1
|
Lembo A, Molinaro A, De Castro C, Berti F, Biagini M. Impact of glycosylation on viral vaccines. Carbohydr Polym 2024; 342:122402. [PMID: 39048237 DOI: 10.1016/j.carbpol.2024.122402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/24/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024]
Abstract
Glycosylation is the most prominent modification important for vaccines and its specific pattern depends on several factors that need to be considered when developing a new biopharmaceutical. Tailor-made glycosylation can be exploited to develop more effective and safer vaccines; for this reason, a deep understanding of both glycoengineering strategies and glycans structures and functions is required. In this review we discuss the recent advances concerning glycoprotein expression systems and the explanation of glycans immunomodulation mechanisms. Furthermore, we highlight how glycans tune the immunological properties among different vaccines platforms (whole virus, recombinant protein, nucleic acid), also comparing commercially available formulations and describing the state-of-the-art analytical technologies for glycosylation analysis. The whole review stresses the aspect of glycoprotein glycans as a potential tool to overcome nowadays medical needs in vaccine field.
Collapse
Affiliation(s)
- Antonio Lembo
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy; GSK, Siena, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Cristina De Castro
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy.
| | | | | |
Collapse
|
2
|
Zhang X, Sun Y, Zhang J, Wei H, Wang J, Hu C, Liu Y, Cai S, Yuan Q, Wang Y, Sun Y, Yang S, Jiang D, Yang K. Lysosome-Associated Membrane Protein Targeting Strategy Improved Immunogenicity of Glycoprotein-Based DNA Vaccine for Marburg Virus. Vaccines (Basel) 2024; 12:1013. [PMID: 39340043 PMCID: PMC11436145 DOI: 10.3390/vaccines12091013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Marburg hemorrhagic fever (MHF) is a fatal infectious disease caused by Marburg virus (MARV) infection, and MARV has been identified as a priority pathogen for vaccine development by the WHO. The glycoprotein (GP) of MARV mediates viral adhesion and invasion of host cells and therefore can be used as an effective target for vaccine development. Moreover, DNA vaccines have unique advantages, such as simple construction processes, low production costs, and few adverse reactions, but their immunogenicity may decrease due to the poor absorption rate of plasmids. Lysosome-associated membrane protein 1 (LAMP1) can direct antigens to lysosomes and endosomes and has great potential for improving the immunogenicity of nucleic acid vaccines. Therefore, we constructed a DNA vaccine based on a codon-optimized MARV GP (ID MF939097.1) fused with LAMP1 and explored the effect of a LAMP targeting strategy on improving the immunogenicity of the MARV DNA vaccine. ELISA, ELISpot, and flow cytometry revealed that the introduction of LAMP1 into the MARV DNA candidate vaccine improved the humoral and cellular immune response, enhanced the secretion of cytokines, and established long-term immune protection. Transcriptome analysis revealed that the LAMP targeting strategy significantly enriched antigen processing and presentation-related pathways, especially the MHC class II-related pathway, in the candidate vaccine. Our study broadens the strategic vision for enhanced DNA vaccine design and provides a promising candidate vaccine for MHF prevention.
