1
|
Ngo ACR, Haarmann M, Weindorf N, Guanzon DAV, Linke V, Smitka J, Tischler D. Golden Gate Cloning in Actinobacteria: Opportunities and Challenges. Methods Mol Biol 2025; 2850:377-386. [PMID: 39363083 DOI: 10.1007/978-1-0716-4220-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
As we exploit biological machineries and circuits to redesign nature, it is just important to use efficient cloning strategies and methods to heterologously express the resulting DNA constructs. Golden Gate cloning allows the assembly of multiple fragments in a single reaction, making the process efficient and seamless. Although Golden Gate strategies have already been employed for different organisms, it is still not well-established for Actinobacteria. Here, we describe methods for Golden Gate cloning and how it can be utilized for Actinobacteria.
Collapse
Affiliation(s)
| | - Melody Haarmann
- Microbial Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Nils Weindorf
- Microbial Biotechnology, Ruhr University Bochum, Bochum, Germany
| | | | - Vivian Linke
- Microbial Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Joe Smitka
- Microbial Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Dirk Tischler
- Microbial Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
2
|
González-Delgado A, Lopez SC, Rojas-Montero M, Fishman CB, Shipman SL. Simultaneous multi-site editing of individual genomes using retron arrays. Nat Chem Biol 2024; 20:1482-1492. [PMID: 38982310 PMCID: PMC11512673 DOI: 10.1038/s41589-024-01665-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/06/2024] [Indexed: 07/11/2024]
Abstract
During recent years, the use of libraries-scale genomic manipulations scaffolded on CRISPR guide RNAs have been transformative. However, these existing approaches are typically multiplexed across genomes. Unfortunately, building cells with multiple, nonadjacent precise mutations remains a laborious cycle of editing, isolating an edited cell and editing again. The use of bacterial retrons can overcome this limitation. Retrons are genetic systems composed of a reverse transcriptase and a noncoding RNA that contains an multicopy single-stranded DNA, which is reverse transcribed to produce multiple copies of single-stranded DNA. Here we describe a technology-termed a multitron-for precisely modifying multiple sites on a single genome simultaneously using retron arrays, in which multiple donor-encoding DNAs are produced from a single transcript. The multitron architecture is compatible with both recombineering in prokaryotic cells and CRISPR editing in eukaryotic cells. We demonstrate applications for this approach in molecular recording, genetic element minimization and metabolic engineering.
Collapse
Affiliation(s)
| | - Santiago C Lopez
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Graduate Program in Bioengineering, University of California, San Francisco and Berkeley, San Francisco, CA, USA
| | | | - Chloe B Fishman
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
| | - Seth L Shipman
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Wang S, Zeng X, Jiang Y, Wang W, Bai L, Lu Y, Zhang L, Tan GY. Unleashing the potential: type I CRISPR-Cas systems in actinomycetes for genome editing. Nat Prod Rep 2024; 41:1441-1455. [PMID: 38888887 DOI: 10.1039/d4np00010b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Covering: up to the end of 2023Type I CRISPR-Cas systems are widely distributed, found in over 40% of bacteria and 80% of archaea. Among genome-sequenced actinomycetes (particularly Streptomyces spp.), 45.54% possess type I CRISPR-Cas systems. In comparison to widely used CRISPR systems like Cas9 or Cas12a, these endogenous CRISPR-Cas systems have significant advantages, including better compatibility, wide distribution, and ease of operation (since no exogenous Cas gene delivery is needed). Furthermore, type I CRISPR-Cas systems can simultaneously edit and regulate genes by adjusting the crRNA spacer length. Meanwhile, most actinomycetes are recalcitrant to genetic manipulation, hindering the discovery and engineering of natural products (NPs). The endogenous type I CRISPR-Cas systems in actinomycetes may offer a promising alternative to overcome these barriers. This review summarizes the challenges and recent advances in CRISPR-based genome engineering technologies for actinomycetes. It also presents and discusses how to establish and develop genome editing tools based on type I CRISPR-Cas systems in actinomycetes, with the aim of their future application in gene editing and the discovery of NPs in actinomycetes.
Collapse
Affiliation(s)
- Shuliu Wang
- State Key Laboratory of Bioreactor Engineering (SKLBE), School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| | - Xiaoqian Zeng
- State Key Laboratory of Bioreactor Engineering (SKLBE), School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| | - Yue Jiang
- State Key Laboratory of Bioreactor Engineering (SKLBE), School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| | - Weishan Wang
- State Key Laboratory of Microbial Resources and CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yinhua Lu
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering (SKLBE), School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| | - Gao-Yi Tan
- State Key Laboratory of Bioreactor Engineering (SKLBE), School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| |
Collapse
|
4
|
Zhang Y, Zheng Y, Hu Q, Hu Z, Sun J, Cheng P, Rao X, Jiang XR. Simultaneous multiplex genome loci editing of Halomonas bluephagenesis using an engineered CRISPR-guided base editor. Synth Syst Biotechnol 2024; 9:586-593. [PMID: 38720820 PMCID: PMC11076302 DOI: 10.1016/j.synbio.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Halomonas bluephagenesis TD serves as an exceptional chassis for next generation industrial biotechnology to produce various products. However, the simultaneous editing of multiple loci in H. bluephagenesis TD remains a significant challenge. Herein, we report the development of a multiple loci genome editing system, named CRISPR-deaminase-assisted base editor (CRISPR-BE) in H. bluephagenesis TD. This system comprises two components: a cytidine (CRISPR-cBE) and an adenosine (CRISPR-aBE) deaminase-based base editor. CRISPR-cBE can introduce a cytidine to thymidine mutation with an efficiency of up to 100 % within a 7-nt editing window in H. bluephagenesis TD. Similarly, CRISPR-aBE demonstrates an efficiency of up to 100 % in converting adenosine to guanosine mutation within a 7-nt editing window. CRISPR-cBE has been further validated and successfully employed for simultaneous multiplexed editing in H. bluephagenesis TD. Our findings reveal that CRISPR-cBE efficiently inactivated all six copies of the IS1086 gene simultaneously by introducing stop codon. This system achieved an editing efficiency of 100 % and 41.67 % in inactivating two genes and three genes, respectively. By substituting the Pcas promoter with the inducible promoter PMmp1, we optimized CRISPR-cBE system and ultimately achieved 100 % editing efficiency in inactivating three genes. In conclusion, our research offers a robust and efficient method for concurrently modifying multiple loci in H. bluephagenesis TD, opening up vast possibilities for industrial applications in the future.
Collapse
Affiliation(s)
- Yulin Zhang
- Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Yang Zheng
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qiwen Hu
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zhen Hu
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jiyuan Sun
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Ping Cheng
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiancai Rao
- Medical Research Institute, Southwest University, Chongqing, 400716, China
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiao-Ran Jiang
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| |
Collapse
|
5
|
Lei Y, Onaka H, Asamizu S. Transcriptionally induced nucleoid-associated protein-like ccr1 in combined-culture serves as a global effector of Streptomyces secondary metabolism. Front Microbiol 2024; 15:1422977. [PMID: 39070263 PMCID: PMC11272600 DOI: 10.3389/fmicb.2024.1422977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
Combined-cultures involving mycolic acid-containing bacteria (MACB) can stimulate secondary metabolite (SM) production in actinomycetes. In a prior investigation, we screened Streptomyces coelicolor JCM4020 mutants with diminished production of SMs, specifically undecylprodigiosin (RED), which was enhanced by introducing the MACB Tsukamurella pulmonis TP-B0596. In this study, we conducted mutational analysis that pinpointed the sco1842 gene, which we assigned the gene name ccr1 (combined-culture related regulatory protein no. 1), as a crucial factor in the deficient phenotype observed in the production of various major SMs in S. coelicolor A3(2). Notably, the Ccr1 (SCO1842) homolog was found to be highly conserved throughout the Streptomyces genome. Although Ccr1 lacked conserved motifs, in-depth examination revealed the presence of a helix-turn-helix (HTH) motif in the N-terminal region and a helicase C-terminal domain (HCTD) motif in the C-terminal region in some of its homologs. Ccr1 was predicted to be a nucleoid-associated protein (NAP), and its impact on gene transcription was validated by RNA-seq analysis that revealed genome-wide variations. Furthermore, RT-qPCR demonstrated that ccr1 was transcriptionally activated in combined-culture with T. pulmonis, which indicated that Ccr1 is involved in the response to bacterial interaction. We then investigated Streptomyces nigrescens HEK616 in combined-culture, and the knockout mutant of the ccr1 homolog displayed reduced production of streptoaminals and 5aTHQs. This finding reveals that the Ccr1 homolog in Streptomyces species is associated with SM production. Our study elucidates the existence of a new family of NAP-like proteins that evolved in Streptomyces species and play a pivotal role in SM production.
Collapse
Affiliation(s)
- Yukun Lei
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyasu Onaka
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
- Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan
| | - Shumpei Asamizu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
- Engineering Biology Research Center, Kobe University, Kobe, Japan
| |
Collapse
|
6
|
Wang J, Wang K, Deng Z, Zhong Z, Sun G, Mei Q, Zhou F, Deng Z, Sun Y. Engineered cytosine base editor enabling broad-scope and high-fidelity gene editing in Streptomyces. Nat Commun 2024; 15:5687. [PMID: 38971862 PMCID: PMC11227558 DOI: 10.1038/s41467-024-49987-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/26/2024] [Indexed: 07/08/2024] Open
Abstract
Base editing (BE) faces protospacer adjacent motif (PAM) constraints and off-target effects in both eukaryotes and prokaryotes. For Streptomyces, renowned as one of the most prolific bacterial producers of antibiotics, the challenges are more pronounced due to its diverse genomic content and high GC content. Here, we develop a base editor named eSCBE3-NG-Hypa, tailored with both high efficiency and -fidelity for Streptomyces. Of note, eSCBE3-NG-Hypa recognizes NG PAM and exhibits high activity at challenging sites with high GC content or GC motifs, while displaying minimal off-target effects. To illustrate its practicability, we employ eSCBE3-NG-Hypa to achieve precise key amino acid conversion of the dehydratase (DH) domains within the modular polyketide synthase (PKS) responsible for the insecticide avermectins biosynthesis, achieving domains inactivation. The resulting DH-inactivated mutants, while ceasing avermectins production, produce a high yield of oligomycin, indicating competitive relationships among multiple biosynthetic gene clusters (BGCs) in Streptomyces avermitilis. Leveraging this insight, we use eSCBE3-NG-Hypa to introduce premature stop codons into competitor gene cluster of ave in an industrial S. avermitilis, with the mutant Δolm exhibiting the highest 4.45-fold increase in avermectin B1a compared to the control. This work provides a potent tool for modifying biosynthetic pathways and advancing metabolic engineering in Streptomyces.
Collapse
Affiliation(s)
- Jian Wang
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ke Wang
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zhe Deng
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zhiyu Zhong
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Guo Sun
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Qing Mei
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zixin Deng
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yuhui Sun
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
- School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
7
|
Wang K, Liu N, Liu M, Zhao P, Zhong N, Challis GL, Huang Y. Discovery and Biosynthesis of Streptolateritic Acids A-D: Acyclic Pentacarboxylic Acids from Streptomyces sp. FXJ1.172 with Promising Activity against Potato Common Scab. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14760-14768. [PMID: 38899439 DOI: 10.1021/acs.jafc.4c02572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Potato common scab (PCS) is a widespread plant disease that lacks effective control measures. Using a small molecule elicitor, we activate the production of a novel class of polyketide antibiotics, streptolateritic acids A-D, in Streptomyces sp. FXJ1.172. These compounds show a promising control efficacy against PCS and an unusual acyclic pentacarboxylic acid structure. A gene cluster encoding a type I modular polyketide synthase is identified to be responsible for the biosynthesis of these metabolites. A cytochrome P450 (CYP) and an aldehyde dehydrogenase (ADH) encoded by two genes in the cluster are proposed to catalyze iterative oxidation of the starter-unit-derived methyl group and three of six branching methyl groups to carboxylic acids during chain assembly. Our findings highlight how activation of silent biosynthetic gene clusters can be employed to discover completely new natural product classes able to combat PCS and new types of modular polyketide synthase-based biosynthetic machinery.
