1
|
Peris D, Postigo-Mijarra JM, Peñalver E, Pellicer J, Labandeira CC, Peña-Kairath C, Pérez-Lorenzo I, Sauquet H, Delclòs X, Barrón E. The impact of thermogenesis on the origin of insect pollination. NATURE PLANTS 2024; 10:1297-1303. [PMID: 39242982 DOI: 10.1038/s41477-024-01775-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/29/2024] [Indexed: 09/09/2024]
Abstract
Thermogenesis in plants is the ability to raise their temperature above that of the surrounding air through metabolic processes, and is especially detected in reproductive organs. Warming benefits plants by facilitating the transmission of odours and compounds that attract insects. As a result, these plants increase their odds of being pollinated by the attracted insect. Modern thermogenesis has been reported in extant cycads and a small number of angiosperm lineages. Although thermogenesis is not directly preserved in the fossil record, it can be inferred by examining extant thermogenic plant lineages and comparing their features with those of the fossil record. We suggest that thermogenesis has probably occurred in seed plants for at least the past 200 million years, long before the origin of angiosperms. Thermogenesis in plants is an important factor that facilitated entomophilous pollination by enhancing the attraction of insects, complementary to other factors, thereby participating in the success of the two groups of organisms and providing many facets of past and recent reproductive biology for future exploration.
Collapse
Affiliation(s)
- David Peris
- Institut Botànic de Barcelona, CSIC-CMCNB, Barcelona, Spain.
| | - José Mª Postigo-Mijarra
- Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain.
| | - Enrique Peñalver
- Instituto Geológico y Minero de España, IGME-CSIC, Valencia, Spain
| | - Jaume Pellicer
- Institut Botànic de Barcelona, CSIC-CMCNB, Barcelona, Spain
- Royal Botanic Gardens, Kew, Richmond, UK
| | - Conrad C Labandeira
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Entomology, and Behavior, Ecology, Evolution and Systematics Program, University of Maryland, College Park, MD, USA
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Constanza Peña-Kairath
- Departament de Dinàmica de la Terra i de l'Oceà, Facultat de Ciències de la Terra, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Barcelona, Spain
| | | | - Hervé Sauquet
- National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Xavier Delclòs
- Departament de Dinàmica de la Terra i de l'Oceà, Facultat de Ciències de la Terra, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Barcelona, Spain
| | - Eduardo Barrón
- Museo Geominero, Instituto Geológico y Minero de España, IGME-CSIC, Madrid, Spain
| |
Collapse
|
2
|
Stephens RE, Gallagher RV, Dun L, Cornwell W, Sauquet H. Insect pollination for most of angiosperm evolutionary history. THE NEW PHYTOLOGIST 2023; 240:880-891. [PMID: 37276503 DOI: 10.1111/nph.18993] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/30/2023] [Indexed: 06/07/2023]
Abstract
Most contemporary angiosperms (flowering plants) are insect pollinated, but pollination by wind, water or vertebrates occurs in many lineages. Though evidence suggests insect pollination may be ancestral in angiosperms, this is yet to be assessed across the full phylogeny. Here, we reconstruct the ancestral pollination mode of angiosperms and quantify the timing and environmental associations of pollination shifts. We use a robust, dated phylogeny and species-level sampling across all angiosperm families to model the evolution of pollination modes. Data on the pollination system or syndrome of 1160 species were collated from the primary literature. Angiosperms were ancestrally insect pollinated, and insects have pollinated angiosperms for c. 86% of angiosperm evolutionary history. Wind pollination evolved at least 42 times, with few reversals to animal pollination. Transitions between insect and vertebrate pollination were more frequent: vertebrate pollination evolved at least 39 times from an insect-pollinated ancestor with at least 26 reversals. The probability of wind pollination increases with habitat openness (measured by Leaf Area Index) and distance from the equator. Our reconstruction gives a clear overview of pollination macroevolution across angiosperms, highlighting the long history of interactions between insect pollinators and angiosperms still vital to biodiversity today.
Collapse
Affiliation(s)
- Ruby E Stephens
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
- National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Sydney, NSW, 2000, Australia
| | - Rachael V Gallagher
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Lily Dun
- National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Sydney, NSW, 2000, Australia
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Will Cornwell
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Hervé Sauquet
- National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Sydney, NSW, 2000, Australia
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
3
|
Ellis EA, Goodheart JA, Hensley NM, González VL, Reda NJ, Rivers TJ, Morin JG, Torres E, Gerrish GA, Oakley TH. Sexual Signals Persist over Deep Time: Ancient Co-option of Bioluminescence for Courtship Displays in Cypridinid Ostracods. Syst Biol 2023; 72:264-274. [PMID: 35984328 PMCID: PMC10448971 DOI: 10.1093/sysbio/syac057] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 07/22/2022] [Accepted: 08/08/2022] [Indexed: 11/14/2022] Open
Abstract
Although the diversity, beauty, and intricacy of sexually selected courtship displays command the attention of evolutionists, the longevity of these traits in deep time is poorly understood. Population-based theory suggests sexual selection could either lower or raise extinction risk, resulting in high or low persistence of lineages with sexually selected traits. Furthermore, empirical studies that directly estimate the longevity of sexually selected traits are uncommon. Sexually selected signals-including bioluminescent courtship-originated multiple times during evolution, allowing the empirical study of their longevity after careful phylogenetic and divergence time analyses. Here, we estimate the first transcriptome-based molecular phylogeny and divergence times of Cypridinidae. We report extreme longevity of bioluminescent courtship, a trait important in mate choice and probably under sexual selection. Our relaxed-clock estimates of divergence times coupled with stochastic character mapping show luminous courtship evolved only once in Cypridinidae-in a Sub-Tribe, we name Luxorina-at least 151 millions of years ago from cypridinid ancestors that used bioluminescence only in antipredator displays, defining a Tribe we name Luminini. This time-calibrated molecular phylogeny of cypridinids will serve as a foundation for integrative and comparative studies on the biochemistry, molecular evolution, courtship, diversification, and ecology of cypridinid bioluminescence. The persistence of luminous courtship for hundreds of millions of years suggests that sexual selection did not cause a rapid loss of associated traits, and that rates of speciation within the group exceeded extinction risk, which may contribute to the persistence of a diverse clade of signaling species. [Ancestral state reconstruction; Biodiversity; co-option; divergence time estimates; macroevolution; Ostracoda; phylogenomics; sexual selection.].