Collapse
Affiliation(s)
- Xiyang Zhang
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (The Fourth Military Medical University), Xi'an 710032, China
- Military Medical Innovation Center, Air Force Medical University (The Fourth Military Medical University), Xi'an 710032, China
| | - Yubo Sun
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (The Fourth Military Medical University), Xi'an 710032, China
| | - Junqi Zhang
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (The Fourth Military Medical University), Xi'an 710032, China
| | - Hengzheng Wei
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (The Fourth Military Medical University), Xi'an 710032, China
| | - Jing Wang
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (The Fourth Military Medical University), Xi'an 710032, China
| | - Chenchen Hu
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (The Fourth Military Medical University), Xi'an 710032, China
| | - Yang Liu
- Institute of AIDS Prevention and Control, Shaanxi Provincial Center for Disease Control and Prevention, Xi'an 710054, China
| | - Sirui Cai
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (The Fourth Military Medical University), Xi'an 710032, China
| | - Qinghong Yuan
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (The Fourth Military Medical University), Xi'an 710032, China
| | - Yueyue Wang
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (The Fourth Military Medical University), Xi'an 710032, China
| | - Yuanjie Sun
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (The Fourth Military Medical University), Xi'an 710032, China
| | - Shuya Yang
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (The Fourth Military Medical University), Xi'an 710032, China
| | - Dongbo Jiang
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (The Fourth Military Medical University), Xi'an 710032, China
| | - Kun Yang
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air Force Medical University (The Fourth Military Medical University), Xi'an 710032, China
| |
Collapse
|
3
|
Wang Q, Nag D, Baldwin SL, Coler RN, McNamara RP. Antibodies as key mediators of protection against Mycobacterium tuberculosis. Front Immunol 2024; 15:1430955. [PMID: 39286260 PMCID: PMC11402706 DOI: 10.3389/fimmu.2024.1430955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024] Open
Abstract
Tuberculosis (TB) is caused by infection with the bacterial pathogen Mycobacterium tuberculosis (M.tb) in the respiratory tract. There was an estimated 10.6 million people newly diagnosed with TB, and there were approximately 1.3 million deaths caused by TB in 2022. Although the global prevalence of TB has remained high for decades and is an annual leading cause of death attributed to infectious diseases, only one vaccine, Bacillus Calmette-Guérin (BCG), has been approved so far to prevent/attenuate TB disease. Correlates of protection or immunological mechanisms that are needed to control M.tb remain unknown. The protective role of antibodies after BCG vaccination has also remained largely unclear; however, recent studies have provided evidence for their involvement in protection against disease, as biomarkers for the state of infection, and as potential predictors of outcomes. Interestingly, the antibodies generated post-vaccination with BCG are linked to the activation of innate immune cascades, providing further evidence that antibody effector functions are critical for protection against respiratory pathogens such as M.tb. In this review, we aim to provide current knowledge of antibody application in TB diagnosis, prevention, and treatment. Particularly, this review will focus on 1) The role of antibodies in preventing M.tb infections through preventing Mtb adherence to epithelium, antibody-mediated phagocytosis, and antibody-mediated cellular cytotoxicity; 2) The M.tb-directed antibody response generated after vaccination and how humoral profiles with different glycosylation patterns of these antibodies are linked with protection against the disease state; and 3) How antibody-mediated immunity against M.tb can be further explored as early diagnosis biomarkers and different detection methods to combat the global M.tb burden. Broadening the paradigm of differentiated antibody profiling and antibody-based detection during TB disease progression offers new directions for diagnosis, treatment, and preventative strategies. This approach involves linking the aforementioned humoral responses with the disease state, progression, and clearance.
Collapse
Affiliation(s)
- Qixin Wang
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, United States
| | - Deepika Nag
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Susan L. Baldwin
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Rhea N. Coler
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Ryan P. McNamara
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, United States
| |
Collapse
|
4
|
Tian Y, Deng Z, Chuai Z, Li C, Chang L, Sun F, Cao R, Yu H, Xiao R, Lu S, Xu Y, Yang P. A combination influenza mRNA vaccine candidate provided broad protection against diverse influenza virus challenge. Virology 2024; 596:110125. [PMID: 38805804 DOI: 10.1016/j.virol.2024.110125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024]
Abstract
Influenza viruses present a significant threat to global health. The production of a universal vaccine is considered essential due to the ineffectiveness of current seasonal influenza vaccines against mutant strains. mRNA technology offers new prospects in vaccinology, with various candidates for different infectious diseases currently in development and testing phases. In this study, we encapsulated a universal influenza mRNA vaccine. The vaccine encoded influenza hemagglutinin (HA), nucleoprotein (NP), and three tandem repeats of matrix protein 2 (3M2e). Twice-vaccinated mice exhibited strong humoral and cell-mediated immune responses in vivo. Notably, these immune responses led to a significant reduction in viral load of the lungs in challenged mice, and also conferred protection against future wild-type H1N1, H3N2, or H5N1 influenza virus challenges. Our findings suggest that this mRNA-universal vaccine strategy for influenza virus may be instrumental in mitigating the impact of future influenza pandemics.
