1
|
Tijoriwalla S, Liyanage T, Herath TUB, Lee N, Rehman A, Gianfelice A, Ireton K. The host GTPase Dynamin 2 modulates apical junction structure to control cell-to-cell spread of Listeria monocytogenes. Infect Immun 2024; 92:e0013624. [PMID: 39133017 PMCID: PMC11475654 DOI: 10.1128/iai.00136-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024] Open
Abstract
The food-borne pathogen Listeria monocytogenes uses actin-based motility to generate plasma membrane protrusions that mediate the spread of bacteria between host cells. In polarized epithelial cells, efficient protrusion formation by L. monocytogenes requires the secreted bacterial protein InlC, which binds to a carboxyl-terminal Src homology 3 (SH3) domain in the human scaffolding protein Tuba. This interaction antagonizes Tuba, thereby diminishing cortical tension at the apical junctional complex and enhancing L. monocytogenes protrusion formation and spread. Tuba contains five SH3 domains apart from the domain that interacts with InlC. Here, we show that human GTPase Dynamin 2 associates with two SH3 domains in the amino-terminus of Tuba and acts together with this scaffolding protein to control the spread of L. monocytogenes. Genetic or pharmacological inhibition of Dynamin 2 or knockdown of Tuba each restored normal protrusion formation and spread to a bacterial strain deleted for the inlC gene (∆inlC). Dynamin 2 localized to apical junctions in uninfected human cells and protrusions in cells infected with L. monocytogenes. Localization of Dynamin 2 to junctions and protrusions depended on Tuba. Knockdown of Dynamin 2 or Tuba diminished junctional linearity, indicating a role for these proteins in controlling cortical tension. Infection with L. monocytogenes induced InlC-dependent displacement of Dynamin 2 from junctions, suggesting a possible mechanism of antagonism of this GTPase. Collectively, our results show that Dynamin 2 cooperates with Tuba to promote intercellular tension that restricts the spread of ∆inlC Listeria. By expressing InlC, wild-type L. monocytogenes overcomes this restriction.
Collapse
Affiliation(s)
- Serena Tijoriwalla
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Thiloma Liyanage
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Thilina U. B. Herath
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Nicole Lee
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Attika Rehman
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Antonella Gianfelice
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Keith Ireton
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Raab JE, Hamilton DJ, Harju TB, Huynh TN, Russo BC. Pushing boundaries: mechanisms enabling bacterial pathogens to spread between cells. Infect Immun 2024; 92:e0052423. [PMID: 38661369 PMCID: PMC11385730 DOI: 10.1128/iai.00524-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
For multiple intracellular bacterial pathogens, the ability to spread directly into adjacent epithelial cells is an essential step for disease in humans. For pathogens such as Shigella, Listeria, Rickettsia, and Burkholderia, this intercellular movement frequently requires the pathogens to manipulate the host actin cytoskeleton and deform the plasma membrane into structures known as protrusions, which extend into neighboring cells. The protrusion is then typically resolved into a double-membrane vacuole (DMV) from which the pathogen quickly escapes into the cytosol, where additional rounds of intercellular spread occur. Significant progress over the last few years has begun to define the mechanisms by which intracellular bacterial pathogens spread. This review highlights the interactions of bacterial and host factors that drive mechanisms required for intercellular spread with a focus on how protrusion structures form and resolve.
Collapse
Affiliation(s)
- Julie E. Raab
- Department of Immunology and Microbiology, School of Medicine, University of Colorado—Anschutz Medical Campus, Denver, Colorado, USA
| | - Desmond J. Hamilton
- Department of Immunology and Microbiology, School of Medicine, University of Colorado—Anschutz Medical Campus, Denver, Colorado, USA
| | - Tucker B. Harju
- Department of Immunology and Microbiology, School of Medicine, University of Colorado—Anschutz Medical Campus, Denver, Colorado, USA
| | - Thao N. Huynh
- Department of Immunology and Microbiology, School of Medicine, University of Colorado—Anschutz Medical Campus, Denver, Colorado, USA
| | - Brian C. Russo
- Department of Immunology and Microbiology, School of Medicine, University of Colorado—Anschutz Medical Campus, Denver, Colorado, USA
| |
Collapse
|
3
|
Pretorius A, Nefefe T, Thema N, Liebenberg J, Steyn H, van Kleef M. Screening for immune biomarkers associated with infection or protection against Ehrlichia ruminantium by RNA-sequencing analysis. Microb Pathog 2024; 189:106588. [PMID: 38369169 DOI: 10.1016/j.micpath.2024.106588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/11/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Heartwater is one of the most economically important tick-borne fatal diseases of livestock. The disease is caused by the bacteria Ehrlichia ruminantium transmitted by Amblyomma ticks. Although there is evidence that interferon-gamma controls E. ruminantium growth and that cellular immune responses are protective, an effective recombinant vaccine for this disease is lacking. Analyses of markers associated with infection as well as protection will lead to a better understanding of the E. ruminantium immune response and corresponding pathways induced in sheep peripheral blood mononuclear cells (PBMC) will assist in development of such a vaccine. In this study, Biomarkers of infection (BMI) were identified as uniquely expressed genes during primary infection and biomarkers of protection (BMP) associated with immune to heartwater were identified post challenge. Sheep were