1
|
Djeghdi K, Schumacher C, Bauernfeind V, Gunkel I, Wilts BD, Steiner U. Anoplophora graafi longhorn beetle coloration is due to disordered diamond-like packed spheres. SOFT MATTER 2024; 20:2509-2517. [PMID: 38389437 PMCID: PMC10933740 DOI: 10.1039/d4sm00068d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
While artificial photonic materials are typically highly ordered, photonic structures in many species of birds and insects do not possess a long-range order. Studying their order-disorder interplay sheds light on the origin of the photonic band gap. Here, we investigated the scale morphology of the Anoplophora graafi longhorn beetle. Combining small-angle X-ray scattering and slice-and-view FIB-SEM tomography with molecular dynamics and optical simulations, we characterised the chitin sphere assemblies within blue and green A. graafi scales. The low volume fraction of spheres and the number of their nearest neighbours are incompatible with any known close-packed sphere morphology. A short-range diamond lattice with long-range disorder best describes the sphere assembly, which will inspire the development of new colloid-based photonic materials.
Collapse
Affiliation(s)
- Kenza Djeghdi
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
- National Competence Center in Bioinspired Materials, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Cédric Schumacher
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Viola Bauernfeind
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
- National Competence Center in Bioinspired Materials, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Ilja Gunkel
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
- National Competence Center in Bioinspired Materials, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Bodo D Wilts
- National Competence Center in Bioinspired Materials, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
- Department of Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Straße 2A, 5020 Salzburg, Austria.
| | - Ullrich Steiner
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
- National Competence Center in Bioinspired Materials, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| |
Collapse
|
2
|
Bergman MJ, García-Astrain C, Fuchs N, Manne K, Yazhgur P, Froufe-Pérez LS, Liz-Marzán LM, Scheffold F. Macroporous Silica Foams Fabricated via Soft Colloid Templating. SMALL METHODS 2022; 6:e2101491. [PMID: 35218331 DOI: 10.1002/smtd.202101491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Macroporous materials with controlled pore sizes are of high scientific and technological interest, due to their low specific weight, as well as unique acoustic, thermal, or optical properties. Solid foams made of titania, silica, or silicon, as representative materials, have been previously obtained with several hundred nanometer pore sizes, by using sacrificial templates such as spherical emulsion droplets or colloidal particles. Macroporous structures in particular are excellent candidates as photonic materials with applications in structural coloration and photonic bandgap devices. However, whereas using spherical building blocks as templates may provide tight control over pore shape and size, it results in materials with an often unfavorable local topology. Templating dry-foam or compressed-emulsion structures appear as attractive alternatives, but have not been demonstrated so far for submicron pore sizes. Herein, the use of soft, flexible microgel colloids decorated with silica nanoparticles as templates of macroporous foams is reported. These purposely synthesized core-shell colloids are assembled at ultra-high effective volume fractions by centrifuging and thermal swelling, thereby resulting in uniform disordered materials with facetted pores, mimicking dry foams. After removal of the polymer component via calcination, lightweight pure silica structures are obtained with a well-defined cellular or network topology.