Collapse
MESH Headings
- Animals
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Mice
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/virology
- Antibodies, Viral/immunology
- Mice, Inbred BALB C
- mRNA Vaccines/immunology
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Viral Matrix Proteins/immunology
- Viral Matrix Proteins/genetics
- Female
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Cross Protection/immunology
- Viral Load
- Lung/virology
- Lung/immunology
- Humans
- Viroporin Proteins
Collapse
Affiliation(s)
- Yuying Tian
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China; School of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Zhuoya Deng
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zhengran Chuai
- The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Cong Li
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China; School of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Liangzheng Chang
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Fang Sun
- The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Rui Cao
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China; School of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Hongyu Yu
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China; School of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Ruixue Xiao
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China; School of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Shuai Lu
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yan Xu
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Penghui Yang
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China; School of Basic Medicine, Inner Mongolia Medical University, Hohhot, China.
| |
Collapse
|
5
|
Gutierrez Reyes CD, Alejo-Jacuinde G, Perez Sanchez B, Chavez Reyes J, Onigbinde S, Mogut D, Hernández-Jasso I, Calderón-Vallejo D, Quintanar JL, Mechref Y. Multi Omics Applications in Biological Systems. Curr Issues Mol Biol 2024; 46:5777-5793. [PMID: 38921016 PMCID: PMC11202207 DOI: 10.3390/cimb46060345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Traditional methodologies often fall short in addressing the complexity of biological systems. In this regard, system biology omics have brought invaluable tools for conducting comprehensive analysis. Current sequencing capabilities have revolutionized genetics and genomics studies, as well as the characterization of transcriptional profiling and dynamics of several species and sample types. Biological systems experience complex biochemical processes involving thousands of molecules. These processes occur at different levels that can be studied using mass spectrometry-based (MS-based) analysis, enabling high-throughput proteomics, glycoproteomics, glycomics, metabolomics, and lipidomics analysis. Here, we present the most up-to-date techniques utilized in the completion of omics analysis. Additionally, we include some interesting examples of the applicability of multi omics to a variety of biological systems.
Collapse
Affiliation(s)
| | - Gerardo Alejo-Jacuinde
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX 79409, USA; (G.A.-J.); (B.P.S.)
| | - Benjamin Perez Sanchez
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX 79409, USA; (G.A.-J.); (B.P.S.)
| | - Jesus Chavez Reyes
- Center of Basic Sciences, Department of Physiology and Pharmacology, Autonomous University of Aguascalientes, Aguascalientes 20392, Mexico; (J.C.R.); (I.H.-J.); (D.C.-V.); (J.L.Q.)
| | - Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA;
| | - Damir Mogut
- Department of Food Biochemistry, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Irma Hernández-Jasso
- Center of Basic Sciences, Department of Physiology and Pharmacology, Autonomous University of Aguascalientes, Aguascalientes 20392, Mexico; (J.C.R.); (I.H.-J.); (D.C.-V.); (J.L.Q.)
| | - Denisse Calderón-Vallejo
- Center of Basic Sciences, Department of Physiology and Pharmacology, Autonomous University of Aguascalientes, Aguascalientes 20392, Mexico; (J.C.R.); (I.H.-J.); (D.C.-V.); (J.L.Q.)
| | - J. Luis Quintanar
- Center of Basic Sciences, Department of Physiology and Pharmacology, Autonomous University of Aguascalientes, Aguascalientes 20392, Mexico; (J.C.R.); (I.H.-J.); (D.C.-V.); (J.L.Q.)
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA;
| |
Collapse
|
6
|
Pfeifer BA, Beitelshees M, Hill A, Bassett J, Jones CH. Harnessing synthetic biology for advancing RNA therapeutics and vaccine design. NPJ Syst Biol Appl 2023; 9:60. [PMID: 38036580 PMCID: PMC10689799 DOI: 10.1038/s41540-023-00323-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
Recent global events have drawn into focus the diversity of options for combatting disease across a spectrum of prophylactic and therapeutic approaches. The recent success of the mRNA-based COVID-19 vaccines has paved the way for RNA-based treatments to revolutionize the pharmaceutical industry. However, historical treatment options are continuously updated and reimagined in the context of novel technical developments, such as those facilitated through the application of synthetic biology. When it comes to the development of genetic forms of therapies and vaccines, synthetic biology offers diverse tools and approaches to influence the content, dosage, and breadth of treatment with the prospect of economic advantage provided in time and cost benefits. This can be achieved by utilizing the broad tools within this discipline to enhance the functionality and efficacy of pharmaceutical agent sequences. This review will describe how synthetic biology principles can augment RNA-based treatments through optimizing not only the vaccine antigen, therapeutic construct, therapeutic activity, and delivery vector. The enhancement of RNA vaccine technology through implementing synthetic biology has the potential to shape the next generation of vaccines and therapeutics.