Collapse
Affiliation(s)
- Emily A Ellis
- Department of Ecology, Evolution, and Marine Biology, University of
California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Jessica A Goodheart
- Department of Ecology, Evolution, and Marine Biology, University of
California, Santa Barbara, Santa Barbara, CA 93106, USA
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of
Oceanography, University of California, San Diego, La Jolla, CA 92037,
USA
| | - Nicholai M Hensley
- Department of Ecology, Evolution, and Marine Biology, University of
California, Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Neurobiology and Behavior, Cornell University,
Ithaca, NY 14850, USA
| | - Vanessa L González
- Department of Invertebrate Zoology, Smithsonian Institution, National
Museum of Natural History, 10th and Constitution NW, Washington, DC
20560-0105, USA
| | - Nicholas J Reda
- Biology Department, University of Wisconsin–La Crosse, La
Crosse, WI 54601, USA
| | - Trevor J Rivers
- Department of Ecology and Evolutionary Biology, University of Kansas
Lawrence, KS 66045, USA
| | - James G Morin
- Department of Ecology and Evolutionary Biology, Cornell
University, Ithaca, NY 14850, USA
| | - Elizabeth Torres
- Department of Biological Sciences, California State University Los
Angeles, Los Angeles, CA 90032, USA
| | - Gretchen A Gerrish
- Biology Department, University of Wisconsin–La Crosse, La
Crosse, WI 54601, USA
- Trout Lake Station, Center for Limnology, University of Wisconsin –
Madison, Boulder Junction, WI 54512, USA
| | - Todd H Oakley
- Department of Ecology, Evolution, and Marine Biology, University of
California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
4
|
Godeiro NN, Ding Y, Cipola NG, Jantarit S, Bellini BC, Zhang F. Phylogenomics and systematics of Entomobryoidea (Collembola): marker design, phylogeny and classification. Cladistics 2023; 39:101-115. [PMID: 36583450 DOI: 10.1111/cla.12521] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/12/2022] [Accepted: 12/07/2022] [Indexed: 12/31/2022] Open
Abstract
Entomobryoidea has been the focus of phylogenetic studies in recent years owing to a divergence between morphological and genetic data. Recent phylogenies have converged on the sister relationship of Orchesellidae with the remaining Entomobryoidea, and on the non-monophyly of the traditional Paronellidae and Entomobryidae, but still lack resolution. Known molecular phylogenies of the superfamily differ greatly between mitogenomic and multilocus markers. For this reason, we designed universal single-copy orthologue (USCO) and ultraconserved element (UCE) marker sets specific for Entomobryoidea, based on 11 genome assemblies. Upon the newly designed 3406 USCOs and 4030 UCEs, we analysed 34 species covering all Entomobryoidea families and major subfamilies. New data for 26 species were mined from whole-genome sequencing. Phylogenetic inference confirmed the Orchesellidae as an independent family and the Entomobryinae remained the most puzzling taxon gathering scaled and unscaled lineages of both traditional Entomobryidae and Paronellidae. To accommodate Paronellides, Zhuqinia and related genera, Paronellidinae subfam. nov. is proposed within Entomobryidae. The sampled representatives of Paronellinae were recovered as the sister group of (Seirinae+Lepidocyrtinae), suggesting that reduction on the dorsal macrochaetotaxy and trunk sensillar pattern may have occurred independently within the Lepidocyrtinae and Paronellinae or represent their symplesiomorphy posteriorly modified in the Seirinae. The current systematics of the superfamily are revised here, with Entomobryidae now comprising six subfamilies, including all taxa with smooth dens. Our data also point out that all the main events of cladogenesis of the families and subfamilies of Entomobryoidea occurred during the Jurassic. Our genome-scale phylogenomics provides a complete, reliable example for systematics of Entomobryoidea, as well as other invertebrates in the big data era.
Collapse
Affiliation(s)
- Nerivania Nunes Godeiro
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China.,Natural History Research Center, Shanghai Natural History Museum, Shanghai Science and Technology Museum, Shanghai, 200041, China
| | - Yinhuan Ding
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China.,Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jiangsu, China
| | - Nikolas Gioia Cipola
- Laboratório de Sistemática e Ecologia de Invertebrados do Solo, Instituto Nacional de Pesquisas da Amazônia-INPA, CPEN, Manaus, Brazil
| | - Sopark Jantarit
- Excellence Center for Biodiversity of Peninsular Thailand, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Bruno Cavalcante Bellini
- Department of Botany and Zoology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Feng Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| |
Collapse
|
5
|
Chen L, Liu M, Di Giulio A, Chen X, Sabatelli S, Wang W, Audisio P. Morphological Study of the Alimentary Canal and Malpighian Tubules in the Adult of the Pollen Beetle Meligethes ( Odonthogethes) chinensis (Coleoptera: Nitidulidae: Meligethinae). INSECTS 2023; 14:298. [PMID: 36975983 PMCID: PMC10057167 DOI: 10.3390/insects14030298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Meligethes (Odonthogethes) chinensis is a highly specialized species of Nitidulidae in China that takes pollen as its main food source, and its main host plant is Rubus idaeus L. (Rosaceae). In this study, the structural morphology of the alimentary canal and Malpighian tubules of adult M. (O.) chinensis was observed under light, fluorescence, and scanning electron microscopy. The alimentary canal of adult M. (O.) chinensis is divided into foregut, midgut, and hindgut. The foregut is the shortest and consists of the pharynx, esophagus, proventriculus, and cardiac valve. The midgut is a straight, distended, cylindrical, thin-walled tube. Numerous blunt-fingered gastric ceca are distributed irregularly throughout the midgut. The hindgut is subdivided into the ileum, colon, and rectum. The ileum is coiled. The colon gradually enlarges posteriorly. The rectum is thickly muscled and followed by a membranous structure. The openings of proximal Malpighian tubules are evenly inserted into the junction of the midgut and hindgut, and distal Malpighian tubules are evenly attached to the colon to form a cryptonephridial system. In this study, we also compare the structure and infer the function of the alimentary canal and Malpighian tubules among beetles, as well as discuss the evolutionary and taxonomical implications.