Collapse
Affiliation(s)
- Kairui Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, PR China
| | - Ning Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Minghao Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Pan Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Naiqin Zhong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Gregory L Challis
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton VIC 3800, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton VIC 3800, Australia
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, PR China
| |
Collapse
|
8
|
Christi K, Hudson J, Egan S. Current approaches to genetic modification of marine bacteria and considerations for improved transformation efficiency. Microbiol Res 2024; 284:127729. [PMID: 38663232 DOI: 10.1016/j.micres.2024.127729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/25/2024] [Accepted: 04/15/2024] [Indexed: 05/26/2024]
Abstract
Marine bacteria play vital roles in symbiosis, biogeochemical cycles and produce novel bioactive compounds and enzymes of interest for the pharmaceutical, biofuel and biotechnology industries. At present, investigations into marine bacterial functions and their products are primarily based on phenotypic observations, -omic type approaches and heterologous gene expression. To advance our understanding of marine bacteria and harness their full potential for industry application, it is critical that we have the appropriate tools and resources to genetically manipulate them in situ. However, current genetic tools that are largely designed for model organisms such as E. coli, produce low transformation efficiencies or have no transfer ability in marine bacteria. To improve genetic manipulation applications for marine bacteria, we need to improve transformation methods such as conjugation and electroporation in addition to identifying more marine broad host range plasmids. In this review, we aim to outline the reported methods of transformation for marine bacteria and discuss the considerations for each approach in the context of improving efficiency. In addition, we further discuss marine plasmids and future research areas including CRISPR tools and their potential applications for marine bacteria.
Collapse
Affiliation(s)
- Katrina Christi
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, Australia
| | - Jennifer Hudson
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, Australia
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, Australia.
| |
Collapse
|
9
|
Yang C, Yang Y, Chu G, Wang R, Li H, Mao Y, Wang M, Zhang J, Liao X, Ma H. AutoESDCas: A Web-Based Tool for the Whole-Workflow Editing Sequence Design for Microbial Genome Editing Based on the CRISPR/Cas System. ACS Synth Biol 2024; 13:1737-1749. [PMID: 38845097 DOI: 10.1021/acssynbio.4c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Genome editing is the basis for the modification of engineered microbes. In the process of genome editing, the design of editing sequences, such as primers and sgRNA, is very important for the accurate positioning of editing sites and efficient sequence editing. The whole process of genome editing involves multiple rounds and types of editing sequence design, while the development of related whole-workflow design tools for high-throughput experimental requirements lags. Here, we propose AutoESDCas, an online tool for the end-to-end editing sequence design for microbial genome editing based on the CRISPR/Cas system. This tool facilitates all types of genetic manipulation covering diverse experimental requirements and design scenarios, enables biologists to quickly and efficiently obtain all editing sequences needed for the entire genome editing process, and empowers high-throughput strain modification. Notably, with its off-target risk assessment function for editing sequences, the usability of the design results is significantly improved. AutoESDCas is freely available at https://autoesdcas.biodesign.ac.cn/with the source code at https://github.com/tibbdc/AutoESDCas/.
Collapse
Affiliation(s)
- Chunhe Yang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Yi Yang
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Guangyun Chu
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ruoyu Wang
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Haoran Li
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Yufeng Mao
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Meng Wang
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jian Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaoping Liao
- Haihe Laboratory of Synthetic Biology, 300308 Tianjin, China
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Hongwu Ma
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
10
|
Hao W, Cui W, Liu Z, Suo F, Wu Y, Han L, Zhou Z. A New-Generation Base Editor with an Expanded Editing Window for Microbial Cell Evolution In Vivo Based on CRISPR‒Cas12b Engineering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309767. [PMID: 38602436 PMCID: PMC11165516 DOI: 10.1002/advs.202309767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/07/2024] [Indexed: 04/12/2024]
Abstract
Base editors (BEs) are widely used as revolutionary genome manipulation tools for cell evolution. To screen the targeted individuals, it is often necessary to expand the editing window to ensure highly diverse variant library. However, current BEs suffer from a limited editing window of 5-6 bases, corresponding to only 2-3 amino acids. Here, by engineering the CRISPR‒Cas12b, the study develops dCas12b-based CRISPRi system, which can efficiently repress gene expression by blocking the initiation and elongation of gene transcription. Further, based on dCas12b, a new-generation of BEs with an expanded editing window is established, covering the entire protospacer or more. The expanded editing window results from the smaller steric hindrance compared with other Cas proteins. The universality of the new BE is successfully validated in Bacillus subtilis and Escherichia coli. As a proof of concept, a spectinomycin-resistant E. coli strain (BL21) and a 6.49-fold increased protein secretion efficiency in E. coli JM109 are successfully obtained by using the new BE. The study, by tremendously expanding the editing window of BEs, increased the capacity of the variant library exponentially, greatly increasing the screening efficiency for microbial cell evolution.
Collapse
Affiliation(s)
- Wenliang Hao
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of BiotechnologyJiangnan University1800 Lihu AvenueWuxi214122China
| | - Wenjing Cui
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of BiotechnologyJiangnan University1800 Lihu AvenueWuxi214122China
| | - Zhongmei Liu
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of BiotechnologyJiangnan University1800 Lihu AvenueWuxi214122China
| | - Feiya Suo
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of BiotechnologyJiangnan University1800 Lihu AvenueWuxi214122China
| | - Yaokang Wu
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of BiotechnologyJiangnan University1800 Lihu AvenueWuxi214122China
- Science Center for Future FoodsJiangnan UniversityWuxi214122China
| | - Laichuang Han
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of BiotechnologyJiangnan University1800 Lihu AvenueWuxi214122China
| | - Zhemin Zhou
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of BiotechnologyJiangnan University1800 Lihu AvenueWuxi214122China
| |
Collapse
|
11
|
Klumbys E, Xu W, Koduru L, Heng E, Wei Y, Wong FT, Zhao H, Ang EL. Discovery, characterization, and engineering of an advantageous Streptomyces host for heterologous expression of natural product biosynthetic gene clusters. Microb Cell Fact 2024; 23:149. [PMID: 38790014 PMCID: PMC11127301 DOI: 10.1186/s12934-024-02416-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Streptomyces is renowned for its robust biosynthetic capacity in producing medically relevant natural products. However, the majority of natural products biosynthetic gene clusters (BGCs) either yield low amounts of natural products or remain cryptic under standard laboratory conditions. Various heterologous production hosts have been engineered to address these challenges, and yet the successful activation of BGCs has still been limited. In our search for a valuable addition to the heterologous host panel, we identified the strain Streptomyces sp. A4420, which exhibited rapid initial growth and a high metabolic capacity, prompting further exploration of its potential. RESULTS We engineered a polyketide-focused chassis strain based on Streptomyces sp. A4420 (CH strain) by deleting 9 native polyketide BGCs. The resulting metabolically simplified organism exhibited consistent sporulation and growth, surpassing the performance of most existing Streptomyces based chassis strains in standard liquid growth media. Four distinct polyketide BGCs were chosen and expressed in various heterologous hosts, including the Streptomyces sp. A4420 wild-type and CH strains, alongside Streptomyces coelicolor M1152, Streptomyces lividans TK24, Streptomyces albus J1074, and Streptomyces venezuelae NRRL B-65442. Remarkably, only the Streptomyces sp. A4420 CH strain demonstrated the capability to produce all metabolites under every condition outperforming its parental strain and other tested organisms. To enhance visualization and comparison of the tested strains, we developed a matrix-like analysis involving 15 parameters. This comprehensive analysis unequivocally illustrated the significant potential of the new strain to become a popular heterologous host. CONCLUSION Our engineered Streptomyces sp. A4420 CH strain exhibits promising attributes for the heterologous expression of natural products with a focus on polyketides, offering an alternative choice in the arsenal of heterologous production strains. As genomics and cloning strategies progress, establishment of a diverse panel of heterologous production hosts will be crucial for expediting the discovery and production of medically relevant natural products derived from Streptomyces.
Collapse
Affiliation(s)
- Evaldas Klumbys
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, #04-01, Nanos, Singapore, 138669, Republic of Singapore
| | - Wei Xu
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, #04-01, Nanos, Singapore, 138669, Republic of Singapore
| | - Lokanand Koduru
- Molecular Engineering Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, #07-06, Proteos, Singapore, 138673, Republic of Singapore
| | - Elena Heng
- Molecular Engineering Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, #07-06, Proteos, Singapore, 138673, Republic of Singapore
| | - Yifeng Wei
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, #04-01, Nanos, Singapore, 138669, Republic of Singapore
| | - Fong Tian Wong
- Molecular Engineering Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, #07-06, Proteos, Singapore, 138673, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros Building, Singapore, 138665, Republic of Singapore
| | - Huimin Zhao
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, #04-01, Nanos, Singapore, 138669, Republic of Singapore.
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Ee Lui Ang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, #04-01, Nanos, Singapore, 138669, Republic of Singapore.
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros Building, Singapore, 138665, Republic of Singapore.
- Synthetic Biology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore, 117597, Republic of Singapore.
| |
Collapse
|
12
|
Nagakubo T, Nishiyama T, Yamamoto T, Nomura N, Toyofuku M. Contractile injection systems facilitate sporogenic differentiation of Streptomyces davawensis through the action of a phage tapemeasure protein-related effector. Nat Commun 2024; 15:4442. [PMID: 38789435 PMCID: PMC11126660 DOI: 10.1038/s41467-024-48834-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Contractile injection systems (CISs) are prokaryotic phage tail-like nanostructures loading effector proteins that mediate various biological processes. Although CIS functions have been diversified through evolution and hold the great potential as protein delivery systems, the functional characterisation of CISs and their effectors is currently limited to a few CIS lineages. Here, we show that the CISs of Streptomyces davawensis belong to a unique group of bacterial CISs distributed across distant phyla and facilitate sporogenic differentiation of this bacterium. CIS loss results in decreases in extracellular DNA release, biomass accumulation, and spore formation in S. davawensis. CISs load an effector, which is a remote homolog of phage tapemeasure proteins, and its C-terminal domain has endonuclease activity responsible for the CIS-associated phenotypes. Our findings illustrate that CISs can contribute to the reproduction of bacteria through the action of the effector and suggest an evolutionary link between CIS effectors and viral cargos.
Collapse
Affiliation(s)
- Toshiki Nagakubo
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Japan.
| | - Tatsuya Nishiyama
- Life Science Research Center, College of Bioresource Sciences, Nihon University, Chiyoda, Japan
| | - Tatsuya Yamamoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Nobuhiko Nomura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Japan
- Life Science Center for Survival Dynamics, University of Tsukuba, Tsukuba, Japan
| | - Masanori Toyofuku
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
13
|
Mahmoud Mohamed MM, Yang Z, Lum KY, Peschel G, Rosenbaum MA, Weber T, Coriani S, Gotfredsen CH, Ding L. Genome-Driven Discovery of Hygrocins in Streptomyces rapamycinicus. JOURNAL OF NATURAL PRODUCTS 2024; 87:1321-1329. [PMID: 38647518 DOI: 10.1021/acs.jnatprod.3c00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Ansamycins, represented by the antituberculosis drug rifamycin, are an important family of natural products. To obtain new ansamycins, Streptomyces rapamycinicus IMET 43975 harboring an ansamycin biosynthetic gene cluster was fermented in a 50 L scale, and subsequent purification work led to the isolation of five known and four new analogues, where hygrocin W (2) belongs to benzoquinonoid ansamycins, and the other three hygrocins, hygrocins X-Z (6-8), are new seco-hygrocins. The structures of ansamycins (1-8) were determined by the analysis of spectroscopic (1D/2D NMR and ECD) and MS spectrometric data. The Baeyer-Villiger enzyme which catalyzed the ester formation in the ansa-ring was confirmed through in vivo CRISPR base editing. The discovery of these compounds further enriches the structural diversity of ansamycins.