Collapse
Affiliation(s)
- Blaine A Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | | | - Andrew Hill
- Pfizer, 66 Hudson Boulevard, New York, NY, 10001, USA
| | - Justin Bassett
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | | |
Collapse
|
7
|
Baghaie L, Leroy F, Sheikhi M, Jafarzadeh A, Szewczuk MR, Sheikhi A. Contemporaneous SARS-CoV-2-Neutralizing Antibodies Mediated by N-glycan Shields. Viruses 2023; 15:2079. [PMID: 37896856 PMCID: PMC10612084 DOI: 10.3390/v15102079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Mutations and the glycosylation of epitopes can convert immunogenic epitopes into non-immunogenic ones via natural selection or evolutionary pressure, thereby decreasing their sensitivity to neutralizing antibodies. Based on Thomas Francis's theory, memory B and T cells induced during primary infections or vaccination will freeze the new mutated epitopes specific to naïve B and T cells from the repertoire. On this basis, some researchers argue that the current vaccines derived from the previous strains of the SARS-CoV-2 virus do not increase immunity and may also prevent the immune response against new epitopes. However, evidence shows that even if the binding affinity is reduced, the previous antibodies or T cell receptors (TCRs) can still bind to this new epitope of the Beta, Gamma, and Delta variant if their concentration is high enough (from a booster injection) and neutralize the virus. This paper presents some convincing immunological reasons that may challenge this theory and argue for the continuation of universal vaccination to prevent further mutations of the SARS-CoV-2 virus. Simultaneously, the information presented can be used to develop vaccines that target novel epitopes or create new recombinant drugs that do not lose their effectiveness when the virus mutates.
Collapse
Affiliation(s)
- Leili Baghaie
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Fleur Leroy
- Faculté de Médecine, Maïeutique et Sciences de la Santé, Université de Strasbourg, F-67000 Strasbourg, France;
| | - Mehdi Sheikhi
- Department of Immunology, School of Medicine, Dezful University of Medical Sciences, Dezful 64616-43993, Iran;
- Faculty of Medicine, Kazeroon Azad University, Kazeroon 14778-93855, Iran
| | - Abdollah Jafarzadeh
- Department of Immunology, Medical School, Kerman University of Medical Sciences, Kerman 76169-13555, Iran;
| | - Myron R. Szewczuk
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Abdolkarim Sheikhi
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada;
- Department of Immunology, School of Medicine, Dezful University of Medical Sciences, Dezful 64616-43993, Iran;
| |
Collapse
|
8
|
Daramola O, Gutierrez-Reyes CD, Wang J, Nwaiwu J, Onigbinde S, Fowowe M, Dominguez M, Mechref Y. Isomeric separation of native N-glycans using nano zwitterionic- hydrophilic interaction liquid chromatography column. J Chromatogr A 2023; 1705:464198. [PMID: 37442073 DOI: 10.1016/j.chroma.2023.464198] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
Changes in the expression of glycan isomers have been implicated in the development and progression of several diseases. However, the analysis of structurally diverse isomeric N-glycans by LC-MS/MS is still a major analytical challenge, particularly due to their large number of possible isomeric conformations. Common approaches derivatized the N-glycans to increase their hydrophobicity and to gain better detection in the MS system. Unfortunately, glycan derivatization is time-consuming and, in many cases, adds complexity because of the multiple reaction and cleaning steps, incomplete chemical labeling, possible degradation, and unwanted side reactions. Thus, analysis of native glycans, especially for samples with low abundance by LC-MS/MS, is desirable. Normal phase chromatography, which employs HILIC stationary phase, has been commonly employed for the identification and separation of labeled glycans. In this study, we focused on achieving efficient isomeric separation of native N-glycans using a nano ZIC-HILIC column commonly employed to separate labeled glycans and glycopeptides. Underivatized sialylated and oligomannose N-glycans derived from bovine fetuin and Ribonuclease B were initially utilized to optimize chromatographic conditions, including column temperature, pH of mobile phases, and gradient elution time. The optimized condition was then applied for the isomeric separation of native N-glycans derived from alpha-1 acid glycoprotein, as well as from biological samples. Finally, we confirmed the stability and reproducibility of the ZIC-HILIC column by performing run-to-run comparisons of the full width at half height (FWHM) and retention time on different N-glycans. The variability in FWHM was less than 0.5 min, while that of retention time was less than 1.0 min with %RSD less than 1.0%.
