K, Tromer EC, van Hooff JJE, Brady D, Ke H, Chelaghma S, Ferguson DJP, Eme L, Tewari R, Waller RF. Molecular characterization of the conoid complex in Toxoplasma reveals its conservation in all apicomplexans, including Plasmodium species. PLoS Biol 2021; 19:e3001081. [PMID: 33705380 PMCID: PMC7951837 DOI: 10.1371/journal.pbio.3001081] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
The apical complex is the instrument of invasion used by apicomplexan parasites, and the conoid is a conspicuous feature of this apparatus found throughout this phylum. The conoid, however, is believed to be heavily reduced or missing from Plasmodium species and other members of the class Aconoidasida. Relatively few conoid proteins have previously been identified, making it difficult to address how conserved this feature is throughout the phylum, and whether it is genuinely missing from some major groups. Moreover, parasites such as Plasmodium species cycle through 3 invasive forms, and there is the possibility of differential presence of the conoid between these stages. We have applied spatial proteomics and high-resolution microscopy to develop a more complete molecular inventory and understanding of the organisation of conoid-associated proteins in the model apicomplexan Toxoplasma gondii. These data revealed molecular conservation of all conoid substructures throughout Apicomplexa, including Plasmodium, and even in allied Myzozoa such as Chromera and dinoflagellates. We reporter-tagged and observed the expression and location of several conoid complex proteins in the malaria model P. berghei and revealed equivalent structures in all of its zoite forms, as well as evidence of molecular differentiation between blood-stage merozoites and the ookinetes and sporozoites of the mosquito vector. Collectively, we show that the conoid is a conserved apicomplexan element at the heart of the invasion mechanisms of these highly successful and often devastating parasites.
Collapse
Affiliation(s)
- Ludek Koreny
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Mohammad Zeeshan
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Konstantin Barylyuk
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Eelco C. Tromer
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Jolien J. E. van Hooff
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Declan Brady
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Huiling Ke
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Sara Chelaghma
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - David J. P. Ferguson
- Nuffield Department of Clinical Laboratory Science, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Department of Biological and Medical Sciences, Faculty of Health and Life Science, Oxford Brookes University, Oxford, United Kingdom
| | - Laura Eme
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Rita Tewari
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Ross F. Waller
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
25
|
Nakayama T, Takahashi K, Kamikawa R, Iwataki M, Inagaki Y, Tanifuji G. Putative genome features of relic green alga-derived nuclei in dinoflagellates and future perspectives as model organisms. Commun Integr Biol 2020; 13:84-88. [PMID: 33014260 PMCID: PMC7518460 DOI: 10.1080/19420889.2020.1776568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nucleomorphs, relic endosymbiont nuclei, have been studied as a model to elucidate the evolutionary process of integrating a eukaryotic endosymbiont into a host cell organelle. Recently, we reported two new dinoflagellates possessing nucleomorphs, and proposed them as new models in this research field based on the following findings: genome integration processes are incomplete, and the origins of the endosymbiont lineages were pinpointed. Here, we focused on the nucleomorph genome features in the two green dinoflagellates and compared them with those of the known nucleomorph genomes of cryptophytes and chlorarachniophytes. All nucleomorph genomes showed similar trends suggesting convergent evolution. However, the number of nucleomorph genes that are unrelated to housekeeping machineries in the two green dinoflagellates are greater than the numbers in cryptophytes and chlorarachniophytes, providing additional evidence that their genome reduction has not progressed much compared with those of cryptophytes and chlorarachniophytes. Finally, potential future work is discussed.
Collapse
Affiliation(s)
- Takuro Nakayama
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Kazuya Takahashi
- Asian Natural Environmental Science Center, The University of Tokyo, Tokyo, Japan
| | - Ryoma Kamikawa
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Mitsunori Iwataki
- Asian Natural Environmental Science Center, The University of Tokyo, Tokyo, Japan
| | - Yuji Inagaki
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Goro Tanifuji
- Department of Zoology, National Museum of Nature and Science, Tsukuba, Japan
| |
Collapse
|
26
|
Dinoflagellates with relic endosymbiont nuclei as models for elucidating organellogenesis. Proc Natl Acad Sci U S A 2020; 117:5364-5375. [PMID: 32094181 DOI: 10.1073/pnas.1911884117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Nucleomorphs are relic endosymbiont nuclei so far found only in two algal groups, cryptophytes and chlorarachniophytes, which have been studied to model the evolutionary process of integrating an endosymbiont alga into a host-governed plastid (organellogenesis). However, past studies suggest that DNA transfer from the endosymbiont to host nuclei had already ceased in both cryptophytes and chlorarachniophytes, implying that the organellogenesis at the genetic level has been completed in the two systems. Moreover, we have yet to pinpoint the closest free-living relative of the endosymbiotic alga engulfed by the ancestral chlorarachniophyte or cryptophyte, making it difficult to infer how organellogenesis altered the endosymbiont genome. To counter the above issues, we need novel nucleomorph-bearing algae, in which endosymbiont-to-host DNA transfer is on-going and for which endosymbiont/plastid origins can be inferred at a fine taxonomic scale. Here, we report two previously undescribed dinoflagellates, strains MGD and TGD, with green algal endosymbionts enclosing plastids as well as relic nuclei (nucleomorphs). We provide evidence for the presence of DNA in the two nucleomorphs and the transfer of endosymbiont genes to the host (dinoflagellate) genomes. Furthermore, DNA transfer between the host and endosymbiont nuclei was found to be in progress in both the MGD and TGD systems. Phylogenetic analyses successfully resolved the origins of the endosymbionts at the genus level. With the combined evidence, we conclude that the host-endosymbiont integration in MGD/TGD is less advanced than that in cryptophytes/chrorarachniophytes, and propose the two dinoflagellates as models for elucidating organellogenesis.
Collapse
|