1
|
Pahal S, Mainali N, Balasubramaniam M, Shmookler Reis RJ, Ayyadevara S. Mitochondria in aging and age-associated diseases. Mitochondrion 2025; 82:102022. [PMID: 40023438 DOI: 10.1016/j.mito.2025.102022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Mitochondria, essential for cellular energy, are crucial in neurodegenerative disorders (NDDs) and their age-related progression. This review highlights mitochondrial dynamics, mitovesicles, homeostasis, and organelle communication. We examine mitochondrial impacts from aging and NDDs, focusing on protein aggregation and dysfunction. Prospective therapeutic approaches include enhancing mitophagy, improving respiratory chain function, maintaining calcium and lipid balance, using microRNAs, and mitochondrial transfer to protect function. These strategies underscore the crucial role of mitochondrial health in neuronal survival and cognitive functions, offering new therapeutic opportunities.
Collapse
Affiliation(s)
- Sonu Pahal
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A
| | - Nirjal Mainali
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A
| | | | - Robert J Shmookler Reis
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A; Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A; Central Arkansas Veterans Healthcare Service, Little Rock AR 72205, U.S.A.
| | - Srinivas Ayyadevara
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A; Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A; Central Arkansas Veterans Healthcare Service, Little Rock AR 72205, U.S.A.
| |
Collapse
|
2
|
Park K, Jeon MC, Lee D, Kim JI, Im SW. Genetic and epigenetic alterations in aging and rejuvenation of human. Mol Cells 2024; 47:100137. [PMID: 39433213 PMCID: PMC11625158 DOI: 10.1016/j.mocell.2024.100137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/19/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024] Open
Abstract
All the information essential for life is encoded within our genome and epigenome, which orchestrates diverse cellular states spatially and temporally. In particular, the epigenome interacts with internal and external stimuli, encoding and preserving cellular experiences, and it serves as the regulatory base of the transcriptome across diverse cell types. The emergence of single-cell transcriptomic and epigenomic data collection has revealed unique omics signatures in diverse tissues, highlighting cellular heterogeneity. Recent research has documented age-related epigenetic changes at the single-cell level, alongside the validation of cellular rejuvenation through partial reprogramming, which involves simultaneous epigenetic modifications. These dynamic shifts, primarily fueled by stem cell plasticity, have catalyzed significant interest and cross-disciplinary research endeavors. This review explores the genomic and epigenomic alterations with aging, elucidating their reciprocal interactions. Additionally, it seeks to discuss the evolving landscape of rejuvenation research, with a particular emphasis on dissecting stem cell behavior through the lens of single-cell analysis. Moreover, it proposes potential research methodologies for future studies.
Collapse
Affiliation(s)
- Kyunghyuk Park
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea
| | - Min Chul Jeon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Dakyung Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Il Kim
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea; Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea.
| | - Sun-Wha Im
- Department of Biochemistry and Molecular Biology, Kangwon National University School of Medicine, Gangwon, Korea.
| |
Collapse
|
3
|
Peng Y, Zhao T, Rong S, Yang S, Teng W, Xie Y, Wang Y. Young small extracellular vesicles rejuvenate replicative senescence by remodeling Drp1 translocation-mediated mitochondrial dynamics. J Nanobiotechnology 2024; 22:543. [PMID: 39238005 PMCID: PMC11378612 DOI: 10.1186/s12951-024-02818-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 08/30/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Human mesenchymal stem cells have attracted interest in regenerative medicine and are being tested in many clinical trials. In vitro expansion is necessary to provide clinical-grade quantities of mesenchymal stem cells; however, it has been reported to cause replicative senescence and undefined dysfunction in mesenchymal stem cells. Quality control assessments of in vitro expansion have rarely been addressed in ongoing trials. Young small extracellular vesicles from the remnant pulp of human exfoliated deciduous teeth stem cells have demonstrated therapeutic potential for diverse diseases. However, it is still unclear whether young small extracellular vesicles can reverse senescence-related declines. RESULTS We demonstrated that mitochondrial structural disruption precedes cellular dysfunction during bone marrow-derived mesenchymal stem cell replication, indicating mitochondrial parameters as quality assessment indicators of mesenchymal stem cells. Dynamin-related protein 1-mediated mitochondrial dynamism is an upstream regulator of replicative senescence-induced dysfunction in bone marrow-derived mesenchymal stem cells. We observed that the application of young small extracellular vesicles could rescue the pluripotency dissolution, immunoregulatory capacities, and therapeutic effects of replicative senescent bone marrow-derived mesenchymal stem cells. Mechanistically, young small extracellular vesicles could promote Dynamin-related protein 1 translocation from the cytoplasm to the mitochondria and remodel mitochondrial disruption during replication history. CONCLUSIONS Our findings show that Dynamin-related protein 1-mediated mitochondrial disruption is associated with the replication history of bone marrow-derived mesenchymal stem cells. Young small extracellular vesicles from human exfoliated deciduous teeth stem cells alleviate replicative senescence by promoting Dynamin-related protein 1 translocation onto the mitochondria, providing evidence for a potential rejuvenation strategy.
Collapse
Affiliation(s)
- Yingying Peng
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, 56 Lingyuanxi Road, Guangzhou, 510055, People's Republic of China
| | - Tingting Zhao
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, 56 Lingyuanxi Road, Guangzhou, 510055, People's Republic of China
| | - Shuxuan Rong
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, 56 Lingyuanxi Road, Guangzhou, 510055, People's Republic of China
| | - Shuqing Yang
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, 56 Lingyuanxi Road, Guangzhou, 510055, People's Republic of China
| | - Wei Teng
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, 56 Lingyuanxi Road, Guangzhou, 510055, People's Republic of China.
| | - Yunyi Xie
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, 56 Lingyuanxi Road, Guangzhou, 510055, People's Republic of China.
| | - Yan Wang
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, 56 Lingyuanxi Road, Guangzhou, 510055, People's Republic of China.
| |
Collapse
|
4
|
Sanchez-Roman I, Ferrando B, Myrup Holst C, Mengel-From J, Hoei Rasmussen S, Thinggaard M, Bohr VA, Christensen K, Stevnsner T. Markers of Mitochondrial Function and DNA Repair Associated with Physical Function in Centenarians. Biomolecules 2024; 14:909. [PMID: 39199297 PMCID: PMC11353237 DOI: 10.3390/biom14080909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
Mitochondrial dysfunction and genomic instability are key hallmarks of aging. The aim of this study was to evaluate whether maintenance of physical capacities at very old age is associated with key hallmarks of aging. To investigate this, we measured mitochondrial bioenergetics, mitochondrial DNA (mtDNA) copy number and DNA repair capacity in peripheral blood mononuclear cells from centenarians. In addition, circulating levels of NAD+/NADH, brain-derived neurotrophic factor (BDNF) and carbonylated proteins were measured in plasma and these parameters were correlated to physical capacities. Centenarians without physical disabilities had lower mitochondrial respiration values including ATP production, reserve capacity, maximal respiration and non-mitochondrial oxygen-consumption rate and had higher mtDNA copy number than centenarians with moderate and severe disabilities (p < 0.05). In centenarian females, grip strength had a positive association with mtDNA copy number (p < 0.05), and a borderline positive trend for activity of the central DNA repair enzyme, APE 1 (p = 0.075), while a negative trend was found with circulating protein carbonylation (p = 0.07) in the entire cohort. Lastly, a trend was observed for a negative association between BDNF and activity of daily living disability score (p = 0.06). Our results suggest that mechanisms involved in maintaining mitochondrial function and genomic stability may be associated with maintenance of physical function in centenarians.
Collapse
Affiliation(s)
- Ines Sanchez-Roman
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (C.M.H.)
- Danish Aging Research Center, Department of Public Health, University of Southern Denmark, 5230 Odense, Denmark
| | - Beatriz Ferrando
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (C.M.H.)
- Danish Aging Research Center, Department of Public Health, University of Southern Denmark, 5230 Odense, Denmark
- Facultad de Humanidades y Ciencias Sociales, Universidad Isabel I, 09003 Burgos, Spain; (B.F.)
| | - Camilla Myrup Holst
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (C.M.H.)
- Danish Aging Research Center, Department of Public Health, University of Southern Denmark, 5230 Odense, Denmark
| | - Jonas Mengel-From
- Danish Aging Research Center, Department of Public Health, University of Southern Denmark, 5230 Odense, Denmark
- Epidemiology, Biostatistics and Biodemography, University of Southern Denmark, 5230 Odense, Denmark; (J.M.-F.); (S.H.R.); (M.T.); (K.C.)
| | - Signe Hoei Rasmussen
- Danish Aging Research Center, Department of Public Health, University of Southern Denmark, 5230 Odense, Denmark
- Epidemiology, Biostatistics and Biodemography, University of Southern Denmark, 5230 Odense, Denmark; (J.M.-F.); (S.H.R.); (M.T.); (K.C.)
- Geriatric Research Unit, Department of Clinical Research, University of Southern Denmark, 5230 Odense, Denmark
| | - Mikael Thinggaard
- Danish Aging Research Center, Department of Public Health, University of Southern Denmark, 5230 Odense, Denmark
- Epidemiology, Biostatistics and Biodemography, University of Southern Denmark, 5230 Odense, Denmark; (J.M.-F.); (S.H.R.); (M.T.); (K.C.)
| | - Vilhelm A. Bohr
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Kaare Christensen
- Danish Aging Research Center, Department of Public Health, University of Southern Denmark, 5230 Odense, Denmark
- Epidemiology, Biostatistics and Biodemography, University of Southern Denmark, 5230 Odense, Denmark; (J.M.-F.); (S.H.R.); (M.T.); (K.C.)
| | - Tinna Stevnsner
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (C.M.H.)