experimentally infected and challenged with E. ruminantium infected ticks. The immune phenotypic and transcriptome profile of their PBMC were compared to their own naïve PBMC collected before infection. The study revealed 305 differentially expressed genes (DEGs) as BMI, of these 17 were upregulated at all three time-points investigated. These DEGs, form part of the bacterial invasion of epithelial cells Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway, and others detected from day 1 post infection and are considered predictive markers for early heartwater infection in ruminants. Similarly, a total of 332 DEGs were identified as BMP, of these 100 were upregulated and 75 were downregulated at all three time-points investigated. However, at D1PC most DEGs were downregulated (n = 1312) that correlated with a reduction in the % CD4 and CD8 T cells detected with flow cytometry. KEGG pathway analyses showed complete down regulation of T cell specific pathways possibly due to homing of immune cells to the site of infection after acquired immunity developed. At D4PC, expression levels of most of these downregulated genes increased and by D6PC they were upregulated. This indicates that the sampling time-point for biomarker analyses is important when results for acquired immune responses are inferred. This data identified DEGs that could be considered as biomarkers of protective immunity that can be used for identification of vaccine antigens and provides a strong foundation to further development of heartwater recombinant vaccines.
Collapse
Affiliation(s)
- A Pretorius
- Agricultural Research Council -Onderstepoort Veterinary Research, Private Bag X05, Onderstepoort, 0110, South Africa; Department of Veterinary Tropical Diseases, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa.
| | - T Nefefe
- Agricultural Research Council -Onderstepoort Veterinary Research, Private Bag X05, Onderstepoort, 0110, South Africa; Department of Veterinary Tropical Diseases, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | - N Thema
- Agricultural Research Council -Onderstepoort Veterinary Research, Private Bag X05, Onderstepoort, 0110, South Africa
| | - J Liebenberg
- Agricultural Research Council -Onderstepoort Veterinary Research, Private Bag X05, Onderstepoort, 0110, South Africa
| | - H Steyn
- Agricultural Research Council -Onderstepoort Veterinary Research, Private Bag X05, Onderstepoort, 0110, South Africa
| | - M van Kleef
- Agricultural Research Council -Onderstepoort Veterinary Research, Private Bag X05, Onderstepoort, 0110, South Africa; Department of Veterinary Tropical Diseases, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| |
Collapse
|
4
|
Xiao K, Ma R, Wu CX. Wrapping dynamics and critical conditions for active nonspherical nanoparticle uptake. Phys Rev E 2023; 107:054401. [PMID: 37329073 DOI: 10.1103/physreve.107.054401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/17/2023] [Indexed: 06/18/2023]
Abstract
The cellular uptake of self-propelled nonspherical nanoparticles (NPs) or viruses by cell membrane is crucial in many biological processes, but its universal dynamics have yet to be elucidated. In this study, using the Onsager variational principle, we obtain a general wrapping equation for nonspherical self-propelled nanoparticles. Two analytical critical conditions are theoretically found, indicating a continuous full uptake for prolate particles and a snapthrough full uptake for oblate particles. They precisely capture the full uptake critical boundaries in the phase diagrams numerically constructed in terms of active force, aspect ratio, adhesion energy density, and membrane tension. It is found that enhancing activity (active force), reducing effective dynamic viscosity, increasing adhesion energy density, and decreasing membrane tension can significantly improve the wrapping efficiency of the self-propelled nonspherical nanoparticles. These results give a panoramic view of the uptake dynamics of active nonspherical nanoparticles, and may offer instructions for designing an effective active NP-based vehicle for controlled drug delivery.
Collapse
Affiliation(s)
- Ke Xiao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325016, People's Republic of China and Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, People's Republic of China
| | - Rui Ma
- Fujian Provincial Key Lab for Soft Functional Materials Research, Research Institute for Biomimetics and Soft Matter, Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, People's Republic of China
| | - Chen-Xu Wu
- Fujian Provincial Key Lab for Soft Functional Materials Research, Research Institute for Biomimetics and Soft Matter, Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
5
|
Kostow N, Welch MD. Manipulation of host cell plasma membranes by intracellular bacterial pathogens. Curr Opin Microbiol 2023; 71:102241. [PMID: 36442349 PMCID: PMC10074913 DOI: 10.1016/j.mib.2022.102241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 11/26/2022]
Abstract
Manipulation of the host cell plasma membrane is critical during infection by intracellular bacterial pathogens, particularly during bacterial entry into and exit from host cells. To manipulate host cells, bacteria deploy secreted proteins that modulate or modify host cell components. Here, we review recent advances that suggest common themes by which bacteria manipulate the host cell plasma membrane. One theme is that bacteria use diverse strategies to target or influence host cell plasma membrane composition and shape. A second theme is that bacteria take advantage of host cell plasma membrane-associated pathways such as signal transduction, endocytosis, and exocytosis. Future investigation into how bacterial and host factors contribute to plasma membrane manipulation by bacterial pathogens will reveal new insights into pathogenesis and fundamental principles of plasma membrane biology.