Collapse
Affiliation(s)
- Manar Magdy Mahmoud Mohamed
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800 Kgs. Lyngby, Denmark
| | - Zhijie Yang
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800 Kgs. Lyngby, Denmark
| | - Kah Yean Lum
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800 Kgs. Lyngby, Denmark
| | - Gundela Peschel
- Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - Miriam A Rosenbaum
- Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Sonia Coriani
- Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, 2800 Kgs. Lyngby, Denmark
| | - Charlotte H Gotfredsen
- Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, 2800 Kgs. Lyngby, Denmark
| | - Ling Ding
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
14
|
Sakata S, Li J, Yasuno Y, Shinada T, Shin-Ya K, Katsuyama Y, Ohnishi Y. Identification of the Cirratiomycin Biosynthesis Gene Cluster in Streptomyces Cirratus: Elucidation of the Biosynthetic Pathways for 2,3-Diaminobutyric Acid and Hydroxymethylserine. Chemistry 2024; 30:e202400271. [PMID: 38456538 DOI: 10.1002/chem.202400271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 03/09/2024]
Abstract
Cirratiomycin, a heptapeptide with antibacterial activity, was isolated and characterized in 1981; however, its biosynthetic pathway has not been elucidated. It contains several interesting nonproteinogenic amino acids, such as (2S,3S)-2,3-diaminobutyric acid ((2S,3S)-DABA) and α-(hydroxymethyl)serine, as building blocks. Here, we report the identification of a cirratiomycin biosynthetic gene cluster in Streptomyces cirratus. Bioinformatic analysis revealed that several Streptomyces viridifaciens and Kitasatospora aureofaciens strains also have this cluster. One S. viridifaciens strain was confirmed to produce cirratiomycin. The biosynthetic gene cluster was shown to be responsible for cirratiomycin biosynthesis in S. cirratus in a gene inactivation experiment using CRISPR-cBEST. Interestingly, this cluster encodes a nonribosomal peptide synthetase (NRPS) composed of 12 proteins, including those with an unusual domain organization: a stand-alone adenylation domain, two stand-alone condensation domains, two type II thioesterases, and two NRPS modules that have no adenylation domain. Using heterologous expression and in vitro analysis of recombinant enzymes, we revealed the biosynthetic pathway of (2S,3S)-DABA: (2S,3S)-DABA is synthesized from l-threonine by four enzymes, CirR, CirS, CirQ, and CirB. In addition, CirH, a glycine/serine hydroxymethyltransferase homolog, was shown to synthesize α-(hydroxymethyl)serine from d-serine in vitro. These findings broaden our knowledge of nonproteinogenic amino acid biosynthesis.
Collapse
Affiliation(s)
- Shunki Sakata
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Jiafeng Li
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yoko Yasuno
- Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Tetsuro Shinada
- Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Kazuo Shin-Ya
- National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Yohei Katsuyama
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
15
|
Gawlitt S, Collins SP, Yu Y, Blackman SA, Barquist L, Beisel CL. Expanding the flexibility of base editing for high-throughput genetic screens in bacteria. Nucleic Acids Res 2024; 52:4079-4097. [PMID: 38499498 DOI: 10.1093/nar/gkae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/07/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
Genome-wide screens have become powerful tools for elucidating genotype-to-phenotype relationships in bacteria. Of the varying techniques to achieve knockout and knockdown, CRISPR base editors are emerging as promising options. However, the limited number of available, efficient target sites hampers their use for high-throughput screening. Here, we make multiple advances to enable flexible base editing as part of high-throughput genetic screening in bacteria. We first co-opt the Streptococcus canis Cas9 that exhibits more flexible protospacer-adjacent motif recognition than the traditional Streptococcus pyogenes Cas9. We then expand beyond introducing premature stop codons by mutating start codons. Next, we derive guide design rules by applying machine learning to an essentiality screen conducted in Escherichia coli. Finally, we rescue poorly edited sites by combining base editing with Cas9-induced cleavage of unedited cells, thereby enriching for intended edits. The efficiency of this dual system was validated through a conditional essentiality screen based on growth in minimal media. Overall, expanding the scope of genome-wide knockout screens with base editors could further facilitate the investigation of new gene functions and interactions in bacteria.
Collapse
Affiliation(s)
- Sandra Gawlitt
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Scott P Collins
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Yanying Yu
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Samuel A Blackman
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
- Medical Faculty, University of Würzburg, 97080 Würzburg, Germany
| | - Chase L Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
- Medical Faculty, University of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
16
|
Maleckis M, Wibowo M, Gren T, Jarmusch SA, Sterndorff EB, Booth T, Henriksen NNSE, Whitford CM, Jiang X, Jørgensen TS, Ding L, Weber T. Biosynthesis of the Azoxy Compound Azodyrecin from Streptomyces mirabilis P8-A2. ACS Chem Biol 2024; 19:641-653. [PMID: 38340355 DOI: 10.1021/acschembio.3c00632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Azoxy compounds are a distinctive group of bioactive secondary metabolites characterized by a unique RN═N+(O-)R moiety. The azoxy moiety is present in various classes of metabolites that exhibit various biological activities. The enzymatic mechanisms underlying azoxy bond formation remain enigmatic. Azodyrecins are cytotoxic azoxy metabolites produced by Streptomyces mirabilis P8-A2. Here, we cloned and confirmed the putative azd biosynthetic gene cluster through CATCH cloning followed by expression and production of azodyrecins in two heterologous hosts, S. albidoflavus J1074 and S. coelicolor M1146, respectively. We explored the function of 14 enzymes in azodyrecin biosynthesis through gene knockout using CRISPR-Cas9 base editing in the native producer, S. mirabilis P8-A2. The key intermediates were analyzed in the mutants through MS/MS fragmentation studies, revealing azoxy bond formation via the conversion of hydrazine to an azo compound followed by further oxygenation. Enzymes involved in modifications of the precursor could be postulated based on their predicted function and the intermediates identified in the knockout strains. Moreover, the distribution of the azoxy biosynthetic gene clusters across Streptomyces spp. genomes is explored, highlighting the presence of these clusters in over 20% of the Streptomyces spp. genomes and revealing that azoxymycin and valanimycin are scarce, while azodyrecin and KA57A-like clusters are widely distributed across the phylogenetic tree.
Collapse
Affiliation(s)
- Matiss Maleckis
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Mario Wibowo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark
| | - Tetiana Gren
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Scott A Jarmusch
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark
| | - Eva B Sterndorff
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Thomas Booth
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Nathalie N S E Henriksen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark
| | - Christopher M Whitford
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Xinglin Jiang
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Tue S Jørgensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Ling Ding
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
17
|
Zhang F, Liu ZY, Liu S, Zhang WG, Wang BB, Li CL, Xu JZ. Rapid screening of point mutations by mismatch amplification mutation assay PCR. Appl Microbiol Biotechnol 2024; 108:190. [PMID: 38305911 PMCID: PMC10837254 DOI: 10.1007/s00253-024-13036-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/18/2023] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
Metabolic engineering frequently makes use of point mutation and saturation mutation library creation. At present, sequencing is the only reliable and direct technique to detect point mutation and screen saturation mutation library. In this study, mismatch amplification mutation assay (MAMA) PCR was used to detect point mutation and screen saturation mutation library. In order to fine-tune the expression of odhA encoding 2-oxoglutarate dehydrogenase E1 component, a saturating mutant library of the RBS of odhA was created in Corynebacterium glutamicum P12 based on the CRISPR-Cas2a genome editing system, which increased the L-proline production by 81.3%. MAMA PCR was used to filter out 42% of the non-mutant transformants in the mutant library, which effectively reduced the workload of the subsequent fermentation test and the number of sequenced samples. The rapid and sensitive MAMA-PCR method established in this study provides a general strategy for detecting point mutations and improving the efficiency of mutation library screening. KEY POINTS: • MAMA PCR was optimized and developed to detect point mutation. • MAMA PCR greatly improves the screening efficiency of point mutation. • Attenuation of odhA expression in P12 effectively improves proline production.
Collapse
Affiliation(s)
- Feng Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People's Republic of China
| | - Zhen Yang Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People's Republic of China
| | - Shuai Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People's Republic of China
| | - Wei Guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People's Republic of China.
| | - Bing Bing Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People's Republic of China
| | - Chang Lon Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People's Republic of China
| | - Jian Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People's Republic of China
| |
Collapse
|
18
|
Vojnovic S, Aleksic I, Ilic-Tomic T, Stevanovic M, Nikodinovic-Runic J. Bacillus and Streptomyces spp. as hosts for production of industrially relevant enzymes. Appl Microbiol Biotechnol 2024; 108:185. [PMID: 38289383 PMCID: PMC10827964 DOI: 10.1007/s00253-023-12900-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 02/01/2024]
Abstract
The application of enzymes is expanding across diverse industries due to their nontoxic and biodegradable characteristics. Another advantage is their cost-effectiveness, reflected in reduced processing time, water, and energy consumption. Although Gram-positive bacteria, Bacillus, and Streptomyces spp. are successfully used for production of industrially relevant enzymes, they still lag far behind Escherichia coli as hosts for recombinant protein production. Generally, proteins secreted by Bacillus and Streptomyces hosts are released into the culture medium; their native conformation is preserved and easier recovery process enabled. Given the resilience of both hosts in harsh environmental conditions and their spore-forming capability, a deeper understanding and broader use of Bacillus and Streptomyces as expression hosts could significantly enhance the robustness of industrial bioprocesses. This mini-review aims to compare two expression hosts, emphasizing their specific advantages in industrial surroundings such are chemical, detergent, textile, food, animal feed, leather, and paper industries. The homologous sources, heterologous hosts, and molecular tools used for the production of recombinant proteins in these hosts are discussed. The potential to use both hosts as biocatalysts is also evaluated. Undoubtedly, Bacillus and Streptomyces spp. as production hosts possess the potential to take on a more substantial role, providing superior (bio-based) process robustness and flexibility. KEY POINTS: • Bacillus and Streptomyces spp. as robust hosts for enzyme production. • Industrially relevant enzyme groups for production in alternative hosts highlighted. • Molecular biology techniques are enabling easier utilization of both hosts.
Collapse
Affiliation(s)
- Sandra Vojnovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia.
| | - Ivana Aleksic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia
| | - Tatjana Ilic-Tomic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia
| | - Milena Stevanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia.
| |
Collapse
|
19
|
Lee Y, Hwang S, Kim W, Kim JH, Palsson BO, Cho BK. CRISPR-aided genome engineering for secondary metabolite biosynthesis in Streptomyces. J Ind Microbiol Biotechnol 2024; 51:kuae009. [PMID: 38439699 PMCID: PMC10949845 DOI: 10.1093/jimb/kuae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/02/2024] [Indexed: 03/06/2024]
Abstract
The demand for discovering novel microbial secondary metabolites is growing to address the limitations in bioactivities such as antibacterial, antifungal, anticancer, anthelmintic, and immunosuppressive functions. Among microbes, the genus Streptomyces holds particular significance for secondary metabolite discovery. Each Streptomyces species typically encodes approximately 30 secondary metabolite biosynthetic gene clusters (smBGCs) within its genome, which are mostly uncharacterized in terms of their products and bioactivities. The development of next-generation sequencing has enabled the identification of a large number of potent smBGCs for novel secondary metabolites that are imbalanced in number compared with discovered secondary metabolites. The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system has revolutionized the translation of enormous genomic potential into the discovery of secondary metabolites as the most efficient genetic engineering tool for Streptomyces. In this review, the current status of CRISPR/Cas applications in Streptomyces is summarized, with particular focus on the identification of secondary metabolite biosynthesis gene clusters and their potential applications.This review summarizes the broad range of CRISPR/Cas applications in Streptomyces for natural product discovery and production. ONE-SENTENCE SUMMARY This review summarizes the broad range of CRISPR/Cas applications in Streptomyces for natural product discovery and production.
