1
|
Freeland LV, Emmerson MG, Vasas V, Gomes J, Versace E. Assessing preferences for adult versus juvenile features in young animals: Newly hatched chicks spontaneously approach red and large stimuli. Learn Behav 2024:10.3758/s13420-024-00638-z. [PMID: 39150659 DOI: 10.3758/s13420-024-00638-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 08/17/2024]
Abstract
Young precocial birds benefit from staying close to both their mother and their siblings, while prioritising adults, which provide better care. Which features of the stimuli are used by young birds to prioritise approach and eventually attachment to adults over siblings is unknown. We started to address this question in newly hatched domestic chicks (Gallus gallus), focusing on their spontaneous preferences for visual features that systematically vary between adult and juvenile chickens, and that had previously been identified as attractive: size (larger in adults than in juveniles) and colour (darker and redder in adults than in juveniles). Overall, chicks at their first visual experience, that had never seen a conspecific beforehand, were most attracted to the red and large stimuli (two adult features) and spent more time in close proximity with red stimuli than with yellow stimuli. When tested with red large versus small objects (Exp. 1), chicks preferred the large shape. When tested with yellow large and small objects (Exp. 2), chicks did not show a preference. Chicks had a stronger preference for large red stimuli (vs. small yellow objects) than for small red stimuli (vs. a large yellow object) (Exp. 3). These results suggest that the combination of size and colour form the predisposition that helps chicks to spontaneously discriminate between adult and juvenile features from the first stages of life, in the absence of previous experience, exhibiting a preference to approach stimuli with features associated with the presence of adult conspecifics.
Collapse
Affiliation(s)
- Laura V Freeland
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Michael G Emmerson
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Vera Vasas
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Josephine Gomes
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Elisabetta Versace
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| |
Collapse
|
2
|
Lourenço da Silva MI, Ulans A, Jacobs L. Pharmacological validation of an attention bias test for conventional broiler chickens. PLoS One 2024; 19:e0297715. [PMID: 38593170 PMCID: PMC11003672 DOI: 10.1371/journal.pone.0297715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/24/2024] [Indexed: 04/11/2024] Open
Abstract
Fear and anxiety are considered concerns for animal welfare as they are associated with negative affective states. This study aimed to pharmacologically validate an attention bias test (ABT) for broiler chickens (Gallus gallus domesticus) as a cognitive bias test to determine anxiety. Two-hundred-and-four male Ross 708 broiler chickens were arbitrarily allocated to either the anxiogenic or control treatment at 25 days of age (n = 102/treatment). Birds from the anxiogenic group were administered with 2.5 mg of β-CCM (β-carboline-3-carboxylic acid-N-methylamide [FG 7142]) per kg of body weight through an intraperitoneal injection (0.1 ml/100 g of body weight). Birds from the control group were administered with 9 mg of a saline solution per kg of body weight. During ABT, birds were tested in groups of three (n = 34 groups of three birds/treatment) with commercial feed and mealworms as positive stimuli and a conspecific alarm call as a negative stimulus. Control birds were 45 s faster to begin feeding than anxiogenic birds. Birds from the control group vocalized 40 s later and stepped 57 s later than birds from the anxiogenic group. The occurrence of vigilance behaviors did not differ between treatments. This study was successful in pharmacologically validating an attention bias test for fast-growing broiler chickens, testing three birds simultaneously. Our findings showed that latencies to begin feeding, first vocalization, and first step were valid measures to quantify anxiety.
Collapse
Affiliation(s)
- Marconi Italo Lourenço da Silva
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, SP, Brazil
| | - Alexandra Ulans
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, United States of America
| | - Leonie Jacobs
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, United States of America
| |
Collapse
|
3
|
Matsushima T, Izumi T, Vallortigara G. The domestic chick as an animal model of autism spectrum disorder: building adaptive social perceptions through prenatally formed predispositions. Front Neurosci 2024; 18:1279947. [PMID: 38356650 PMCID: PMC10864568 DOI: 10.3389/fnins.2024.1279947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Equipped with an early social predisposition immediately post-birth, humans typically form associations with mothers and other family members through exposure learning, canalized by a prenatally formed predisposition of visual preference to biological motion, face configuration, and other cues of animacy. If impaired, reduced preferences can lead to social interaction impairments such as autism spectrum disorder (ASD) via misguided canalization. Despite being taxonomically distant, domestic chicks could also follow a homologous developmental trajectory toward adaptive socialization through imprinting, which is guided via predisposed preferences similar to those of humans, thereby suggesting that chicks are a valid animal model of ASD. In addition to the phenotypic similarities in predisposition with human newborns, accumulating evidence on the responsible molecular mechanisms suggests the construct validity of the chick model. Considering the recent progress in the evo-devo studies in vertebrates, we reviewed the advantages and limitations of the chick model of developmental mental diseases in humans.