Collapse
Affiliation(s)
- Oluwatosin Daramola
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | | | - Junyao Wang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Judith Nwaiwu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Mojibola Fowowe
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Michael Dominguez
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA.
| |
Collapse
|
9
|
John A, M Bader S, Madiedo Soler N, Wiradiputri K, Tichkule S, Smyth ST, Ralph SA, Jex AR, Scott NE, Tonkin CJ, Goddard-Borger ED. Conservation, abundance, glycosylation profile, and localization of the TSP protein family in Cryptosporidium parvum. J Biol Chem 2023; 299:103006. [PMID: 36775128 PMCID: PMC10034466 DOI: 10.1016/j.jbc.2023.103006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Cryptosporidium parvum is a zoonotic apicomplexan parasite and a common cause of diarrheal disease worldwide. The development of vaccines to prevent or limit infection remains an important goal for tackling cryptosporidiosis. At present, the only approved vaccine against any apicomplexan parasite targets a conserved adhesin possessing a thrombospondin repeat domain. C. parvum possesses 12 orthologous thrombospondin repeat domain-containing proteins known as CpTSP1-12, though little is known about these potentially important antigens. Here, we explore the architecture and conservation of the CpTSP protein family, as well as their abundance at the protein level within the sporozoite stage of the life cycle. We examine the glycosylation states of these proteins using a combination of glycopeptide enrichment techniques to demonstrate that these proteins are modified with C-, O-, and N-linked glycans. Using expansion microscopy, and an antibody against the C-linked mannose that is unique to the CpTSP protein family within C. parvum, we show that these proteins are found both on the cell surface and in structures that resemble the secretory pathway of C. parvum sporozoites. Finally, we generated a polyclonal antibody against CpTSP1 to show that it is found at the cell surface and within micronemes, in a pattern reminiscent of other apicomplexan motility-associated adhesins, and is present both in sporozoites and meronts. This work sheds new light on an understudied family of C. parvum proteins that are likely to be important to both parasite biology and the development of vaccines against cryptosporidiosis.
Collapse
Affiliation(s)
- Alan John
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Stefanie M Bader
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Niccolay Madiedo Soler
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Kharizta Wiradiputri
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Swapnil Tichkule
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Sean T Smyth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Stuart A Ralph
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Aaron R Jex
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia.
| | - Christopher J Tonkin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
| | - Ethan D Goddard-Borger
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
10
|
Ozdilek A, Avci FY. Glycosylation as a key parameter in the design of nucleic acid vaccines. Curr Opin Struct Biol 2022; 73:102348. [PMID: 35255387 PMCID: PMC8957583 DOI: 10.1016/j.sbi.2022.102348] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/25/2022] [Accepted: 01/30/2022] [Indexed: 01/21/2023]
Abstract
Vaccine-induced immunity is expected to target the native antigens expressed by the pathogens. Therefore, it is highly important to generate vaccine antigens that are immunologically indistinguishable from the native antigens. Nucleic acid vaccines, comprised of DNA, mRNA, or recombinant viral vector vaccines, introduce the genetic material encoding the antigenic protein for the host to express. Because these proteins will undergo host posttranslational modifications, host glycosylation can potentially alter the structure and immunological efficacy of the antigen. In this review, we discuss the potential impact of host protein glycosylation on the immune responses generated by nucleic acid vaccines against bacterial and viral pathogens.
Collapse
Affiliation(s)
- Ahmet Ozdilek
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, The University of Georgia, Athens, Georgia, USA
| | - Fikri Y Avci
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, The University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
11
|
Yang C, Zhao H, Sun Y, Wang C, Geng X, Wang R, Tang L, Han D, Liu J, Tan W. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3083-3095. [PMID: 35293579 PMCID: PMC8989545 DOI: 10.1093/nar/gkac156] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/24/2022] [Accepted: 02/19/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
| | | | | | - Cheng Wang
- Institute of Molecular Medicine (IMM), Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xinyao Geng
- Institute of Molecular Medicine (IMM), Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ruowen Wang
- To whom correspondence should be addressed. Tel: +86 02168385698; Fax:+86 02168385698;
| | - Lumin Tang
- Institute of Molecular Medicine (IMM), Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Da Han
- Institute of Molecular Medicine (IMM), Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jianjun Liu
- Correspondence may also be addressed to Jianjun Liu.
| | - Weihong Tan
- Correspondence may also be addressed to Weihong Tan.