Collapse
Affiliation(s)
- Maxime J Bergman
- Department of Physics and Fribourg Center for Nanomaterials (FriMat), University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Clara García-Astrain
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain
| | - Nathan Fuchs
- Department of Physics and Fribourg Center for Nanomaterials (FriMat), University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Kalpana Manne
- Department of Physics and Fribourg Center for Nanomaterials (FriMat), University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Pavel Yazhgur
- Department of Physics and Fribourg Center for Nanomaterials (FriMat), University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Luis S Froufe-Pérez
- Department of Physics and Fribourg Center for Nanomaterials (FriMat), University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, 43009, Bilbao, Spain
| | - Frank Scheffold
- Department of Physics and Fribourg Center for Nanomaterials (FriMat), University of Fribourg, CH-1700, Fribourg, Switzerland
| |
Collapse
|
3
|
Affiliation(s)
- Kevin D. Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota Twin Cities, 421 Washington Ave SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
4
|
Jayaraman A, Baez-Cotto CM, Mann TJ, Mahanthappa MK. Dodecagonal quasicrystals of oil-swollen ionic surfactant micelles. Proc Natl Acad Sci U S A 2021; 118:e2101598118. [PMID: 34326256 PMCID: PMC8346870 DOI: 10.1073/pnas.2101598118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A delicate balance of noncovalent interactions directs the hierarchical self-assembly of molecular amphiphiles into spherical micelles that pack into three-dimensional periodic arrays, which mimic intermetallic crystals. Herein, we report the discovery that adding water to a mixture of an ionic surfactant and n-decane induces aperiodic ordering of oil-swollen spherical micelles into previously unrecognized, aqueous lyotropic dodecagonal quasicrystals (DDQCs), which exhibit local 12-fold rotational symmetry and no long-range translational order. The emergence of these DDQCs at the nexus of dynamically arrested micellar glasses and a periodic Frank-Kasper (FK) σ phase approximant sensitively depends on the mixing order of molecular constituents in the assembly process and on sample thermal history. Addition of n-decane to mixtures of surfactant and water instead leads only to periodic FK A15 and σ approximants with no evidence for aperiodic order, while extended ambient temperature annealing of the DDQC also reveals its transformation into a σ phase. Thus, these lyotropic DDQCs are long-lived metastable morphologies, which nucleate and grow from a stochastic distribution of micelle sizes formed by abrupt segregation of varied amounts of oil into surfactant micelles on hydration. These findings indicate that molecular building block complexity is not a prerequisite for the formation of aperiodic supramolecular order, while also establishing the generic nature of quasicrystalline states across metal alloys and self-assembled micellar materials.
Collapse
Affiliation(s)
- Ashish Jayaraman
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
| | | | - Tyler J Mann
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
| | - Mahesh K Mahanthappa
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455;
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
5
|
Lindsay AP, Cheong GK, Peterson AJ, Weigand S, Dorfman KD, Lodge TP, Bates FS. Complex Phase Behavior in Particle-Forming AB/AB′ Diblock Copolymer Blends with Variable Core Block Lengths. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01290] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Aaron P. Lindsay
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Guo Kang Cheong
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Austin J. Peterson
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Steven Weigand
- DND-CAT Synchrotron Research Center, Northwestern University, APS/ANL Building 432-A004, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Kevin D. Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Timothy P. Lodge
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Frank S. Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
6
|
Klatt MA, Steinhardt PJ, Torquato S. Gap Sensitivity Reveals Universal Behaviors in Optimized Photonic Crystal and Disordered Networks. PHYSICAL REVIEW LETTERS 2021; 127:037401. [PMID: 34328757 DOI: 10.1103/physrevlett.127.037401] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
Through an extensive series of high-precision numerical computations of the optimal complete photonic band gap (PBG) as a function of dielectric contrast α for a variety of crystal and disordered heterostructures, we reveal striking universal behaviors of the gap sensitivity S(α)≡dΔ(α)/dα, the first derivative of the optimal gap-to-midgap ratio Δ(α). In particular, for all our crystal networks, S(α) takes a universal form that is well approximated by the analytic formula for a 1D quarter-wave stack, S_{QWS}(α). Even more surprisingly, the values of S(α) for our disordered networks converge to S_{QWS}(α) for sufficiently large α. A deeper understanding of the simplicity of this universal behavior may provide fundamental insights about PBG formation and guidance in the design of novel photonic heterostructures.