Collapse
Affiliation(s)
- Toshiya Matsushima
- Department of Biology, Faculty of Science, Hokkaido University, Sapporo, Japan
- Faculty of Pharmaceutical Science, Health Science University of Hokkaido, Tobetsu, Japan
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Takeshi Izumi
- Faculty of Pharmaceutical Science, Health Science University of Hokkaido, Tobetsu, Japan
| | | |
Collapse
|
4
|
Anderson MG, Johnson AM, Jacobs L, Ali ABA. Influence of Perch-Provision Timing on Anxiety and Fearfulness in Laying Hens. Animals (Basel) 2023; 13:3003. [PMID: 37835608 PMCID: PMC10572007 DOI: 10.3390/ani13193003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Perches can enhance laying hen welfare, but their effectiveness might be age-dependent. We investigated early and late perch access effects on anxiety and fear in pullets through attention bias (AB) and tonic immobility (TI) tests. Pullets (n = 728) were raised with or without multi-level perches: CP (continuous perch access: 0-37 weeks), EP (early perch access: 0-17 weeks), LP (late perch access: 17-37 weeks), and NP (no perch access). AB was conducted in weeks 21 and 37 (n = 84/week), and TI was performed in weeks 20, 25, and 37 (n = 112/week). CP hens fed quicker than EP, LP, and NP in AB at weeks 21 and 37 (p ≤ 0.05). CP and NP feeding latencies were stable, while EP and LP fed faster at week 37 (p ≤ 0.05). CP had the shortest TI at week 20 (p < 0.05). CP and LP had the shortest TI in weeks 25 and 37 (all p ≤ 0.05). Unlike NP, CP reduced anxiety and fear. Adding perches during laying (LP) raised anxiety at week 21, adapting by week 37, and removing pre-laying perches (EP) worsened fear at weeks 20 and 25 and anxiety at week 21, recovering by week 37. Adding or removing perches prior to the lay phase increased fear and anxiety, an effect that disappeared by week 37 of age. Our study indicates that continuous perch access benefits animal welfare compared to no perch access at all.
Collapse
Affiliation(s)
- Mallory G. Anderson
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA; (M.G.A.); (A.M.J.)
| | - Alexa M. Johnson
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA; (M.G.A.); (A.M.J.)
| | - Leonie Jacobs
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA;
| | - Ahmed B. A. Ali
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA; (M.G.A.); (A.M.J.)
- Animal Behavior and Management, Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
5
|
Han Y, Han W, Li L, Zhang T, Wang Y. Identifying critical kinematic features of animate motion and contribution to animacy perception. iScience 2023; 26:107658. [PMID: 37664633 PMCID: PMC10472316 DOI: 10.1016/j.isci.2023.107658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/30/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023] Open
Abstract
Humans can distinguish flying birds from drones based solely on motion features when no image information is available. However, it remains unclear which motion features of animate motion induce our animacy perception. To address this, we first analyzed the differences in centroid motion between birds and drones, and discovered that birds exhibit greater acceleration, angular speed, and trajectory fluctuations. We further determined the order of their importance in evoking animacy perception was trajectory fluctuations, acceleration, and speed. More interestingly, people judge whether a moving object is alive using a feature-matching strategy, implying that animacy perception is induced in a key feature-triggered way rather than relying on the accumulation of evidence. Our findings not only shed light on the critical motion features that induce animacy perception and their relative contributions but also have important implications for developing target classification algorithms based on motion features.