- Danish Aging Research Center, Department of Public Health, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|
5
|
Zhang H, Zhou H, Shen X, Lin X, Zhang Y, Sun Y, Zhou Y, Zhang L, Zhang D. The role of cellular senescence in metabolic diseases and the potential for senotherapeutic interventions. Front Cell Dev Biol 2023; 11:1276707. [PMID: 37868908 PMCID: PMC10587568 DOI: 10.3389/fcell.2023.1276707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Cellular senescence represents an irreversible state of cell cycle arrest induced by various stimuli strongly associated with aging and several chronic ailments. In recent years, studies have increasingly suggested that the accumulation of senescent cells is an important contributor to the decline of organ metabolism, ultimately resulting in metabolic diseases. Conversely, the elimination of senescent cells can alleviate or postpone the onset and progression of metabolic diseases. Thus, a close relationship between senescent cells and metabolic diseases is found, and targeting senescent cells has emerged as an alternative therapy for the treatment of metabolic diseases. In this review, we summarize the role of cellular senescence in metabolic diseases, explore relevant therapeutic strategies for metabolic diseases by removing senescent cells, and provide new insights into the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Huantong Zhang
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Han Zhou
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Xin Shen
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Xingchen Lin
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Yuke Zhang
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Yiyi Sun
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Yi Zhou
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Lei Zhang
- School of Economy and Management, Zhejiang Sci-Tech University, Hangzhou, China
- Taizhou Hospital of Zhejiang Province, Zhejiang University, Taizhou, China
| | - Dayong Zhang
- School of Medicine, Hangzhou City University, Hangzhou, China
| |
Collapse
|
6
|
Astre G, Atlan T, Goshtchevsky U, Oron-Gottesman A, Smirnov M, Shapira K, Velan A, Deelen J, Levy T, Levanon EY, Harel I. Genetic perturbation of AMP biosynthesis extends lifespan and restores metabolic health in a naturally short-lived vertebrate. Dev Cell 2023; 58:1350-1364.e10. [PMID: 37321215 DOI: 10.1016/j.devcel.2023.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/09/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023]
Abstract
During aging, the loss of metabolic homeostasis drives a myriad of pathologies. A central regulator of cellular energy, the AMP-activated protein kinase (AMPK), orchestrates organismal metabolism. However, direct genetic manipulations of the AMPK complex in mice have, so far, produced detrimental phenotypes. Here, as an alternative approach, we alter energy homeostasis by manipulating the upstream nucleotide pool. Using the turquoise killifish, we mutate APRT, a key enzyme in AMP biosynthesis, and extend the lifespan of heterozygous males. Next, we apply an integrated omics approach to show that metabolic functions are rejuvenated in old mutants, which also display a fasting-like metabolic profile and resistance to high-fat diet. At the cellular level, heterozygous cells exhibit enhanced nutrient sensitivity, reduced ATP levels, and AMPK activation. Finally, lifelong intermittent fasting abolishes the longevity benefits. Our findings suggest that perturbing AMP biosynthesis may modulate vertebrate lifespan and propose APRT as a promising target for promoting metabolic health.
Collapse
Affiliation(s)
- Gwendoline Astre
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Tehila Atlan
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Uri Goshtchevsky
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Adi Oron-Gottesman
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Margarita Smirnov
- Central Fish Health Laboratory, Department of Fisheries and Aquaculture, Ministry of Agriculture and Rural Development, Nir David 10803, Israel
| | - Kobi Shapira
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Ariel Velan
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Joris Deelen
- Max Planck Institute for Biology of Ageing, Cologne 50931, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Tomer Levy
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Erez Y Levanon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Itamar Harel
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel.
| |
Collapse
|
7
|
F AR, Quadrilatero J. Emerging role of mitophagy in myoblast differentiation and skeletal muscle remodeling. Semin Cell Dev Biol 2023; 143:54-65. [PMID: 34924331 DOI: 10.1016/j.semcdb.2021.11.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/17/2022]
Abstract
Mitochondrial turnover in the form of mitophagy is emerging as a central process in maintaining cellular function. The degradation of damaged mitochondria through mitophagy is particularly important in cells/tissues that exhibit high energy demands. Skeletal muscle is one such tissue that requires precise turnover of mitochondria in several conditions in order to optimize energy production and prevent bioenergetic crisis. For instance, the formation of skeletal muscle (i.e., myogenesis) is accompanied by robust turnover of low-functioning mitochondria to eventually allow the formation of high-functioning mitochondria. In mature skeletal muscle, alterations in mitophagy-related signaling occur during exercise, aging, and various disease states. Nonetheless, several questions regarding the direct role of mitophagy in various skeletal muscle conditions remain unknown. Furthermore, given the heterogenous nature of skeletal muscle with respect to various cellular and molecular properties, and the plasticity in these properties in various conditions, the involvement and characterization of mitophagy requires more careful consideration in this tissue. Therefore, this review will highlight the known mechanisms of mitophagy in skeletal muscle, and discuss their involvement during myogenesis and various skeletal muscle conditions. This review also provides important considerations for the accurate measurement of mitophagy and interpretation of data in skeletal muscle.
Collapse
Affiliation(s)
- Ahmad Rahman F
- Department of Kinesiology & Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Joe Quadrilatero
- Department of Kinesiology & Health Sciences, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
8
|
Zhang L, Wu J, Zhu Z, He Y, Fang R. Mitochondrion: A bridge linking aging and degenerative diseases. Life Sci 2023; 322:121666. [PMID: 37030614 DOI: 10.1016/j.lfs.2023.121666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/10/2023]
Abstract
Aging is a natural process, characterized by progressive loss of physiological integrity, impaired function, and increased vulnerability to death. For centuries, people have been trying hard to understand the process of aging and find effective ways to delay it. However, limited breakthroughs have been made in anti-aging area. Since the hallmarks of aging were summarized in 2013, increasing studies focus on the role of mitochondrial dysfunction in aging and aging-related degenerative diseases, such as neurodegenerative diseases, osteoarthritis, metabolic diseases, and cardiovascular diseases. Accumulating evidence indicates that restoring mitochondrial function and biogenesis exerts beneficial effects in extending lifespan and promoting healthy aging. In this paper, we provide an overview of mitochondrial changes during aging and summarize the advanced studies in mitochondrial therapies for the treatment of degenerative diseases. Current challenges and future perspectives are proposed to provide novel and promising directions for future research.
Collapse
Affiliation(s)
- Lanlan Zhang
- Center for Plastic & Reconstructive Surgery, Department of Hand & Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianlong Wu
- Center for Plastic & Reconstructive Surgery, Department of Hand & Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ziguan Zhu
- Center for Plastic & Reconstructive Surgery, Department of Hand & Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuchen He
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Department of Orthopaedics, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Renpeng Fang
- Center for Plastic & Reconstructive Surgery, Department of Hand & Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Li Y, Dai J, Kametani F, Yazaki M, Ishigami A, Mori M, Miyahara H, Higuchi K. Renal function in aged C57BL/6J mice is impaired by deposition of age-related apolipoprotein A-II amyloid independent of kidney aging. THE AMERICAN JOURNAL OF PATHOLOGY 2023:S0002-9440(23)00112-8. [PMID: 36965775 DOI: 10.1016/j.ajpath.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/22/2023] [Accepted: 03/07/2023] [Indexed: 03/27/2023]
Abstract
Spontaneous and age-related amyloidosis has been reported in C57BL/6J mice; however, the biochemical characteristics of age-related amyloidosis remain unclear. Therefore, we herein investigated the age-related prevalence of amyloidosis, the types of amyloid fibril proteins, and the effects of amyloid deposition on renal function in C57BL/6J mice. The results obtained revealed a high incidence of amyloidosis in C57BL/6J mice originating from the Jackson laboratory as well as the deposition of large amounts of amyloid in the glomeruli of aged mice. We identified the amyloid fibril protein in C57BL/6J mice as wild-type apolipoprotein A-II. We induced renal amyloid deposition in 40-week-old mice, equivalent to that of spontaneous development in 80-week-old mice, to rule out the effects of aging, and revealed subsequent damage to kidney function by amyloid deposits. Furthermore, amyloid deposition in the mesangial region decreased podocyte density, compromised foot processes, and led to the accumulation of fibroblast growth factor 2 (FGF2) in glomeruli. Collectively, these results suggest that AApoAII deposition is a general pathology in aged C57BL/6J mice and is dependent on supplier colonies. Therefore, the effects of age-related amyloid deposition need to be considered in research on aging in mice.
Collapse
Affiliation(s)
- Ying Li
- Department of Aging Biology, Shinshu University Graduate School of Medicine, Science and Technology, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Jian Dai
- Department of Neuro-health Innovation, Institute for Biomedical Sciences, Shinshu University, Matsumoto 390-8621, Japan
| | - Fuyuki Kametani
- Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, 156-8506 Tokyo, Japan
| | - Masahide Yazaki
- Department of Neuro-health Innovation, Institute for Biomedical Sciences, Shinshu University, Matsumoto 390-8621, Japan
| | - Akihito Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Masayuki Mori
- Department of Aging Biology, Shinshu University Graduate School of Medicine, Science and Technology, 3-1-1 Asahi, Matsumoto 390-8621, Japan; Department of Neuro-health Innovation, Institute for Biomedical Sciences, Shinshu University, Matsumoto 390-8621, Japan
| | - Hiroki Miyahara
- Department of Aging Biology, Shinshu University Graduate School of Medicine, Science and Technology, 3-1-1 Asahi, Matsumoto 390-8621, Japan; Department of Neuro-health Innovation, Institute for Biomedical Sciences, Shinshu University, Matsumoto 390-8621, Japan.
| | - Keiichi Higuchi
- Department of Neuro-health Innovation, Institute for Biomedical Sciences, Shinshu University, Matsumoto 390-8621, Japan; Community Health Care Research Centre, Nagano University Health and Medicine, Nagano 381-2227, Japan
| |
Collapse
|
10
|
Application Prospects of Triphenylphosphine-Based Mitochondria-Targeted Cancer Therapy. Cancers (Basel) 2023; 15:cancers15030666. [PMID: 36765624 PMCID: PMC9913854 DOI: 10.3390/cancers15030666] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Cancer is one of the leading causes of death and the most important impediments to the efforts to increase life expectancy worldwide. Currently, chemotherapy is the main treatment for cancer, but it is often accompanied by side effects that affect normal tissues and organs. The search for new alternatives to chemotherapy has been a hot research topic in the field of antineoplastic medicine. Drugs targeting diseased tissues or cells can significantly improve the efficacy of drugs. Therefore, organelle-targeted antitumor drugs are being explored, such as mitochondria-targeted antitumor drugs. Mitochondria is the central site of cellular energy production and plays an important role in cell survival and death. Moreover, a large number of studies have shown a close association between mitochondrial metabolism and tumorigenesis and progression, making mitochondria a promising new target for cancer therapy. Combining mitochondrial targeting agents with drug molecules is an effective way of mitochondrial targeting. In addition, hyperpolarized tumor cell membranes and mitochondrial membrane potentially allow selective accumulation of mitochondria-targeted drugs. This enhances the direct killing of tumor cells by drug molecules while minimizing the potential toxicity to normal cells. In this review, we discuss the common pro-mitochondrial agents, the advantages of triphenylphosphine (TPP) in mitochondrial-targeted cancer therapy and systematically summarize various TPP-based mitochondria-targeting anticancer drugs.