Collapse
Affiliation(s)
- Yongjae Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Soonkyu Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Woori Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Ji Hun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby 2800, Denmark
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Graduate school of Engineering Biology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
20
|
Karimian S, Farahmandzad N, Mohammadipanah F. Manipulation and epigenetic control of silent biosynthetic pathways in actinobacteria. World J Microbiol Biotechnol 2024; 40:65. [PMID: 38191749 DOI: 10.1007/s11274-023-03861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024]
Abstract
Most biosynthetic gene clusters (BGCs) of Actinobacteria are either silent or expressed less than the detectable level. The non-genetic approaches including biological interactions, chemical agents, and physical stresses that can be used to awaken silenced pathways are compared in this paper. These non-genetic induction strategies often need screening approaches, including one strain many compounds (OSMAC), reporter-guided mutant selection, and high throughput elicitor screening (HiTES) have been developed. Different types of genetic manipulations applied in the induction of cryptic BGCs of Actinobacteria can be categorized as genome-wide pleiotropic and targeted approaches like manipulation of global regulatory systems, modulation of regulatory genes, ribosome and engineering of RNA polymerase or phosphopantheteine transferases. Targeted approaches including genome editing by CRISPR, mutation in transcription factors and modification of BGCs promoters, inactivation of the highly expressed biosynthetic pathways, deleting the suppressors or awakening the activators, heterologous expression, or refactoring of gene clusters can be applied for activation of pathways which are predicted to synthesize new bioactive structures in genome mining studies of Acinobacteria. In this review, the challenges and advantages of employing these approaches in induction of Actinobacteria BGCs are discussed. Further, novel natural products needed as drug for pharmaceutical industry or as biofertilizers in agricultural industry can be discovered even from known species of Actinobactera by the innovative approaches of metabolite biosynthesis elicitation.
Collapse
Affiliation(s)
- Sanaz Karimian
- Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran, Iran
| | - Navid Farahmandzad
- Department of Biosystems Engineering, Auburn university, Auburn, AL 36849, USA
- Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, 14155-6455, Iran
| | - Fatemeh Mohammadipanah
- Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, 14155-6455, Iran.
| |
Collapse
|
21
|
Fluegel LL, Deng MR, Su P, Kalkreuter E, Yang D, Rudolf JD, Dong LB, Shen B. Development of platensimycin, platencin, and platensilin overproducers by biosynthetic pathway engineering and fermentation medium optimization. J Ind Microbiol Biotechnol 2024; 51:kuae003. [PMID: 38262768 PMCID: PMC10847714 DOI: 10.1093/jimb/kuae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/22/2024] [Indexed: 01/25/2024]
Abstract
The platensimycin (PTM), platencin (PTN), and platensilin (PTL) family of natural products continues to inspire the discovery of new chemistry, enzymology, and medicine. Engineered production of this emerging family of natural products, however, remains laborious due to the lack of practical systems to manipulate their biosynthesis in the native-producing Streptomyces platensis species. Here we report solving this technology gap by implementing a CRISPR-Cas9 system in S. platensis CB00739 to develop an expedient method to manipulate the PTM, PTN, and PTL biosynthetic machinery in vivo. We showcase the utility of this technology by constructing designer recombinant strains S. platensis SB12051, SB12052, and SB12053, which, upon fermentation in the optimized PTM-MS medium, produced PTM, PTN, and PTL with the highest titers at 836 mg L-1, 791 mg L-1, and 40 mg L-1, respectively. Comparative analysis of these resultant recombinant strains also revealed distinct chemistries, catalyzed by PtmT1 and PtmT3, two diterpene synthases that nature has evolved for PTM, PTN, and PTL biosynthesis. The ΔptmR1/ΔptmT1/ΔptmT3 triple mutant strain S. platensis SB12054 could be envisaged as a platform strain to engineer diterpenoid biosynthesis by introducing varying ent-copalyl diphosphate-acting diterpene synthases, taking advantage of its clean metabolite background, ability to support diterpene biosynthesis in high titers, and the promiscuous tailoring biosynthetic machinery. ONE-SENTENCE SUMMARY Implementation of a CRISPR-Cas9 system in Streptomyces platensis CB00739 enabled the construction of a suite of designer recombinant strains for the overproduction of platensimycin, platencin, and platensilin, discovery of new diterpene synthase chemistries, and development of platform strains for future diterpenoid biosynthesis engineering.
Collapse
Affiliation(s)
- Lucas L Fluegel
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, Jupiter, FL 33458, USA
| | - Ming-Rong Deng
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Ping Su
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Edward Kalkreuter
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Dong Yang
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
- Natural Products Discovery Center, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Jeffrey D Rudolf
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Liao-Bin Dong
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Ben Shen
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, Jupiter, FL 33458, USA
- Natural Products Discovery Center, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| |
Collapse
|
22
|
Hu Y, Liu L, Jiang Q, Fang W, Chen Y, Hong Y, Zhai X. CRISPR/Cas9: a powerful tool in colorectal cancer research. J Exp Clin Cancer Res 2023; 42:308. [PMID: 37993945 PMCID: PMC10664500 DOI: 10.1186/s13046-023-02901-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant cancers worldwide and seriously threatens human health. The clustered regulatory interspaced short palindromic repeat/CRISPR-associate nuclease 9 (CRISPR/Cas9) system is an adaptive immune system of bacteria or archaea. Since its introduction, research into various aspects of treatment approaches for CRC has been accelerated, including investigation of the oncogenes, tumor suppressor genes (TSGs), drug resistance genes, target genes, mouse model construction, and especially in genome-wide library screening. Furthermore, the CRISPR/Cas9 system can be utilized for gene therapy for CRC, specifically involving in the molecular targeted drug delivery or targeted knockout in vivo. In this review, we elucidate the mechanism of the CRISPR/Cas9 system and its comprehensive applications in CRC. Additionally, we discussed the issue of off-target effects associated with CRISPR/Cas9, which serves to restrict its practical application. Future research on CRC should in-depth and systematically utilize the CRISPR/Cas9 system thereby achieving clinical practice.
Collapse
Affiliation(s)
- Yang Hu
- Department of Gastroenterology, The First People's Hospital of Jiande, Hangzhou, 311600, China
| | - Liang Liu
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qi Jiang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Weiping Fang
- Department of Gastroenterology, The First People's Hospital of Jiande, Hangzhou, 311600, China
| | - Yazhu Chen
- West China Hospital of Sichuan University, Chengdu, 610044, China.
| | - Yuntian Hong
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Xiang Zhai
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
23
|
Yang Z, Qiao Y, Konakalla NC, Strøbech E, Harris P, Peschel G, Agler-Rosenbaum M, Weber T, Andreasson E, Ding L. Streptomyces alleviate abiotic stress in plant by producing pteridic acids. Nat Commun 2023; 14:7398. [PMID: 37968347 PMCID: PMC10652019 DOI: 10.1038/s41467-023-43177-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 10/31/2023] [Indexed: 11/17/2023] Open
Abstract
Soil microbiota can confer fitness advantages to plants and increase crop resilience to drought and other abiotic stressors. However, there is little evidence on the mechanisms correlating a microbial trait with plant abiotic stress tolerance. Here, we report that Streptomyces effectively alleviate drought and salinity stress by producing spiroketal polyketide pteridic acid H (1) and its isomer F (2), both of which promote root growth in Arabidopsis at a concentration of 1.3 nM under abiotic stress. Transcriptomics profiles show increased expression of multiple stress responsive genes in Arabidopsis seedlings after pteridic acids treatment. We confirm in vivo a bifunctional biosynthetic gene cluster for pteridic acids and antimicrobial elaiophylin production. We propose it is mainly disseminated by vertical transmission and is geographically distributed in various environments. This discovery reveals a perspective for understanding plant-Streptomyces interactions and provides a promising approach for utilising beneficial Streptomyces and their secondary metabolites in agriculture to mitigate the detrimental effects of climate change.
Collapse
Affiliation(s)
- Zhijie Yang
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs, Lyngby, Denmark
| | - Yijun Qiao
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs, Lyngby, Denmark
| | - Naga Charan Konakalla
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, SE-230 53, Alnarp, Sweden
| | - Emil Strøbech
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs, Lyngby, Denmark
| | - Pernille Harris
- Department of Chemistry, Technical University of Denmark, Søltofts Plads, Building 206, 2800 Kgs, Lyngby, Denmark
| | - Gundela Peschel
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
| | - Miriam Agler-Rosenbaum
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs, Lyngby, Denmark
| | - Erik Andreasson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, SE-230 53, Alnarp, Sweden
| | - Ling Ding
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs, Lyngby, Denmark.
| |
Collapse
|
24
|
Volke DC, Orsi E, Nikel PI. Emergent CRISPR-Cas-based technologies for engineering non-model bacteria. Curr Opin Microbiol 2023; 75:102353. [PMID: 37413959 DOI: 10.1016/j.mib.2023.102353] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/08/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated proteins (Cas) technologies brought a transformative change in the way bacterial genomes are edited, and a plethora of studies contributed to developing multiple tools based on these approaches. Prokaryotic biotechnology benefited from the implementation of such genome engineering strategies, with an increasing number of non-model bacterial species becoming genetically tractable. In this review, we summarize the recent trends in engineering non-model microbes using CRISPR-Cas technologies, discussing their potential in supporting cell factory design towards biotechnological applications. These efforts include, among other examples, genome modifications as well as tunable transcriptional regulation (both positive and negative). Moreover, we examine how CRISPR-Cas toolkits for engineering non-model organisms enabled the exploitation of emergent biotechnological processes (e.g. native and synthetic assimilation of one-carbon substrates). Finally, we discuss our slant on the future of bacterial genome engineering for domesticating non-model organisms in light of the most recent advances in the ever-expanding CRISPR-Cas field.