Collapse
Affiliation(s)
- Yifei Han
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Department of Psychology, Beijing 100049, China
| | - Wenhao Han
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Department of Psychology, Beijing 100049, China
| | - Liang Li
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Tao Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Department of Psychology, Beijing 100049, China
| | - Yizheng Wang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
6
|
Harrison ND, Steven R, Phillips BL, Hemmi JM, Wayne AF, Mitchell NJ. Identifying the most effective behavioural assays and predator cues for quantifying anti-predator responses in mammals: a systematic review. ENVIRONMENTAL EVIDENCE 2023; 12:5. [PMID: 39294799 PMCID: PMC11378833 DOI: 10.1186/s13750-023-00299-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/12/2023] [Indexed: 09/21/2024]
Abstract
BACKGROUND Mammals, globally, are facing population declines. Protecting and breeding threatened populations inside predator-free havens and translocating them back to the wild is commonly viewed as a solution. These approaches can expose predator-naïve animals to predators they have never encountered and as a result, many conservation projects have failed due to the predation of individuals that lacked appropriate anti-predator responses. Hence, robust ways to measure anti-predator responses are urgently needed to help identify naïve populations at risk, to select appropriate animals for translocation, and to monitor managed populations for changes in anti-predator traits. Here, we undertake a systematic review that collates existing behavioural assays of anti-predator responses and identifies assay types and predator cues that provoke the greatest behavioural responses. METHODS We retrieved articles from academic bibliographic databases and grey literature sources (such as government and conservation management reports), using a Boolean search string. Each article was screened against eligibility criteria determined using the PICO (Population-Intervention-Comparator-Outcome) framework. Using data extracted from each article, we mapped all known behavioural assays for quantifying anti-predator responses in mammals and examined the context in which each assay has been implemented (e.g., species tested, predator cue characteristics). Finally, with mixed effects modelling, we determined which of these assays and predator cue types elicit the greatest behavioural responses based on standardised difference in response between treatment and control groups. REVIEW FINDINGS We reviewed 5168 articles, 211 of which were eligible, constituting 1016 studies on 126 mammal species, a quarter of which are threatened by invasive species. We identified six major types of behavioural assays: behavioural focals, capture probability, feeding station, flight initiation distance, giving-up density, and stimulus presentations. Across studies, there were five primary behaviours measured: activity, escape, exploration, foraging, and vigilance. These behaviours yielded similar effect sizes across studies. With regard to study design, however, studies that used natural olfactory cues tended to report larger effect sizes than those that used artificial cues. Effect sizes were larger in studies that analysed sexes individually, rather than combining males and females. Studies that used 'blank' control treatments (the absence of a stimulus) rather than a treatment with a control stimulus had higher effect sizes. Although many studies involved repeat measures of known individuals, only 15.4% of these used their data to calculate measures of individual repeatability. CONCLUSIONS Our review highlights important aspects of experimental design and reporting that should be considered. Where possible, studies of anti-predator behaviour should use appropriate control treatments, analyse males and females separately, and choose organic predator cues. Studies should also look to report the individual repeatability of behavioural traits, and to correctly identify measures of uncertainty (error bars). The review highlights robust methodology, reveals promising techniques on which to focus future assay development, and collates relevant information for conservation managers.
Collapse
Affiliation(s)
- Natasha D Harrison
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia.
| | - Rochelle Steven
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
- Environmental and Conservation Sciences, Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Ben L Phillips
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
- School of BioSciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jan M Hemmi
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
- The UWA Oceans Institute, The University of Western Australia, Perth, WA, 6009, Australia
| | - Adrian F Wayne
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Manjimup, WA, 6258, Australia
| | - Nicola J Mitchell
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| |
Collapse
|
7
|
Bliss L, Vasas V, Freeland L, Roach R, Ferrè ER, Versace E. A spontaneous gravity prior: newborn chicks prefer stimuli that move against gravity. Biol Lett 2023; 19:20220502. [PMID: 36750178 PMCID: PMC9904944 DOI: 10.1098/rsbl.2022.0502] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
At the beginning of life, inexperienced animals use evolutionary-given preferences (predispositions) to decide what stimuli to attend and approach. Stimuli that contain cues of animacy, such as face-like stimuli, biological motion and changes in speed, are particularly attractive across vertebrate taxa. A strong cue of animacy is upward movement against terrestrial gravity, because only animate objects consistently move upward. To test whether upward movement is spontaneously considered attractive already at birth, we tested the early preferences of dark-hatched chicks (Gallus gallus) for upward- versus downward-moving visual stimuli. We found that, without any previous visual experience, chicks consistently exhibited a preference to approach stimuli that move upward, against gravity. A control experiment showed that these preferences are not driven by avoidance of downward stimuli. These results show that newborn animals have a gravity prior that attracts them toward upward movement. Movement against gravity can be used as a cue of animacy to orient early approach responses in the absence of previous visual experience.