Collapse
Affiliation(s)
- Longyan Chen
- Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, China; (L.C.); (X.C.)
| | - Meike Liu
- Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, China; (L.C.); (X.C.)
| | - Andrea Di Giulio
- Department of Science—L.I.M.E., University of Roma Tre, 00146 Rome, Italy;
| | - Xinxin Chen
- Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, China; (L.C.); (X.C.)
| | - Simone Sabatelli
- Department of Biology and Biotechnology, Sapienza Rome University, 00185 Rome, Italy; (S.S.); (P.A.)
| | - Wenkai Wang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou 434025, China;
| | - Paolo Audisio
- Department of Biology and Biotechnology, Sapienza Rome University, 00185 Rome, Italy; (S.S.); (P.A.)
| |
Collapse
|
6
|
Khramov AV, Foraponova T, Węgierek P. The earliest pollen-loaded insects from the Lower Permian of Russia. Biol Lett 2023; 19:20220523. [PMID: 36855855 PMCID: PMC9975653 DOI: 10.1098/rsbl.2022.0523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/02/2023] [Indexed: 03/02/2023] Open
Abstract
Recent fossil discoveries suggest that the coevolution of insect pollinators and gymnosperms started long before the appearance of flowering plants. One of the keys to understanding the origins of pollination relationships is fossil insects with gymnosperm pollen attached to the body surface. Such fossils are exceedingly rare to find, especially from the Palaeozoic, a time when ambers with insect inclusions were absent. Here, we report compression fossils of Early Permian tillyardembiid insects (Polyneoptera) preserved with pollen on their heads, thoraces, legs and abdomens. This is the earliest finding of pollen-bearing insects, predating the previous oldest record from the Middle Jurassic by ca 120 Ma. Judging by the pollen composition, tillyardembiids visited a narrow range of host plants, including Rufloriaceae (Cordaitales). While it is impossible to say for certain whether tillyardembiids as pollen consumers contributed to pollination, a trophic specialization of this kind could be considered an evolutionary precursor of pollination mutualism.
Collapse
Affiliation(s)
- Alexander V. Khramov
- Borissiak Palaeontological Institute, Russian Academy of Sciences, Moscow 117647, Russia
| | - Tatiana Foraponova
- Borissiak Palaeontological Institute, Russian Academy of Sciences, Moscow 117647, Russia
| | - Piotr Węgierek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-007, Poland
| |
Collapse
|
7
|
Sun Y, Du X, Cao J, Pang H, Bao T. A new genus of Praemordellinae from the Middle Jurassic of China. Anat Rec (Hoboken) 2023. [PMID: 36855264 DOI: 10.1002/ar.25175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/05/2023] [Accepted: 01/25/2023] [Indexed: 03/02/2023]
Abstract
Juramordella asperula gen. et sp. nov. (Coleoptera: Tenebrionoidea) is described based on a specimen from the Middle Jurassic Daohugou Biota, Nincheng County, Inner Mongolia of China. Juramordella asperula is distinguished from other Praemordellinae mainly for roughly punctate elytra, absence of subapical or lateral ridges on all tibiae and tarsi, simple, not bilobed protarsi and mesocoxa distant from procoxa, epicoxa not anterior to metacoxa, well-developed metafemur and absence of elongated pygidium. The morphology of Juramordella asperula demonstrates the early mordellid-like beetles have adopted the body shape with their way of movement since the Middle Jurassic, long before their flower-visiting behavior was established.
Collapse
Affiliation(s)
- Yifei Sun
- School of Ecology/State Key Laboratory of Biocontrol, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xuheng Du
- School of Ecology/State Key Laboratory of Biocontrol, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Jiajia Cao
- School of Ecology/State Key Laboratory of Biocontrol, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Hong Pang
- School of Ecology/State Key Laboratory of Biocontrol, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Tong Bao
- School of Ecology/State Key Laboratory of Biocontrol, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| |
Collapse
|
8
|
Etl F, Kaiser C, Reiser O, Schubert M, Dötterl S, Schönenberger J. Evidence for the recruitment of florivorous plant bugs as pollinators. Curr Biol 2022; 32:4688-4698.e6. [DOI: 10.1016/j.cub.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/08/2022] [Accepted: 09/06/2022] [Indexed: 11/06/2022]
|
9
|
Luan Y, Tang Y, Wang X, Xu C, Tao J, Zhao D. Tree Peony R2R3-MYB Transcription Factor PsMYB30 Promotes Petal Blotch Formation by Activating the Transcription of the Anthocyanin Synthase Gene. PLANT & CELL PHYSIOLOGY 2022; 63:1101-1116. [PMID: 35713501 DOI: 10.1093/pcp/pcac085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Petal blotches are commonly observed in many angiosperm families and not only influence plant-pollinator interactions but also confer high ornamental value. Tree peony (Paeonia suffruticosa Andr.) is an important cut flower worldwide, but few studies have focused on its blotch formation. In this study, anthocyanins were found to be the pigment basis for blotch formation of P. suffruticosa, and peonidin-3,5-di-O-glucoside (Pn3G5G) was the most important component of anthocyanins, while the dihydroflavonol-4-reductase gene was the key factor contributing to blotch formation. Then, the R2R3-myeloblastosis (MYB) transcription factor PsMYB30 belonging to subgroup 1 was proven as a positive anthocyanin regulator with transcriptional activation and nuclear expression. Furthermore, silencing PsMYB30 in P. suffruticosa petals reduced blotch size by 37.9%, faded blotch color and decreased anthocyanin and Pn3G5G content by 23.6% and 32.9%, respectively. Overexpressing PsMYB30 increased anthocyanin content by 14.5-fold in tobacco petals. In addition, yeast one-hybrid assays, dual-luciferase assays and electrophoretic mobility shift assays confirmed that PsMYB30 could bind to the promoter of the anthocyanin synthase (ANS) gene and enhance its expression. Altogether, a novel MYB transcription factor, PsMYB30, was identified to promote petal blotch formation by activating the expression of PsANS involved in anthocyanin biosynthesis, which provide new insights for petal blotch formation in plants.