Collapse
Affiliation(s)
- Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Enrico Orsi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
25
|
Rabaan AA, Al Fares MA, Almaghaslah M, Alpakistany T, Al Kaabi NA, Alshamrani SA, Alshehri AA, Almazni IA, Saif A, Hakami AR, Khamis F, Alfaresi M, Alsalem Z, Alsoliabi ZA, Al Amri KAS, Hassoueh AK, Mohapatra RK, Arteaga-Livias K, Alissa M. Application of CRISPR-Cas System to Mitigate Superbug Infections. Microorganisms 2023; 11:2404. [PMID: 37894063 PMCID: PMC10609045 DOI: 10.3390/microorganisms11102404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023] Open
Abstract
Multidrug resistance in bacterial strains known as superbugs is estimated to cause fatal infections worldwide. Migration and urbanization have resulted in overcrowding and inadequate sanitation, contributing to a high risk of superbug infections within and between different communities. The CRISPR-Cas system, mainly type II, has been projected as a robust tool to precisely edit drug-resistant bacterial genomes to combat antibiotic-resistant bacterial strains effectively. To entirely opt for its potential, advanced development in the CRISPR-Cas system is needed to reduce toxicity and promote efficacy in gene-editing applications. This might involve base-editing techniques used to produce point mutations. These methods employ designed Cas9 variations, such as the adenine base editor (ABE) and the cytidine base editor (CBE), to directly edit single base pairs without causing DSBs. The CBE and ABE could change a target base pair into a different one (for example, G-C to A-T or C-G to A-T). In this review, we addressed the limitations of the CRISPR/Cas system and explored strategies for circumventing these limitations by applying diverse base-editing techniques. Furthermore, we also discussed recent research showcasing the ability of base editors to eliminate drug-resistant microbes.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Mona A. Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia
| | - Manar Almaghaslah
- Infectious Disease Division, Department of Internal Medicine, Dammam Medical Complex, Dammam 32245, Saudi Arabia
| | - Tariq Alpakistany
- Bacteriology Department, Public Health Laboratory, Taif 26521, Saudi Arabia
| | - Nawal A. Al Kaabi
- College of Medicine and Health Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi 51900, United Arab Emirates
| | - Saleh A. Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Ahmad A. Alshehri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Ibrahim Abdullah Almazni
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Ahmed Saif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62223, Saudi Arabia
| | - Abdulrahim R. Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62223, Saudi Arabia
| | - Faryal Khamis
- Infection Diseases Unit, Department of Internal Medicine, Royal Hospital, Muscat 1331, Oman
| | - Mubarak Alfaresi
- Department of Pathology and Laboratory Medicine, Zayed Military Hospital, Abu Dhabi 3740, United Arab Emirates
- Department of Pathology, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates
| | - Zainab Alsalem
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | | | | | - Amal K. Hassoueh
- Pharmacy Department, King Saud Medical City, Riyadh 7790, Saudi Arabia
| | - Ranjan K. Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar 758002, India
| | - Kovy Arteaga-Livias
- Escuela de Medicina-Filial Ica, Universidad Privada San Juan Bautista, Ica 11000, Peru
- Escuela de Medicina, Universidad Nacional Hermilio Valdizán, Huanuco 10000, Peru
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
26
|
Whitford CM, Gren T, Palazzotto E, Lee SY, Tong Y, Weber T. Systems Analysis of Highly Multiplexed CRISPR-Base Editing in Streptomycetes. ACS Synth Biol 2023; 12:2353-2366. [PMID: 37402223 DOI: 10.1021/acssynbio.3c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
CRISPR tools, especially Cas9n-sgRNA guided cytidine deaminase base editors such as CRISPR-BEST, have dramatically simplified genetic manipulation of streptomycetes. One major advantage of CRISPR base editing technology is the possibility to multiplex experiments in genomically instable species. Here, we demonstrate scaled up Csy4 based multiplexed genome editing using CRISPR-mcBEST in Streptomyces coelicolor. We evaluated the system by simultaneously targeting 9, 18, and finally all 28 predicted specialized metabolite biosynthetic gene clusters in a single experiment. We present important insights into the performance of Csy4 based multiplexed genome editing at different scales. Using multiomics analysis, we investigated the systems wide effects of such extensive editing experiments and revealed great potentials and important bottlenecks of CRISPR-mcBEST. The presented analysis provides crucial data and insights toward the development of multiplexed base editing as a novel paradigm for high throughput engineering of Streptomyces chassis and beyond.
Collapse
Affiliation(s)
- Christopher M Whitford
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Tetiana Gren
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Emilia Palazzotto
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Yaojun Tong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
27
|
Hoshino S, Ijichi S, Asamizu S, Onaka H. Insights into Arsenic Secondary Metabolism in Actinomycetes from the Structure and Biosynthesis of Bisenarsan. J Am Chem Soc 2023; 145:17863-17871. [PMID: 37534495 DOI: 10.1021/jacs.3c04978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The unique bioactivities of arsenic-containing secondary metabolites have been revealed recently, but studies on arsenic secondary metabolism in microorganisms have been extremely limited. Here, we focused on the organoarsenic metabolite with an unknown chemical structure, named bisenarsan, produced by well-studied model actinomycetes and elucidated its structure by combining feeding of the putative biosynthetic precursor (2-hydroxyethyl)arsonic acid to Streptomyces lividans 1326 and detailed NMR analyses. Bisenarsan is the first characterized actinomycete-derived arsenic secondary metabolite and may function as a prototoxin form of an antibacterial agent or be a detoxification product of inorganic arsenic species. We also verified the previously proposed genes responsible for bisenarsan biosynthesis, especially the (2-hydroxyethyl)arsonic acid moiety. Notably, we suggest that a C-As bond in bisenarsan is formed by the intramolecular rearrangement of a pentavalent arsenic species (arsenoenolpyruvate) by the cofactor-independent phosphoglycerate mutase homologue BsnN, that is entirely distinct from the conventional biological C-As bond formation through As-alkylation of trivalent arsenic species by S-adenosylmethionine-dependent enzymes. Our findings will speed up the development of arsenic natural product biosynthesis.
Collapse
Affiliation(s)
- Shotaro Hoshino
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima, Tokyo 171-8588, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan
| | - Shinta Ijichi
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima, Tokyo 171-8588, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan
| | - Shumpei Asamizu
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima, Tokyo 171-8588, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan
| | - Hiroyasu Onaka
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima, Tokyo 171-8588, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan
| |
Collapse
|
28
|
González-Delgado A, Lopez SC, Rojas-Montero M, Fishman CB, Shipman SL. Simultaneous multi-site editing of individual genomes using retron arrays. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.17.549397. [PMID: 37503029 PMCID: PMC10370050 DOI: 10.1101/2023.07.17.549397] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Our understanding of genomics is limited by the scale of our genomic technologies. While libraries of genomic manipulations scaffolded on CRISPR gRNAs have been transformative, these existing approaches are typically multiplexed across genomes. Yet much of the complexity of real genomes is encoded within a genome across sites. Unfortunately, building cells with multiple, non-adjacent precise mutations remains a laborious cycle of editing, isolating an edited cell, and editing again. Here, we describe a technology for precisely modifying multiple sites on a single genome simultaneously. This technology - termed a multitron - is built from a heavily modified retron, in which multiple donor-encoding msds are produced from a single transcript. The multitron architecture is compatible with both recombineering in prokaryotic cells and CRISPR editing in eukaryotic cells. We demonstrate applications for this approach in molecular recording, genetic element minimization, and metabolic engineering.
Collapse
Affiliation(s)
| | - Santiago C. Lopez
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Graduate Program in Bioengineering, University of California, San Francisco and Berkeley, CA, USA
| | | | - Chloe B. Fishman
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
| | - Seth L. Shipman
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA
| |
Collapse
|
29
|
Wei Y, Feng LJ, Yuan XZ, Wang SG, Xia PF. Developing a Base Editing System for Marine Roseobacter Clade Bacteria. ACS Synth Biol 2023. [PMID: 37436915 DOI: 10.1021/acssynbio.3c00259] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The Roseobacter clade bacteria are of great significance in marine ecology and biogeochemical cycles, and they are potential microbial chassis for marine synthetic biology due to their versatile metabolic capabilities. Here, we adapted a CRISPR-Cas-based system, base editing, with the combination of nuclease-deactivated Cas9 and deaminase for Roseobacter clade bacteria. Taking the model roseobacter Roseovarius nubinhibens as an example, we achieved precise and efficient genome editing at single-nucleotide resolution without generating double-strand breaks or requesting donor DNAs. Since R. nubinhibens can metabolize aromatic compounds, we interrogated the key genes in the β-ketoadipate pathway with our base editing system via the introduction of premature STOP codons. The essentiality of these genes was demonstrated, and for the first time, we determined PcaQ as a transcription activator experimentally. This is the first report of CRISPR-Cas-based genome editing in the entire clade of Roseobacter bacteria. We believe that our work provides a paradigm for interrogating marine ecology and biogeochemistry with direct genotype-and-phenotype linkages and potentially opens a new avenue for the synthetic biology of marine Roseobacter bacteria.
Collapse
Affiliation(s)
- Ying Wei
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Li-Juan Feng
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Xian-Zheng Yuan
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
- Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao 266237, China
| | - Shu-Guang Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
- Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao 266237, China
| | - Peng-Fei Xia
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
30
|
Wang X, Zhou N, Wang B. Bacterial synthetic biology: tools for novel drug discovery. Expert Opin Drug Discov 2023; 18:1087-1097. [PMID: 37482696 DOI: 10.1080/17460441.2023.2239704] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
INTRODUCTION Bacterial synthetic biology has provided powerful tools to revolutionize the drug discovery process. These tools can be harnessed to generate bacterial novel pharmaceutical compounds with enhanced bioactivity and selectivity or to create genetically modified microorganisms as living drugs. AREAS COVERED This review provides a current overview of the state-of-the-art in bacterial synthetic biology tools for novel drug discovery. The authors discuss the application of these tools including bioinformatic tools, CRISPR tools, engineered bacterial transcriptional regulators, and synthetic biosensors for novel drug discovery. Additionally, the authors present the recent progress on reprogramming bacteriophages as living drugs to fight against antibiotic-resistant pathogens. EXPERT OPINION The field of using bacterial synthetic biology tools for drug discovery is rapidly advancing. However, challenges remain in developing reliable and robust methods to engineer bacteria. Further advancements in synthetic biology hold promise to speed up drug discovery, facilitating the development of novel therapeutics against various diseases.
Collapse
Affiliation(s)
- Xiyan Wang
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Nan Zhou
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Baojun Wang
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- Research Center of Biological Computation, Zhejiang Laboratory, Hangzhou, China
| |
Collapse
|
31
|
Buyuklyan JA, Zakalyukina YV, Osterman IA, Biryukov MV. Modern Approaches to the Genome Editing of Antibiotic Biosynthetic Clusters in Actinomycetes. Acta Naturae 2023; 15:4-16. [PMID: 37908767 PMCID: PMC10615194 DOI: 10.32607/actanaturae.23426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/19/2023] [Indexed: 11/02/2023] Open
Abstract
Representatives of the phylum Actinomycetota are one of the main sources of secondary metabolites, including antibiotics of various classes. Modern studies using high-throughput sequencing techniques enable the detection of dozens of potential antibiotic biosynthetic genome clusters in many actinomycetes; however, under laboratory conditions, production of secondary metabolites amounts to less than 5% of the total coding potential of producer strains. However, many of these antibiotics have already been described. There is a continuous "rediscovery" of known antibiotics, and new molecules become almost invisible against the general background. The established approaches aimed at increasing the production of novel antibiotics include: selection of optimal cultivation conditions by modifying the composition of nutrient media; co-cultivation methods; microfluidics, and the use of various transcription factors to activate silent genes. Unfortunately, these tools are non-universal for various actinomycete strains, stochastic in nature, and therefore do not always lead to success. The use of genetic engineering technologies is much more efficient, because they allow for a directed and controlled change in the production of target metabolites. One example of such technologies is mutagenesis-based genome editing of antibiotic biosynthetic clusters. This targeted approach allows one to alter gene expression, suppressing the production of previously characterized molecules, and thereby promoting the synthesis of other unknown antibiotic variants. In addition, mutagenesis techniques can be successfully applied both to new producer strains and to the genes of known isolates to identify new compounds.