Collapse
Affiliation(s)
- Nora Kostow
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Matthew D Welch
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
6
|
Ireton K, Gyanwali GC, Herath TUB, Lee N. Exploitation of the host exocyst complex by bacterial pathogens. Mol Microbiol 2023. [PMID: 36717381 DOI: 10.1111/mmi.15034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023]
Abstract
Intracellular bacterial pathogens remodel the plasma membrane of eukaryotic cells in order to establish infection. A common and well-studied mechanism of plasma membrane remodelling involves bacterial stimulation of polymerization of the host actin cytoskeleton. Here, we discuss recent results showing that several bacterial pathogens also exploit the host vesicular trafficking pathway of 'polarized exocytosis' to expand and reshape specific regions in the plasma membrane during infection. Polarized exocytosis is mediated by an evolutionarily conserved octameric protein complex termed the exocyst. We describe examples in which the bacteria Listeria monocytogenes, Salmonella enterica serovar Typhimurium, and Shigella flexneri co-opt the exocyst to promote internalization into human cells or intercellular spread within host tissues. We also discuss results showing that Legionella pneumophila or S. flexneri manipulate exocyst components to modify membrane vacuoles to favour intracellular replication or motility of bacteria. Finally, we propose potential ways that pathogens manipulate exocyst function, discuss how polarized exocytosis might promote infection and highlight the importance of future studies to determine how actin polymerization and polarized exocytosis are coordinated to achieve optimal bacterial infection.
Collapse
Affiliation(s)
- Keith Ireton
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | | - Thilina U B Herath
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Nicole Lee
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
7
|
Listeria monocytogenes Co-Opts the Host Exocyst Complex To Promote Internalin A-Mediated Entry. Infect Immun 2022; 90:e0032622. [PMID: 36255255 PMCID: PMC9753705 DOI: 10.1128/iai.00326-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The bacterial pathogen Listeria monocytogenes induces its internalization (entry) into intestinal epithelial cells through interaction of its surface protein, internalin A (InlA), with the human cell-cell adhesion molecule, E-cadherin. While InlA-mediated entry requires bacterial stimulation of actin polymerization, it remains unknown whether additional host processes are manipulated to promote internalization. Here, we show that interaction of InlA with E-cadherin induces the host membrane-trafficking process of polarized exocytosis, which augments uptake of Listeria. Imaging studies revealed that exocytosis is stimulated at sites of InlA-dependent internalization. Experiments inhibiting human N-ethylmaleimide-sensitive factor (NSF) demonstrated that exocytosis is needed for efficient InlA-mediated entry. Polarized exocytosis is mediated by the exocyst complex, which comprises eight proteins, including Sec6, Exo70, and Exo84. We found that Exo70 was recruited to sites of InlA-mediated entry. In addition, depletion of Exo70, Exo84, or Sec6 by RNA interference impaired entry without affecting surface levels of E-cadherin. Similar to binding of InlA to E-cadherin, homophilic interaction of E-cadherin molecules mobilized the exocyst and stimulated exocytosis. Collectively, these results demonstrate that ligation of E-cadherin induces exocytosis that promotes Listeria entry, and they raise the possibility that the exocyst might also control the normal function of E-cadherin in cell-cell adhesion.
Collapse
|
8
|
In through the Out Exit: the Role of the Exocyst in Listeria monocytogenes Cell Entry. Infect Immun 2022; 90:e0048422. [PMID: 36394320 PMCID: PMC9753639 DOI: 10.1128/iai.00484-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The intracellular pathogen Listeria monocytogenes is one of the leading causes of death from foodborne illness in the United States. Internalin A is the key surface protein that drives Listeria uptake by epithelial cells expressing E-cadherin. G. C. Gyanwali, T. U. B. Herath, A. Gianfelice, and K. Ireton (Infect Immun 90:e00326-22, 2022, https://doi.org/10.1128/iai.00326-22) unravel the close relationship between internalin A and the exocyst, adding another layer of complexity to the bacterial internalization process.
