1
|
Lind MI, Mautz BS, Carlsson H, Hinas A, Gudmunds E, Maklakov AA. Sex-specific growth and lifespan effects of germline removal in the dioecious nematode Caenorhabditis remanei. Aging Cell 2024; 23:e14290. [PMID: 39082232 PMCID: PMC11561660 DOI: 10.1111/acel.14290] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 11/15/2024] Open
Abstract
Germline regulates the expression of life-history traits and mediates the trade-off between reproduction and somatic maintenance. However, germline maintenance in itself can be costly, and the costs can vary between the sexes depending on the number of gametes produced across the lifetime. We tested this directly by germline ablation using glp-1 RNA interference (RNAi) in a dioecious nematode Caenorhabditis remanei. Germline removal strongly increased heat-shock resistance in both sexes, thus confirming the role of the germline in regulating somatic maintenance. However, germline removal resulted in increased lifespan only in males. High costs of mating strongly reduced lifespan in both sexes and obliterated the survival benefit of germline-less males even though neither sex produced any offspring. Furthermore, germline removal reduced male growth before maturation but not in adulthood, while female growth rate was reduced both before and especially after maturation. Thus, germline removal improves male lifespan without major growth costs, while germline-less females grow slower and do not live longer than reproductively functional counterparts in the absence of environmental stress. Overall, these results suggest that germline maintenance is costlier for males than for females in C. remanei.
Collapse
Affiliation(s)
- Martin I. Lind
- Animal Ecology, Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
- Department of Environmental and BiosciencesHalmstad UniversityHalmstadSweden
| | - Brian S. Mautz
- Animal Ecology, Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
- Population Analytics & Insights, Data Sciences Analytics & InsightsInnovative Medicine Research & Development, Johnson & JohnsonSpring HousePennsylvaniaUSA
| | - Hanne Carlsson
- Animal Ecology, Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | - Andrea Hinas
- Department of Cell and Molecular BiologyUppsala UniversityUppsalaSweden
| | - Erik Gudmunds
- Department of Cell and Molecular BiologyUppsala UniversityUppsalaSweden
- Evolutionary Biology, Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
| | - Alexei A. Maklakov
- Animal Ecology, Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
- School of Biological SciencesUniversity of East AngliaNorwichUK
| |
Collapse
|
2
|
Abe K, Ino H, Niwa T, Semmy D, Takaochi A, Nishimura T, Mogi C, Uenaka M, Ishii M, Tanaka K, Ohkawa Y, Ishitani T. Sex-dependent regulation of vertebrate somatic growth and aging by germ cells. SCIENCE ADVANCES 2024; 10:eadi1621. [PMID: 38865462 PMCID: PMC11168456 DOI: 10.1126/sciadv.adi1621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/23/2024] [Indexed: 06/14/2024]
Abstract
The function of germ cells in somatic growth and aging has been demonstrated in invertebrate models but remains unclear in vertebrates. We demonstrated sex-dependent somatic regulation by germ cells in the short-lived vertebrate model Nothobranchius furzeri. In females, germ cell removal shortened life span, decreased estrogen, and increased insulin-like growth factor 1 (IGF-1) signaling. In contrast, germ cell removal in males improved their health with increased vitamin D signaling. Body size increased in both sexes but was caused by different signaling pathways, i.e., IGF-1 and vitamin D in females and males, respectively. Thus, vertebrate germ cells regulate somatic growth and aging through different pathways of the endocrine system, depending on the sex, which may underlie the sexual difference in reproductive strategies.