Collapse
Affiliation(s)
- Yuting Luan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Yuhan Tang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Xin Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Cong Xu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Jun Tao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Daqiu Zhao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| |
Collapse
|
10
|
Lavaut E, Guillemin ML, Colin S, Faure A, Coudret J, Destombe C, Valero M. Pollinators of the sea: A discovery of animal-mediated fertilization in seaweed. Science 2022; 377:528-530. [PMID: 35901149 DOI: 10.1126/science.abo6661] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The long-held belief that animal-mediated pollination is absent in the sea has recently been contradicted in seagrasses, motivating investigations of other marine phyla. This is particularly relevant in red algae, in which female gametes are not liberated and male gametes are not flagellated. Using experiments with the isopod Idotea balthica and the red alga Gracilaria gracilis, we demonstrate that biotic interactions dramatically increase the fertilization success of the alga through animal transport of spermatia on their body. This discovery suggests that animal-mediated fertilization could have evolved independently in terrestrial and marine environments and raises the possibility of its emergence in the sea before plants moved ashore.
Collapse
Affiliation(s)
- E Lavaut
- International Research Laboratory (IRL) 3614, Evolutionary Biology and Ecology of Algae, Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, CS 90074, Place Georges Teissier, 29688 Roscoff, France
| | - M-L Guillemin
- International Research Laboratory (IRL) 3614, Evolutionary Biology and Ecology of Algae, Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, CS 90074, Place Georges Teissier, 29688 Roscoff, France.,Instituto de Ciencias Ambientales y Evolutivas, Núcleo Milenio MASH, Facultad de Ciencias, Universidad Austral de Chile, 567 Valdivia, Chile
| | - S Colin
- Unité Mixte de Recherche (UMR) 8227, Laboratory of Integrative Biology of Marine Models, CNRS, Sorbonne Université, CS 90074, Place Georges Teissier, 29688 Roscoff, France.,BioOptics facility, Max Planck Institute (MPI) for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - A Faure
- International Research Laboratory (IRL) 3614, Evolutionary Biology and Ecology of Algae, Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, CS 90074, Place Georges Teissier, 29688 Roscoff, France
| | - J Coudret
- International Research Laboratory (IRL) 3614, Evolutionary Biology and Ecology of Algae, Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, CS 90074, Place Georges Teissier, 29688 Roscoff, France
| | - C Destombe
- International Research Laboratory (IRL) 3614, Evolutionary Biology and Ecology of Algae, Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, CS 90074, Place Georges Teissier, 29688 Roscoff, France
| | - M Valero
- International Research Laboratory (IRL) 3614, Evolutionary Biology and Ecology of Algae, Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, CS 90074, Place Georges Teissier, 29688 Roscoff, France
| |
Collapse
|
11
|
Ecological radiations of insects in the Mesozoic. Trends Ecol Evol 2022; 37:529-540. [PMID: 35287981 DOI: 10.1016/j.tree.2022.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 01/02/2023]
Abstract
The Mesozoic is a key era for the rise of the modern insect fauna. Among the most important evolutionary events in Mesozoic insects are the radiation of holometabolous insects, the origin of eusocial and parasitoid insects, diversification of pollinating insects, and development of advanced mimicry and camouflage. These events are closely associated with the diversification of insect ecological behaviors and colonization of new ecospaces. At the same time, insects had evolved more complex and closer ecological associations with various plants and animals. Mesozoic insects played a key and underappreciated ecological role in reconstructing and maintaining terrestrial ecosystems. A greater understanding of the history of insects may help to mitigate future changes in insect diversity and abundance.
Collapse
|
12
|
Silva CP, Dias RO, Bernardes V, Barroso IG, Cardoso C, Ferreira C, Terra WR. Recruitment of lysosomal cathepsins B, L and D as digestive enzymes in Coleoptera. INSECT MOLECULAR BIOLOGY 2022; 31:225-240. [PMID: 34918424 DOI: 10.1111/imb.12753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/18/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
The recruitment of the lysosomal cathepsins B (CAB), L (CAL) and D (CAD) as luminal digestive enzymes was investigated in 3 species of beetles. Gene expression was determined by RNA-seq in different regions of the midgut and in the carcasses from the transcriptomes of Dermestes maculatus, Tenebrio molitor and Zabrotes subfasciatus. These data together with phylogenetic analyses, allowed us to identify the sequences of the gene coding for digestive and lysosomal CABs, CADs and CALs in T. molitor and Z. subfasciatus and observe the absence of digestive cathepsins in D. maculatus. Comparisons of structures based on the overall similarity of modelled structures were performed and subsite residues in the lysosomal and digestive CALs were identified by molecular docking. The data showed that S2 subsites are very variable, probably as an adaption to a luminal digestive role. The survey of sequences of the gene coding for cathepsins in the genomes of 13 beetle species from different phylogenetic groups showed that expansion of CAL and CAB genes occurred only in the Cucujiformia clade. Several digestive CABs have a reduced occluding loop, probably to act as digestive enzymes. Pollen-feeding was proposed to be the selective pressure to recruit cathepsins as digestive enzymes in Cucujiformia beetles.
Collapse
Affiliation(s)
- Carlos P Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Renata O Dias
- Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Vanessa Bernardes
- Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Ignacio G Barroso
- Departamento de Bioquímica, Instituto de Química, Universidade de São, São Paulo, Brazil
| | - Christiane Cardoso
- Departamento de Bioquímica, Instituto de Química, Universidade de São, São Paulo, Brazil
| | - Clelia Ferreira
- Departamento de Bioquímica, Instituto de Química, Universidade de São, São Paulo, Brazil
| | - Walter R Terra
- Departamento de Bioquímica, Instituto de Química, Universidade de São, São Paulo, Brazil
| |
Collapse
|
13
|
Benton MJ, Wilf P, Sauquet H. The Angiosperm Terrestrial Revolution and the origins of modern biodiversity. THE NEW PHYTOLOGIST 2022; 233:2017-2035. [PMID: 34699613 DOI: 10.1111/nph.17822] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Biodiversity today has the unusual property that 85% of plant and animal species live on land rather than in the sea, and half of these live in tropical rainforests. An explosive boost to terrestrial diversity occurred from c. 100-50 million years ago, the Late Cretaceous and early Palaeogene. During this interval, the Earth-life system on land was reset, and the biosphere expanded to a new level of productivity, enhancing the capacity and species diversity of terrestrial environments. This boost in terrestrial biodiversity coincided with innovations in flowering plant biology and evolutionary ecology, including their flowers and efficiencies in reproduction; coevolution with animals, especially pollinators and herbivores; photosynthetic capacities; adaptability; and ability to modify habitats. The rise of angiosperms triggered a macroecological revolution on land and drove modern biodiversity in a secular, prolonged shift to new, high levels, a series of processes we name here the Angiosperm Terrestrial Revolution.