| |
Collapse
|
12
|
Maharjan PM, Choe S. Plant-Based COVID-19 Vaccines: Current Status, Design, and Development Strategies of Candidate Vaccines. Vaccines (Basel) 2021; 9:992. [PMID: 34579229 PMCID: PMC8473425 DOI: 10.3390/vaccines9090992] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 01/01/2023] Open
Abstract
The prevalence of the coronavirus disease 2019 (COVID-19) pandemic in its second year has led to massive global human and economic losses. The high transmission rate and the emergence of diverse SARS-CoV-2 variants demand rapid and effective approaches to preventing the spread, diagnosing on time, and treating affected people. Several COVID-19 vaccines are being developed using different production systems, including plants, which promises the production of cheap, safe, stable, and effective vaccines. The potential of a plant-based system for rapid production at a commercial scale and for a quick response to an infectious disease outbreak has been demonstrated by the marketing of carrot-cell-produced taliglucerase alfa (Elelyso) for Gaucher disease and tobacco-produced monoclonal antibodies (ZMapp) for the 2014 Ebola outbreak. Currently, two plant-based COVID-19 vaccine candidates, coronavirus virus-like particle (CoVLP) and Kentucky Bioprocessing (KBP)-201, are in clinical trials, and many more are in the preclinical stage. Interim phase 2 clinical trial results have revealed the high safety and efficacy of the CoVLP vaccine, with 10 times more neutralizing antibody responses compared to those present in a convalescent patient's plasma. The clinical trial of the CoVLP vaccine could be concluded by the end of 2021, and the vaccine could be available for public immunization thereafter. This review encapsulates the efforts made in plant-based COVID-19 vaccine development, the strategies and technologies implemented, and the progress accomplished in clinical trials and preclinical studies so far.
Collapse
Affiliation(s)
- Puna Maya Maharjan
- G+FLAS Life Sciences, 123 Uiryodanji-gil, Osong-eup, Heungdeok-gu, Cheongju-si 28161, Korea;
| | - Sunghwa Choe
- G+FLAS Life Sciences, 38 Nakseongdae-ro, Gwanak-gu, Seoul 08790, Korea
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Gwanak-gu, Seoul 08826, Korea
| |
Collapse
|
13
|
Maharjan PM, Cheon J, Jung J, Kim H, Lee J, Song M, Jeong GU, Kwon Y, Shim B, Choe S. Plant-Expressed Receptor Binding Domain of the SARS-CoV-2 Spike Protein Elicits Humoral Immunity in Mice. Vaccines (Basel) 2021; 9:978. [PMID: 34579215 PMCID: PMC8472882 DOI: 10.3390/vaccines9090978] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/20/2022] Open
Abstract
The current 15-month coronavirus disease-19 (COVID-19) pandemic caused by SARS-CoV-2 has accounted for 3.77 million deaths and enormous worldwide social and economic losses. A high volume of vaccine production is urgently required to eliminate COVID-19. Inexpensive and robust production platforms will improve the distribution of vaccines to resource-limited countries. Plant species offer such platforms, particularly through the production of recombinant proteins to serve as immunogens. To achieve this goal, here we expressed the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) protein in the glycoengineered-tobacco plant Nicotiana benthamiana to provide a candidate subunit vaccine. This recombinant RBD elicited humoral immunity in mice via induction of highly neutralizing antibodies. These findings provide a strong foundation to further advance the development of plant-expressed RBD antigens for use as an effective, safe, and inexpensive SARS-CoV-2 vaccine. Moreover, our study further highlights the utility of plant species for vaccine development.
Collapse
Affiliation(s)
- Puna Maya Maharjan
- G+FLAS Life Sciences, 123 Uiryodanji-gil, Osong-eup, Heungdeok-gu, Cheongju-si 28161, Korea; (P.M.M.); (J.L.); (M.S.)
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Gwanak-gu, Seoul 08826, Korea
| | - Jinyeong Cheon
- G+FLAS Life Sciences, 38 Nakseongdae-ro, Gwanak-gu, Seoul 08790, Korea; (J.C.); (J.J.); (H.K.)
| | - Jiyun Jung
- G+FLAS Life Sciences, 38 Nakseongdae-ro, Gwanak-gu, Seoul 08790, Korea; (J.C.); (J.J.); (H.K.)
| | - Haerim Kim
- G+FLAS Life Sciences, 38 Nakseongdae-ro, Gwanak-gu, Seoul 08790, Korea; (J.C.); (J.J.); (H.K.)