Collapse
Affiliation(s)
- J A Buyuklyan
- Center for Translational Medicine, Sirius University of Science and Technology, Sochi, 354340 Russian Federation
| | - Yu V Zakalyukina
- Center for Translational Medicine, Sirius University of Science and Technology, Sochi, 354340 Russian Federation
- Lomonosov Moscow State University, Moscow, 119234 Russian Federation
| | - I A Osterman
- Center for Translational Medicine, Sirius University of Science and Technology, Sochi, 354340 Russian Federation
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region, 143025 Russian Federation
| | - M V Biryukov
- Center for Translational Medicine, Sirius University of Science and Technology, Sochi, 354340 Russian Federation
- Lomonosov Moscow State University, Moscow, 119234 Russian Federation
| |
Collapse
|
32
|
Yang D, Eun H, Prabowo CPS. Metabolic Engineering and Synthetic Biology Approaches for the Heterologous Production of Aromatic Polyketides. Int J Mol Sci 2023; 24:8923. [PMID: 37240269 PMCID: PMC10219323 DOI: 10.3390/ijms24108923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Polyketides are a diverse set of natural products with versatile applications as pharmaceuticals, nutraceuticals, and cosmetics, to name a few. Of several types of polyketides, aromatic polyketides comprising type II and III polyketides contain many chemicals important for human health such as antibiotics and anticancer agents. Most aromatic polyketides are produced from soil bacteria or plants, which are difficult to engineer and grow slowly in industrial settings. To this end, metabolic engineering and synthetic biology have been employed to efficiently engineer heterologous model microorganisms for enhanced production of important aromatic polyketides. In this review, we discuss the recent advancement in metabolic engineering and synthetic biology strategies for the production of type II and type III polyketides in model microorganisms. Future challenges and prospects of aromatic polyketide biosynthesis by synthetic biology and enzyme engineering approaches are also discussed.
Collapse
Affiliation(s)
- Dongsoo Yang
- Synthetic Biology and Enzyme Engineering Laboratory, Department of Chemical and Biological Engineering (BK21 Four), Korea University, Seoul 02481, Republic of Korea
| | - Hyunmin Eun
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Cindy Pricilia Surya Prabowo
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
33
|
Lei Y, Asamizu S, Ishizuka T, Onaka H. Regulation of Multidrug Efflux Pumps by TetR Family Transcriptional Repressor Negatively Affects Secondary Metabolism in Streptomyces coelicolor A3(2). Appl Environ Microbiol 2023; 89:e0182222. [PMID: 36790176 PMCID: PMC10056966 DOI: 10.1128/aem.01822-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/24/2023] [Indexed: 02/16/2023] Open
Abstract
Streptomyces spp. are well-known producers of bioactive secondary metabolites (SMs) that serve as pharmaceutical agents. In addition to their ability to produce SMs, Streptomyces spp. have evolved diverse membrane transport systems to protect cells against antibiotics produced by itself or other microorganisms. We previously screened mutants of Streptomyces coelicolor that show a phenotype of reduced undecylprodigiosin (RED) production in a combined-culture with Tsukamurella pulmonis. Here, we identified a point mutation, which reduced RED production, by performing genome resequencing and genetic complementation. We found that inactivation of the sco1718 gene encoding the TetR family transcriptional regulator (TFR) produced a deficient phenotype for several SMs in Streptomyces coelicolor A3(2). In the genome of S. coelicolor A3(2), two other sets of TFR and two-component ATP-binding cassette (ABC) transporter genes (sco4358-4360 and sco5384-5382) were found which had similar effects on the phenotype for both secondary metabolism and antibiotic resistance. An electrophoretic mobility shift assay and quantitative reverse transcription-PCR experiments demonstrated that TFRs repressed the expression of each adjacent two-component ABC transporter genes by binding to the operator sequence. Notably, the Δsco1718 mutant showed increased resistance to several antibiotics of other actinomycete origin. Our results imply the switching of cell metabolism to direct offense (antibiotic production) or defense (efflux pump activation) using costly and limited quantities of cell energy sources (e.g., ATP) in the soil ecosystem. IMPORTANCE The bacterial metabolic potential to synthesize diverse secondary metabolites in the environment has been revealed by recent (meta)genomics of both unculturable and culturable bacteria. These studies imply that bacteria are continuously exposed to harmful chemical compounds in the environment. Streptomyces spp. contain antibiotic efflux pumps and SM biosynthetic gene clusters. However, the mechanism by which soil bacteria, including Streptomyces, survive against toxic compounds in the environment remains unclear. Here, we identified three sets of TFR-ABC transporter genes in Streptomyces coelicolor A3(2). We found that each TFR controlled the expression of respective ABC transporter, and the expression of all ABC transporters negatively impacted SM production and increased antibiotic resistance. Notably, bioinformatic analysis indicated that these TFR-ABC transporter gene sets are highly conserved and widely distributed in the genome of Streptomyces species, indicating the importance of systematic regulation that directs antibiotic production and xenobiotic excretion.
Collapse
Affiliation(s)
- Yukun Lei
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shumpei Asamizu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, Tokyo, Japan
| | - Takumi Ishizuka
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyasu Onaka
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, Tokyo, Japan
| |
Collapse
|
34
|
Improved Dual Base Editor Systems (iACBEs) for Simultaneous Conversion of Adenine and Cytosine in the Bacterium Escherichia coli. mBio 2023; 14:e0229622. [PMID: 36625577 PMCID: PMC9973308 DOI: 10.1128/mbio.02296-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Genome-editing (GE) techniques like base editing are ideal for introducing novel gain-of-function mutations and in situ protein evolution. Features of base editors (BEs) such as higher efficacy, relaxed protospacer adjacent motif (PAM), and a broader editing window enables diversification of user-defined targeted locus. Cytosine (CBE) or adenine (ABE) BEs alone can only alter C-to-T or A-to-G in target sites. In contrast, dual BEs (ACBEs) can concurrently generate C-to-T and A-to-G modifications. Although BE tools have recently been applied in microbes, there is no report of ACBE for microbial GE. In this study, we engineered four improved ACBEs (iACBEs) tethering highly active CBE and ABE variants that can introduce synchronized C-to-T and A-to-G mutations in targeted loci. iACBE4 generated by evoCDA1-ABE9e fusion demonstrated a broader editing window (positions -6 to 15) and is also compatible with the multiplex editing approach in Escherichia coli. We further show that the iACBE4-NG containing PAM-relaxed nCas9-NG expands the targeting scope beyond NGG (N-A/G/C/T) PAM. As a proof-of-concept, iACBE was effectively utilized to identify previously unknown mutations in the rpoB gene, conferring gain-of-function, i.e., rifampicin resistance. The iACBE tool would expand the CRISPR-GE toolkit for microbial genome engineering and synthetic biology. IMPORTANCE Dual base editors are DSB-free CRISPR tools applied in eukaryotes but not yet in bacteria. We developed an improved ACBE toolset for bacteria, combining highly processive deaminases. We believe that the bacterial optimized iACBE toolset is a significant advancement in CRISPR-based E. coli genome editing and adaptable to other microbes.
Collapse
|
35
|
Oves-Costales D, Gren T, Sterndorff EB, Martín J, Ortiz-López FJ, Jørgensen TS, Jiang X, Román-Hurtado F, Reyes F, Genilloud O, Weber T. Identification and heterologous expression of the globomycin biosynthetic gene cluster. Synth Syst Biotechnol 2023; 8:206-212. [PMID: 36844473 PMCID: PMC9943842 DOI: 10.1016/j.synbio.2023.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Globomycin is a cyclic lipodepsipeptide originally isolated from several Streptomyces species which displays strong and selective antibacterial activity against Gram-negative pathogens. Its mode of action is based on the competitive inhibition of the lipoprotein signal peptidase II (LspA), which is absent in eukaryotes and considered an attractive target for the development of new antibiotics. Despite its interesting biological properties, the gene cluster encoding its biosynthesis has not yet been identified. In this study we employed a genome-mining approach in the globomycin-producing Streptomyces sp. CA-278952 to identify a candidate gene cluster responsible for its biosynthesis. A null mutant was constructed using CRISPR base editing where production was abolished, strongly suggesting its involvement in the biosynthesis. The putative gene cluster was then cloned and heterologously expressed in Streptomyces albus J1074 and Streptomyces coelicolor M1146, therefore unambiguously linking globomycin and its biosynthetic gene cluster. Our work paves the way for the biosynthesis of new globomycin derivatives with improved pharmacological properties.
Collapse
Affiliation(s)
- Daniel Oves-Costales
- Fundacion MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda del Conocimiento 34, 18016, Armilla, Granada, Spain,Corresponding author.
| | - Tetiana Gren
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, building 220, 2800 Kgs. Lyngby, Denmark
| | - Eva Baggesgaard Sterndorff
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, building 220, 2800 Kgs. Lyngby, Denmark
| | - Jesús Martín
- Fundacion MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda del Conocimiento 34, 18016, Armilla, Granada, Spain
| | - Francisco Javier Ortiz-López
- Fundacion MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda del Conocimiento 34, 18016, Armilla, Granada, Spain
| | - Tue S. Jørgensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, building 220, 2800 Kgs. Lyngby, Denmark
| | - Xinglin Jiang
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, building 220, 2800 Kgs. Lyngby, Denmark
| | - Fernando Román-Hurtado
- Fundacion MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda del Conocimiento 34, 18016, Armilla, Granada, Spain
| | - Fernando Reyes
- Fundacion MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda del Conocimiento 34, 18016, Armilla, Granada, Spain
| | - Olga Genilloud
- Fundacion MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda del Conocimiento 34, 18016, Armilla, Granada, Spain,Corresponding author.
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, building 220, 2800 Kgs. Lyngby, Denmark,Corresponding author.
| |
Collapse
|
36
|
Xu Z, Park TJ, Cao H. Advances in mining and expressing microbial biosynthetic gene clusters. Crit Rev Microbiol 2023; 49:18-37. [PMID: 35166616 DOI: 10.1080/1040841x.2022.2036099] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Natural products (NPs) especially the secondary metabolites originated from microbes exhibit great importance in biomedical, industrial and agricultural applications. However, mining biosynthetic gene clusters (BGCs) to produce novel NPs has been hindered owing that a large population of environmental microbes are unculturable. In the past decade, strategies to explore BGCs directly from (meta)genomes have been established along with the fast development of high-throughput sequencing technologies and the powerful bioinformatics data-processing tools, which greatly expedited the exploitations of novel BGCs from unculturable microbes including the extremophilic microbes. In this review, we firstly summarized the popular bioinformatics tools and databases available to mine novel BGCs from (meta)genomes based on either pure cultures or pristine environmental samples. Noticeably, approaches rooted from machine learning and deep learning with focuses on the prediction of ribosomally synthesized and post-translationally modified peptides (RiPPs) were dramatically increased in recent years. Moreover, synthetic biology techniques to express the novel BGCs in culturable native microbes or heterologous hosts were introduced. This working pipeline including the discovery and biosynthesis of novel NPs will greatly advance the exploitations of the abundant but unexplored microbial BGCs.
Collapse
Affiliation(s)
- Zeling Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Tae-Jin Park
- HME Healthcare Co., Ltd, Suwon-si, Republic of Korea
| | - Huiluo Cao
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
37
|
Li C, Wang L, Cseke LJ, Vasconcelos F, Huguet-Tapia JC, Gassmann W, Pauwels L, White FF, Dong H, Yang B. Efficient CRISPR-Cas9 based cytosine base editors for phytopathogenic bacteria. Commun Biol 2023; 6:56. [PMID: 36646768 PMCID: PMC9842757 DOI: 10.1038/s42003-023-04451-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Phytopathogenic bacteria play important roles in plant productivity, and developments in gene editing have potential for enhancing the genetic tools for the identification of critical genes in the pathogenesis process. CRISPR-based genome editing variants have been developed for a wide range of applications in eukaryotes and prokaryotes. However, the unique mechanisms of different hosts restrict the wide adaptation for specific applications. Here, CRISPR-dCas9 (dead Cas9) and nCas9 (Cas9 nickase) deaminase vectors were developed for a broad range of phytopathogenic bacteria. A gene for a dCas9 or nCas9, cytosine deaminase CDA1, and glycosylase inhibitor fusion protein (cytosine base editor, or CBE) was applied to base editing under the control of different promoters. Results showed that the RecA promoter led to nearly 100% modification of the target region. When residing on the broad host range plasmid pHM1, CBERecAp is efficient in creating base edits in strains of Xanthomonas, Pseudomonas, Erwinia and Agrobacterium. CBE based on nCas9 extended the editing window and produced a significantly higher editing rate in Pseudomonas. Strains with nonsynonymous mutations in test genes displayed expected phenotypes. By multiplexing guide RNA genes, the vectors can modify up to four genes in a single round of editing. Whole-genome sequencing of base-edited isolates of Xanthomonas oryzae pv. oryzae revealed guide RNA-independent off-target mutations. Further modifications of the CBE, using a CDA1 variant (CBERecAp-A) reduced off-target effects, providing an improved editing tool for a broad group of phytopathogenic bacteria.