Collapse
Affiliation(s)
- Michael J Benton
- School of Earth Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Peter Wilf
- Department of Geosciences and Earth and Environmental Systems Institute, Pennsylvania State University, University Park, PA, 16802, USA
| | - Hervé Sauquet
- National Herbarium of New South Wales, Royal Botanic Gardens and Domain Trust, Sydney, NSW, 2000, Australia
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
14
|
Maccracken SA, Miller IM, Johnson KR, Sertich JM, Labandeira CC. Insect herbivory on Catula gettyi gen. et sp. nov. (Lauraceae) from the Kaiparowits Formation (Late Cretaceous, Utah, USA). PLoS One 2022; 17:e0261397. [PMID: 35061696 PMCID: PMC8782542 DOI: 10.1371/journal.pone.0261397] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/30/2021] [Indexed: 11/18/2022] Open
Abstract
The Upper Cretaceous (Campanian Stage) Kaiparowits Formation of southern Utah, USA, preserves abundant plant, invertebrate, and vertebrate fossil taxa. Taken together, these fossils indicate that the ecosystems preserved in the Kaiparowits Formation were characterized by high biodiversity. Hundreds of vertebrate and invertebrate species and over 80 plant morphotypes are recognized from the formation, but insects and their associations with plants are largely undocumented. Here, we describe a new fossil leaf taxon, Catula gettyi gen et. sp. nov. in the family Lauraceae from the Kaiparowits Formation. Catula gettyi occurs at numerous localities in this deposit that represent ponded and distal floodplain environments. The type locality for C. gettyi has yielded 1,564 fossil leaf specimens of this species, which provides the opportunity to circumscribe this new plant species. By erecting this new genus and species, we are able to describe ecological associations on C. gettyi and place these interactions within a taxonomic context. We describe an extensive archive of feeding damage on C. gettyi caused by herbivorous insects, including more than 800 occurrences of insect damage belonging to five functional feeding groups indicating that insect-mediated damage on this taxon is both rich and abundant. Catula gettyi is one of the best-sampled host plant taxa from the Mesozoic Era, a poorly sampled time interval, and its insect damage is comparable to other Lauraceae taxa from the younger Late Cretaceous Hell Creek Flora of North Dakota, USA.
Collapse
Affiliation(s)
- S. Augusta Maccracken
- Department of Earth Sciences, Denver Museum of Nature & Science, Denver, CO, United States of America
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States of America
- Department of Entomology, University of Maryland, College Park, MD, United States of America
| | - Ian M. Miller
- Department of Earth Sciences, Denver Museum of Nature & Science, Denver, CO, United States of America
- National Geographic Society, Washington, DC, United States of America
| | - Kirk R. Johnson
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States of America
| | - Joseph M. Sertich
- Department of Earth Sciences, Denver Museum of Nature & Science, Denver, CO, United States of America
| | - Conrad C. Labandeira
- Department of Earth Sciences, Denver Museum of Nature & Science, Denver, CO, United States of America
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States of America
- Department of Entomology, University of Maryland, College Park, MD, United States of America
- BEES Program, University of Maryland, College Park, MD, United States of America
- College of Life Sciences, Capital Normal University, Beijing,China
| |
Collapse
|
15
|
Tihelka E, Li L, Fu Y, Su Y, Huang D, Cai C. Reply to: Pelretes vivificus was a pollinator of Cretaceous angiosperms. NATURE PLANTS 2022; 8:41-44. [PMID: 34949806 DOI: 10.1038/s41477-021-01045-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Erik Tihelka
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Centre for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China
- School of Earth Sciences, University of Bristol, Life Sciences Building, Bristol, UK
| | - Liqin Li
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Centre for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China
| | - Yanzhe Fu
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Centre for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China
| | - Yitong Su
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Centre for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China
| | - Diying Huang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Centre for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China
| | - Chenyang Cai
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Centre for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China.
- School of Earth Sciences, University of Bristol, Life Sciences Building, Bristol, UK.
| |
Collapse
|
16
|
Pohl H, Wipfler B, Boudinot B, Georg Beutel R. On the value of Burmese amber for understanding insect evolution: Insights from †Heterobathmilla - an exceptional stem group genus of Strepsiptera (Insecta). Cladistics 2021; 37:211-229. [PMID: 34478185 DOI: 10.1111/cla.12433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Burmese amber and amber from other periods and regions became a rich source of new extinct insect species and yielded important insights in insect evolution in the dimension of time. Amber fossils have contributed to the understanding of the phylogeny, biology, and biogeography of insects and other groups, and have also gained great importance for dating molecular trees. Another major potential is the documentation of faunal, floral and climatic shifts. Evolutionary transitions can be well-documented in amber fossils and can reveal anatomical transformations and the age of appearance of structural features. Here, using a new stem group species of Strepsiptera from Burmite, we evaluate this potential of amber insect fossils to assess the current phylogeny of Strepsiptera, with the main emphasis on the early splitting events in the stem group. Amber fossils have greatly contributed to the understanding of the evolution of Strepsiptera in the late Mesozoic and the Cenozoic. †Heterobathmilla kakopoios Pohl and Beutel gen. et sp. n. described here is placed in the stem group of the order, in a clade with †Kinzelbachilla (†Kinzelbachillidae) and †Phthanoxenos (†Phthanoxenidae). †Phthanoxenidae has priority over †Kinzelbachillidae, and the latter is synonymised. The superb details available from this new fossil allowed us to explore unique features of the antennae, mouthparts, and male copulatory apparatus, and to provide a phylogenetic hypothesis for the order. The younger †Protoxenos from Eocene Baltic amber was confirmed as sister to all remaining extinct and extant groups of Strepsiptera, whereas the position of the Cretaceous †Cretostylops in the stem group remains ambivalent. While the value of Burmite and amber from other periods has a recognized impact on our knowledge of the evolution in various lineages, this new fossil does not fundamentally change our picture of the phylogeny and evolution of early Strepsiptera. However, it offers new insights into the morphological diversity in the early evolution of the group.