Collapse
|
11
|
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: An expanding universe. Cell 2023; 186:243-278. [PMID: 36599349 DOI: 10.1016/j.cell.2022.11.001] [Citation(s) in RCA: 1911] [Impact Index Per Article: 955.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/19/2022] [Accepted: 11/01/2022] [Indexed: 01/05/2023]
Abstract
Aging is driven by hallmarks fulfilling the following three premises: (1) their age-associated manifestation, (2) the acceleration of aging by experimentally accentuating them, and (3) the opportunity to decelerate, stop, or reverse aging by therapeutic interventions on them. We propose the following twelve hallmarks of aging: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, disabled macroautophagy, deregulated nutrient-sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, chronic inflammation, and dysbiosis. These hallmarks are interconnected among each other, as well as to the recently proposed hallmarks of health, which include organizational features of spatial compartmentalization, maintenance of homeostasis, and adequate responses to stress.
Collapse
Affiliation(s)
- Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Linda Partridge
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, UK; Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain; Altos Labs, Cambridge, UK
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
12
|
Yap KN, Wong HS, Ramanathan C, Rodriguez-Wagner CA, Roberts MD, Freeman DA, Buffenstein R, Zhang Y. Naked mole-rat and Damaraland mole-rat exhibit lower respiration in mitochondria, cellular and organismal levels. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148582. [PMID: 35667393 DOI: 10.1016/j.bbabio.2022.148582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Naked mole-rats (NMR) and Damaraland mole-rats (DMR) exhibit extraordinary longevity for their body size, high tolerance to hypoxia and oxidative stress and high reproductive output; these collectively defy the concept that life-history traits should be negatively correlated. However, when life-history traits share similar underlying physiological mechanisms, these may be positively associated with each other. We propose that one such potential common mechanism might be the bioenergetic properties of mole-rats. Here, we aim to characterize the bioenergetic properties of two African mole-rats. We adopted a top-down perspective measuring the bioenergetic properties at the organismal, cellular, and molecular level in both species and the biological significance of these properties were compared with the same measures in Siberian hamsters and C57BL/6 mice, chosen for their similar body size to the mole-rat species. We found mole-rats shared several bioenergetic properties that differed from their comparison species, including low basal metabolic rates, a high dependence on glycolysis rather than on oxidative phosphorylation for ATP production, and low proton conductance across the mitochondrial inner membrane. These shared mole-rat features could be a result of evolutionary adaptation to tolerating variable oxygen atmospheres, in particular hypoxia, and may in turn be one of the molecular mechanisms underlying their extremely long lifespans.
Collapse
Affiliation(s)
- Kang Nian Yap
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, United States of America; Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Hoi Shan Wong
- Calico Life Sciences LLC, South San Francisco, CA 94080, United States of America
| | - Chidambaram Ramanathan
- College of Health Sciences, University of Memphis, Memphis, TN 38152, United States of America
| | | | - Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, AL 36849, United States of America
| | - David A Freeman
- Department of Biological Science, University of Memphis, Memphis, TN 38152, United States of America
| | - Rochelle Buffenstein
- Calico Life Sciences LLC, South San Francisco, CA 94080, United States of America.
| | - Yufeng Zhang
- College of Health Sciences, University of Memphis, Memphis, TN 38152, United States of America.
| |
Collapse
|
13
|
The Role of Mitochondrial Quality Control in Anthracycline-Induced Cardiotoxicity: From Bench to Bedside. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3659278. [PMID: 36187332 PMCID: PMC9519345 DOI: 10.1155/2022/3659278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
Cardiotoxicity is the major side effect of anthracyclines (doxorubicin, daunorubicin, epirubicin, and idarubicin), though being the most commonly used chemotherapy drugs and the mainstay of therapy in solid and hematological neoplasms. Advances in the field of cardio-oncology have expanded our understanding of the molecular mechanisms underlying anthracycline-induced cardiotoxicity (AIC). AIC has a complex pathogenesis that includes a variety of aspects such as oxidative stress, autophagy, and inflammation. Emerging evidence has strongly suggested that the loss of mitochondrial quality control (MQC) plays an important role in the progression of AIC. Mitochondria are vital organelles in the cardiomyocytes that serve as the key regulators of reactive oxygen species (ROS) production, energy metabolism, cell death, and calcium buffering. However, as mitochondria are susceptible to damage, the MQC system, including mitochondrial dynamics (fusion/fission), mitophagy, mitochondrial biogenesis, and mitochondrial protein quality control, appears to be crucial in maintaining mitochondrial homeostasis. In this review, we summarize current evidence on the role of MQC in the pathogenesis of AIC and highlight the therapeutic potential of restoring the cardiomyocyte MQC system in the prevention and intervention of AIC.
Collapse
|
14
|
Vega M, Castillo D, de Cubas L, Wang Y, Huang Y, Hidalgo E, Cabrera M. Antagonistic effects of mitochondrial matrix and intermembrane space proteases on yeast aging. BMC Biol 2022; 20:160. [PMID: 35820914 PMCID: PMC9277893 DOI: 10.1186/s12915-022-01352-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/15/2022] [Indexed: 12/27/2022] Open
Abstract
Background In many organisms, aging is characterized by a loss of mitochondrial homeostasis. Multiple factors such as respiratory metabolism, mitochondrial fusion/fission, or mitophagy have been linked to cell longevity, but the exact impact of each one on the aging process is still unclear. Results Using the deletion mutant collection of the fission yeast Schizosaccharomyces pombe, we have developed a genome-wide screening for mutants with altered chronological lifespan. We have identified four mutants associated with proteolysis at the mitochondria that exhibit opposite effects on longevity. The analysis of the respiratory activity of these mutants revealed a positive correlation between increased respiration rate and prolonged lifespan. We also found that the phenotype of the long-lived protease mutants could not be explained by impaired mitochondrial fusion/fission activities, but it was dependent on mitophagy induction. The anti-aging role of mitophagy was supported by the effect of a mutant defective in degradation of mitochondria, which shortened lifespan of the long-lived mutants. Conclusions Our characterization of the mitochondrial protease mutants demonstrates that mitophagy sustains the lifespan extension of long-lived mutants displaying a higher respiration potential. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01352-w.
Collapse
Affiliation(s)
- Montserrat Vega
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003, Barcelona, Spain
| | | | - Laura de Cubas
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Yirong Wang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Margarita Cabrera
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003, Barcelona, Spain. .,Department of Biology, Geology, Physics and Inorganic Chemistry, Rey Juan Carlos University, C/ Tulipán s/n, 28933, Móstoles, Madrid, Spain.
| |
Collapse
|
15
|
Chen B, Lei S, Yin X, Fei M, Hu Y, Shi Y, Xu Y, Fu L. Mitochondrial Respiration Inhibition Suppresses Papillary Thyroid Carcinoma Via PI3K/Akt/FoxO1/Cyclin D1 Pathway. Front Oncol 2022; 12:900444. [PMID: 35865479 PMCID: PMC9295996 DOI: 10.3389/fonc.2022.900444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/31/2022] [Indexed: 01/03/2023] Open
Abstract
BackgroundPapillary thyroid carcinoma (PTC) is the most common thyroid malignancy, but little is known regarding PTC metabolic phenotypes and the effects of mitochondrial activity on PTC progression. The great potential of mitochondria-targeting therapy in cancer treatment promoted us to use tool compounds from a family of Mito-Fu derivatives to investigate how the regulation of mitochondrial respiration affected tumor progression characteristics and molecular changes in PTC.MethodsMito-Fu L20, a representative of 12 synthetic derivatives, was chosen for mitochondrial inhibition experiments. Sample sections from PTC patients were collected and processed to explore potential molecular alterations in tumor lymph node metastasis (LNM). In vitro analyses were performed using human PTC cell lines (K1 and TPC-1), with the human normal thyroid follicular cell line (Nthy) as a control. K1 cells were injected into nude mice to generate an animal model. The mice were injected with normal saline or Mito-Fu L20 at 20 or 50 mg/kg every other day; their body weights and tumor volumes were also measured over time. To elucidate the resulting metabolic phenotype, we measured oxygen consumption rate (OCR) and extracellular acidification rate (ECAR), cellular adenosine triphosphate (ATP) levels and reactive oxygen species (ROS) production, and mitochondrial membrane potential. Wound healing and Transwell assays, cell cycle assays, real-time fluorescence quantitative PCR, Western blotting, and immunohistochemical staining were performed to explore glycolysis-dominant metabolism in PTC.ResultsCyclin D1 and mitochondrial complex IV were detected in tumor samples from PTC patients with LNM. Mito-Fu L20 showed dose-independent and reversible modulation of mitochondrial respiration in PTC. In addition to mitochondrial dysfunction and early apoptosis, G1/S phase arrest. Notably, reversible mitochondrial inhibition yielded durable suppression of tumor proliferation, migration, and invasion via the PI3K/Akt/FoxO1/Cyclin D1 pathway. In vivo experiments demonstrated that Mito-Fu L20 has a good safety profile and specific restorative effect on mitochondrial activity in the liver. In addition, Mito-Fu L20 showed antitumor effects, alleviated tumor angiogenesis, and improved thyroid function.ConclusionReversible inhibition of ATP production and durable suppression of PTC growth indicates that the downregulation of mitochondrial function has a negative impact on tumor progression and LNM via the PI3K/Akt/FoxO1/Cyclin D1 pathway. The results provide new insights into the antitumor potential and clinical translation of mitochondrial inhibitors.
Collapse
Affiliation(s)
- Bojie Chen
- Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTU), Shanghai, China
| | - Shuwen Lei
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Xinlu Yin
- Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTU), Shanghai, China
| | - Mengjia Fei
- Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTU), Shanghai, China
| | - Yixin Hu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Shi
- Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTU), Shanghai, China
| | - Yanan Xu
- Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTU), Shanghai, China
- *Correspondence: Yanan Xu, ; Lei Fu,
| | - Lei Fu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- SJTU-Agilent Technologies Joint Laboratory for Pharmaceutical Analysis, School of Pharmacy, Shanghai Jiao Tong University (SJTU), Shanghai, China
- Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou, China
- *Correspondence: Yanan Xu, ; Lei Fu,
| |
Collapse
|
16
|
Ridderinkhof KR, Krugers HJ. Horizons in Human Aging Neuroscience: From Normal Neural Aging to Mental (Fr)Agility. Front Hum Neurosci 2022; 16:815759. [PMID: 35845248 PMCID: PMC9277589 DOI: 10.3389/fnhum.2022.815759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
While aging is an important risk factor for neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease, age-related cognitive decline can also manifest without apparent neurodegenerative changes. In this review, we discuss molecular, cellular, and network changes that occur during normal aging in the absence of neurodegenerative disease. Emerging findings reveal that these changes include metabolic alterations, oxidative stress, DNA damage, inflammation, calcium dyshomeostasis, and several other hallmarks of age-related neural changes that do not act on their own, but are often interconnected and together may underlie age-related alterations in brain plasticity and cognitive function. Importantly, age-related cognitive decline may not be reduced to a single neurobiological cause, but should instead be considered in terms of a densely connected system that underlies age-related cognitive alterations. We speculate that a decline in one hallmark of neural aging may trigger a decline in other, otherwise thus far stable subsystems, thereby triggering a cascade that may at some point also incur a decline of cognitive functions and mental well-being. Beyond studying the effects of these factors in isolation, considerable insight may be gained by studying the larger picture that entails a representative collection of such factors and their interactions, ranging from molecules to neural networks. Finally, we discuss some potential interventions that may help to prevent these alterations, thereby reducing cognitive decline and mental fragility, and enhancing mental well-being, and healthy aging.