Collapse
Affiliation(s)
- Chenhao Li
- grid.134936.a0000 0001 2162 3504Division of Plant Science and Technology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri USA ,grid.27871.3b0000 0000 9750 7019Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu P. R. China
| | - Longfei Wang
- grid.134936.a0000 0001 2162 3504Division of Plant Science and Technology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri USA
| | - Leland J. Cseke
- grid.134936.a0000 0001 2162 3504Division of Plant Science and Technology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri USA
| | - Fernanda Vasconcelos
- grid.134936.a0000 0001 2162 3504Division of Plant Science and Technology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri USA
| | - Jose Carlos Huguet-Tapia
- grid.15276.370000 0004 1936 8091Department of Plant Pathology, University of Florida, Gainesville, Florida USA
| | - Walter Gassmann
- grid.134936.a0000 0001 2162 3504Division of Plant Science and Technology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri USA
| | - Laurens Pauwels
- grid.5342.00000 0001 2069 7798Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium ,grid.511033.5Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium
| | - Frank F. White
- grid.15276.370000 0004 1936 8091Department of Plant Pathology, University of Florida, Gainesville, Florida USA
| | - Hansong Dong
- grid.27871.3b0000 0000 9750 7019Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu P. R. China
| | - Bing Yang
- grid.134936.a0000 0001 2162 3504Division of Plant Science and Technology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri USA ,grid.34424.350000 0004 0466 6352Donald Danforth Plant Science Center, St. Louis, Missouri USA
| |
Collapse
|
38
|
Liu Y, Liu Y, Zheng P, Wang Y, Wang M. Cytosine Base Editing in Bacteria. Methods Mol Biol 2023; 2606:219-231. [PMID: 36592319 DOI: 10.1007/978-1-0716-2879-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Base editing is a new genome editing technology that enables DNA base mutations without requiring double-stranded DNA backbone cleavage or a donor template. It has been widely used for genome engineering of eukaryotic and prokaryotic microorganisms. In this chapter, we describe a routine protocol for cytosine base editing in two model bacteria Corynebacterium glutamicum and Bacillus subtilis. The protocol can be adapted to base editing in other bacteria with modifications.
Collapse
Affiliation(s)
- Ye Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Yang Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Ping Zheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Yu Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China. .,National Technology Innovation Center of Synthetic Biology, Tianjin, China.
| | - Meng Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China. .,National Technology Innovation Center of Synthetic Biology, Tianjin, China.
| |
Collapse
|
39
|
Wu Y, Zhang T. Designing Guide-RNA for Generating Premature Stop Codons for Gene Knockout Using CRISPR-BETS. Methods Mol Biol 2023; 2653:95-105. [PMID: 36995621 DOI: 10.1007/978-1-0716-3131-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Cytosine base editors (CBEs) accurately modify target sites by mediating a C to T change (or a G to A change on the opposite strand). This allows us to install premature stop codons for gene knockout. However, highly specific sgRNAs (single-guide RNAs) are necessary for the CRISPR-Cas nuclease to work efficiently. In this study, we introduce a method of designing highly specific gRNA to generate premature stop codons and knock out a gene using CRISPR-BETS software.
Collapse
Affiliation(s)
- Yuechao Wu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China.
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China.
| |
Collapse
|
40
|
Wang SY, Li X, Wang SG, Xia PF. Base editing for reprogramming cyanobacterium Synechococcus elongatus. Metab Eng 2023; 75:91-99. [PMID: 36403709 DOI: 10.1016/j.ymben.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022]
Abstract
Cyanobacteria can directly convert carbon dioxide (CO2) at the atmospheric level to biofuels, value-added chemicals and food products, making them ideal candidates to alleviate global climate change. Despite decades-long pioneering successes, the development of genome-editing tools, especially the CRISPR-Cas-based approaches, seems to lag behind other microbial chassis, slowing down the innovations of cyanobacteria. Here, we adapted and tailored base editing for cyanobacteria based on the CRISPR-Cas system and deamination. We achieved precise and efficient genome editing at a single-nucleotide resolution and demonstrated multiplex base editing in the model cyanobacterium Synechococcus elongatus. By using the base-editing tool, we successfully manipulated the glycogen metabolic pathway via the introduction of premature STOP codons in the relevant genes, building engineered strains with elevated potentials to produce chemicals and food from CO2. We present here the first report of base editing in the phylum of cyanobacteria, and a paradigm for applying CRISPR-Cas systems in bacteria. We believe that our work will accelerate the metabolic engineering and synthetic biology of cyanobacteria and drive more innovations to alleviate global climate change.
Collapse
Affiliation(s)
- Shu-Yan Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Xin Li
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Shu-Guang Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, 266237, China
| | - Peng-Fei Xia
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
41
|
Heo YB, Hwang GH, Kang SW, Bae S, Woo HM. High-Fidelity Cytosine Base Editing in a GC-Rich Corynebacterium glutamicum with Reduced DNA Off-Target Editing Effects. Microbiol Spectr 2022; 10:e0376022. [PMID: 36374037 PMCID: PMC9769817 DOI: 10.1128/spectrum.03760-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Genome editing technology is a powerful tool for programming microbial cell factories. However, rat APOBEC1-derived cytosine base editor (CBE) that converts C•G to T•A at target genes induced DNA off-targets, regardless of single-guide RNA (sgRNA) sequences. Although the high efficiencies of the bacterial CBEs have been developed, a risk of unidentified off-targets impeded genome editing for microbial cell factories. To address the issues, we demonstrate the genome engineering of Corynebacterium glutamicum as a GC-rich model industrial bacterium by generating premature termination codons (PTCs) in desired genes using high-fidelity cytosine base editors (CBEs). Through this CBE-STOP approach of introducing specific cytosine conversions, we constructed several single-gene-inactivated strains for three genes (ldh, idsA, and pyc) with high base editing efficiencies of average 95.6% (n = 45, C6 position) and the highest success rate of up to 100% for PTCs and ultimately developed a strain with five genes (ldh, actA, ackA, pqo, and pta) that were inactivated sequentially for enhancing succinate production. Although these mutant strains showed the desired phenotypes, whole-genome sequencing (WGS) data revealed that genome-wide point mutations occurred in each strain and further accumulated according to the duration of CBE plasmids. To lower the undesirable mutations, high-fidelity CBEs (pCoryne-YE1-BE3 and pCoryne-BE3-R132E) was employed for single or multiplexed genome editing in C. glutamicum, resulting in drastically reduced sgRNA-independent off-targets. Thus, we provide a CRISPR-assisted bacterial genome engineering tool with an average high efficiency of 90.5% (n = 76, C5 or C6 position) at the desired targets. IMPORTANCE Rat APOBEC1-derived cytosine base editor (CBE) that converts C•G to T•A at target genes induced DNA off-targets, regardless of single-guide RNA (sgRNA) sequences. Although the high efficiencies of bacterial CBEs have been developed, a risk of unidentified off-targets impeded genome editing for microbial cell factories. To address the issues, we identified the DNA off-targets for single and multiple genome engineering of the industrial bacterium Corynebacterium glutamicum using whole-genome sequencing. Further, we developed the high-fidelity (HF)-CBE with significantly reduced off-targets with comparable efficiency and precision. We believe that our DNA off-target analysis and the HF-CBE can promote CRISPR-assisted genome engineering over conventional gene manipulation tools by providing a markerless genetic tool without need for a foreign DNA donor.
Collapse
Affiliation(s)
- Yu Been Heo
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
- BioFoundry Research Center, Institute of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Gue-Ho Hwang
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, Republic of Korea
| | - Seok Won Kang
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sangsu Bae
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Jongno-gu, Seoul, Republic of Korea
| | - Han Min Woo
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
- BioFoundry Research Center, Institute of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
42
|
Hao W, Cui W, Suo F, Han L, Cheng Z, Zhou Z. Construction and application of an efficient dual-base editing platform for Bacillus subtilis evolution employing programmable base conversion. Chem Sci 2022; 13:14395-14409. [PMID: 36545152 PMCID: PMC9749471 DOI: 10.1039/d2sc05824c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/20/2022] [Indexed: 12/03/2022] Open
Abstract
The functionally evolved bacterial chassis is of great importance to manufacture a group of assorted high value-added chemicals, from small molecules to biologically active macromolecules. However, the current evolution frameworks are less efficienct in generating in vivo genomic diversification because of insufficient tunability, rendering limited evolution spacing for chassis. Here, an engineered genomic diversification platform (CRISPR-ABE8e-CDA-nCas9) leveraging a programmable dual-deaminases base editor was fabricated for rapidly evolving bacterial chassis. The dual-base editor was constructed by reprogramming the CRISPR array, nCas9, and cytidine and adenosine deaminase, enabling single or multiple base conversion at the genomic scale by simultaneous C-to-T and A-to-G conversion in vivo. Employing titration of the Cas-deaminase fusion protein, the platform enabled editing any pre-defined genomic loci with tunable conversion efficiency and editable window, generating a repertoire of mutants with highly diversified genomic sequences. Leveraging the genomic diversification platform, we successfully evolved the nisin-resistant capability of Bacillus subtilis through directed evolution of the subunit of lantibiotic ATP-binding cassette. Therefore, our work provides a portable and programmable genomic diversification platform, which is promising to expedite the fabrication of high-performance and robust bacterial chassis used in the development of biomanufacturing and biopharmaceuticals.
Collapse
Affiliation(s)
- Wenliang Hao
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University1800 Lihu AvenueWuxi 214122JiangsuChina
| | - Wenjing Cui
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University1800 Lihu AvenueWuxi 214122JiangsuChina
| | - Feiya Suo
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University1800 Lihu AvenueWuxi 214122JiangsuChina
| | - Laichuang Han
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University1800 Lihu AvenueWuxi 214122JiangsuChina
| | - Zhongyi Cheng
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University1800 Lihu AvenueWuxi 214122JiangsuChina
| | - Zhemin Zhou
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University1800 Lihu AvenueWuxi 214122JiangsuChina
| |
Collapse
|
43
|
Tian K, Hong X, Guo M, Li Y, Wu H, Caiyin Q, Qiao J. Development of Base Editors for Simultaneously Editing Multiple Loci in Lactococcus lactis. ACS Synth Biol 2022; 11:3644-3656. [PMID: 36065829 DOI: 10.1021/acssynbio.1c00561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Lactococcus lactis serves as the most extensively studied model organism and an important dairy species. Though CRISPR-Cas9 systems have been developed for robust genetic manipulations, simultaneously editing multiple endogenous loci in L. lactis is still challenging. Herein, we first report the development of a double-strand break-free, robust, multiloci editing system CRISPR-deaminase-assisted base editor (CRISPR-DBE), which comprises a cytidine (CRISPR-cDBE) and an adenosine deaminase-assisted base editor (CRISPR-aDBE). Specifically targeted by a sgRNA, CRISPR-cDBE can efficiently introduce a cytidine-to-thymidine mutation and CRISPR-aDBE can high-efficiently convert adenosine to guanosine within a 5 nt editing window. CRISPR-cDBE was validated and successfully applied to simultaneously inactivate multiple genes using a single plasmid in L. lactis strain NZ9000. Meanwhile, the temperature-sensitive plasmid of CRISPR-DBE can be cured quickly, and the continuous gene editing of L. lactis has been achieved. Furthermore, CRISPR-cDBE can also efficiently convert the targeted C to T in a nisin-producing, industrial L. lactis strain F44. Finally, we applied genome-wide bioinformatics analysis to determine the scope of gene inactivation for these base editors using different Cas9 variants and evaluated the preference of SpGn and SpRYn variants for the protospacer adjacent motif in L. lactis NZ9000. Taken together, our study provides a powerful tool for simultaneously editing multiple loci in L. lactis, which may have a wide range of industrial applications in the future.