Collapse
Affiliation(s)
- Kota Abe
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Hikaru Ino
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Tomomi Niwa
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Daniel Semmy
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Ayami Takaochi
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Takashi Nishimura
- Metabolic Regulation and Genetics, Department of Molecular and Cellular Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Chihiro Mogi
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Maki Uenaka
- Department of Immunology and Cell Biology, Graduate School of Medicine / Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine / Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- Immunology Frontier Research Center, Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan
| | - Kaori Tanaka
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Tohru Ishitani
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan
| |
Collapse
|
3
|
Moses E, Atlan T, Sun X, Franěk R, Siddiqui A, Marinov GK, Shifman S, Zucker DM, Oron-Gottesman A, Greenleaf WJ, Cohen E, Ram O, Harel I. The killifish germline regulates longevity and somatic repair in a sex-specific manner. NATURE AGING 2024; 4:791-813. [PMID: 38750187 DOI: 10.1038/s43587-024-00632-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/10/2024] [Indexed: 05/22/2024]
Abstract
Classical evolutionary theories propose tradeoffs among reproduction, damage repair and lifespan. However, the specific role of the germline in shaping vertebrate aging remains largely unknown. In this study, we used the turquoise killifish (Nothobranchius furzeri) to genetically arrest germline development at discrete stages and examine how different modes of infertility impact life history. We first constructed a comprehensive single-cell gonadal atlas, providing cell-type-specific markers for downstream phenotypic analysis. We show here that germline depletion-but not arresting germline differentiation-enhances damage repair in female killifish. Conversely, germline-depleted males instead showed an extension in lifespan and rejuvenated metabolic functions. Through further transcriptomic analysis, we highlight enrichment of pro-longevity pathways and genes in germline-depleted male killifish and demonstrate functional conservation of how these factors may regulate longevity in germline-depleted Caenorhabditis elegans. Our results, therefore, demonstrate that different germline manipulation paradigms can yield pronounced sexually dimorphic phenotypes, implying alternative responses to classical evolutionary tradeoffs.
Collapse
Affiliation(s)
- Eitan Moses
- Department of Genetics, Silberman Institute, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Tehila Atlan
- Department of Genetics, Silberman Institute, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Xue Sun
- Department of Biochemistry, Silberman Institute, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Roman Franěk
- Department of Genetics, Silberman Institute, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - Atif Siddiqui
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University School of Medicine, Jerusalem, Israel
| | | | - Sagiv Shifman
- Department of Genetics, Silberman Institute, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - David M Zucker
- Department of Statistics and Data Science, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adi Oron-Gottesman
- Department of Genetics, Silberman Institute, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Ehud Cohen
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University School of Medicine, Jerusalem, Israel
| | - Oren Ram
- Department of Biochemistry, Silberman Institute, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Itamar Harel
- Department of Genetics, Silberman Institute, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel.
| |
Collapse
|
4
|
Baur J, Koppik M, Savković U, Đorđević M, Stojkovic B, Berger D. Coevolution of longevity and female germline maintenance. Proc Biol Sci 2024; 291:20240532. [PMID: 38864321 PMCID: PMC11338575 DOI: 10.1098/rspb.2024.0532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 06/13/2024] Open
Abstract
An often-overlooked aspect of life-history optimization is the allocation of resources to protect the germline and secure safe transmission of genetic information. While failure to do so renders significant fitness consequences in future generations, germline maintenance comes with substantial costs. Thus, germline allocation should trade off with other life-history decisions and be optimized in accordance with an organism's reproductive schedule. Here, we tested this hypothesis by studying germline maintenance in lines of seed beetle, selected for early (E) or late (L) reproduction for 350 and 240 generations, respectively. Female animals provide maintenance and screening of male gametes in their reproductive tract and oocytes. Here, we reveal the ability of young and aged E- and L-females to provide this form of germline maintenance by mating them to males with ejaculates with artificially elevated levels of protein and DNA damage. We find that germline maintenance in E-females peaks at young age and then declines, while the opposite is true for L-females, in accordance with the age of reproduction in the respective regime. These findings identify the central role of allocation to secure germline integrity in life-history evolution and highlight how females can play a crucial role in mitigating the effects of male germline decisions on mutation rate and offspring quality.