Collapse
Affiliation(s)
- K. Richard Ridderinkhof
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Center for Brain and Cognition (ABC), University of Amsterdam, Amsterdam, Netherlands
| | - Harm J. Krugers
- Amsterdam Center for Brain and Cognition (ABC), University of Amsterdam, Amsterdam, Netherlands
- SILS-CNS, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
17
|
Molecular markers associated with cognitive impairment in centenarians. Aging (Albany NY) 2022; 14:4191-4192. [PMID: 35585026 PMCID: PMC9186776 DOI: 10.18632/aging.204094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/14/2022] [Indexed: 11/26/2022]
|
18
|
Zhu Z, Quadri Z, Crivelli SM, Elsherbini A, Zhang L, Tripathi P, Qin H, Roush E, Spassieva SD, Nikolova-Karakashian M, McClintock TS, Bieberich E. Neutral Sphingomyelinase 2 Mediates Oxidative Stress Effects on Astrocyte Senescence and Synaptic Plasticity Transcripts. Mol Neurobiol 2022; 59:3233-3253. [PMID: 35294731 PMCID: PMC9023069 DOI: 10.1007/s12035-022-02747-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 01/11/2022] [Indexed: 11/26/2022]
Abstract
We have shown that deficiency of neutral sphingomyelinase 2 (nSMase2), an enzyme generating the sphingolipid ceramide, improves memory in adult mice. Here, we performed sphingolipid and RNA-seq analyses on the cortex from 10-month-old nSMase2-deficient (fro/fro) and heterozygous (+ /fro) mice. fro/fro cortex showed reduced levels of ceramide, particularly in astrocytes. Differentially abundant transcripts included several functionally related groups, with decreases in mitochondrial oxidative phosphorylation and astrocyte activation transcripts, while axon guidance and synaptic transmission and plasticity transcripts were increased, indicating a role of nSMase2 in oxidative stress, astrocyte activation, and cognition. Experimentally induced oxidative stress decreased the level of glutathione (GSH), an endogenous inhibitor of nSMase2, and increased immunolabeling for ceramide in primary + /fro astrocytes, but not in fro/fro astrocytes. β-galactosidase activity was lower in 5-week-old fro/fro astrocytes, indicating delayed senescence due to nSMase2 deficiency. In fro/fro cortex, levels of the senescence markers C3b and p27 and the proinflammatory cytokines interleukin 1β, interleukin 6, and tumor necrosis factor α were reduced, concurrent with twofold decreased phosphorylation of their downstream target, protein kinase Stat3. RNA and protein levels of the ionotropic glutamate receptor subunit 2B (Grin2b/NR2B) were increased by twofold, which was previously shown to enhance cognition. This was consistent with threefold reduced levels of exosomes carrying miR-223-3p, a micro-RNA downregulating NR2B. In summary, our data show that nSMase2 deficiency prevents oxidative stress-induced elevation of ceramide and secretion of exosomes by astrocytes that suppress neuronal function, indicating a role of nSMase2 in the regulation of neuroinflammation and cognition.
Collapse
Affiliation(s)
- Zhihui Zhu
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
| | - Zainuddin Quadri
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
- Veterans Affairs Medical Center, Lexington, KY 40502, United States
| | - Simone M. Crivelli
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
| | - Ahmed Elsherbini
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
| | - Liping Zhang
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
- Veterans Affairs Medical Center, Lexington, KY 40502, United States
| | - Priyanka Tripathi
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
- Veterans Affairs Medical Center, Lexington, KY 40502, United States
| | - Haiyan Qin
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
| | - Emily Roush
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
| | - Stefka D. Spassieva
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
| | | | - Timothy S. McClintock
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
| | - Erhard Bieberich
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY
- Veterans Affairs Medical Center, Lexington, KY 40502, United States
| |
Collapse
|
19
|
Amorim JA, Coppotelli G, Rolo AP, Palmeira CM, Ross JM, Sinclair DA. Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nat Rev Endocrinol 2022; 18:243-258. [PMID: 35145250 PMCID: PMC9059418 DOI: 10.1038/s41574-021-00626-7] [Citation(s) in RCA: 391] [Impact Index Per Article: 130.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/17/2021] [Indexed: 12/11/2022]
Abstract
Organismal ageing is accompanied by progressive loss of cellular function and systemic deterioration of multiple tissues, leading to impaired function and increased vulnerability to death. Mitochondria have become recognized not merely as being energy suppliers but also as having an essential role in the development of diseases associated with ageing, such as neurodegenerative and cardiovascular diseases. A growing body of evidence suggests that ageing and age-related diseases are tightly related to an energy supply and demand imbalance, which might be alleviated by a variety of interventions, including physical activity and calorie restriction, as well as naturally occurring molecules targeting conserved longevity pathways. Here, we review key historical advances and progress from the past few years in our understanding of the role of mitochondria in ageing and age-related metabolic diseases. We also highlight emerging scientific innovations using mitochondria-targeted therapeutic approaches.
Collapse
Affiliation(s)
- João A Amorim
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA
- Center for Neurosciences and Cell Biology of the University of Coimbra, Coimbra, Portugal
- IIIUC, Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Giuseppe Coppotelli
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA
- George and Anne Ryan Institute for Neuroscience, College of Pharmacy, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Anabela P Rolo
- Center for Neurosciences and Cell Biology of the University of Coimbra, Coimbra, Portugal
- Department of Life Sciences of the University of Coimbra, Coimbra, Portugal
| | - Carlos M Palmeira
- Center for Neurosciences and Cell Biology of the University of Coimbra, Coimbra, Portugal
- Department of Life Sciences of the University of Coimbra, Coimbra, Portugal
| | - Jaime M Ross
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA
- George and Anne Ryan Institute for Neuroscience, College of Pharmacy, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - David A Sinclair
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Metformin, phenformin, and galegine inhibit complex IV activity and reduce glycerol-derived gluconeogenesis. Proc Natl Acad Sci U S A 2022; 119:e2122287119. [PMID: 35238637 PMCID: PMC8916010 DOI: 10.1073/pnas.2122287119] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Metformin is the most commonly prescribed drug for the treatment of type 2 diabetes mellitus, yet the mechanism by which it lowers plasma glucose concentrations has remained elusive. Most studies to date have attributed metformin’s glucose-lowering effects to inhibition of complex I activity. Contrary to this hypothesis, we show that inhibition of complex I activity in vitro and in vivo does not reduce plasma glucose concentrations or inhibit hepatic gluconeogenesis. We go on to show that metformin, and the related guanides/biguanides, phenformin and galegine, inhibit complex IV activity at clinically relevant concentrations, which, in turn, results in inhibition of glycerol-3-phosphate dehydrogenase activity, increased cytosolic redox, and selective inhibition of glycerol-derived hepatic gluconeogenesis both in vitro and in vivo. Metformin exerts its plasma glucose-lowering therapeutic effect primarily through inhibition of hepatic gluconeogenesis. However, the precise molecular mechanism by which metformin inhibits hepatic gluconeogenesis is still unclear. Although inhibition of mitochondrial complex I is frequently invoked as metformin’s primary mechanism of action, the metabolic effects of complex I inhibition have not been thoroughly evaluated in vivo. Here, we show that acute portal infusion of piericidin A, a potent and specific complex I inhibitor, does not reduce hepatic gluconeogenesis in vivo. In contrast, we show that metformin, phenformin, and galegine selectively inhibit hepatic gluconeogenesis from glycerol. Specifically, we show that guanides/biguanides interact with complex IV to reduce its enzymatic activity, leading to indirect inhibition of glycerol-3-phosphate (G3P) dehydrogenase (GPD2), increased cytosolic redox, and reduced glycerol-derived gluconeogenesis. We report that inhibition of complex IV with potassium cyanide replicates the effects of the guanides/biguanides in vitro by selectively reducing glycerol-derived gluconeogenesis via increased cytosolic redox. Finally, we show that complex IV inhibition is sufficient to inhibit G3P-mediated respiration and gluconeogenesis from glycerol. Taken together, we propose a mechanism of metformin action in which complex IV–mediated inhibition of GPD2 reduces glycerol-derived hepatic gluconeogenesis.
Collapse
|
21
|
Maintenance of Chronological Aging Features in Culture of Normal Human Dermal Fibroblasts from Old Donors. Cells 2022; 11:cells11050858. [PMID: 35269480 PMCID: PMC8909060 DOI: 10.3390/cells11050858] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Chronological aging is defined as a time-dependent decline of tissue homeostasis which severely impacts skin. Understanding the mechanisms of skin aging is an active research area limited by the lack of relevant in vitro models. Being a component of aging, replicative or stress-induced senescence is repeatedly used to mimic skin aging in vitro, thus presenting only a partial view of the complexity of aging. Herein, we aimed to clarify whether primary normal human dermal fibroblasts retained age-related characteristics when cultured in 2D monolayer, and could be used as a relevant model for aging research. We compared three groups of fibroblasts isolated from different aged donors. We observed strongly decreased population doubling capacities, a reduced clonogenic ability, an impairment in extracellular matrix production together with modifications of respiratory metabolism with an increase in age. These disruptions were particularly marked when comparing fibroblasts isolated from old individuals (over 70 years old) to those isolated from young individuals (18–37 years old), while cells from middle-aged donors exhibited an intermediate profile. These alterations of cell features can be related to the signs of dermis aging, thus showing that cultured primary cells indeed retain some characteristics of the original tissue from which they were extracted.