Collapse
Affiliation(s)
- Michael A Klatt
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
- Institut für Theoretische Physik, University of Erlangen-Nürnberg, Staudtstr. 7, 91058 Erlangen, Germany
| | - Paul J Steinhardt
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Salvatore Torquato
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
- Department of Chemistry, Princeton Institute for the Science and Technology of Materials,and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
7
|
Lindsay AP, Jayaraman A, Peterson AJ, Mueller AJ, Weigand S, Almdal K, Mahanthappa MK, Lodge TP, Bates FS. Reevaluation of Poly(ethylene- alt-propylene)- block-Polydimethylsiloxane Phase Behavior Uncovers Topological Close-Packing and Epitaxial Quasicrystal Growth. ACS NANO 2021; 15:9453-9468. [PMID: 33886269 DOI: 10.1021/acsnano.1c02420] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Reanalysis of an asymmetric poly(ethylene-alt-propylene)-block-polydimethylsiloxane (PEP-PDMS) diblock copolymer first investigated in 1999 has revealed a rich phase behavior including a dodecagonal quasicrystal (DDQC), a Frank-Kasper σ phase, and a body-centered cubic (BCC) packing at high temperature adjacent to the disordered state. On subjecting the sample to large amplitude oscillatory shear well below the σ-BCC order-order transition temperature (TOOT), small-angle X-ray scattering evidenced the emergence of a twinned BCC phase that, on heating, underwent a phase transition to an unusually anisotropic DDQC state. Surprisingly, we observe no evidence of this apparent epitaxy on heating or cooling through the equilibrium σ-BCC transition. We rationalize these results in terms of a shear-induced order-order transition and an apparent BCC-DDQC epitaxy favored by micelle translation-mediated ordering dynamics far below TOOT.
Collapse
Affiliation(s)
- Aaron P Lindsay
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ashish Jayaraman
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Austin J Peterson
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Andreas J Mueller
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Steven Weigand
- DND-CAT Synchrotron Research Center, Northwestern University, APS/ANL Building 432-A004, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Kristoffer Almdal
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kongens Lyngby, Denmark
| | - Mahesh K Mahanthappa
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Timothy P Lodge
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Frank S Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
8
|
Li Y, Luo C, Yu K, Wang X. Remotely Controlled, Reversible, On-Demand Assembly and Reconfiguration of 3D Mesostructures via Liquid Crystal Elastomer Platforms. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8929-8939. [PMID: 33577299 DOI: 10.1021/acsami.0c21371] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Three-dimensional (3D) mesostructures are gaining rapidly growing interest due to their potential applications in a broad range of areas. Despite intensive studies, remotely controlled, reversible, on-demand assembly and reconfiguration of 3D mesostructures, which are desired for many applications, including robotics, minimally invasive biomedical devices, and deployable systems, remain a challenge. Here, we introduce a facile strategy to utilize liquid crystal elastomers (LCEs), a soft polymer capable of large, reversible shape changes, as a platform for reversible assembly and programming of 3D mesostructures via compressive buckling of two-dimensional (2D) precursors in a remote and on-demand fashion. The highly stretchable, reversible shape-switching behavior of the LCE substrate, resulting from the soft elasticity of the material and the reversible nematic-isotropic transition of liquid crystal (LC) molecules upon remote thermal stimuli, provides deterministic thermal-mechanical control over the reversible assembly and reconfiguration processes. Demonstrations include experimental results and finite element simulations of 3D mesostructures with diverse geometries and material compositions, showing the versatility and reliability of the approach. Furthermore, a reconfigurable light-emitting system is assembled and morphed between its "on" and "off" status via the LCE platform. These results provide many exciting opportunities for areas from remotely programmable 3D mesostructures to tunable electronic systems.