Collapse
Affiliation(s)
- Julian Baur
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Mareike Koppik
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- Animal Ecology, Department of Zoology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Uroš Savković
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade11000, Serbia
| | - Mirko Đorđević
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade11000, Serbia
| | - Biljana Stojkovic
- Institute of Zoology, Chair of Genetics and Evolution, Faculty of Biology, Studentski trg 16, 11000 Belgrade, Serbia
| | - David Berger
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Moses E, Atlan T, Sun X, Franek R, Siddiqui A, Marinov GK, Shifman S, Zucker DM, Oron-Gottesman A, Greenleaf WJ, Cohen E, Ram O, Harel I. The killifish germline regulates longevity and somatic repair in a sex-specific manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.18.572041. [PMID: 38187630 PMCID: PMC10769255 DOI: 10.1101/2023.12.18.572041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Classical evolutionary theories propose tradeoffs between reproduction, damage repair, and lifespan. However, the specific role of the germline in shaping vertebrate aging remains largely unknown. Here, we use the turquoise killifish ( N. furzeri ) to genetically arrest germline development at discrete stages, and examine how different modes of infertility impact life-history. We first construct a comprehensive single-cell gonadal atlas, providing cell-type-specific markers for downstream phenotypic analysis. Next, we show that germline depletion - but not arresting germline differentiation - enhances damage repair in female killifish. Conversely, germline-depleted males instead showed an extension in lifespan and rejuvenated metabolic functions. Through further transcriptomic analysis, we highlight enrichment of pro-longevity pathways and genes in germline-depleted male killifish and demonstrate functional conservation of how these factors may regulate longevity in germline-depleted C. elegans . Our results therefore demonstrate that different germline manipulation paradigms can yield pronounced sexually dimorphic phenotypes, implying alternative responses to classical evolutionary tradeoffs.
Collapse
|
6
|
Grieshop K, Ho EKH, Kasimatis KR. Dominance reversals: the resolution of genetic conflict and maintenance of genetic variation. Proc Biol Sci 2024; 291:20232816. [PMID: 38471544 DOI: 10.1098/rspb.2023.2816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 02/05/2024] [Indexed: 03/14/2024] Open
Abstract
Beneficial reversals of dominance reduce the costs of genetic trade-offs and can enable selection to maintain genetic variation for fitness. Beneficial dominance reversals are characterized by the beneficial allele for a given context (e.g. habitat, developmental stage, trait or sex) being dominant in that context but recessive where deleterious. This context dependence at least partially mitigates the fitness consequence of heterozygotes carrying one non-beneficial allele for their context and can result in balancing selection that maintains alternative alleles. Dominance reversals are theoretically plausible and are supported by mounting empirical evidence. Here, we highlight the importance of beneficial dominance reversals as a mechanism for the mitigation of genetic conflict and review the theory and empirical evidence for them. We identify some areas in need of further research and development and outline three methods that could facilitate the identification of antagonistic genetic variation (dominance ordination, allele-specific expression and allele-specific ATAC-Seq (assay for transposase-accessible chromatin with sequencing)). There is ample scope for the development of new empirical methods as well as reanalysis of existing data through the lens of dominance reversals. A greater focus on this topic will expand our understanding of the mechanisms that resolve genetic conflict and whether they maintain genetic variation.
Collapse
Affiliation(s)
- Karl Grieshop
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada M5S 1A1
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Eddie K H Ho
- Department of Biology, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202, USA
| | - Katja R Kasimatis
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada M5S 1A1
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
7
|
Jimenez-Gonzalez A, Ansaloni F, Nebendahl C, Alavioon G, Murray D, Robak W, Sanges R, Müller F, Immler S. Paternal starvation affects metabolic gene expression during zebrafish offspring development and lifelong fitness. Mol Ecol 2024; 33:e17296. [PMID: 38361456 DOI: 10.1111/mec.17296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 02/17/2024]
Abstract
Dietary restriction in the form of fasting is a putative key to a healthier and longer life, but these benefits may come at a trade-off with reproductive fitness and may affect the following generation(s). The potential inter- and transgenerational effects of long-term fasting and starvation are particularly poorly understood in vertebrates when they originate from the paternal line. We utilised the externally fertilising zebrafish amenable to a split-egg clutch design to explore the male-specific effects of fasting/starvation on fertility and fitness of offspring independently of maternal contribution. Eighteen days of fasting resulted in reduced fertility in exposed males. While average offspring survival was not affected, we detected increased larval growth rate in F1 offspring from starved males and more malformed embryos at 24 h post-fertilisation in F2 offspring produced by F1 offspring from starved males. Comparing the transcriptomes of F1 embryos sired by starved and fed fathers revealed robust and reproducible increased expression of muscle composition genes but lower expression of lipid metabolism and lysosome genes in embryos from starved fathers. A large proportion of these genes showed enrichment in the yolk syncytial layer suggesting gene regulatory responses associated with metabolism of nutrients through paternal effects on extra-embryonic tissues which are loaded with maternal factors. We compared the embryo transcriptomes to published adult transcriptome datasets and found comparable repressive effects of starvation on metabolism-associated genes. These similarities suggest a physiologically relevant, directed and potentially adaptive response transmitted by the father, independently from the offspring's nutritional state, which was defined by the mother.