Collapse
|
22
|
Fan Z, Wen H, Zhang X, Li J, Zang J. Cyanidin 3- O-β-Galactoside Alleviated Cognitive Impairment in Mice by Regulating Brain Energy Metabolism During Aging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1111-1121. [PMID: 35040318 DOI: 10.1021/acs.jafc.1c06240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metabolic disorder, which commonly happens among senile people worldwide, is an important sign of aging. The early symptoms of neurodegenerative diseases include a decrease in energy metabolism and mitochondrial dysfunction. Comparably, early dietary intervention may be more effective in preventing or delaying brain aging, owing to its role in regulating metabolism. Polyphenol intake has shown its potential in preventing Alzheimer's disease. However, whether there are close connections between polyphenols and the energy metabolism of the brain during aging remains unclear. This study sought to evaluate whether cyanidin 3-O-β-galactoside from black chokeberry (Aronia melanocarpa (Michx.) Elliott) has positive effects on energy metabolism, as well as cognitive function in aging mice. Intragastrical administration of cyanidin 3-O-β-galactoside (25 and 50 mg/kg/day) for 8 weeks effectively alleviated the decline in brain glucose uptake (decline rate 18.29% versus 1.05%, 7.63%) of aging mice. Moreover, cyanidin 3-O-β-galactoside also alleviated neuronal damage in the hippocampus (number of neurons 212.33 ± 16.19 versus 285.33 ± 29.53, 301.67 ± 10.07; p < 0.05) and cortex (number of neurons 82.00 ± 4.58 versus 111.67 ± 6.51, 112.00 ± 1.00; p < 0.05). Furthermore, cyanidin 3-O-β-galactoside reduced β-amyloid load in the brain and significantly increased the crossing-platform number (0.92 ± 1.11 versus 1.83 ± 0.68, 2.08 ± 0.58; p < 0.05) in the Morris water maze test. We further determined that protein kinase B (AKT) might be the target of cyanidin 3-O-β-galactoside, which played a beneficial role in controlling the energy metabolism of the brain. These results suggested that early intervention of anthocyanins could promote neuroprotection under the challenge of brain energy metabolism.
Collapse
Affiliation(s)
- Zhuoyan Fan
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Tsinghua East Road, Beijing 100083, China
| | - Haichao Wen
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Tsinghua East Road, Beijing 100083, China
| | - Xiaoxu Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Tsinghua East Road, Beijing 100083, China
| | - Jingming Li
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Tsinghua East Road, Beijing 100083, China
| | - Jiachen Zang
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Tsinghua East Road, Beijing 100083, China
| |
Collapse
|
23
|
Sanchez-Roman I, Ferrando B, Holst CM, Mengel-From J, Rasmussen SH, Thinggaard M, Bohr VA, Christensen K, Stevnsner T. Molecular markers of DNA repair and brain metabolism correlate with cognition in centenarians. GeroScience 2021; 44:103-125. [PMID: 34966960 DOI: 10.1007/s11357-021-00502-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/14/2021] [Indexed: 11/26/2022] Open
Abstract
Oxidative stress is an important factor in age-associated neurodegeneration. Accordingly, mitochondrial dysfunction and genomic instability have been considered as key hallmarks of aging and have important roles in age-associated cognitive decline and neurodegenerative disorders. In order to evaluate whether maintenance of cognitive abilities at very old age is associated with key hallmarks of aging, we measured mitochondrial bioenergetics, mitochondrial DNA copy number and DNA repair capacity in peripheral blood mononuclear cells from centenarians in a Danish 1915 birth cohort (n = 120). Also, the circulating levels of brain-derived neurotrophic factor, NAD+ /NADH and carbonylated proteins were measured in plasma of the centenarians and correlated to cognitive capacity. Mitochondrial respiration was well preserved in the centenarian cohort when compared to young individuals (21-35 years of age, n = 33). When correlating cognitive performance of the centenarians with mitochondrial function such as basal respiration, ATP production, reserve capacity and maximal respiration, no overall correlations were observed, but when stratifying by sex, inverse associations were observed in the males (p < 0.05). Centenarians with the most severe cognitive impairment displayed the lowest activity of the central DNA repair enzyme, APE1 (p < 0.05). A positive correlation between cognitive capacity and levels of NAD+ /NADH was observed (p < 0.05), which may be because NAD+ /NADH consuming enzyme activities strive to reduce the oxidative DNA damage load. Also, circulating protein carbonylation was lowest in centenarians with highest cognitive capacity (p < 0.05). An opposite trend was observed for levels of brain-derived neurotrophic factor (p = 0.17). Our results suggest that maintenance of cognitive capacity at very old age may be associated with cellular mechanisms related to oxidative stress and DNA metabolism.
Collapse
Affiliation(s)
- Ines Sanchez-Roman
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Danish Aging Research Center, Aarhus, Denmark
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences (Animal Physiology Unit), School of Biology, Complutense University of Madrid, Madrid, Spain
| | - Beatriz Ferrando
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Danish Aging Research Center, Aarhus, Denmark
| | - Camilla Myrup Holst
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Danish Aging Research Center, Aarhus, Denmark
| | - Jonas Mengel-From
- Danish Aging Research Center, Aarhus, Denmark
- Epidemiology, Biostatistics and Biodemography, University of Southern Denmark, Odense, Denmark
| | - Signe Høi Rasmussen
- Danish Aging Research Center, Aarhus, Denmark
- Epidemiology, Biostatistics and Biodemography, University of Southern Denmark, Odense, Denmark
- Department of Geriatrics, Odense University Hospital, Svendborg, Denmark
| | - Mikael Thinggaard
- Danish Aging Research Center, Aarhus, Denmark
- Epidemiology, Biostatistics and Biodemography, University of Southern Denmark, Odense, Denmark
| | - Vilhelm A Bohr
- Danish Aging Research Center, Aarhus, Denmark
- National Institute On Aging, NIH, Baltimore, MD, USA
| | - Kaare Christensen
- Danish Aging Research Center, Aarhus, Denmark
- Epidemiology, Biostatistics and Biodemography, University of Southern Denmark, Odense, Denmark
| | - Tinna Stevnsner
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
- Danish Aging Research Center, Aarhus, Denmark.
| |
Collapse
|
24
|
Fisher A, Cogley T, Ozturk C, DeGrandi-Hoffman G, Smith BH, Kaftanoglu O, Fewell JH, Harrison JF. The active ingredients of a mitotoxic fungicide negatively affect pollen consumption and worker survival in laboratory-reared honey bees (Apis mellifera). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112841. [PMID: 34607189 DOI: 10.1016/j.ecoenv.2021.112841] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/19/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Recent observations of many sublethal effects of pesticides on pollinators have raised questions about whether standard short-term laboratory tests of pesticide effects on survival are sufficient for pollinator protection. The fungicide Pristine® and its active ingredients (25.2% boscalid, 12.8% pyraclostrobin) have been reported to have low acute toxicity to caged honey bee workers, but many sublethal effects at field-relevant doses have been reported and Pristine® was recently found to increase worker pollen consumption, reduce worker longevity and colony populations at field relevant concentrations (Fisher et al. 2021). To directly compare these whole-colony field results to more standard laboratory toxicology tests, the effects of Pristine®, at a range of field-relevant concentrations, were assessed on the survival and pollen consumption of honey bee workers 0-14 days of age. Also, to separate the effects of the inert and two active ingredients, bees were fed pollen containing boscalid, pyraclostrobin, or pyraclostrobin plus boscalid, at concentrations matching those in the Pristine® treatments. Pyraclostrobin significantly reduced pollen consumption across the duration of the experiment, and dose-dependently reduced pollen consumption on days 12-14. Pristine® and boscalid significantly reduced pollen feeding rate on days 12-14. Boscalid reduced survival in a dose-dependent manner. Consumption of Pristine® or pyraclostrobin plus boscalid did not affect survival, providing evidence against strong negative effects of the inert ingredients in Pristine® and against negative synergistic effects of boscalid and pyraclostrobin. The stronger toxic effects of Pristine® observed in field colonies compared to this laboratory test, and the opposite responses of pollen consumption in the laboratory and field to Pristine®, show that standard laboratory toxicology tests can fail to predict responses of pollinators to pesticides and to provide protection.
Collapse
Affiliation(s)
- Adrian Fisher
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA.
| | - Teddy Cogley
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA
| | - Cahit Ozturk
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA
| | - Gloria DeGrandi-Hoffman
- United States Department of Agriculture, Agricultural Research Service, Carl Hayden Bee Research Center, 2000 E Allen Rd., Tucson, AZ 85719, USA
| | - Brian H Smith
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA
| | - Osman Kaftanoglu
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA
| | - Jennifer H Fewell
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA
| | - Jon F Harrison
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA
| |
Collapse
|
25
|
Graham LC, Kline RA, Lamont DJ, Gillingwater TH, Mabbott NA, Skehel PA, Wishart TM. Temporal Profiling of the Cortical Synaptic Mitochondrial Proteome Identifies Ageing Associated Regulators of Stability. Cells 2021; 10:cells10123403. [PMID: 34943911 PMCID: PMC8700124 DOI: 10.3390/cells10123403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/15/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
Synapses are particularly susceptible to the effects of advancing age, and mitochondria have long been implicated as organelles contributing to this compartmental vulnerability. Despite this, the mitochondrial molecular cascades promoting age-dependent synaptic demise remain to be elucidated. Here, we sought to examine how the synaptic mitochondrial proteome (including strongly mitochondrial associated proteins) was dynamically and temporally regulated throughout ageing to determine whether alterations in the expression of individual candidates can influence synaptic stability/morphology. Proteomic profiling of wild-type mouse cortical synaptic and non-synaptic mitochondria across the lifespan revealed significant age-dependent heterogeneity between mitochondrial subpopulations, with aged organelles exhibiting unique protein expression profiles. Recapitulation of aged synaptic mitochondrial protein expression at the Drosophila neuromuscular junction has the propensity to perturb the synaptic architecture, demonstrating that temporal regulation of the mitochondrial proteome may directly modulate the stability of the synapse in vivo.
Collapse
Affiliation(s)
- Laura C. Graham
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK; (L.C.G.); (R.A.K.); (N.A.M.)
- Euan MacDonald Centre, Chancellor’s Building, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK; (T.H.G.); (P.A.S.)
| | - Rachel A. Kline
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK; (L.C.G.); (R.A.K.); (N.A.M.)
- Euan MacDonald Centre, Chancellor’s Building, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK; (T.H.G.); (P.A.S.)
| | - Douglas J. Lamont
- FingerPrints Proteomic Facility, College of Life Sciences, University of Dundee, Dow Street DD1 5EH, UK;
| | - Thomas H. Gillingwater
- Euan MacDonald Centre, Chancellor’s Building, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK; (T.H.G.); (P.A.S.)
- Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Neil A. Mabbott
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK; (L.C.G.); (R.A.K.); (N.A.M.)
| | - Paul A. Skehel
- Euan MacDonald Centre, Chancellor’s Building, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK; (T.H.G.); (P.A.S.)
- Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Thomas M. Wishart
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK; (L.C.G.); (R.A.K.); (N.A.M.)
- Euan MacDonald Centre, Chancellor’s Building, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK; (T.H.G.); (P.A.S.)
- Centre for Dementia Prevention, The University of Edinburgh, 9A Bioquarter, 9 Little France Road, Edinburgh EH16 4UX, UK
- Correspondence:
| |
Collapse
|
26
|
Czibik G, d'Humières T, Derumeaux G. When does too much energy become a danger to the heart? Eur Heart J 2021:ehab801. [PMID: 34849710 DOI: 10.1093/eurheartj/ehab801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Gabor Czibik
- INSERM U955, Université Paris-Est Créteil (UPEC), AP-HP, Department of Physiology, Henri Mondor Hospital, FHU-SENEC, Créteil, France
| | - Thomas d'Humières
- INSERM U955, Université Paris-Est Créteil (UPEC), AP-HP, Department of Physiology, Henri Mondor Hospital, FHU-SENEC, Créteil, France
| | - Geneviève Derumeaux
- INSERM U955, Université Paris-Est Créteil (UPEC), AP-HP, Department of Physiology, Henri Mondor Hospital, FHU-SENEC, Créteil, France
| |
Collapse
|
27
|
Hu X, Ono M, Chimge NO, Chosa K, Nguyen C, Melendez E, Lou CH, Lim P, Termini J, Lai KKY, Fueger PT, Teo JL, Higuchi Y, Kahn M. Differential Kat3 Usage Orchestrates the Integration of Cellular Metabolism with Differentiation. Cancers (Basel) 2021; 13:cancers13235884. [PMID: 34884992 PMCID: PMC8656857 DOI: 10.3390/cancers13235884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary The coupling of metabolism with cellular status is critically important and highly evolutionarily conserved. However, how cells coordinate metabolism with transcription as they change their status is not clear. Utilizing multiomic and functional studies, we now demonstrate the dichotomous roles of the Kat3 coactivators CBP and p300 and, in particular, their extreme N-termini, in coordinating cellular metabolism with cell differentiation. Using multiple in vitro and in vivo systems, our study sheds new light on metabolic regulation in homeostasis and disease, including cancer. Abstract The integration of cellular status with metabolism is critically important and the coupling of energy production and cellular function is highly evolutionarily conserved. This has been demonstrated in stem cell biology, organismal, cellular and tissue differentiation and in immune cell biology. However, a molecular mechanism delineating how cells coordinate and couple metabolism with transcription as they navigate quiescence, growth, proliferation, differentiation and migration remains in its infancy. The extreme N-termini of the Kat3 coactivator family members, CBP and p300, by far the least homologous regions with only 66% identity, interact with members of the nuclear receptor family, interferon activated Stat1 and transcriptionally competent β-catenin, a critical component of the Wnt signaling pathway. We now wish to report based on multiomic and functional investigations, utilizing p300 knockdown, N-terminal p300 edited and p300 S89A edited cell lines and p300 S89A knockin mice, that the N-termini of the Kat3 coactivators provide a highly evolutionarily conserved hub to integrate multiple signaling cascades to coordinate cellular metabolism with the regulation of cellular status and function.
Collapse
Affiliation(s)
- Xiaohui Hu
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China;
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
| | - Masaya Ono
- Department of Clinical Proteomics, National Cancer Center Research Institute, Tokyo 104-0045, Japan;
| | - Nyam-Osor Chimge
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
| | - Keisuke Chosa
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
| | - Cu Nguyen
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
| | - Elizabeth Melendez
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
| | - Chih-Hong Lou
- Gene Editing and Viral Vector Core, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA;
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Punnajit Lim
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
| | - John Termini
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Keane K. Y. Lai
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Patrick T. Fueger
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
- Department of Molecular and Cellular Endocrinology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Jia-Ling Teo
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
| | - Yusuke Higuchi
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
| | - Michael Kahn
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
- Correspondence:
| |
Collapse
|
28
|
Exercising D. melanogaster Modulates the Mitochondrial Proteome and Physiology. The Effect on Lifespan Depends upon Age and Sex. Int J Mol Sci 2021; 22:ijms222111606. [PMID: 34769041 PMCID: PMC8583977 DOI: 10.3390/ijms222111606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
Ageing is a major risk factor for many of the most prevalent diseases, including neurodegenerative diseases, cancer, and heart disease. As the global population continues to age, behavioural interventions that can promote healthy ageing will improve quality of life and relieve the socioeconomic burden that comes with an aged society. Exercise is recognised as an effective intervention against many diseases of ageing, but we do not know the stage in an individual’s lifetime at which exercise is most effective at promoting healthy ageing, and whether or not it has a direct effect on lifespan. We exercised w1118 Drosophila melanogaster, investigating the effects of sex and group size at different stages of their lifetime, and recorded their lifespan. Climbing scores at 30 days were measured to record differences in fitness in response to exercise. We also assessed the mitochondrial proteome of w1118 Drosophila that had been exercised for one week, alongside mitochondrial respiration measured using high-resolution respirometry, to determine changes in mitochondrial physiology in response to exercise. We found that age-targeted exercise interventions improved the lifespan of both male and female Drosophila, and grouped males exercised in late life had improved climbing scores when compared with those exercised throughout their entire lifespan. The proteins of the electron transport chain were significantly upregulated in expression after one week of exercise, and complex-II-linked respiration was significantly increased in exercised Drosophila. Taken together, our findings provide a basis to test specific proteins, and complex II of the respiratory chain, as important effectors of exercise-induced healthy ageing.
Collapse
|
29
|
Ahn E, Lee J, Han J, Lee SM, Kwon KS, Hwang GS. Glutathione is an aging-related metabolic signature in the mouse kidney. Aging (Albany NY) 2021; 13:21009-21028. [PMID: 34492635 PMCID: PMC8457589 DOI: 10.18632/aging.203509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/24/2021] [Indexed: 11/25/2022]
Abstract
The ability to maintain systemic metabolic homeostasis through various mechanisms represents a crucial strength of kidneys in the study of metabolic syndrome or aging. Moreover, age-associated kidney failure has been widely accepted. However, efforts to demonstrate aging-dependent renal metabolic rewiring have been limited. In the present study, we investigated aging-related renal metabolic determinants by integrating metabolomic and transcriptomic data sets from kidneys of young (3 months, n = 7 and 3 for respectively) and old (24 months, n = 8 and 3 for respectively) naive C57BL/6 male mice. Metabolite profiling analysis was conducted, followed by data processing via network and pathway analyses, to identify differential metabolites. In the aged group, the levels of glutathione and oxidized glutathione were significantly increased, but the levels of gamma-glutamyl amino acids, amino acids combined with the gamma-glutamyl moiety from glutathione by membrane transpeptidases, and circulating glutathione levels were decreased. In transcriptomic analysis, differential expression of metabolic enzymes is consistent with the hypothesis of aging-dependent rewiring in renal glutathione metabolism; pathway and network analyses further revealed the increased expression of immune-related genes in the aged group. Collectively, our integrative analysis results revealed that defective renal glutathione metabolism is a signature of renal aging. Therefore, we hypothesize that restraining renal glutathione metabolism might alleviate or delay age-associated renal metabolic deterioration, and aberrant activation of the renal immune system.
Collapse
Affiliation(s)
- Eunyong Ahn
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seodaemun-Gu, Seoul 03759, Korea
| | - Jueun Lee
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seodaemun-Gu, Seoul 03759, Korea
| | - Jisu Han
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seodaemun-Gu, Seoul 03759, Korea
| | - Seung-Min Lee
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-Gu, Daejeon 34141, Korea
| | - Ki-Sun Kwon
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-Gu, Daejeon 34141, Korea
- Aventi Inc., Yuseong-Gu, Daejeon 34141, Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seodaemun-Gu, Seoul 03759, Korea
- Department of Chemistry and Nano Science, Ewha Womans University, Seodaemun-Gu, Seoul 03760, Korea
| |
Collapse
|
30
|
Epperly MW, Shields D, Fisher R, Hou W, Wang H, Hamade DF, Mukherjee A, Greenberger JS. Radiation-Induced Senescence in p16+/LUC Mouse Lung Compared to Bone Marrow Multilineage Hematopoietic Progenitor Cells. Radiat Res 2021; 196:235-249. [PMID: 34087939 PMCID: PMC8456367 DOI: 10.1667/rade-20-00286.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/12/2021] [Indexed: 11/03/2022]
Abstract
We defined the time course of ionizing radiation-induced senescence in lung compared to bone marrow of p16+/LUC mice in which the senescence-induced biomarker (p16) is linked to a luciferase reporter gene. Periodic in situ imaging revealed increased luciferase activity in the lungs of 20 Gy thoracic irradiated, but not 8 Gy total-body irradiated (TBI) mice beginning at day 75 and increasing to day 170. In serial sections of explanted lungs, senescent cells appeared in the same areas as did fibrosis in the 20 Gy thoracic irradiated, but not the 8 Gy TBI group. Lungs from 8 Gy TBI mice at one year did show increased RNA levels for p16, p21, p19 and TGF-β. Individual senescent cells in 20 Gy irradiated mouse lung included those with epithelial, endothelial, fibroblast and hematopoietic cell biomarkers. Rare senescent cells in the lungs of 8 Gy TBI mice at one year were of endothelial phenotype. Long-term bone marrow cultures (LTBMCs) were established at either day 60 or one year after 8 Gy TBI. In freshly removed marrow at both times after irradiation, there were increased senescent cells. In LTBMCs, there were increased senescent cells in both weekly harvested single cells and in colonies of multilineage hematopoietic progenitor cells producing CFU-GEMM (colony forming unit-granulocyte, erythrocyte, monocyte/macrophage, mega-karyocyte) that were formed in secondary cultures when these single cells were plated in semisolid media. LTBMCs from TBI mice produced fewer CFU-GEMM; however, the relative percentage of senescent cell-containing colonies was increased as measured by both p16-luciferase and β-galactosidase. Therefore, 20 Gy thoracic radiation, as well as 8 Gy TBI, induces senescent cells in the lungs. With bone marrow, 8 Gy TBI induced senescence in both hematopoietic cells and in colony-forming progenitors. The p16+/LUC mouse strain provides a valuable system in which to compare the kinetics of radiation-induced senescence between organs in vivo, and to evaluate the potential role of senescent cells in irradiation pulmonary fibrosis.