| | - Jaewon Lee
- G+FLAS Life Sciences, 123 Uiryodanji-gil, Osong-eup, Heungdeok-gu, Cheongju-si 28161, Korea; (P.M.M.); (J.L.); (M.S.)
| | - Minjeong Song
- G+FLAS Life Sciences, 123 Uiryodanji-gil, Osong-eup, Heungdeok-gu, Cheongju-si 28161, Korea; (P.M.M.); (J.L.); (M.S.)
| | - Gi Uk Jeong
- Center for Convergent Research for Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; (G.U.J.); (Y.K.)
| | - Youngchan Kwon
- Center for Convergent Research for Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; (G.U.J.); (Y.K.)
| | - Byoungshik Shim
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea;
| | - Sunghwa Choe
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Gwanak-gu, Seoul 08826, Korea
- G+FLAS Life Sciences, 38 Nakseongdae-ro, Gwanak-gu, Seoul 08790, Korea; (J.C.); (J.J.); (H.K.)
| |
Collapse
|
14
|
Ojha R, Prajapati VK. Cognizance of posttranslational modifications in vaccines: A way to enhanced immunogenicity. J Cell Physiol 2021; 236:8020-8034. [PMID: 34170014 PMCID: PMC8427110 DOI: 10.1002/jcp.30483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/21/2021] [Accepted: 06/14/2021] [Indexed: 12/25/2022]
Abstract
Vaccination is a significant advancement or preventative strategy for controlling the spread of various severe infectious and noninfectious diseases. The purpose of vaccination is to stimulate or activate the immune system by injecting antigens, i.e., either whole microorganisms or using the pathogen's antigenic part or macromolecules. Over time, researchers have made tremendous efforts to reduce vaccine side effects or failure by developing different strategies combining with immunoinformatic and molecular biology. These newly designed vaccines are composed of single or several antigenic molecules derived from a pathogenic organism. Although, whole‐cell vaccines are still in use against various diseases but due to their ineffectiveness, other vaccines like DNA‐based, RNA‐based, and protein‐based vaccines, with the addition of immunostimulatory agents, are in the limelight. Despite this, many researchers escape the most common fundamental phenomenon of protein posttranslational modifications during the development of vaccines, which regulates protein functional behavior, evokes immunogenicity and stability, etc. The negligence about post translational modification (PTM) during vaccine development may affect the vaccine's efficacy and immune responses. Therefore, it becomes imperative to consider these modifications of macromolecules before finalizing the antigenic vaccine construct. Here, we have discussed different types of posttranslational/transcriptional modifications that are usually considered during vaccine construct designing: Glycosylation, Acetylation, Sulfation, Methylation, Amidation, SUMOylation, Ubiquitylation, Lipidation, Formylation, and Phosphorylation. Based on the available research information, we firmly believe that considering these modifications will generate a potential and highly immunogenic antigenic molecule against communicable and noncommunicable diseases compared to the unmodified macromolecules.
Collapse
Affiliation(s)
- Rupal Ojha
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
15
|
Mayer RL, Impens F. Immunopeptidomics for next-generation bacterial vaccine development. Trends Microbiol 2021; 29:1034-1045. [PMID: 34030969 DOI: 10.1016/j.tim.2021.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022]
Abstract
Antimicrobial resistance is an increasing global threat and alternative treatments substituting failing antibiotics are urgently needed. Vaccines are recognized as highly effective tools to mitigate antimicrobial resistance; however, the selection of bacterial antigens as vaccine candidates remains challenging. In recent years, advances in mass spectrometry-based proteomics have led to the development of so-called immunopeptidomics approaches that allow the untargeted discovery of bacterial epitopes that are presented on the surface of infected cells. Especially for intracellular bacterial pathogens, immunopeptidomics holds great promise to uncover antigens that can be encoded in viral vector- or nucleic acid-based vaccines. This review provides an overview of immunopeptidomics studies on intracellular bacterial pathogens and considers future directions and challenges in advancing towards next-generation vaccines.