Collapse
Affiliation(s)
- Hans Pohl
- Entomology Group, Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Erbertstrasse 1, Jena, D-07743, Germany
| | | | - Brendon Boudinot
- Department of Entomology/Nematology, University of California, One Shields Ave., Davis,Davis, CA, 95616, USA
| | - Rolf Georg Beutel
- Entomology Group, Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Erbertstrasse 1, Jena, D-07743, Germany
| |
Collapse
|
17
|
Tihelka E, Li L, Fu Y, Su Y, Huang D, Cai C. Angiosperm pollinivory in a Cretaceous beetle. NATURE PLANTS 2021; 7:445-451. [PMID: 33846595 DOI: 10.1038/s41477-021-00893-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Despite the crucial importance of flower-visiting insects in modern ecosystems, there is little fossil evidence on the origins of angiosperm pollination. Most reports of pollination in the Mesozoic fossil record have been based on the co-occurrence of the purported pollinators with pollen grains and assumed morphological adaptations for vectoring pollen. Here, we describe an exceptionally preserved short-winged flower beetle (Cucujoidea: Kateretidae) from mid-Cretaceous amber, Pelretes vivificus gen. et sp. nov., associated with pollen aggregations and coprolites consisting mainly of pollen, providing direct evidence of pollen-feeding in a Cretaceous beetle and confirming that diverse beetle lineages visited early angiosperms in the Cretaceous. The exquisite preservation of our fossil permits the identification of the pollen grains as Tricolpopollenites (Asteridae or Rosidae), representing a record of flower beetle pollination of a group of derived angiosperms in the Mesozoic and suggesting that potentially diverse beetle lineages visited early angiosperms by the mid-Cretaceous.
Collapse
Affiliation(s)
- Erik Tihelka
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Centre for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China
- School of Earth Sciences, University of Bristol, Bristol, UK
| | - Liqin Li
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Centre for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China
| | - Yanzhe Fu
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Centre for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China
| | - Yitong Su
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Centre for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China
| | - Diying Huang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Centre for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China
| | - Chenyang Cai
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Centre for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China.
- School of Earth Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
18
|
Shortlidge EE, Carey SB, Payton AC, McDaniel SF, Rosenstiel TN, Eppley SM. Microarthropod contributions to fitness variation in the common moss Ceratodon purpureus. Proc Biol Sci 2021; 288:20210119. [PMID: 33784868 PMCID: PMC8059975 DOI: 10.1098/rspb.2021.0119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The evolution of sustained plant–animal interactions depends critically upon genetic variation in the fitness benefits from the interaction. Genetic analyses of such interactions are limited to a few model systems, in part because genetic variation may be absent or the interacting species may be experimentally intractable. Here, we examine the role of sperm-dispersing microarthropods in shaping reproduction and genetic variation in mosses. We established experimental mesocosms with known moss genotypes and inferred the parents of progeny from mesocosms with and without microarthropods, using a pooled sequencing approach. Moss reproductive rates increased fivefold in the presence of microarthropods, relative to control mesocosms. Furthermore, the presence of microarthropods increased the total number of reproducing moss genotypes, and changed the rank-order of fitness of male and female moss genotypes. Interestingly, the genotypes that reproduced most frequently did not produce sporophytes with the most spores, highlighting the challenge of defining fitness in mosses. These results demonstrate that microarthropods provide a fitness benefit for mosses, and highlight the potential for biotic dispersal agents to alter fitness among moss genotypes.
Collapse
Affiliation(s)
- Erin E Shortlidge
- Department of Biology, Portland State University, PO Box 751, Portland, OR 97202-0751, USA
| | - Sarah B Carey
- Department of Biology, University of Florida, PO Box 118525, Gainesville, FL 32611-8525, USA
| | - Adam C Payton
- Department of Biology, University of Florida, PO Box 118525, Gainesville, FL 32611-8525, USA
| | - Stuart F McDaniel
- Department of Biology, University of Florida, PO Box 118525, Gainesville, FL 32611-8525, USA
| | - Todd N Rosenstiel
- Department of Biology, Portland State University, PO Box 751, Portland, OR 97202-0751, USA
| | - Sarah M Eppley
- Department of Biology, Portland State University, PO Box 751, Portland, OR 97202-0751, USA
| |
Collapse
|
19
|
Cohen C, Liltved WR, Colville JF, Shuttleworth A, Weissflog J, Svatoš A, Bytebier B, Johnson SD. Sexual deception of a beetle pollinator through floral mimicry. Curr Biol 2021; 31:1962-1969.e6. [PMID: 33770493 DOI: 10.1016/j.cub.2021.03.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/13/2021] [Accepted: 03/10/2021] [Indexed: 12/28/2022]
Abstract
Sexual mimicry is a complex multimodal strategy used by some plants to lure insects to flowers for pollination.1-4 It is notable for being highly species-specific and is typically mediated by volatiles belonging to a restricted set of chemical compound classes.3,4 Well-documented cases involve exploitation of bees and wasps (Hymenoptera)5,6 and flies (Diptera).7-9 Although beetles (Coleoptera) are the largest insect order and are well known as pollinators of both early and modern plants,10,11 it has been unclear whether they are sexually deceived by plants during flower visits.12,13 Here we report the discovery of an unambiguous case of sexual deception of a beetle: male longhorn beetles (Chorothyse hessei, Cerambycidae) pollinate the elaborate insectiform flowers of a rare southern African orchid (Disa forficaria), while exhibiting copulatory behavior including biting the antennae-like petals, curving the abdomen into the hairy lip cleft, and ejaculating sperm. The beetles are strongly attracted by (16S,9Z)-16-ethyl hexadec-9-enolide, a novel macrolide that we isolated from the floral scent. Structure-activity studies14,15 confirmed that chirality and other aspects of the structural geometry of the macrolide are critical for the attraction of the male beetles. These results demonstrate a new biological function for plant macrolides and confirm that beetles can be exploited through sexual deception to serve as pollinators.