Collapse
Affiliation(s)
- Ada Jimenez-Gonzalez
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Federico Ansaloni
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | | | - Ghazal Alavioon
- Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
| | - David Murray
- School of Biological Sciences, University of East Anglia, Norwich, UK
- Centre for Environment, Fisheries, and Aquaculture Science, Lowestoft, UK
| | - Weronika Robak
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Remo Sanges
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Ferenc Müller
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Simone Immler
- Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
- School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
8
|
Baur J, Zwoinska M, Koppik M, Snook RR, Berger D. Heat stress reveals a fertility debt owing to postcopulatory sexual selection. Evol Lett 2024; 8:101-113. [PMID: 38370539 PMCID: PMC10872150 DOI: 10.1093/evlett/qrad007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 01/21/2023] [Accepted: 02/21/2023] [Indexed: 02/20/2024] Open
Abstract
Climates are changing rapidly, demanding equally rapid adaptation of natural populations. Whether sexual selection can aid such adaptation is under debate; while sexual selection should promote adaptation when individuals with high mating success are also best adapted to their local surroundings, the expression of sexually selected traits can incur costs. Here we asked what the demographic consequences of such costs may be once climates change to become harsher and the strength of natural selection increases. We first adopted a classic life history theory framework, incorporating a trade-off between reproduction and maintenance, and applied it to the male germline to generate formalized predictions for how an evolutionary history of strong postcopulatory sexual selection (sperm competition) may affect male fertility under acute adult heat stress. We then tested these predictions by assessing the thermal sensitivity of fertility (TSF) in replicated lineages of seed beetles maintained for 68 generations under three alternative mating regimes manipulating the opportunity for sexual and natural selection. In line with the theoretical predictions, we find that males evolving under strong sexual selection suffer from increased TSF. Interestingly, females from the regime under strong sexual selection, who experienced relaxed selection on their own reproductive effort, had high fertility in benign settings but suffered increased TSF, like their brothers. This implies that female fertility and TSF evolved through genetic correlation with reproductive traits sexually selected in males. Paternal but not maternal heat stress reduced offspring fertility with no evidence for adaptive transgenerational plasticity among heat-exposed offspring, indicating that the observed effects may compound over generations. Our results suggest that trade-offs between fertility and traits increasing success in postcopulatory sexual selection can be revealed in harsh environments. This can put polyandrous species under immediate risk during extreme heat waves expected under future climate change.
Collapse
Affiliation(s)
- Julian Baur
- Department of Ecology and Genetics, Division of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Martyna Zwoinska
- Department of Ecology and Genetics, Division of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Mareike Koppik
- Department of Ecology and Genetics, Division of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- Department of Zoology, Animal Ecology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - David Berger
- Department of Ecology and Genetics, Division of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Avila P, Lehmann L. Life history and deleterious mutation rate coevolution. J Theor Biol 2023; 573:111598. [PMID: 37598761 DOI: 10.1016/j.jtbi.2023.111598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/22/2023]
Abstract
The cost of germline maintenance gives rise to a trade-off between lowering the deleterious mutation rate and investing in life history functions. Therefore, life history and the mutation rate coevolve, but this coevolution is not well understood. We develop a mathematical model to analyse the evolution of resource allocation traits, which simultaneously affect life history and the deleterious mutation rate. First, we show that the invasion fitness of such resource allocation traits can be approximated by the basic reproductive number of the least-loaded class; the expected lifetime production of offspring without deleterious mutations born to individuals without deleterious mutations. Second, we apply the model to investigate (i) the coevolution of reproductive effort and germline maintenance and (ii) the coevolution of age-at-maturity and germline maintenance. This analysis provides two resource allocation predictions when exposure to environmental mutagens is higher. First, selection favours higher allocation to germline maintenance, even if it comes at the expense of life history functions, and leads to a shift in allocation towards reproduction rather than survival. Second, life histories tend to be faster, characterised by individuals with shorter lifespans and smaller body sizes at maturity. Our results suggest that mutation accumulation via the cost of germline maintenance can be a major force shaping life-history traits.