Collapse
|
9
|
Hartland EL, Ghosal D, Giogha C. Manipulation of epithelial cell architecture by the bacterial pathogens Listeria and Shigella. Curr Opin Cell Biol 2022; 79:102131. [PMID: 36215855 DOI: 10.1016/j.ceb.2022.102131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/22/2022] [Accepted: 09/06/2022] [Indexed: 01/31/2023]
Abstract
Subversion of the host cell cytoskeleton is a virulence attribute common to many bacterial pathogens. On mucosal surfaces, bacteria have evolved distinct ways of interacting with the polarised epithelium and manipulating host cell structure to propagate infection. For example, Shigella and Listeria induce cytoskeletal changes to induce their own uptake into enterocytes in order to replicate within an intracellular environment and then spread from cell-to-cell by harnessing the host actin cytoskeleton. In this review, we highlight some recent studies that advance our understanding of the role of the host cell cytoskeleton in the mechanical and molecular processes of pathogen invasion, cell-to-cell spread and the impact of infection on epithelial intercellular tension and innate mucosal defence.
Collapse
Affiliation(s)
- Elizabeth L Hartland
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia.
| | - Debnath Ghosal
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Cristina Giogha
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
10
|
Xiao K, Ma R, Wu CX. Force-induced wrapping phase transition in activated cellular uptake. Phys Rev E 2022; 106:044411. [PMID: 36397463 DOI: 10.1103/physreve.106.044411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Intracellular pathogens, including all viruses and many bacteria, enter a host cell through either passive endocytosis or active self-propulsion. Though the cellular uptake of passive particles via endocytic process has been studied extensively, little work has been done on the active entry of self-propelled pathogens, such as Listeria monocytogenes. Here, we present a theoretical model to investigate the adhesive wrapping of a self-propelled particle by a plasma membrane, and find a type of first-order wrapping transition from a small partial wrapping state to a large partial wrapping state triggered by the active force. The phase diagram displays more complex behaviors compared with the passive wrapping mediated merely by adhesion. We also find that a tubular protrusion can be formed if the active force exceeds a force barrier. These results may provide a useful guidance to the study of activity-driven cellular entry of active particles into cells.
Collapse
Affiliation(s)
- Ke Xiao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325016, People's Republic of China and Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, People's Republic of China
| | - Rui Ma
- Fujian Provincial Key Lab for Soft Functional Materials Research, Research Institute for Biomimetics and Soft Matter, Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, People's Republic of China
| | - Chen-Xu Wu
- Fujian Provincial Key Lab for Soft Functional Materials Research, Research Institute for Biomimetics and Soft Matter, Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
11
|
Abstract
Swimming bacterial pathogens can penetrate and shape the membranes of their host cells. We study an artificial model system of this kind comprising Escherichia coli enclosed inside vesicles, which consist of nothing more than a spherical membrane bag. The bacteria push out membrane tubes, and the tubes propel the vesicles. This phenomenon is intriguing because motion cannot be generated by pushing the vesicles from within. We explain the motility of our artificial cell by a shape coupling between the flagella of each bacterium and the enclosing membrane tube. This constitutes a design principle for conferring motility to cell-sized vesicles and demonstrates the universality of lipid membranes as a building block in the development of new biohybrid systems. We study a synthetic system of motile Escherichia coli bacteria encapsulated inside giant lipid vesicles. Forces exerted by the bacteria on the inner side of the membrane are sufficient to extrude membrane tubes filled with one or several bacteria. We show that a physical coupling between the membrane tube and the flagella of the enclosed cells transforms the tube into an effective helical flagellum propelling the vesicle. We develop a simple theoretical model to estimate the propulsive force from the speed of the vesicles and demonstrate the good efficiency of this coupling mechanism. Together, these results point to design principles for conferring motility to synthetic cells.
Collapse
|
12
|
Mechanical Forces Govern Interactions of Host Cells with Intracellular Bacterial Pathogens. Microbiol Mol Biol Rev 2022; 86:e0009420. [PMID: 35285720 PMCID: PMC9199418 DOI: 10.1128/mmbr.00094-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To combat infectious diseases, it is important to understand how host cells interact with bacterial pathogens. Signals conveyed from pathogen to host, and vice versa, may be either chemical or mechanical. While the molecular and biochemical basis of host-pathogen interactions has been extensively explored, relatively less is known about mechanical signals and responses in the context of those interactions. Nevertheless, a wide variety of bacterial pathogens appear to have developed mechanisms to alter the cellular biomechanics of their hosts in order to promote their survival and dissemination, and in turn many host responses to infection rely on mechanical alterations in host cells and tissues to limit the spread of infection. In this review, we present recent findings on how mechanical forces generated by host cells can promote or obstruct the dissemination of intracellular bacterial pathogens. In addition, we discuss how in vivo extracellular mechanical signals influence interactions between host cells and intracellular bacterial pathogens. Examples of such signals include shear stresses caused by fluid flow over the surface of cells and variable stiffness of the extracellular matrix on which cells are anchored. We highlight bioengineering-inspired tools and techniques that can be used to measure host cell mechanics during infection. These allow for the interrogation of how mechanical signals can modulate infection alongside biochemical signals. We hope that this review will inspire the microbiology community to embrace those tools in future studies so that host cell biomechanics can be more readily explored in the context of infection studies.