Collapse
Affiliation(s)
- Larry Bliss
- Department of Biological and Experimental Psychology, Queen Mary University of London, London E1 4NS, UK
| | - Vera Vasas
- Department of Biological and Experimental Psychology, Queen Mary University of London, London E1 4NS, UK
| | - Laura Freeland
- Department of Biological and Experimental Psychology, Queen Mary University of London, London E1 4NS, UK
| | - Robyn Roach
- Department of Biological and Experimental Psychology, Queen Mary University of London, London E1 4NS, UK
| | - Elisa Raffaella Ferrè
- Department of Psychological Sciences, Birkbeck, University of London, London WC1E 7HX, UK
| | - Elisabetta Versace
- Department of Biological and Experimental Psychology, Queen Mary University of London, London E1 4NS, UK,Alan Turing Institute, London NW1 2DB, UK
| |
Collapse
|
8
|
Lemaire BS, Rosa-Salva O, Fraja M, Lorenzi E, Vallortigara G. Spontaneous preference for unpredictability in the temporal contingencies between agents' motion in naive domestic chicks. Proc Biol Sci 2022; 289:20221622. [PMID: 36350221 PMCID: PMC9653227 DOI: 10.1098/rspb.2022.1622] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/12/2022] [Indexed: 08/24/2023] Open
Abstract
The ability to recognize animate agents based on their motion has been investigated in humans and animals alike. When the movements of multiple objects are interdependent, humans perceive the presence of social interactions and goal-directed behaviours. Here, we investigated how visually naive domestic chicks respond to agents whose motion was reciprocally contingent in space and time (i.e. the time and direction of motion of one object can be predicted from the time and direction of motion of another object). We presented a 'social aggregation' stimulus, in which three smaller discs repeatedly converged towards a bigger disc, moving in a manner resembling a mother hen and chicks (versus a control stimulus lacking such interactions). Remarkably, chicks preferred stimuli in which the timing of the motion of one object could not be predicted by that of other objects. This is the first demonstration of a sensitivity to the temporal relationships between the motion of different objects in naive animals, a trait that could be at the basis of the development of the perception of social interaction and goal-directed behaviours.
Collapse
Affiliation(s)
- Bastien S. Lemaire
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura, 1, 38068 Rovereto, TN, Italy
| | - Orsola Rosa-Salva
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura, 1, 38068 Rovereto, TN, Italy
| | - Margherita Fraja
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura, 1, 38068 Rovereto, TN, Italy
| | - Elena Lorenzi
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura, 1, 38068 Rovereto, TN, Italy
| | - Giorgio Vallortigara
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura, 1, 38068 Rovereto, TN, Italy
| |
Collapse
|
9
|
Somervail R, Bufacchi RJ, Salvatori C, Neary-Zajiczek L, Guo Y, Novembre G, Iannetti GD. Brain Responses to Surprising Stimulus Offsets: Phenomenology and Functional Significance. Cereb Cortex 2022; 32:2231-2244. [PMID: 34668519 PMCID: PMC9113248 DOI: 10.1093/cercor/bhab352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/15/2022] Open
Abstract
Abrupt increases of sensory input (onsets) likely reflect the occurrence of novel events or objects in the environment, potentially requiring immediate behavioral responses. Accordingly, onsets elicit a transient and widespread modulation of ongoing electrocortical activity: the Vertex Potential (VP), which is likely related to the optimisation of rapid behavioral responses. In contrast, the functional significance of the brain response elicited by abrupt decreases of sensory input (offsets) is more elusive, and a detailed comparison of onset and offset VPs is lacking. In four experiments conducted on 44 humans, we observed that onset and offset VPs share several phenomenological and functional properties: they (1) have highly similar scalp topographies across time, (2) are both largely comprised of supramodal neural activity, (3) are both highly sensitive to surprise and (4) co-occur with similar modulations of ongoing motor output. These results demonstrate that the onset and offset VPs largely reflect the activity of a common supramodal brain network, likely consequent to the activation of the extralemniscal sensory system which runs in parallel with core sensory pathways. The transient activation of this system has clear implications in optimizing the behavioral responses to surprising environmental changes.