Collapse
Affiliation(s)
- Piret Avila
- Department of Ecology and Evolution, University of Lausanne, Biophore, 1015 Lausanne, Switzerland.
| | - Laurent Lehmann
- Department of Ecology and Evolution, University of Lausanne, Biophore, 1015 Lausanne, Switzerland
| |
Collapse
|
10
|
Kyriazis M, Swas L, Orlova T. The Impact of Hormesis, Neuronal Stress Response, and Reproduction, upon Clinical Aging: A Narrative Review. J Clin Med 2023; 12:5433. [PMID: 37629475 PMCID: PMC10455615 DOI: 10.3390/jcm12165433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/05/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
INTRODUCTION The primary objective of researchers in the biology of aging is to gain a comprehensive understanding of the aging process while developing practical solutions that can enhance the quality of life for older individuals. This involves a continuous effort to bridge the gap between fundamental biological research and its real-world applications. PURPOSE In this narrative review, we attempt to link research findings concerning the hormetic relationship between neurons and germ cells, and translate these findings into clinically relevant concepts. METHODS We conducted a literature search using PubMed, Embase, PLOS, Digital Commons Network, Google Scholar and Cochrane Library from 2000 to 2023, analyzing studies dealing with the relationship between hormetic, cognitive, and reproductive aspects of human aging. RESULTS The process of hormesis serves as a bridge between the biology of neuron-germ cell interactions on one hand, and the clinical relevance of these interactions on the other. Details concerning these processes are discussed here, emphasizing new research which strengthens the overall concept. CONCLUSIONS This review presents a scientifically and clinically relevant argument, claiming that maintaining a cognitively active lifestyle may decrease age-related degeneration, and improve overall health in aging. This is a totally novel approach which reflects current developments in several relevant aspects of our biology, technology, and society.
Collapse
|
11
|
Kim SY, Chiara V, Álvarez-Quintero N, da Silva A, Velando A. Maternal effect senescence via reduced DNA repair ability in the three-spined stickleback. Mol Ecol 2023; 32:4648-4659. [PMID: 37291748 DOI: 10.1111/mec.17046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
Maternal effect senescence, a decline in offspring viability with maternal age, has been documented across diverse animals, but its mechanisms remain largely unknown. Here, we test maternal effect senescence and explore its possible molecular mechanisms in a fish. We compared the levels of maternal mRNA transcripts of DNA repair genes and mtDNA copies in eggs and the levels of DNA damage in somatic and germline tissues between young and old female sticklebacks. We also tested, in an in vitro fertilization experiment, whether maternal age and sperm DNA damage level interactively influence the expression of DNA repair genes in early embryos. Old females transferred less mRNA transcripts of DNA repair genes into their eggs than did young females, but maternal age did not influence egg mtDNA density. Despite a higher level of oxidative DNA damage in the skeletal muscle, old females had a similar level of damage in the gonad to young females, suggesting the prioritization for germline maintenance during ageing. The embryos of both old and young mothers increased the expression of DNA repair genes in response to an increased level of oxidative DNA damage in sperm used for their fertilization. The offspring of old mothers showed higher rates of hatching, morphological deformity and post-hatching mortality and had smaller body size at maturity. These results suggest that maternal effect senescence may be mediated by reduced capacity of eggs to detect and repair DNA damages, especially prior to the embryonic genomic activation.