Collapse
|
13
|
Quereda JJ, Morón-García A, Palacios-Gorba C, Dessaux C, García-del Portillo F, Pucciarelli MG, Ortega AD. Pathogenicity and virulence of Listeria monocytogenes: A trip from environmental to medical microbiology. Virulence 2021; 12:2509-2545. [PMID: 34612177 PMCID: PMC8496543 DOI: 10.1080/21505594.2021.1975526] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/02/2023] Open
Abstract
Listeria monocytogenes is a saprophytic gram-positive bacterium, and an opportunistic foodborne pathogen that can produce listeriosis in humans and animals. It has evolved an exceptional ability to adapt to stress conditions encountered in different environments, resulting in a ubiquitous distribution. Because some food preservation methods and disinfection protocols in food-processing environments cannot efficiently prevent contaminations, L. monocytogenes constitutes a threat to human health and a challenge to food safety. In the host, Listeria colonizes the gastrointestinal tract, crosses the intestinal barrier, and disseminates through the blood to target organs. In immunocompromised individuals, the elderly, and pregnant women, the pathogen can cross the blood-brain and placental barriers, leading to neurolisteriosis and materno-fetal listeriosis. Molecular and cell biology studies of infection have proven L. monocytogenes to be a versatile pathogen that deploys unique strategies to invade different cell types, survive and move inside the eukaryotic host cell, and spread from cell to cell. Here, we present the multifaceted Listeria life cycle from a comprehensive perspective. We discuss genetic features of pathogenic Listeria species, analyze factors involved in food contamination, and review bacterial strategies to tolerate stresses encountered both during food processing and along the host's gastrointestinal tract. Then we dissect host-pathogen interactions underlying listerial pathogenesis in mammals from a cell biology and systemic point of view. Finally, we summarize the epidemiology, pathophysiology, and clinical features of listeriosis in humans and animals. This work aims to gather information from different fields crucial for a comprehensive understanding of the pathogenesis of L. monocytogenes.
Collapse
Affiliation(s)
- Juan J. Quereda
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. Valencia, Spain
| | - Alvaro Morón-García
- Departamento de Biología Celular. Facultad de Ciencias Biológicas, Universidad Complutense de Madrid. Madrid, Spain
| | - Carla Palacios-Gorba
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. Valencia, Spain
| | - Charlotte Dessaux
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| | - Francisco García-del Portillo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| | - M. Graciela Pucciarelli
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Biología Molecular ‘Severo Ochoa’. Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid. Madrid, Spain
| | - Alvaro D. Ortega
- Departamento de Biología Celular. Facultad de Ciencias Biológicas, Universidad Complutense de Madrid. Madrid, Spain
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
14
|
Spier A, Connor MG, Steiner T, Carvalho F, Cossart P, Eisenreich W, Wai T, Stavru F. Mitochondrial respiration restricts Listeria monocytogenes infection by slowing down host cell receptor recycling. Cell Rep 2021; 37:109989. [PMID: 34758302 PMCID: PMC8595641 DOI: 10.1016/j.celrep.2021.109989] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/26/2021] [Accepted: 10/21/2021] [Indexed: 01/06/2023] Open
Abstract
Mutations in mitochondrial genes impairing energy production cause mitochondrial diseases (MDs), and clinical studies have shown that MD patients are prone to bacterial infections. However, the relationship between mitochondrial (dys)function and infection remains largely unexplored, especially in epithelial cells, the first barrier to many pathogens. Here, we generate an epithelial cell model for one of the most common mitochondrial diseases, Leigh syndrome, by deleting surfeit locus protein 1 (SURF1), an assembly factor for respiratory chain complex IV. We use this genetic model and a complementary, nutrient-based approach to modulate mitochondrial respiration rates and show that impaired mitochondrial respiration favors entry of the human pathogen Listeria monocytogenes, a well-established bacterial infection model. Reversely, enhanced mitochondrial energy metabolism decreases infection efficiency. We further demonstrate that endocytic recycling is reduced in mitochondrial respiration-dependent cells, dampening L. monocytogenes infection by slowing the recycling of its host cell receptor c-Met, highlighting a previously undescribed role of mitochondrial respiration during infection. Enhanced mitochondrial respiration decreases L. monocytogenes infection Bacterial entry is affected by the host cell metabolism Mitochondrial respiration restricts host cell receptor recycling and thus infection
Collapse
Affiliation(s)
- Anna Spier
- Evolutionary Biology of the Microbial Cell Unit, Institut Pasteur, Paris, France; Bacteria-Cell Interactions Unit, Institut Pasteur, Paris, France; Université de Paris, Paris, France; UMR2001, CNRS, Paris, France
| | - Michael G Connor
- Université de Paris, Paris, France; Chromatin and Infection Unit, Institut Pasteur, Paris, France
| | - Thomas Steiner
- Bavarian NMR Center - Structural Membrane Biochemistry, Department of Chemistry, Technische Universität München, Garching, Germany
| | - Filipe Carvalho
- Bacteria-Cell Interactions Unit, Institut Pasteur, Paris, France
| | - Pascale Cossart
- Bacteria-Cell Interactions Unit, Institut Pasteur, Paris, France; Université de Paris, Paris, France.