Collapse
Affiliation(s)
- Callan Cohen
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch 7701, South Africa
| | - William R Liltved
- Compton Herbarium, South African National Biodiversity Institute, Newlands, Cape Town 7735, South Africa
| | - Jonathan F Colville
- Kirstenbosch Research Centre, South African National Biodiversity Institute, Newlands, Cape Town 7735, South Africa; Statistics in Ecology, Environment and Conservation, Department of Statistical Sciences, University of Cape Town, Rondebosch 7701, South Africa
| | - Adam Shuttleworth
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Pietermaritzburg 3209, South Africa
| | - Jerrit Weissflog
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Aleš Svatoš
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Benny Bytebier
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Pietermaritzburg 3209, South Africa
| | - Steven D Johnson
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Pietermaritzburg 3209, South Africa.
| |
Collapse
|
20
|
Successful extraction of insect DNA from recent copal inclusions: limits and perspectives. Sci Rep 2021; 11:6851. [PMID: 33767248 PMCID: PMC7994385 DOI: 10.1038/s41598-021-86058-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 03/01/2021] [Indexed: 01/31/2023] Open
Abstract
Insects entombed in copal, the sub-fossilized resin precursor of amber, represent a potential source of genetic data for extinct and extant, but endangered or elusive, species. Despite several studies demonstrated that it is not possible to recover endogenous DNA from insect inclusions, the preservation of biomolecules in fossilized resins samples is still under debate. In this study, we tested the possibility of obtaining endogenous ancient DNA (aDNA) molecules from insects preserved in copal, applying experimental protocols specifically designed for aDNA recovery. We were able to extract endogenous DNA molecules from one of the two samples analyzed, and to identify the taxonomic status of the specimen. Even if the sample was found well protected from external contaminants, the recovered DNA was low concentrated and extremely degraded, compared to the sample age. We conclude that it is possible to obtain genomic data from resin-entombed organisms, although we discourage aDNA analysis because of the destructive method of extraction protocols and the non-reproducibility of the results.
Collapse
|
21
|
Du BJ, Chen R, Tao WT, Shi HL, Bu WJ, Liu Y, Ma S, Ni MY, Kong FL, Xiao JH, Huang DW. A Cretaceous bug with exaggerated antennae might be a double-edged sword in evolution. iScience 2020; 24:101932. [PMID: 33409478 PMCID: PMC7773949 DOI: 10.1016/j.isci.2020.101932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/04/2020] [Accepted: 12/07/2020] [Indexed: 11/05/2022] Open
Abstract
Sexual selection can favor production of exaggerated features, but the high cost of such features in terms of energy consumption and enemy avoidance makes them go to extinction under the influence of natural selection. However, fossils preserved with specialized features are very rare. Here, we report a new nymph from Burmese amber, Magnusantena wuae Du & Chen gen. et sp. nov., which has exaggerated leaf-like expanded antennae. Such bizarre antennae indicate that sensitive and delicate sensory system and magnificent appearance in Hemiptera have been already established in mid-Cretaceous. Our findings may provide evidence for Darwin's view that sensory organs play an important role in sexual selection. This nymph with the leaf-like antennae may also represents a new camouflage pattern. However, the oversized antennae are costly to develop and maintain, increasing the risks from predators. Such unparalleled expanded antennae might be the key factor for the evolutionary fate of the coreid. A new coreid is described from Cretaceous Burmese amber This is the oldest bug with exaggerated leaf-like expanded antennae in Coreidae The bizarre antennae may be associated with sexual selection and defense behavior Coexisting with the advantages of the antennae is the huge costs of survival
Collapse
Affiliation(s)
- Bao-Jie Du
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Rui Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen-Tao Tao
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | | | - Wen-Jun Bu
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ye Liu
- Paleo-diary Museum of Natural History, Beijing 100097, China.,Fujian Paleo-diary Bioresearch Centre, Fuzhou 350001, China
| | - Shuai Ma
- Paleo-diary Museum of Natural History, Beijing 100097, China.,Fujian Paleo-diary Bioresearch Centre, Fuzhou 350001, China
| | - Meng-Ya Ni
- Paleo-diary Museum of Natural History, Beijing 100097, China
| | - Fan-Li Kong
- Century Amber Museum, Shenzhen 518101, China
| | - Jin-Hua Xiao
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Da-Wei Huang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China.,Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
22
|
Kirmse S, Chaboo CS. Flowers are essential to maintain high beetle diversity (Coleoptera) in a Neotropical rainforest canopy. J NAT HIST 2020. [DOI: 10.1080/00222933.2020.1811414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Susan Kirmse
- Florida State Collection of Arthropods, Museum of Entomology, Gainesville, FL, USA
| | - Caroline S Chaboo
- Systematics Research Collections, University of Nebraska State Museum, University of Nebraska, Lincoln, NE, USA
| |
Collapse
|
23
|
Nelsen MP, Lücking R, Boyce CK, Lumbsch HT, Ree RH. The macroevolutionary dynamics of symbiotic and phenotypic diversification in lichens. Proc Natl Acad Sci U S A 2020; 117:21495-21503. [PMID: 32796103 PMCID: PMC7474681 DOI: 10.1073/pnas.2001913117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Symbioses are evolutionarily pervasive and play fundamental roles in structuring ecosystems, yet our understanding of their macroevolutionary origins, persistence, and consequences is incomplete. We traced the macroevolutionary history of symbiotic and phenotypic diversification in an iconic symbiosis, lichens. By inferring the most comprehensive time-scaled phylogeny of lichen-forming fungi (LFF) to date (over 3,300 species), we identified shifts among symbiont classes that broadly coincided with the convergent evolution of phylogenetically or functionally similar associations in diverse lineages (plants, fungi, bacteria). While a relatively recent loss of lichenization in Lecanoromycetes was previously identified, our work instead suggests lichenization was abandoned far earlier, interrupting what had previously been considered a direct switch between trebouxiophycean and trentepohlialean algal symbionts. Consequently, some of the most diverse clades of LFF are instead derived from nonlichenized ancestors and re-evolved lichenization with Trentepohliales algae, a clade that also facilitated lichenization in unrelated lineages of LFF. Furthermore, while symbiont identity and symbiotic phenotype influence the ecology and physiology of lichens, they are not correlated with rates of lineage birth and death, suggesting more complex dynamics underly lichen diversification. Finally, diversification patterns of LFF differed from those of wood-rotting and ectomycorrhizal taxa, likely reflecting contrasts in their fundamental biological properties. Together, our work provides a timeline for the ecological contributions of lichens, and reshapes our understanding of symbiotic persistence in a classic model of symbiosis.