Collapse
Affiliation(s)
- R Somervail
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161, Rome, Italy
- Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), WC1E 6BT, London, UK
| | - R J Bufacchi
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161, Rome, Italy
| | - C Salvatori
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161, Rome, Italy
| | - L Neary-Zajiczek
- Department of Computer Science, University College London (UCL), WC1E 6BT, London, UK
| | - Y Guo
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161, Rome, Italy
| | - G Novembre
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161, Rome, Italy
| | - G D Iannetti
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161, Rome, Italy
- Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), WC1E 6BT, London, UK
| |
Collapse
|
10
|
Chaib S, Mussoi JG, Lind O, Kelber A. Visual acuity of budgerigars for moving targets. Biol Open 2021; 10:272046. [PMID: 34382651 PMCID: PMC8473842 DOI: 10.1242/bio.058796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/29/2021] [Indexed: 11/20/2022] Open
Abstract
For a bird, it is often vital to visually detect food items, predators, or individuals from the same flock, i.e. moving stimuli of various shapes. Yet, behavioural tests of visual spatial acuity traditionally use stationary gratings as stimuli. We have behaviourally tested the ability of budgerigars (Melopsittacus undulatus) to detect a black circular target, moving semi-randomly at 1.69 degrees s−1 against a brighter background. We found a detection threshold of 0.107±0.007 degrees of the visual field for a target size corresponding to a resolution of a grating with a spatial frequency of 4.68 cycles degree−1. This detection threshold is lower than the resolution limit for gratings but similar to the threshold for stationary single objects of the same shape. We conclude that the target acuity of budgerigars for moving single targets, just as for stationary single targets, is lower than their acuity for gratings. Summary: Movement does not improve detection: The detection threshold of budgerigars (Melopsittacus undulatus) for moving dark circular targets is similar to the detection threshold for stationary but otherwise similar targets.
Collapse
Affiliation(s)
- Sandra Chaib
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| | | | - Olle Lind
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Almut Kelber
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| |
Collapse
|
11
|
Versace E, Ragusa M, Pallante V, Wang S. Attraction for familiar conspecifics in young chicks (Gallus gallus): An interbreed study. Behav Processes 2021; 193:104498. [PMID: 34499985 DOI: 10.1016/j.beproc.2021.104498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Abstract
From the beginning of life, discriminating between familiar and unfamiliar individuals and staying in contact with conspecifics are important to establish social relationships. To better understand these early social behaviours, we studied the different responses to familiar/unfamiliar individuals in 4-day-old domestic chicks (Gallus gallus) in three genetically isolated breeds: Padovana, Polverara and Robusta maculata. Chicks discriminated between familiar and unfamiliar individuals, staying closer to familiar individuals. Social reinstatement and fear responses were measured as the average distance between subjects, the latency of the first step and exploration of the arena differed between breeds. More socially motivated chicks, that stayed in closer proximity, were less afraid of starting to move and explored the environment more extensively. Interbreed differences in social reinstatement indicate that social attraction shows genetic variability from the early stages of life.
Collapse
Affiliation(s)
- Elisabetta Versace
- School of Biological and Behavioural Sciences, Department of Biological and Experimental Psychology, Queen Mary University of London, 327 Mile End Road, E1 4NS, London, UK; Center for Mind/Brain Sciences, University of Trento, Italy.