Collapse
Affiliation(s)
- Sin-Yeon Kim
- Grupo Ecoloxía Animal, Torre CACTI, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Violette Chiara
- Grupo Ecoloxía Animal, Torre CACTI, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Náyade Álvarez-Quintero
- Grupo Ecoloxía Animal, Torre CACTI, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
- Department of Biology, University of Padova, Padova, Italy
| | - Alberto da Silva
- Grupo Ecoloxía Animal, Torre CACTI, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Alberto Velando
- Grupo Ecoloxía Animal, Torre CACTI, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
12
|
Ivimey-Cook ER, Murray DS, de Coriolis JC, Edden N, Immler S, Maklakov AA. Fasting increases investment in soma upon refeeding at the cost of gamete quality in zebrafish. Proc Biol Sci 2023; 290:20221556. [PMID: 37040805 PMCID: PMC10089719 DOI: 10.1098/rspb.2022.1556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 03/14/2023] [Indexed: 04/13/2023] Open
Abstract
Fasting increases lifespan in invertebrates, improves biomarkers of health in vertebrates and is increasingly proposed as a promising route to improve human health. Nevertheless, little is known about how fasted animals use resources upon refeeding, and how such decisions affect putative trade-offs between somatic growth and repair, reproduction and gamete quality. Such fasting-induced trade-offs are based on strong theoretical foundations and have been recently discovered in invertebrates, but the data on vertebrates are lacking. Here, we report that fasted female zebrafish, Danio rerio, increase investment in soma upon refeeding, but it comes at a cost of egg quality. Specifically, an increase in fin regrowth was accompanied by a reduction in 24 h post-fertilization offspring survival. Refed males showed a reduction in sperm velocity and impaired 24 h post-fertilization offspring survival. These findings underscore the necessity of considering the impact on reproduction when assessing evolutionary and biomedical implications of lifespan-extending treatments in females and males and call for careful evaluation of the effects of intermittent fasting on fertilization.
Collapse
Affiliation(s)
- Edward R. Ivimey-Cook
- School of Biological Sciences, University of East Anglia, Norfolk NR4 7TJ, UK
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - David S. Murray
- Collaborative Centre for Sustainable Use of the Seas (CCSUS), School of Environmental Sciences, University of East Anglia, Norfolk NR4 7TJ, UK
- The Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft, Suffolk NR33 0HT, UK
| | | | - Nathan Edden
- School of Biological Sciences, University of East Anglia, Norfolk NR4 7TJ, UK
| | - Simone Immler
- School of Biological Sciences, University of East Anglia, Norfolk NR4 7TJ, UK
| | - Alexei A. Maklakov
- School of Biological Sciences, University of East Anglia, Norfolk NR4 7TJ, UK
| |
Collapse
|
13
|
Koppik M, Baur J, Berger D. Increased male investment in sperm competition results in reduced maintenance of gametes. PLoS Biol 2023; 21:e3002049. [PMID: 37014875 PMCID: PMC10072457 DOI: 10.1371/journal.pbio.3002049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/22/2023] [Indexed: 04/05/2023] Open
Abstract
Male animals often show higher mutation rates than their female conspecifics. A hypothesis for this male bias is that competition over fertilization of female gametes leads to increased male investment into reproduction at the expense of maintenance and repair, resulting in a trade-off between male success in sperm competition and offspring quality. Here, we provide evidence for this hypothesis by harnessing the power of experimental evolution to study effects of sexual selection on the male germline in the seed beetle Callosobruchus maculatus. We first show that 50 generations of evolution under strong sexual selection, coupled with experimental removal of natural selection, resulted in males that are more successful in sperm competition. We then show that these males produce progeny of lower quality if engaging in sociosexual interactions prior to being challenged to surveil and repair experimentally induced damage in their germline and that the presence of male competitors alone can be enough to elicit this response. We identify 18 candidate genes that showed differential expression in response to the induced germline damage, with several of these previously implicated in processes associated with DNA repair and cellular maintenance. These genes also showed significant expression changes across sociosexual treatments of fathers and predicted the reduction in quality of their offspring, with expression of one gene also being strongly correlated to male sperm competition success. Sex differences in expression of the same 18 genes indicate a substantially higher female investment in germline maintenance. While more work is needed to detail the exact molecular underpinnings of our results, our findings provide rare experimental evidence for a trade-off between male success in sperm competition and germline maintenance. This suggests that sex differences in the relative strengths of sexual and natural selection are causally linked to male mutation bias. The tenet advocated here, that the allocation decisions of an individual can affect plasticity of its germline and the resulting genetic quality of subsequent generations, has several interesting implications for mate choice processes.