Collapse
Affiliation(s)
- Yi Li
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Chaoqian Luo
- Department of Mechanical Engineering, University of Colorado Denver, Denver, Colorado 80217, United States
| | - Kai Yu
- Department of Mechanical Engineering, University of Colorado Denver, Denver, Colorado 80217, United States
| | - Xueju Wang
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
9
|
Xie S, Lindsay AP, Bates FS, Lodge TP. Formation of a C15 Laves Phase with a Giant Unit Cell in Salt-Doped A/B/AB Ternary Polymer Blends. ACS NANO 2020; 14:13754-13764. [PMID: 32866375 DOI: 10.1021/acsnano.0c06071] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Salt-doped A/B/AB ternary polymer blends, wherein an AB copolymer acts as a surfactant to stabilize otherwise incompatible A and B homopolymers, display a wide range of nanostructured morphologies with significant tunability. Among these structures, a bicontinuous microemulsion (BμE) has been a notable target. Here, we report the surprising appearance of a robust C15 Laves phase, at compositions near where the BμE has recently been reported, in lithium bis(trifluoromethane) sulfonimide (LiTFSI)-doped low-molar-mass poly(ethylene oxide) (PEO)/polystyrene (PS)/symmetric PS-b-PEO block copolymer blends. The materials were analyzed by a combination of small-angle X-ray scattering (SAXS), 1H NMR spectroscopy, and impedance spectroscopy. The C15 phase emerges at a high total homopolymer volume fraction ϕH = 0.8 with a salt composition r = 0.06 (Li+/[EO]) and persists as a coexisting phase across a large area of the isothermal phase diagram with high PS homopolymer compositions. Notably, the structure exhibits a huge unit cell size, a = 121 nm, with an unusually high micelle core volume fraction (fcore = 0.41) and an unusually low fraction of amphiphile (20%). This unit cell dimension is at least 50% larger than any previously reported C15 phase in soft matter, despite the low molar masses used, unlocking the possibility of copolymer-based photonic crystals without compromising processability. The nanostructured phase evolution from lamellar to hexagonal to C15 along the EO60 isopleth (ϕPEO,homo-LiTFSI/ϕH = 0.6) is rationalized as a consequence of asymmetry in the homopolymer solubility limit for each block, which leads to exclusion of PS homopolymer from the PS-b-PEO brush prior to exclusion of the PEO homopolymer, driving increased interfacial curvature and favoring the emergence of the C15 Laves phase.
Collapse
|
10
|
Haberko J, Froufe-Pérez LS, Scheffold F. Transition from light diffusion to localization in three-dimensional amorphous dielectric networks near the band edge. Nat Commun 2020; 11:4867. [PMID: 32978403 PMCID: PMC7519077 DOI: 10.1038/s41467-020-18571-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 08/25/2020] [Indexed: 11/09/2022] Open
Abstract
Localization of light is the photon analog of electron localization in disordered lattices, for whose discovery Anderson received the Nobel prize in 1977. The question about its existence in open three-dimensional materials has eluded an experimental and full theoretical verification for decades. Here we study numerically electromagnetic vector wave transmittance through realistic digital representations of hyperuniform dielectric networks, a new class of highly correlated but disordered photonic band gap materials. We identify the evanescent decay of the transmitted power in the gap and diffusive transport far from the gap. Near the gap, we find that transport sets off diffusive but, with increasing slab thickness, crosses over gradually to a faster decay, signaling localization. We show that we can describe the transition to localization at the mobility edge using the self-consistent theory of localization based on the concept of a position-dependent diffusion coefficient.
Collapse
Affiliation(s)
- Jakub Haberko
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, Krakow, 30-059, Poland
| | | | - Frank Scheffold
- Department of Physics, University of Fribourg, Fribourg, 1700, Switzerland.
| |
Collapse
|
11
|
Hutzler S, Dunne FF, Kraynik AM, Weaire D. The energy of fcc and hcp foams. SOFT MATTER 2020; 16:8262-8271. [PMID: 32935729 DOI: 10.1039/d0sm00820f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We present Surface Evolver evaluations of the difference in energy between face-centred cubic (fcc) and hexagonal close-packed (hcp) foams in the usual idealized model, for liquid fractions ranging from the dry to the wet limit. The difference vanishes in both limits, and favours hcp for all intermediate liquid fractions, as has been proven. The maximum relative energy difference is very small, of the order of 10-5. The asymptotic dependence on liquid fraction is non-analytic in both limits: we present explicit expressions in both cases, derived from first principles. They have been obtained from identifying node interactions (dry limit) and contact interactions (wet limit) as the respective sources for energy differences between fcc and hcp. The wet limit is well described by Morse-Witten theory which has proven to be very powerful for the analytic computation of the surface energy of slightly deformed bubbles.