| | - Wolfgang Eisenreich
- Bavarian NMR Center - Structural Membrane Biochemistry, Department of Chemistry, Technische Universität München, Garching, Germany
| | - Timothy Wai
- Université de Paris, Paris, France; Mitochondrial Biology Unit, Institut Pasteur, Paris, France.
| | - Fabrizia Stavru
- Evolutionary Biology of the Microbial Cell Unit, Institut Pasteur, Paris, France; Bacteria-Cell Interactions Unit, Institut Pasteur, Paris, France; Université de Paris, Paris, France; UMR2001, CNRS, Paris, France
| |
Collapse
|
15
|
Ireton K, Mortuza R, Gyanwali GC, Gianfelice A, Hussain M. Role of internalin proteins in the pathogenesis of Listeria monocytogenes. Mol Microbiol 2021; 116:1407-1419. [PMID: 34704304 DOI: 10.1111/mmi.14836] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022]
Abstract
Listeria monocytogenes is a food-borne bacterium that causes gastroenteritis, meningitis, or abortion. L. monocytogenes induces its internalization (entry) into human cells and either spreads laterally in tissues or transcytoses to traverse anatomical barriers. In this review, we discuss mechanisms by which five structurally related proteins of the "internalin" family of L. monocytogenes (InlA, InlB, InlC, InlF, and InlP) interact with distinct host receptors to promote infection of human cells and/or crossing of the intestinal, blood-brain, or placental barriers. We focus on recent results demonstrating that the internalin proteins InlA, InlB, and InlC exploit exocytic pathways to stimulate transcytosis, entry, or cell-to-cell spread, respectively. We also discuss evidence that InlA-mediated transcytosis contributes to traversal of the intestinal barrier, whereas InlF promotes entry into endothelial cells to breach the blood-brain barrier. InlB also facilitates the crossing of the blood-brain barrier, but does so by extending the longevity of infected monocytes that may subsequently act as a "Trojan horse" to transfer bacteria to the brain. InlA, InlB, and InlP each contribute to fetoplacental infection by targeting syncytiotrophoblast or cytotrophoblast layers of the placenta. This work highlights the diverse functions of internalins and the complex mechanisms by which these structurally related proteins contribute to disease.
Collapse
Affiliation(s)
- Keith Ireton
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Roman Mortuza
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | | - Antonella Gianfelice
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Mazhar Hussain
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
16
|
Herath TUB, Roy A, Gianfelice A, Ireton K. Shigella flexneri subverts host polarized exocytosis to enhance cell-to-cell spread. Mol Microbiol 2021; 116:1328-1346. [PMID: 34608697 DOI: 10.1111/mmi.14827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/21/2021] [Accepted: 10/01/2021] [Indexed: 11/28/2022]
Abstract
Shigella flexneri is a gram-negative bacterial pathogen that causes dysentery. Critical for disease is the ability of Shigella to use an actin-based motility (ABM) process to spread between cells of the colonic epithelium. ABM transports bacteria to the periphery of host cells, allowing the formation of plasma membrane protrusions that mediate spread to adjacent cells. Here we demonstrate that efficient protrusion formation and cell-to-cell spread of Shigella involves bacterial stimulation of host polarized exocytosis. Using an exocytic probe, we found that exocytosis is locally upregulated in bacterial protrusions in a manner that depends on the Shigella type III secretion system. Experiments involving RNA interference (RNAi) indicate that efficient bacterial protrusion formation and spread require the exocyst, a mammalian multi-protein complex known to mediate polarized exocytosis. In addition, the exocyst component Exo70 and the exocyst regulator RalA were recruited to Shigella protrusions, suggesting that bacteria manipulate exocyst function. Importantly, RNAi-mediated depletion of exocyst proteins or RalA reduced the frequency of protrusion formation and also the lengths of protrusions, demonstrating that the exocyst controls both the initiation and elongation of protrusions. Collectively, our results reveal that Shigella co-opts the exocyst complex to disseminate efficiently in host cell monolayers.
Collapse
Affiliation(s)
- Thilina U B Herath
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Arpita Roy
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Antonella Gianfelice
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Keith Ireton
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
17
|
McCall LI. Quo vadis? Central Rules of Pathogen and Disease Tropism. Front Cell Infect Microbiol 2021; 11:640987. [PMID: 33718287 PMCID: PMC7947345 DOI: 10.3389/fcimb.2021.640987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding why certain people get sick and die while others recover or never become ill is a fundamental question in biomedical research. A key determinant of this process is pathogen and disease tropism: the locations that become infected (pathogen tropism), and the locations that become damaged (disease tropism). Identifying the factors that regulate tropism is essential to understand disease processes, but also to drive the development of new interventions. This review intersects research from across infectious diseases to define the central mediators of disease and pathogen tropism. This review also highlights methods of study, and translational implications. Overall, tropism is a central but under-appreciated aspect of infection pathogenesis which should be at the forefront when considering the development of new methods of intervention.