Collapse
Affiliation(s)
- Matthew P Nelsen
- Department of Science and Education, Negaunee Integrative Research Center, The Field Museum, Chicago, IL 60605;
| | - Robert Lücking
- Botanischer Garten und Botanisches Museum, Freie Universität Berlin, 14195 Berlin, Germany
| | - C Kevin Boyce
- Department of Geological Sciences, Stanford University, Stanford, CA 94305
| | - H Thorsten Lumbsch
- Department of Science and Education, Negaunee Integrative Research Center, The Field Museum, Chicago, IL 60605
| | - Richard H Ree
- Department of Science and Education, Negaunee Integrative Research Center, The Field Museum, Chicago, IL 60605
| |
Collapse
|
24
|
Peris D, Labandeira CC, Barrón E, Delclòs X, Rust J, Wang B. Generalist Pollen-Feeding Beetles during the Mid-Cretaceous. iScience 2020; 23:100913. [PMID: 32191877 PMCID: PMC7113562 DOI: 10.1016/j.isci.2020.100913] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/15/2020] [Accepted: 02/11/2020] [Indexed: 02/01/2023] Open
Abstract
The Cretaceous fossil record of amber provides a variety of evidence that is essential for greater understanding of early pollination strategies. Here, we describe four pieces of ca. 99-million-year-old (early Cenomanian) Myanmar amber from Kachin containing four closely related genera of short-winged flower beetles (Coleoptera: Kateretidae) associated with abundant pollen grains identified as three distinct palynomorphotypes of the gymnosperm Cycadopites and Praenymphaeapollenites cenomaniensis gen. and sp. nov., a form-taxon of pollen from a basal angiosperm lineage of water lilies (Nymphaeales: Nymphaeaceae). We demonstrate how a gymnosperm to angiosperm plant-host shift occurred during the mid-Cretaceous, from a generalist pollen-feeding family of beetles, which served as a driving mechanism for the subsequent success of flowering plants.
Collapse
Affiliation(s)
- David Peris
- Institute of Geosciences, University of Bonn, 53115 Bonn, Germany.
| | - Conrad C Labandeira
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA; Department of Entomology and Behavior, Ecology, Evolution and Systematics Program, University of Maryland, College Park, MD 20742, USA; College of Life Sciences, Capital Normal University, 100048 Beijing, China
| | - Eduardo Barrón
- Museo Geominero, Instituto Geológico y Minero de España, 28003 Madrid, Spain
| | - Xavier Delclòs
- Departament de Dinàmica de la Terra i de l'Oceà and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Ciències de la Terra, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jes Rust
- Institute of Geosciences, University of Bonn, 53115 Bonn, Germany
| | - Bo Wang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Centre for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, 210008 Nanjing, China.
| |
Collapse
|
25
|
A Myanmar amber cockroach with protruding feces contains pollen and a rich microcenosis. Naturwissenschaften 2020; 107:13. [DOI: 10.1007/s00114-020-1669-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/04/2020] [Accepted: 02/11/2020] [Indexed: 01/14/2023]
|
26
|
Genise JF, Bellosi ES, Sarzetti LC, Krause JM, Dinghi PA, Sánchez MV, Umazano AM, Puerta P, Cantil LF, Jicha BR. 100 Ma sweat bee nests: Early and rapid co-diversification of crown bees and flowering plants. PLoS One 2020; 15:e0227789. [PMID: 31995815 PMCID: PMC6989152 DOI: 10.1371/journal.pone.0227789] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/25/2019] [Indexed: 02/06/2023] Open
Abstract
100 Ma sweat bee nests reported herein are the oldest evidence of crown bees. A new phylogeny for short-tongued bees, calibrated with these nests dated with 40Ar/39Ar, attests for the first time for a late Albian rapid diversification of bees along with angiosperms. Such hypothesis lacked paleontological support until this study. The new ichnospecies Cellicalichnus krausei, which was found along with wasp trace fossils and new beetle trace fossils in the Castillo Formation of Patagonia, represents typical Halictini nests composed of sessile cells that are attached to main tunnels. According to geological, paleosol, paleobotanical, and ichnological data, bees, and angiosperms cohabited in an inland and dry environment comparable to an open dry woodland or savanna, under warm-temperate and semiarid-subhumid climate, in the Southern Hemisphere by the Albian.
Collapse
Affiliation(s)
- Jorge Fernando Genise
- División Icnología, CONICET-Museo Argentino de Ciencias Naturales Bernardino Rivadavia, Buenos Aires, Argentina
- * E-mail:
| | - Eduardo S. Bellosi
- División Icnología, CONICET-Museo Argentino de Ciencias Naturales Bernardino Rivadavia, Buenos Aires, Argentina
| | - Laura C. Sarzetti
- División Icnología, CONICET-Museo Argentino de Ciencias Naturales Bernardino Rivadavia, Buenos Aires, Argentina
| | | | - Pablo A. Dinghi
- Grupo de Investigación en Filogenias Moleculares y Filogeografía, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M. Victoria Sánchez
- División Icnología, CONICET-Museo Argentino de Ciencias Naturales Bernardino Rivadavia, Buenos Aires, Argentina
| | - A. Martín Umazano
- INCITAP and Facultad de Ciencias Exactas y Naturales, CONICET-Universidad Nacional de La Pampa, Santa Rosa, La Pampa, Argentina
| | - Pablo Puerta
- Museo Paleontológico Egidio Feruglio, Trelew, Chubut, Argentina
| | - Liliana F. Cantil
- División Icnología, CONICET-Museo Argentino de Ciencias Naturales Bernardino Rivadavia, Buenos Aires, Argentina
| | - Brian R. Jicha
- Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|