Collapse
Affiliation(s)
- S Hutzler
- School of Physics, Trinity College Dublin, The University of Dublin, Ireland.
| | - F F Dunne
- School of Physics, Trinity College Dublin, The University of Dublin, Ireland.
| | - A M Kraynik
- School of Physics, Trinity College Dublin, The University of Dublin, Ireland. and Retired from Sandia National Laboratories, Albuquerque, USA
| | - D Weaire
- School of Physics, Trinity College Dublin, The University of Dublin, Ireland.
| |
Collapse
|
12
|
Maimouni I, Morvaridi M, Russo M, Lui G, Morozov K, Cossy J, Florescu M, Labousse M, Tabeling P. Micrometric Monodisperse Solid Foams as Complete Photonic Bandgap Materials. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32061-32068. [PMID: 32530594 DOI: 10.1021/acsami.0c04031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Solid foams with micrometric pores are used in different fields (filtering, 3D cell culture, etc.), but today, controlling their foam geometry at the pore level, their internal structure, and the monodispersity, along with their mechanical properties, is still a challenge. Existing attempts to create such foams suffer either from slow speed or size limitations (above 80 μm). In this work, by using a temperature-regulated microfluidic process, 3D solid foams with highly monodisperse open pores (PDI lower than 5%), with sizes ranging from 5 to 400 μm and stiffnesses spanning 2 orders of magnitude, are created for the first time. These features open the way for exciting applications, in cell culture, filtering, optics, etc. Here, the focus is set on photonics. Numerically, these foams are shown to open a 3D complete photonic bandgap, with a critical index of 2.80, thus compatible with the use of rutile TiO2. In the field of photonics, such structures represent the first physically realizable self-assembled FCC (face-centered cubic) structure that possesses this functionality.
Collapse
Affiliation(s)
- Ilham Maimouni
- Microfluidique, MEMS et Nanostructures, Institut Pierre-Gilles de Gennes, CNRS UMR 8231, ESPCI Paris and Paris Sciences et Lettres (PSL) Research University, Paris 75005, France
| | - Maryam Morvaridi
- Microfluidique, MEMS et Nanostructures, Institut Pierre-Gilles de Gennes, CNRS UMR 8231, ESPCI Paris and Paris Sciences et Lettres (PSL) Research University, Paris 75005, France
| | - Maria Russo
- Microfluidique, MEMS et Nanostructures, Institut Pierre-Gilles de Gennes, CNRS UMR 8231, ESPCI Paris and Paris Sciences et Lettres (PSL) Research University, Paris 75005, France
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris, PSL University, CNRS, Paris 75005, France
| | - Gianluc Lui
- Advanced Technology Institute and Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - Konstantin Morozov
- Department of Chemical Engineering Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Janine Cossy
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris, PSL University, CNRS, Paris 75005, France
| | - Marian Florescu
- Advanced Technology Institute and Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - Matthieu Labousse
- Gulliver, CNRS UMR 7083, ESPCI Paris and Paris Sciences et Lettres (PSL) Research University, Paris 75005, France
| | - Patrick Tabeling
- Microfluidique, MEMS et Nanostructures, Institut Pierre-Gilles de Gennes, CNRS UMR 8231, ESPCI Paris and Paris Sciences et Lettres (PSL) Research University, Paris 75005, France
| |
Collapse
|
13
|
Abstract
We show that it is possible to construct foam-based heterostructures with complete photonic band gaps. Three-dimensional foams are promising candidates for the self-organization of large photonic networks with combinations of physical characteristics that may be useful for applications. The largest band gap found is based on 3D Weaire-Phelan foam, a structure that was originally introduced as a solution to the Kelvin problem of finding the 3D tessellation composed of equal-volume cells that has the least surface area. The photonic band gap has a maximal size of 16.9% (at a volume fraction of 21.6% for a dielectric contrast [Formula: see text]) and a high degree of isotropy, properties that are advantageous in designing photonic waveguides and circuits. We also present results for 2 other foam-based heterostructures based on Kelvin and C15 foams that have somewhat smaller but still significant band gaps.
Collapse
|