Collapse
Affiliation(s)
- Rupert L Mayer
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB Proteomics Core, VIB, Ghent, Belgium
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB Proteomics Core, VIB, Ghent, Belgium.
| |
Collapse
|
16
|
Delafield DG, Li L. Recent Advances in Analytical Approaches for Glycan and Glycopeptide Quantitation. Mol Cell Proteomics 2021; 20:100054. [PMID: 32576592 PMCID: PMC8724918 DOI: 10.1074/mcp.r120.002095] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Indexed: 12/13/2022] Open
Abstract
Growing implications of glycosylation in physiological occurrences and human disease have prompted intensive focus on revealing glycomic perturbations through absolute and relative quantification. Empowered by seminal methodologies and increasing capacity for detection, identification, and characterization, the past decade has provided a significant increase in the number of suitable strategies for glycan and glycopeptide quantification. Mass-spectrometry-based strategies for glycomic quantitation have grown to include metabolic incorporation of stable isotopes, deposition of mass difference and mass defect isotopic labels, and isobaric chemical labeling, providing researchers with ample tools for accurate and robust quantitation. Beyond this, workflows have been designed to harness instrument capability for label-free quantification, and numerous software packages have been developed to facilitate reliable spectrum scoring. In this review, we present and highlight the most recent advances in chemical labeling and associated techniques for glycan and glycopeptide quantification.
Collapse
Affiliation(s)
- Daniel G Delafield
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
17
|
Zhang Y, Zhao W, Mao Y, Chen Y, Wang S, Zhong Y, Su T, Gong M, Du D, Lu X, Cheng J, Yang H. Site-specific N-glycosylation Characterization of Recombinant SARS-CoV-2 Spike Proteins. Mol Cell Proteomics 2021; 20:100058. [PMID: 33077685 DOI: 10.1101/2020.03.28.013276] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
The glycoprotein spike (S) on the surface of severe acute respiratory syndrome coronavirus (SARS-CoV-2) is a determinant for viral invasion and host immune response. Herein, we characterized the site-specific N-glycosylation of S protein at the level of intact glycopeptides. All 22 potential N-glycosites were identified in the S-protein protomer and were found to be preserved among the 753 SARS-CoV-2 genome sequences. The glycosites exhibited glycoform heterogeneity as expected for a human cell-expressed protein subunit. We identified masses that correspond to 157 N-glycans, primarily of the complex type. In contrast, the insect cell-expressed S protein contained 38 N-glycans, completely of the high-mannose type. Our results revealed that the glycan types were highly determined by the differential processing of N-glycans among human and insect cells, regardless of the glycosites' location. Moreover, the N-glycan compositions were conserved among different sizes of subunits. Our study indicates that the S protein N-glycosylation occurs regularly at each site, albeit the occupied N-glycans were diverse and heterogenous. This N-glycosylation landscape and the differential N-glycan patterns among distinct host cells are expected to shed light on the infection mechanism and present a positive view for the development of vaccines and targeted drugs.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wanjun Zhao
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yonghong Mao
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yaohui Chen
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Shisheng Wang
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhong
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Su
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Gong
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Du
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaofeng Lu
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Hao Yang
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
18
|
Zhang Y, Zhao W, Mao Y, Chen Y, Wang S, Zhong Y, Su T, Gong M, Du D, Lu X, Cheng J, Yang H. Site-specific N-glycosylation Characterization of Recombinant SARS-CoV-2 Spike Proteins. Mol Cell Proteomics 2021; 20:100058. [PMID: 33077685 PMCID: PMC7876485 DOI: 10.1074/mcp.ra120.002295] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The glycoprotein spike (S) on the surface of severe acute respiratory syndrome coronavirus (SARS-CoV-2) is a determinant for viral invasion and host immune response. Herein, we characterized the site-specific N-glycosylation of S protein at the level of intact glycopeptides. All 22 potential N-glycosites were identified in the S-protein protomer and were found to be preserved among the 753 SARS-CoV-2 genome sequences. The glycosites exhibited glycoform heterogeneity as expected for a human cell-expressed protein subunit. We identified masses that correspond to 157 N-glycans, primarily of the complex type. In contrast, the insect cell-expressed S protein contained 38 N-glycans, completely of the high-mannose type. Our results revealed that the glycan types were highly determined by the differential processing of N-glycans among human and insect cells, regardless of the glycosites' location. Moreover, the N-glycan compositions were conserved among different sizes of subunits. Our study indicates that the S protein N-glycosylation occurs regularly at each site, albeit the occupied N-glycans were diverse and heterogenous. This N-glycosylation landscape and the differential N-glycan patterns among distinct host cells are expected to shed light on the infection mechanism and present a positive view for the development of vaccines and targeted drugs.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wanjun Zhao
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yonghong Mao
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yaohui Chen
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Shisheng Wang
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhong
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Su
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Gong
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Du
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaofeng Lu
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Hao Yang
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|