Collapse
Affiliation(s)
- Michael W. Epperly
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Donna Shields
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Renee Fisher
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Wen Hou
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Hong Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Diala Fatima Hamade
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Amitava Mukherjee
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Joel S. Greenberger
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| |
Collapse
|
31
|
Zhang D, Hu Y, Hao Z, Zhang Y, Luo S, Dang X, Sun R, Duan S, Lv D, Jiang F, Fu L. Design, synthesis and antitumor activities of thiazole-containing mitochondrial targeting agents. Bioorg Chem 2021; 115:105271. [PMID: 34426155 DOI: 10.1016/j.bioorg.2021.105271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
In this study, a novel batch of thiazole-containing mitochondrial targeting agents were designed and synthesized. Four kinds of mitochondrial targeting moieties and six kinds of linkers were designed. Their structures were confirmed by NMR and HR-MS. The screening of antiproliferative activity revealed that most compounds displayed cytotoxicity on HeLa cancer cell. In particular, D1 has an IC50 value of 35.32 μmol·L-1 against HeLa cell. In addition, cellular respiratory activities were also tested on HeLa cancer cells. D1 had a basal oxygen consumption rate of 8.84 pmol·s-1·mL-1. Also, D1 inhibited the mitochondrial respiration of HeLa cell significantly at 5 μmol·L-1, as well as a complete inhibitory of oxygen consumption for cellular ATP coupling. Furthermore, the pKa, logP, and logD under different pH conditions of all the compounds were calculated by the ACD/Percepta-PhysChem Suite, and the results manifested the correlation between physicochemical properties and chemical activity of compounds. The results identify D1 as a promising mitochondria inhibitor and anticancer agent with appropriate physicochemical properties.
Collapse
Affiliation(s)
- Dongdong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd. Minhang District, Shanghai 200240, PR China
| | - Yixin Hu
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd. Minhang District, Shanghai 200240, PR China
| | - Zhiqiang Hao
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd. Minhang District, Shanghai 200240, PR China
| | - Yang Zhang
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd. Minhang District, Shanghai 200240, PR China
| | - Shuhua Luo
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd. Minhang District, Shanghai 200240, PR China
| | - Xin Dang
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd. Minhang District, Shanghai 200240, PR China
| | - Ran Sun
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd. Minhang District, Shanghai 200240, PR China
| | - Shixin Duan
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd. Minhang District, Shanghai 200240, PR China
| | - Dan Lv
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd. Minhang District, Shanghai 200240, PR China
| | - Faqin Jiang
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd. Minhang District, Shanghai 200240, PR China
| | - Lei Fu
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd. Minhang District, Shanghai 200240, PR China.
| |
Collapse
|
32
|
Alamdari AF, Rahnemayan S, Rajabi H, Vahed N, Kashani HRK, Rezabakhsh A, Sanaie S. Melatonin as a promising modulator of aging related neurodegenerative disorders: Role of microRNAs. Pharmacol Res 2021; 173:105839. [PMID: 34418564 DOI: 10.1016/j.phrs.2021.105839] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/02/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
One of the host risk factors involved in aging-related diseases is coupled with the reduction of endogenous melatonin (MLT) synthesis in the pineal gland. MLT is considered a well-known pleiotropic regulatory hormone to modulate a multitude of biological processes such as the regulation of circadian rhythm attended by potent anti-oxidant, anti-inflammatory, and anti-cancer properties. It has also been established that the microRNAs family, as non-coding mRNAs regulating post-transcriptional processes, also serve a crucial role to promote MLT-related advantageous effects in both experimental and clinical settings. Moreover, the anti-aging impact of MLT and miRNAs participation jointly are of particular interest, recently. In this review, we aimed to scrutinize recent advances concerning the therapeutic implications of MLT, particularly in the brain tissue in the face of aging. We also assessed the possible interplay between microRNAs and MLT, which could be considered a therapeutic strategy to slow down the aging process in the nervous system.
Collapse
Affiliation(s)
- Arezoo Fathalizadeh Alamdari
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sama Rahnemayan
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Rajabi
- Research Center for Translational Medicine, School of Medicine, Koç University, Istanbul, Turkey
| | - Nafiseh Vahed
- Research Center for Evidence-Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Emergency Medicine Research Team, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sarvin Sanaie
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
33
|
Pini M, Czibik G, Sawaki D, Mezdari Z, Braud L, Delmont T, Mercedes R, Martel C, Buron N, Marcelin G, Borgne‐Sanchez A, Foresti R, Motterlini R, Henegar C, Derumeaux G. Adipose tissue senescence is mediated by increased ATP content after a short-term high-fat diet exposure. Aging Cell 2021; 20:e13421. [PMID: 34278707 PMCID: PMC8373332 DOI: 10.1111/acel.13421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 04/07/2021] [Accepted: 06/01/2021] [Indexed: 01/10/2023] Open
Abstract
In the context of obesity, senescent cells accumulate in white adipose tissue (WAT). The cellular underpinnings of WAT senescence leading to insulin resistance are not fully elucidated. The objective of the current study was to evaluate the presence of WAT senescence early after initiation of high‐fat diet (HFD, 1–10 weeks) in 5‐month‐old male C57BL/6J mice and the potential role of energy metabolism. We first showed that WAT senescence occurred 2 weeks after HFD as evidenced in whole WAT by increased senescence‐associated ß‐galactosidase activity and cyclin‐dependent kinase inhibitor 1A and 2A expression. WAT senescence affected various WAT cell populations, including preadipocytes, adipose tissue progenitors, and immune cells, together with adipocytes. WAT senescence was associated with higher glycolytic and mitochondrial activity leading to enhanced ATP content in HFD‐derived preadipocytes, as compared with chow diet‐derived preadipocytes. One‐month daily exercise, introduced 5 weeks after HFD, was an effective senostatic strategy, since it reversed WAT cellular senescence, while reducing glycolysis and production of ATP. Interestingly, the beneficial effect of exercise was independent of body weight and fat mass loss. We demonstrated that WAT cellular senescence is one of the earliest events occurring after HFD initiation and is intimately linked to the metabolic state of the cells. Our data uncover a critical role for HFD‐induced elevated ATP as a local danger signal inducing WAT senescence. Exercise exerts beneficial effects on adipose tissue bioenergetics in obesity, reversing cellular senescence, and metabolic abnormalities.
Collapse
Affiliation(s)
- Maria Pini
- Department of Physiology Henri Mondor Hospital, FHU SENEC, INSERM U955 Université Paris‐Est Créteil (UPEC), AP‐HP Créteil France
- Faculty of Medicine IMRB, INSERM U955 Université Paris‐Est Créteil (UPEC) Créteil France
| | - Gabor Czibik
- Department of Physiology Henri Mondor Hospital, FHU SENEC, INSERM U955 Université Paris‐Est Créteil (UPEC), AP‐HP Créteil France
- Faculty of Medicine IMRB, INSERM U955 Université Paris‐Est Créteil (UPEC) Créteil France
| | - Daigo Sawaki
- Department of Physiology Henri Mondor Hospital, FHU SENEC, INSERM U955 Université Paris‐Est Créteil (UPEC), AP‐HP Créteil France
- Faculty of Medicine IMRB, INSERM U955 Université Paris‐Est Créteil (UPEC) Créteil France
| | - Zaineb Mezdari
- Department of Physiology Henri Mondor Hospital, FHU SENEC, INSERM U955 Université Paris‐Est Créteil (UPEC), AP‐HP Créteil France
- Faculty of Medicine IMRB, INSERM U955 Université Paris‐Est Créteil (UPEC) Créteil France
| | - Laura Braud
- Faculty of Medicine IMRB, INSERM U955 Université Paris‐Est Créteil (UPEC) Créteil France
| | - Thaïs Delmont
- Department of Physiology Henri Mondor Hospital, FHU SENEC, INSERM U955 Université Paris‐Est Créteil (UPEC), AP‐HP Créteil France
- AP‐HP Department of Cardiology Henri Mondor Hospital, FHU SENEC Créteil France
| | - Raquel Mercedes
- Faculty of Medicine IMRB, INSERM U955 Université Paris‐Est Créteil (UPEC) Créteil France
| | - Cécile Martel
- Mitologics S.A.S. Université Paris‐Est Créteil (UPEC) Créteil France
| | - Nelly Buron
- Mitologics S.A.S. Université Paris‐Est Créteil (UPEC) Créteil France
| | | | | | - Roberta Foresti
- Faculty of Medicine IMRB, INSERM U955 Université Paris‐Est Créteil (UPEC) Créteil France
| | - Roberto Motterlini
- Faculty of Medicine IMRB, INSERM U955 Université Paris‐Est Créteil (UPEC) Créteil France
| | - Corneliu Henegar
- Faculty of Medicine IMRB, INSERM U955 Université Paris‐Est Créteil (UPEC) Créteil France
| | - Geneviève Derumeaux
- Department of Physiology Henri Mondor Hospital, FHU SENEC, INSERM U955 Université Paris‐Est Créteil (UPEC), AP‐HP Créteil France
- Faculty of Medicine IMRB, INSERM U955 Université Paris‐Est Créteil (UPEC) Créteil France
| |
Collapse
|
34
|
Luo S, Dang X, Wang J, Yuan C, Hu Y, Lei S, Zhang Y, Lu D, Jiang F, Fu L. Biological evaluation of mitochondria targeting small molecules as potent anticancer drugs. Bioorg Chem 2021; 114:105055. [PMID: 34144278 DOI: 10.1016/j.bioorg.2021.105055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/17/2021] [Accepted: 06/01/2021] [Indexed: 11/28/2022]
Abstract
Cancer therapy targets specific metabolic pathways or a single gene. This may result in low therapeutic effects due to drug selectivity and drug resistance. Recent studies revealed that the mitochondrial membrane potential and transmembrane permeability of cancerous mitochondria are differed from normal mitochondria. Thus, chemotherapy targeting cancerous mitochondria could be an innovative and competent strategy for cancer therapy. Previously, our work with a novel group of mitochondria targeting small molecules presented promising inhibitory capability toward various cancer cell lines and suppressed adenosine triphosphate (ATP) generation. Therefore, it is critical to understand the anticancer effect and targeting mechanism of these small molecules. This study investigated the inhibitory activity of mitochondria targeting small molecules with human cervical cancer cells - HeLa to further explore their therapeutic potential. HeLa cells were exposed to 10 µM of synthesized compounds and presented elevation in intracellular reactive oxygen species (ROS) level, impaired mitochondrial membrane potential and upregulation of apoptosis as well as necrosis. In vivo, HeLa cell tumor-bearing BALB/c nude mice were treated with mitochondria targeting small molecules for 12 days consecutively. Throughout this chemotherapy study, no deleterious side effects nor the appearance of toxicity was observed. Furthermore, mitochondria targeting small molecules treated groups exhibited significant down-regulation with both tumor volume and tumor weight compared to the Doxorubicin (DOX) treated group. Thus, inhibition of mitochondrial ATP synthesis, activation of intracellular ROS production, down-regulation of mitochondrial membrane potential and upregulation of apoptosis and necrosis rates are the indications of cancer therapy. In this work, we examined the anticancer capability of four mitochondria targeting small molecules in vitro and in vivo, and demonstrated a novel therapeutic approach in cancer therapy with tremendous potential.