Collapse
Affiliation(s)
- Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, United States
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
18
|
High-Definition DIC Imaging Uncovers Transient Stages of Pathogen Infection Cycles on the Surface of Human Adult Stem Cell-Derived Intestinal Epithelium. mBio 2021; 13:e0002222. [PMID: 35100876 PMCID: PMC8805028 DOI: 10.1128/mbio.00022-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Interactions between individual pathogenic microbes and host tissues involve fast and dynamic processes that ultimately impact the outcome of infection. Using live-cell microscopy, these dynamics can be visualized to study, e.g., microbe motility, binding and invasion of host cells, and intrahost-cell survival. Such methodology typically employs confocal imaging of fluorescent tags in tumor-derived cell line infections on glass. This allows high-definition imaging but poorly reflects the host tissue's physiological architecture and may result in artifacts. We developed a method for live-cell imaging of microbial infection dynamics on human adult stem cell-derived intestinal epithelial cell (IEC) layers. These IEC layers are grown in apical imaging chambers, optimized for physiological cell arrangement and fast, but gentle, differential interference contrast (DIC) imaging. This allows subsecond visualization of both microbial and epithelial surface ultrastructure at high resolution without using fluorescent reporters. We employed this technology to probe the behavior of two model pathogens, Salmonella enterica serovar Typhimurium and Giardia intestinalis, at the intestinal epithelial surface. Our results reveal pathogen-specific swimming patterns on the epithelium and show that Salmonella lingers on the IEC surface for prolonged periods before host cell invasion, while Giardia uses circular swimming with intermittent attachments to scout for stable adhesion sites. The method even permits tracking of individual Giardia flagella, demonstrating that active flagellar beating and attachment to the IEC surface are not mutually exclusive. This work describes a generalizable and relatively inexpensive approach to resolving dynamic pathogen-IEC layer interactions, applicable even to genetically nontractable microorganisms. IMPORTANCE Knowledge of dynamic niche-specific interactions between single microbes and host cells is essential to understand infectious disease progression. However, advances in this field have been hampered by the inherent conflict between the technical requirements for high-resolution live-cell imaging on the one hand and conditions that best mimic physiological infection niche parameters on the other. Toward bridging this divide, we present a methodology for differential interference contrast (DIC) imaging of pathogen interactions at the apical surface of enteroid-derived intestinal epithelia, providing both high spatial and temporal resolution. This alleviates the need for fluorescent reporters in live-cell imaging and provides dynamic information about microbe interactions with a nontransformed, confluent, polarized, and microvilliated human gut epithelium. Using this methodology, we uncover previously unrecognized stages of Salmonella and Giardia infection cycles at the epithelial surface.
Collapse
|
19
|
Dhanda AS, Yang D, Kooner A, Guttman JA. Distribution of PDLIM1 at actin-rich structures generated by invasive and adherent bacterial pathogens. Anat Rec (Hoboken) 2020; 304:919-938. [PMID: 33022122 DOI: 10.1002/ar.24523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/06/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022]
Abstract
The enteric bacterial pathogens Listeria monocytogenes (Listeria) and enteropathogenic Escherichia coli (EPEC) remodel the eukaryotic actin cytoskeleton during their disease processes. Listeria generate slender actin-rich comet/rocket tails to move intracellularly, and later, finger-like membrane protrusions to spread amongst host cells. EPEC remain extracellular, but generate similar actin-rich membranous protrusions (termed pedestals) to move atop the host epithelia. These structures are crucial for disease as diarrheal (and systemic) infections are significantly abrogated during infections with mutant strains that are unable to generate the structures. The current repertoire of host components enriched within these structures is vast and diverse. In this protein catalog, we and others have found that host actin crosslinkers, such as palladin and α-actinin-1, are routinely exploited. To expand on this list, we set out to investigate the distribution of PDLIM1, a scaffolding protein and binding partner of palladin and α-actinin-1, during bacterial infections. We show that PDLIM1 localizes to the site of initial Listeria entry into cells. Following this, PDLIM1 localizes to actin filament clouds surrounding immotile bacteria, and then colocalizes with actin once the comet/rocket tails are generated. Unlike palladin or α-actinin-1, PDLIM1 is maintained within the actin-rich core of membrane protrusions. Conversely, α-actinin-1, but not PDLIM1 (or palladin), is enriched at the membrane invagination that internalizes the Listeria-containing membrane protrusion. We also show that PDLIM1 is a component of the EPEC pedestal core and that its recruitment is dependent on the bacterial effector Tir. Our findings highlight PDLIM1 as another protein present within pathogen-induced actin-rich structures.