| | - Morgana Ragusa
- Center for Mind/Brain Sciences, University of Trento, Italy
| | - Virginia Pallante
- Center for Mind/Brain Sciences, University of Trento, Italy; Netherlands Institute for the Study of Crime and Law Enforcement, Amsterdam, the Netherlands
| | - Shuge Wang
- School of Biological and Behavioural Sciences, Department of Biological and Experimental Psychology, Queen Mary University of London, 327 Mile End Road, E1 4NS, London, UK
| |
Collapse
|
12
|
Livermore JJA, Klaassen FH, Bramson B, Hulsman AM, Meijer SW, Held L, Klumpers F, de Voogd LD, Roelofs K. Approach-Avoidance Decisions Under Threat: The Role of Autonomic Psychophysiological States. Front Neurosci 2021; 15:621517. [PMID: 33867915 PMCID: PMC8044748 DOI: 10.3389/fnins.2021.621517] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/10/2021] [Indexed: 12/25/2022] Open
Abstract
Acutely challenging or threatening situations frequently require approach-avoidance decisions. Acute threat triggers fast autonomic changes that prepare the body to freeze, fight or flee. However, such autonomic changes may also influence subsequent instrumental approach-avoidance decisions. Since defensive bodily states are often not considered in value-based decision-making models, it remains unclear how they influence the decision-making process. Here, we aim to bridge this gap by discussing the existing literature on the potential role of threat-induced bodily states on decision making and provide a new neurocomputational framework explaining how these effects can facilitate or bias approach-avoid decisions under threat. Theoretical accounts have stated that threat-induced parasympathetic activity is involved in information gathering and decision making. Parasympathetic dominance over sympathetic activity is particularly seen during threat-anticipatory freezing, an evolutionarily conserved response to threat demonstrated across species and characterized by immobility and bradycardia. Although this state of freezing has been linked to altered information processing and action preparation, a full theoretical treatment of the interactions with value-based decision making has not yet been achieved. Our neural framework, which we term the Threat State/Value Integration (TSI) Model, will illustrate how threat-induced bodily states may impact valuation of competing incentives at three stages of the decision-making process, namely at threat evaluation, integration of rewards and threats, and action initiation. Additionally, because altered parasympathetic activity and decision biases have been shown in anxious populations, we will end with discussing how biases in this system can lead to characteristic patterns of avoidance seen in anxiety-related disorders, motivating future pre-clinical and clinical research.
Collapse
Affiliation(s)
- James J. A. Livermore
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Behavioural Science Institute, Radboud University, Nijmegen, Netherlands
| | - Felix H. Klaassen
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Behavioural Science Institute, Radboud University, Nijmegen, Netherlands
| | - Bob Bramson
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Behavioural Science Institute, Radboud University, Nijmegen, Netherlands
| | - Anneloes M. Hulsman
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Behavioural Science Institute, Radboud University, Nijmegen, Netherlands
| | - Sjoerd W. Meijer
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Behavioural Science Institute, Radboud University, Nijmegen, Netherlands
| | - Leslie Held
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Behavioural Science Institute, Radboud University, Nijmegen, Netherlands
| | - Floris Klumpers
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Behavioural Science Institute, Radboud University, Nijmegen, Netherlands
| | - Lycia D. de Voogd
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Behavioural Science Institute, Radboud University, Nijmegen, Netherlands
| | - Karin Roelofs
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Behavioural Science Institute, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
13
|
Detectability is in the eye of the beholder—the role of UV reflectance on tadpole detection and predation by a passerine bird. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-02983-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Rosa-Salva O, Mayer U, Versace E, Hébert M, Lemaire BS, Vallortigara G. Sensitive periods for social development: Interactions between predisposed and learned mechanisms. Cognition 2021; 213:104552. [PMID: 33402251 DOI: 10.1016/j.cognition.2020.104552] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/08/2020] [Accepted: 12/12/2020] [Indexed: 12/13/2022]
Abstract
We analysed research that makes use of precocial species as animal models to describe the interaction of predisposed mechanisms and environmental factors in early learning, in particular for the development of social cognition. We also highlight the role of sensitive periods in this interaction, focusing on domestic chicks as one of the main animal models for this field. In the first section of the review, we focus on the emergence of early predispositions to attend to social partners. These attentional biases appear before any learning experience about social stimuli. However, non-specific experiences occurring during sensitive periods of the early post-natal life determine the emergence of these predisposed mechanisms for the detection of social partners. Social predispositions have an important role for the development learning-based social cognitive functions, showing the interdependence of predisposed and learned mechanisms in shaping social development. In the second part of the review we concentrate on the reciprocal interactions between filial imprinting and spontaneous (not learned) social predispositions. Reciprocal influences between these two sets of mechanisms ensure that, in the natural environment, filial imprinting will target appropriate social objects. Neural and physiological mechanisms regulating the sensitive periods for the emergence of social predispositions and for filial imprinting learning are also described.