Collapse
Affiliation(s)
- Shuhua Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University (SJTU), No. 800 Dongchuan Rd. Minhang District, Shanghai, 200240, PR China
| | - Xin Dang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University (SJTU), No. 800 Dongchuan Rd. Minhang District, Shanghai, 200240, PR China
| | - Juntao Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University (SJTU), No. 800 Dongchuan Rd. Minhang District, Shanghai, 200240, PR China
| | - Chang Yuan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University (SJTU), No. 800 Dongchuan Rd. Minhang District, Shanghai, 200240, PR China
| | - Yixin Hu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University (SJTU), No. 800 Dongchuan Rd. Minhang District, Shanghai, 200240, PR China
| | - Shuwen Lei
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University (SJTU), No. 800 Dongchuan Rd. Minhang District, Shanghai, 200240, PR China
| | - Yang Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University (SJTU), No. 800 Dongchuan Rd. Minhang District, Shanghai, 200240, PR China
| | - Dan Lu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University (SJTU), No. 800 Dongchuan Rd. Minhang District, Shanghai, 200240, PR China
| | - Faqin Jiang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University (SJTU), No. 800 Dongchuan Rd. Minhang District, Shanghai, 200240, PR China
| | - Lei Fu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University (SJTU), No. 800 Dongchuan Rd. Minhang District, Shanghai, 200240, PR China; SJTU-Agilent Technologies Joint Laboratory for Pharmaceutical Analysis, School of Pharmacy, Shanghai Jiao Tong University (SJTU), No. 800 Dongchuan Rd. Minhang District, Shanghai, 200240, PR China.
| |
Collapse
|
35
|
Dang X, Lei S, Luo S, Hu Y, Wang J, Zhang D, Lu D, Jiang F, Fu L. Design, synthesis and biological evaluation of novel thiazole-derivatives as mitochondrial targeting inhibitors of cancer cells. Bioorg Chem 2021; 114:105015. [PMID: 34139611 DOI: 10.1016/j.bioorg.2021.105015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/12/2023]
Abstract
Mitochondria are pivotal energy production sources for cells to maintain necessary metabolism activities. Targeting dysfunctional mitochondrial features has been a hotspot for mitochondrial-related disease researches. Investigation with cancerous mitochondrial metabolism is a continuing concern within tumor therapy. Herein, we set out to assess the anti-cancer activities of a novel family of TPP-thiazole derivatives based on our earlier research on mitochondrial targeting agents. Specifically, we designed and synthesized a series of TPP-thiazole derivatives and revealed by the MTT assay that most synthesized compounds effectively inhibited three cancer cell lines (HeLa, PC3 and MCF-7). After structure modifications, we explored the SAR relationships and identified the most promising compound R13 (IC50 of 5.52 μM) for further investigation. In the meantime, we performed ATP production assay to assess the selected compounds inhibitory effect on HeLa cells energy production. The results displayed the test compounds significantly restrained ATP production of cancer cells. Overall, we have designed and synthesized a series of compounds which exhibited significant cytotoxicity against cancer cells and effectively inhibited mitochondrial energy production.
Collapse
Affiliation(s)
- Xin Dang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai 200240, PR China
| | - Shuwen Lei
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai 200240, PR China
| | - Shuhua Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai 200240, PR China
| | - Yixin Hu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai 200240, PR China
| | - Juntao Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai 200240, PR China
| | - Dongdong Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai 200240, PR China
| | - Dan Lu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai 200240, PR China
| | - Faqin Jiang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai 200240, PR China
| | - Lei Fu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai 200240, PR China; SJTU-Agilent Technologies Joint Laboratory for Pharmaceutical Analysis, School of Pharmacy, Shanghai Jiao Tong University (SJTU), No. 800 Dongchuan Rd., Minhang District, Shanghai 200240, PR China.
| |
Collapse
|
36
|
D'Amelio P. Vitamin D Deficiency and Risk of Metabolic Syndrome in Aging Men. World J Mens Health 2021; 39:291-301. [PMID: 33663024 PMCID: PMC7994656 DOI: 10.5534/wjmh.200189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
The elderly population is rapidly increasing; hence, the disability due to age-related diseases has become an important socioeconomic burden. Amongst age-related diseases cardiovascular ones (CVD) have a huge impact on morbidity and mortality and are associated with metabolic syndrome (MetS). Several studies investigated the role of hypovitaminosis D in the pathogenesis of MetS and of CVD, this review unravels the relationship between aging/senescence, vitamin D, gender, and pathogenesis of MetS.
Collapse
Affiliation(s)
- Patrizia D'Amelio
- Department of Internal Medicine, Service of Geriatric Medicine and Geriatric Rehabilitation, University of Lausanne Hospital Centre, Lausanne, Switzerland.
| |
Collapse
|
37
|
Lin KL, Chen SD, Lin KJ, Liou CW, Chuang YC, Wang PW, Chuang JH, Lin TK. Quality Matters? The Involvement of Mitochondrial Quality Control in Cardiovascular Disease. Front Cell Dev Biol 2021; 9:636295. [PMID: 33829016 PMCID: PMC8019794 DOI: 10.3389/fcell.2021.636295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases are one of the leading causes of death and global health problems worldwide. Multiple factors are known to affect the cardiovascular system from lifestyles, genes, underlying comorbidities, and age. Requiring high workload, metabolism of the heart is largely dependent on continuous power supply via mitochondria through effective oxidative respiration. Mitochondria not only serve as cellular power plants, but are also involved in many critical cellular processes, including the generation of intracellular reactive oxygen species (ROS) and regulating cellular survival. To cope with environmental stress, mitochondrial function has been suggested to be essential during bioenergetics adaptation resulting in cardiac pathological remodeling. Thus, mitochondrial dysfunction has been advocated in various aspects of cardiovascular pathology including the response to ischemia/reperfusion (I/R) injury, hypertension (HTN), and cardiovascular complications related to type 2 diabetes mellitus (DM). Therefore, mitochondrial homeostasis through mitochondrial dynamics and quality control is pivotal in the maintenance of cardiac health. Impairment of the segregation of damaged components and degradation of unhealthy mitochondria through autophagic mechanisms may play a crucial role in the pathogenesis of various cardiac disorders. This article provides in-depth understanding of the current literature regarding mitochondrial remodeling and dynamics in cardiovascular diseases.
Collapse
Affiliation(s)
- Kai-Lieh Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shang-Der Chen
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kai-Jung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Wei Liou
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yao-Chung Chuang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Wen Wang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Metabolism, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jiin-Haur Chuang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tsu-Kung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
38
|
Zimmermann A, Madreiter-Sokolowski C, Stryeck S, Abdellatif M. Targeting the Mitochondria-Proteostasis Axis to Delay Aging. Front Cell Dev Biol 2021; 9:656201. [PMID: 33777963 PMCID: PMC7991595 DOI: 10.3389/fcell.2021.656201] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/22/2021] [Indexed: 01/18/2023] Open
Abstract
Human life expectancy continues to grow globally, and so does the prevalence of age-related chronic diseases, causing a huge medical and economic burden on society. Effective therapeutic options for these disorders are scarce, and even if available, are typically limited to a single comorbidity in a multifaceted dysfunction that inevitably affects all organ systems. Thus, novel therapies that target fundamental processes of aging itself are desperately needed. In this article, we summarize current strategies that successfully delay aging and related diseases by targeting mitochondria and protein homeostasis. In particular, we focus on autophagy, as a fundamental proteostatic process that is intimately linked to mitochondrial quality control. We present genetic and pharmacological interventions that effectively extend health- and life-span by acting on specific mitochondrial and pro-autophagic molecular targets. In the end, we delve into the crosstalk between autophagy and mitochondria, in what we refer to as the mitochondria-proteostasis axis, and explore the prospect of targeting this crosstalk to harness maximal therapeutic potential of anti-aging interventions.
Collapse
Affiliation(s)
- Andreas Zimmermann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.,Field of Excellence BioHealth - University of Graz, Graz, Austria
| | | | - Sarah Stryeck
- Institute of Interactive Systems and Data Science, Graz University of Technology, Graz, Austria
| | - Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, Graz, Austria.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.,Centre de Recherche des Cordeliers, Equipe Labellisée Par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
| |
Collapse
|
39
|
Lipophilic Cations Rescue the Growth of Yeast under the Conditions of Glycolysis Overflow. Biomolecules 2020; 10:biom10091345. [PMID: 32962296 PMCID: PMC7563754 DOI: 10.3390/biom10091345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/24/2022] Open
Abstract
Chemicals inducing a mild decrease in the ATP/ADP ratio are considered as caloric restriction mimetics as well as treatments against obesity. Screening for such chemicals in animal model systems requires a lot of time and labor. Here, we present a system for the rapid screening of non-toxic substances causing such a de-energization of cells. We looked for chemicals allowing the growth of yeast lacking trehalose phosphate synthase on a non-fermentable carbon source in the presence of glucose. Under such conditions, the cells cannot grow because the cellular phosphate is mostly being used to phosphorylate the sugars in upper glycolysis, while the biosynthesis of bisphosphoglycerate is blocked. We reasoned that by decreasing the ATP/ADP ratio, one might prevent the phosphorylation of the sugars and also boost bisphosphoglycerate synthesis by providing the substrate, i.e., inorganic phosphate. We confirmed that a complete inhibition of oxidative phosphorylation alleviates the block. As our system includes a non-fermentable carbon source, only the chemicals that did not cause a complete block of mitochondrial ATP synthesis allowed the initial depletion of glucose followed by respiratory growth. Using this system, we found two novel compounds, dodecylmethyl diphenylamine (FS1) and diethyl (tetradecyl) phenyl ammonium bromide (Kor105), which possess a mild membrane-depolarizing activity.
Collapse
|