Collapse
Affiliation(s)
- Aaron S Dhanda
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Diana Yang
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Avneen Kooner
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Julian A Guttman
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
20
|
Kannan S, Balakrishnan J, Govindasamy A. Listeria monocytogens - Amended understanding of its pathogenesis with a complete picture of its membrane vesicles, quorum sensing, biofilm and invasion. Microb Pathog 2020; 149:104575. [PMID: 33091581 DOI: 10.1016/j.micpath.2020.104575] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/29/2022]
Abstract
Listeria monocytogenes is a ubiquitous, intracellular foodborne pathogen that causes listeriosis in animals and humans. Pathogenic Listeria monocytogenes easily adapted to the conditions of human gastrointestinal tract and tolerate the counter changes such as acidity, bile, osmolarity, and antimicrobial peptides. They secrete specialized biologically active extra organ called membrane vesicles which comprises proteins, lipids, and lipopolysaccharides. Listerial vesicles possess functional versatility and play a significant role in pathogenesis by cell-free intercellular communication and toxin packaging. L. monocytogenes can attach promptly and decisively to inert substratum including intestinal mucosa, and forms biofilms and causes detrimental effects. Further, they invade the host cells through quorum sensing (QS) controlled virulence determinants and biofilms. The precise degree to which the bacterium retains the intracellular ambiance of host cells remains unknown. The machinery associated with intracellular survival, and the role of membrane vesicles, quorum sensing, and the Agr system in Listeria monocytogenes largely remains unclear. The current review focused to understand the role of membrane vesicles mediated pathogenesis biofilms, and delivers auxiliary impetus to understanding the potentials of virulence mediated invasion in Listeria monocytogenes.
Collapse
Affiliation(s)
- Suganya Kannan
- Central Research Laboratory, Vinayaka Mission's Medical College and Hospital, Vinayaka Mission's Research Foundation (Deemed to be University), Karaikal, India.
| | - Jeyakumar Balakrishnan
- Central Research Laboratory, Vinayaka Mission's Medical College and Hospital, Vinayaka Mission's Research Foundation (Deemed to be University), Karaikal, India
| | - Ambujam Govindasamy
- Department of General Surgery, Vinayaka Mission's Medical College and Hospital, Vinayaka Mission Research Foundation (Deemed to be University), Karaikal, India
| |
Collapse
|
21
|
Dowd GC, Mortuza R, Ireton K. Molecular Mechanisms of Intercellular Dissemination of Bacterial Pathogens. Trends Microbiol 2020; 29:127-141. [PMID: 32682632 DOI: 10.1016/j.tim.2020.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023]
Abstract
Several intracellular bacterial pathogens, including Listeria monocytogenes, Shigella flexerni, and Rickettsia spp. use an actin-based motility process to spread in mammalian cell monolayers. Cell-to-cell spread is mediated by protrusive structures that contain bacteria encased in the host cell plasma membrane. These protrusions, which form in infected host cells, are internalized by neighboring cells. In this review, we summarize key findings on cell-to-cell spread, focusing on recent work on mechanisms of protrusion formation and internalization. We also discuss the dynamic behavior of bacterial populations during spread, and highlight recent findings showing that intercellular spread by an extracellular bacterial pathogen.
Collapse
Affiliation(s)
- Georgina C Dowd
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | - Roman Mortuza
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | - Keith Ireton
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
22
|
Listeria monocytogenes exploits host exocytosis to promote cell-to-cell spread. Proc Natl Acad Sci U S A 2020; 117:3789-3796. [PMID: 32015134 DOI: 10.1073/pnas.1916676117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The facultative intracellular pathogen Listeria monocytogenes uses an actin-based motility process to spread within human tissues. Filamentous actin from the human cell forms a tail behind bacteria, propelling microbes through the cytoplasm. Motile bacteria remodel the host plasma membrane into protrusions that are internalized by neighboring cells. A critical unresolved question is whether generation of protrusions by Listeria involves stimulation of host processes apart from actin polymerization. Here we demonstrate that efficient protrusion formation in polarized epithelial cells involves bacterial subversion of host exocytosis. Confocal microscopy imaging indicated that exocytosis is up-regulated in protrusions of Listeria in a manner that depends on the host exocyst complex. Depletion of components of the exocyst complex by RNA interference inhibited the formation of Listeria protrusions and subsequent cell-to-cell spread of bacteria. Additional genetic studies indicated important roles for the exocyst regulators Rab8 and Rab11 in bacterial protrusion formation and spread. The secreted Listeria virulence factor InlC associated with the exocyst component Exo70 and mediated the recruitment of Exo70 to bacterial protrusions. Depletion of exocyst proteins reduced the length of Listeria protrusions, suggesting that the exocyst complex promotes protrusion elongation. Collectively, these results demonstrate that Listeria exploits host exocytosis to stimulate intercellular spread of bacteria.
Collapse
|