Collapse
Affiliation(s)
- Orsola Rosa-Salva
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura 1, 38068 Rovereto, TN, Italy
| | - Uwe Mayer
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura 1, 38068 Rovereto, TN, Italy
| | - Elisabetta Versace
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura 1, 38068 Rovereto, TN, Italy; Department of Biological and Experimental Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, 327 Mile End Road, London E1 4NS, United Kingdom
| | - Marie Hébert
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura 1, 38068 Rovereto, TN, Italy
| | - Bastien S Lemaire
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura 1, 38068 Rovereto, TN, Italy
| | - Giorgio Vallortigara
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura 1, 38068 Rovereto, TN, Italy.
| |
Collapse
|
15
|
Background choice and immobility as context dependent tadpole responses to perceived predation risk. Sci Rep 2020; 10:13577. [PMID: 32782286 PMCID: PMC7419541 DOI: 10.1038/s41598-020-70274-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/19/2020] [Indexed: 11/12/2022] Open
Abstract
The association of immobility and camouflage is widespread as a defensive mechanism in prey from varied taxa. However, many experiments assessing the reaction of prey to predator cues are conducted under artificial laboratory conditions. In a previous experiment we observed the tadpoles of Ololygon machadoi (Hylidae) to respond to predator visual and/or chemical cues by choosing backgrounds that improve their disruptive properties, but detected no associated reduction of movement. Here we experimentally demonstrate this response in the species' natural habitat, on backgrounds where the tadpoles are likely to achieve their best camouflage. We also tested whether previous experiences could influence both background choice and immobility in O. machadoi tadpoles. These novel experimental results suggest that a defensive behavior—i.e., reduction of movement—in these tadpoles is more strongly expressed under the natural conditions where they evolved, compared to laboratory conditions where prey and predator were brought into closer contact. Besides, previous experiences are likely to play an important role in expressed defensive responses.
Collapse
|
16
|
Bandini E, Motes-Rodrigo A, Steele MP, Rutz C, Tennie C. Examining the mechanisms underlying the acquisition of animal tool behaviour. Biol Lett 2020; 16:20200122. [PMID: 32486940 PMCID: PMC7336849 DOI: 10.1098/rsbl.2020.0122] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite major advances in the study of animal tool behaviour, researchers continue to debate how exactly certain behaviours are acquired. While specific mechanisms, such as genetic predispositions or action copying, are sometimes suspected to play a major role in behavioural acquisition, controlled experiments are required to provide conclusive evidence. In this opinion piece, we refer to classic ethological methodologies to emphasize the need for studying the relative contributions of different factors to the emergence of specific tool behaviours. We describe a methodology, consisting of a carefully staged series of baseline and social-learning conditions, that enables us to tease apart the roles of different mechanisms in the development of behavioural repertoires. Experiments employing our proposed methodology will not only advance our understanding of animal learning and culture, but as a result, will also help inform hypotheses about human cognitive, cultural and technological evolution. More generally, our conceptual framework is suitable for guiding the detailed investigation of other seemingly complex animal behaviours.
Collapse
Affiliation(s)
- Elisa Bandini
- Department for Early Prehistory and Quaternary Ecology, The University of Tübingen, Tübingen 72070, Germany
| | - Alba Motes-Rodrigo
- Department for Early Prehistory and Quaternary Ecology, The University of Tübingen, Tübingen 72070, Germany
| | - Matthew P Steele
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, UK
| | - Christian Rutz
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, UK
| | - Claudio Tennie
- Department for Early Prehistory and Quaternary Ecology, The University of Tübingen, Tübingen 72070, Germany
| |
Collapse
|
17
|
Bertels J, Bourguignon M, de Heering A, Chetail F, De Tiège X, Cleeremans A, Destrebecqz A. Snakes elicit specific neural responses in the human infant brain. Sci Rep 2020; 10:7443. [PMID: 32366886 PMCID: PMC7198620 DOI: 10.1038/s41598-020-63619-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/27/2020] [Indexed: 12/17/2022] Open
Abstract
Detecting predators is essential for survival. Given that snakes are the first of primates' major predators, natural selection may have fostered efficient snake detection mechanisms to allow for optimal defensive behavior. Here, we provide electrophysiological evidence for a brain-anchored evolved predisposition to rapidly detect snakes in humans, which does not depend on previous exposure or knowledge about snakes. To do so, we recorded scalp electrical brain activity in 7- to 10-month-old infants watching sequences of flickering animal pictures. All animals were presented in their natural background. We showed that glancing at snakes generates specific neural responses in the infant brain, that are higher in amplitude than those generated by frogs or caterpillars, especially in the occipital region of the brain. The temporal dynamics of these neural responses support that infants devote increased attention to snakes than to non-snake stimuli. These results therefore demonstrate that a single fixation at snakes is sufficient to generate a prompt and large selective response in the infant brain. They argue for the existence in humans of an inborn, brain-anchored mechanism to swiftly detect snakes based on their characteristic visual features.