Collapse
Affiliation(s)
- Kairen Tian
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjian 300072, P. R. China.,SynBio Research Platform Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Xia Hong
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Manman Guo
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yanni Li
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjian 300072, P. R. China.,SynBio Research Platform Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Hao Wu
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, P. R. China
| | - Qinggele Caiyin
- Department of Biological Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjian 300072, P. R. China.,SynBio Research Platform Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjian 300072, P. R. China.,SynBio Research Platform Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.,Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, P. R. China
| |
Collapse
|
44
|
Wang H, He Y, Jian M, Fu X, Cheng Y, He Y, Fang J, Li L, Zhang D. Breaking the Bottleneck in Anticancer Drug Development: Efficient Utilization of Synthetic Biology. Molecules 2022; 27:7480. [PMID: 36364307 PMCID: PMC9656990 DOI: 10.3390/molecules27217480] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 08/13/2024] Open
Abstract
Natural products have multifarious bioactivities against bacteria, fungi, viruses, cancers and other diseases due to their diverse structures. Nearly 65% of anticancer drugs are natural products or their derivatives. Thus, natural products play significant roles in clinical cancer therapy. With the development of biosynthetic technologies, an increasing number of natural products have been discovered and developed as candidates for clinical cancer therapy. Here, we aim to summarize the anticancer natural products approved from 1950 to 2021 and discuss their molecular mechanisms. We also describe the available synthetic biology tools and highlight their applications in the development of natural products.
Collapse
Affiliation(s)
- Haibo Wang
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yu He
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Meiling Jian
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xingang Fu
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yuheng Cheng
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yujia He
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Jun Fang
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Lin Li
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Dan Zhang
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
45
|
Wang Y, Zhao D, Sun L, Wang J, Fan L, Cheng G, Zhang Z, Ni X, Feng J, Wang M, Zheng P, Bi C, Zhang X, Sun J. Engineering of the Translesion DNA Synthesis Pathway Enables Controllable C-to-G and C-to-A Base Editing in Corynebacterium glutamicum. ACS Synth Biol 2022; 11:3368-3378. [PMID: 36099191 DOI: 10.1021/acssynbio.2c00265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Expanding the base conversion type is expected to largely broaden the application of base editing, whereas it requires decipherment of the machinery controlling the editing outcome. Here, we discovered that the DNA polymerase V-mediated translesion DNA synthesis (TLS) pathway controlled the C-to-A editing by a glycosylase base editor (GBE) in Escherichia coli. However, C-to-G conversion was surprisingly found to be the main product of the GBE in Corynebacterium glutamicum and subsequent gene inactivation identified the decisive TLS enzymes. Introduction of the E. coli TLS pathway into a TLS-deficient C. glutamicum mutant completely changed the GBE outcome from C-to-G to C-to-A. Combining the canonical C-to-T editor, a pioneering C-to-N base editing toolbox was established in C. glutamicum. The expanded base conversion capability produces greater genetic diversity and promotes the application of base editing in gene inactivation and protein evolution. This study demonstrates the possibility of engineering TLS systems to develop advanced genome editing tools.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Dongdong Zhao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Letian Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Liwen Fan
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Guimin Cheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China.,College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Zhihui Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomeng Ni
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Jinhui Feng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Meng Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Ping Zheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Changhao Bi
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Xueli Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Jibin Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
46
|
Chen Y, Cheng M, Li Y, Wang L, Fang L, Cao Y, Song H. Highly efficient multiplex base editing: One-shot deactivation of eight genes in Shewanella oneidensis MR-1. Synth Syst Biotechnol 2022; 8:1-10. [PMID: 36313217 PMCID: PMC9594123 DOI: 10.1016/j.synbio.2022.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/15/2022] [Accepted: 09/28/2022] [Indexed: 11/03/2022] Open
Abstract
Obtaining electroactive microbes capable of efficient extracellular electron transfer is a large undertaking for the scalability of bio-electrochemical systems. Inevitably, researchers need to pursue the co-modification of multiple genes rather than expecting that modification of a single gene would make a significant contribution to improving extracellular electron transfer rates. Base editing has enabled highly-efficient gene deactivation in model electroactive microbe Shewanella oneidensis MR-1. Since multiplexed application of base editing is still limited by its low throughput procedure, we thus here develop a rapid and efficient multiplex base editing system in S. oneidensis. Four approaches to express multiple gRNAs were assessed firstly, and transcription of each gRNA cassette into a monocistronic unit was validated as a more favorable option than transcription of multiple gRNAs into a polycistronic cluster. Then, a smart scheme was designed to deliver one-pot assembly of multiple gRNAs. 3, 5, and 8 genes were deactivated using this system with editing efficiency of 83.3%, 100% and 12.5%, respectively. To offer some nonrepetitive components as alternatives genetic parts of sgRNA cassette, different promoters, handles, and terminators were screened. This multiplex base editing tool was finally adopted to simultaneously deactivate eight genes that were identified as significantly downregulated targets in transcriptome analysis of riboflavin-overproducing strain and control strain. The maximum power density of the multiplex engineered strain HRF(8BE) in microbial fuel cells was 1108.1 mW/m2, which was 21.67 times higher than that of the wild-type strain. This highly efficient multiplexed base editing tool elevates our ability of genome manipulation and combinatorial engineering in Shewanella, and may provide valuable insights in fundamental and applied research of extracellular electron transfer.
Collapse
Affiliation(s)
- Yaru Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Meijie Cheng
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Yan Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Lin Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Lixia Fang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Yingxiu Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China,Corresponding author. Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China,Corresponding author. Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
47
|
Genome Editing of Veterinary Relevant Mycoplasmas Using a CRISPR-Cas Base Editor System. Appl Environ Microbiol 2022; 88:e0099622. [PMID: 36000854 PMCID: PMC9469718 DOI: 10.1128/aem.00996-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycoplasmas are minimal bacteria that infect humans, wildlife, and most economically relevant livestock species. Mycoplasma infections cause a large range of chronic inflammatory diseases, eventually leading to death in some animals. Due to the lack of efficient recombination and genome engineering tools for most species, the production of mutant strains for the identification of virulence factors and the development of improved vaccine strains is limited. Here, we demonstrate the adaptation of an efficient Cas9-Base Editor system to introduce targeted mutations into three major pathogenic species that span the phylogenetic diversity of these bacteria: the avian pathogen Mycoplasma gallisepticum and the two most important bovine mycoplasmas, Mycoplasma bovis and Mycoplasma mycoides subsp. mycoides. As a proof of concept, we successfully used an inducible SpdCas9-pmcDA1 cytosine deaminase system to disrupt several major virulence factors in these pathogens. Various induction times and inducer concentrations were evaluated to optimize editing efficiency. The optimized system was powerful enough to disrupt 54 of 55 insertion sequence transposases in a single experiment. Whole-genome sequencing of the edited strains showed that off-target mutations were limited, suggesting that most variations detected in the edited genomes are Cas9-independent. This effective, rapid, and easy-to-use genetic tool opens a new avenue for the study of these important animal pathogens and likely the entire class Mollicutes. IMPORTANCE Mycoplasmas are minimal pathogenic bacteria that infect a wide range of hosts, including humans, livestock, and wild animals. Major pathogenic species cause acute to chronic infections involving still poorly characterized virulence factors. The lack of precise genome editing tools has hampered functional studies of many species, leaving multiple questions about the molecular basis of their pathogenicity unanswered. Here, we demonstrate the adaptation of a CRISPR-derived base editor for three major pathogenic species: Mycoplasma gallisepticum, Mycoplasma bovis, and Mycoplasma mycoides subsp. mycoides. Several virulence factors were successfully targeted, and we were able to edit up to 54 target sites in a single step. The availability of this efficient and easy-to-use genetic tool will greatly facilitate functional studies of these economically important bacteria.
Collapse
|
48
|
Simple and reliable in situ CRISPR-Cas9 nuclease visualization tool is ensuring efficient editing in Streptomyces species. METHODS IN MICROBIOLOGY 2022; 200:106545. [DOI: 10.1016/j.mimet.2022.106545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022]
|
49
|
Yu HY, Wang SG, Xia PF. Reprogramming Microbial CO 2-Metabolizing Chassis With CRISPR-Cas Systems. Front Bioeng Biotechnol 2022; 10:897204. [PMID: 35814004 PMCID: PMC9260013 DOI: 10.3389/fbioe.2022.897204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/07/2022] [Indexed: 02/03/2023] Open
Abstract
Global warming is approaching an alarming level due to the anthropogenic emission of carbon dioxide (CO2). To overcome the challenge, the reliance on fossil fuels needs to be alleviated, and a significant amount of CO2 needs to be sequestrated from the atmosphere. In this endeavor, carbon-neutral and carbon-negative biotechnologies are promising ways. Especially, carbon-negative bioprocesses, based on the microbial CO2-metabolizing chassis, possess unique advantages in fixing CO2 directly for the production of fuels and value-added chemicals. In order to fully uncover the potential of CO2-metabolizing chassis, synthetic biology tools, such as CRISPR-Cas systems, have been developed and applied to engineer these microorganisms, revolutionizing carbon-negative biotechnology. Herein, we review the recent advances in the adaption of CRISPR-Cas systems, including CRISPR-Cas based genome editing and CRISPR interference/activation, in cyanobacteria, acetogens, and methanogens. We also envision future innovations via the implementation of rising CRISPR-Cas systems, such as base editing, prime editing, and transposon-mediated genome editing.
Collapse
Affiliation(s)
- Hai-Yan Yu
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Shu-Guang Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
- Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, China
| | - Peng-Fei Xia
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
| |
Collapse
|
50
|
Volke DC, Martino RA, Kozaeva E, Smania AM, Nikel PI. Modular (de)construction of complex bacterial phenotypes by CRISPR/nCas9-assisted, multiplex cytidine base-editing. Nat Commun 2022; 13:3026. [PMID: 35641501 PMCID: PMC9156665 DOI: 10.1038/s41467-022-30780-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/19/2022] [Indexed: 01/01/2023] Open
Abstract
CRISPR/Cas technologies constitute a powerful tool for genome engineering, yet their use in non-traditional bacteria depends on host factors or exogenous recombinases, which limits both efficiency and throughput. Here we mitigate these practical constraints by developing a widely-applicable genome engineering toolset for Gram-negative bacteria. The challenge is addressed by tailoring a CRISPR base editor that enables single-nucleotide resolution manipulations (C·G → T·A) with >90% efficiency. Furthermore, incorporating Cas6-mediated processing of guide RNAs in a streamlined protocol for plasmid assembly supports multiplex base editing with >85% efficiency. The toolset is adopted to construct and deconstruct complex phenotypes in the soil bacterium Pseudomonas putida. Single-step engineering of an aromatic-compound production phenotype and multi-step deconstruction of the intricate redox metabolism illustrate the versatility of multiplex base editing afforded by our toolbox. Hence, this approach overcomes typical limitations of previous technologies and empowers engineering programs in Gram-negative bacteria that were out of reach thus far. Rapid engineering of bacterial genomes is a requisite for both fundamental and applied studies. Here the authors develop an enhanced, broad-host-range cytidine base editor that enables multiplexed and efficient genome editing of Gram-negative bacteria.
Collapse
Affiliation(s)
- Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Román A Martino
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ekaterina Kozaeva
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Andrea M Smania
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|