Collapse
Affiliation(s)
- J Bertels
- Consciousness, Cognition and Computation Group (CO3), Center for Research in Cognition and Neurosciences (CRCN), ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium. .,Laboratoire de Cartographie Fonctionnelle du Cerveau (LCFC), ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | - M Bourguignon
- Laboratoire de Cartographie Fonctionnelle du Cerveau (LCFC), ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - A de Heering
- Consciousness, Cognition and Computation Group (CO3), Center for Research in Cognition and Neurosciences (CRCN), ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - F Chetail
- Laboratoire Cognition Langage Développement (LCLD), Center for Research in Cognition and Neurosciences (CRCN), ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - X De Tiège
- Laboratoire de Cartographie Fonctionnelle du Cerveau (LCFC), ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - A Cleeremans
- Consciousness, Cognition and Computation Group (CO3), Center for Research in Cognition and Neurosciences (CRCN), ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - A Destrebecqz
- Consciousness, Cognition and Computation Group (CO3), Center for Research in Cognition and Neurosciences (CRCN), ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
18
|
Glazier DS, Borrelli JJ, Hoffman CL. Effects of Fish Predators on the Mass-Related Energetics of a Keystone Freshwater Crustacean. BIOLOGY 2020; 9:biology9030040. [PMID: 32106435 PMCID: PMC7150980 DOI: 10.3390/biology9030040] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/16/2020] [Accepted: 02/21/2020] [Indexed: 11/28/2022]
Abstract
Little is known about how predators or their cues affect the acquisition and allocation of energy throughout the ontogeny of prey organisms. To address this question, we have been comparing the ontogenetic body-mass scaling of various traits related to energy intake and use between populations of a keystone amphipod crustacean inhabiting freshwater springs, with versus without fish predators. In this progress report, we analyze new and previously reported data to develop a synthetic picture of how the presence/absence of fish predators affects the scaling of food assimilation, fat content, metabolism, growth and reproduction in populations of Gammarus minus located in central Pennsylvania (USA). Our analysis reveals two major clusters of ‘symmorphic allometry’ (parallel scaling relationships) for traits related to somatic versus reproductive investment. In the presence of fish predators, the scaling exponents for somatic traits tend to decrease, whereas those for reproductive traits tend to increase. This divergence of scaling exponents reflects an intensified trade-off between somatic and reproductive investments resulting from low adult survival in the face of size-selective predation. Our results indicate the value of an integrated view of the ontogenetic size-specific energetics of organisms and its response to both top-down (predation) and bottom-up (resource supply) effects.
Collapse
Affiliation(s)
- Douglas S. Glazier
- Department of Biology, Juniata College, Huntingdon, PA 16652, USA
- Correspondence: ; Tel.: +1-814-641-3584
| | - Jonathan J. Borrelli
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA;
| | - Casandra L. Hoffman
- Department of Pediatrics, School of Medicine, University of Virginia, Charlottesville, VI 22908, USA;
| |
Collapse
|
19
|
Abstract
Using appropriate antipredatory responses is crucial for survival. While slowing down reduces the chances of being detected from distant predators, fleeing away is advantageous in front of an approaching predator. Whether appropriate responses depend on experience with moving objects is still an open question. To clarify whether adopting appropriate fleeing or freezing responses requires previous experience, we investigated responses of chicks naive to movement. When exposed to the moving cues mimicking an approaching predator (a rapidly expanding, looming stimulus), chicks displayed a fast escape response. In contrast, when presented with a distal threat (a small stimulus sweeping overhead) they decreased their speed, a maneuver useful to avoid detection. The fast expansion of the stimulus toward the subject, rather than its size per se or change in luminance, triggered the escape response. These results show that young animals, in the absence of previous experience, can use motion cues to select the appropriate responses to different threats. The adaptive needs of young preys are thus matched by spontaneous defensive mechanisms that do not require learning.
Collapse
|