Collapse
Affiliation(s)
- Mareike Koppik
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
- Department of Zoology, Animal Ecology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Julian Baur
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| | - David Berger
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Duxbury EML, Carlsson H, Sales K, Sultanova Z, Immler S, Chapman T, Maklakov AA. Multigenerational downregulation of insulin/IGF-1 signaling in adulthood improves lineage survival, reproduction, and fitness in Caenorhabditis elegans supporting the developmental theory of ageing. Evolution 2022; 76:2829-2845. [PMID: 36199198 PMCID: PMC10092551 DOI: 10.1111/evo.14640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/18/2022] [Accepted: 09/08/2022] [Indexed: 01/22/2023]
Abstract
Adulthood-only downregulation of insulin/IGF-1 signaling (IIS), an evolutionarily conserved pathway regulating resource allocation between somatic maintenance and reproduction, increases life span without fecundity cost in the nematode, Caenorhabditis elegans. However, long-term multigenerational effects of reduced IIS remain unexplored and are proposed to carry costs for offspring quality. To test this hypothesis, we ran a mutation accumulation (MA) experiment and downregulated IIS in half of the 400 MA lines by silencing daf-2 gene expression using RNA interference (RNAi) across 40 generations. Contrary to the prediction, adulthood-only daf-2 RNAi reduced extinction of MA lines both under UV-induced and spontaneous MA. Fitness of the surviving UV-induced MA lines was higher under daf-2 RNAi. Reduced IIS increased intergenerational F1 offspring fitness under UV stress but had no quantifiable transgenerational effects. Functional hrde-1 was required for the benefits of multigenerational daf-2 RNAi. Overall, we found net benefit to fitness from multigenerational reduction of IIS and the benefits became more apparent under stress. Because reduced daf-2 expression during development carries fitness costs, we suggest that our findings are best explained by the developmental theory of ageing, which maintains that the decline in the force of selection with age results in poorly regulated gene expression in adulthood.
Collapse
Affiliation(s)
- Elizabeth M L Duxbury
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Hanne Carlsson
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Kris Sales
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Zahida Sultanova
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Simone Immler
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Alexei A Maklakov
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| |
Collapse
|
15
|
Stoeger T, Grant RA, McQuattie-Pimentel AC, Anekalla KR, Liu SS, Tejedor-Navarro H, Singer BD, Abdala-Valencia H, Schwake M, Tetreault MP, Perlman H, Balch WE, Chandel NS, Ridge KM, Sznajder JI, Morimoto RI, Misharin AV, Budinger GRS, Nunes Amaral LA. Aging is associated with a systemic length-associated transcriptome imbalance. NATURE AGING 2022; 2:1191-1206. [PMID: 37118543 PMCID: PMC10154227 DOI: 10.1038/s43587-022-00317-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 10/21/2022] [Indexed: 12/14/2022]
Abstract
Aging is among the most important risk factors for morbidity and mortality. To contribute toward a molecular understanding of aging, we analyzed age-resolved transcriptomic data from multiple studies. Here, we show that transcript length alone explains most transcriptional changes observed with aging in mice and humans. We present three lines of evidence supporting the biological importance of the uncovered transcriptome imbalance. First, in vertebrates the length association primarily displays a lower relative abundance of long transcripts in aging. Second, eight antiaging interventions of the Interventions Testing Program of the National Institute on Aging can counter this length association. Third, we find that in humans and mice the genes with the longest transcripts enrich for genes reported to extend lifespan, whereas those with the shortest transcripts enrich for genes reported to shorten lifespan. Our study opens fundamental questions on aging and the organization of transcriptomes.
Collapse
Affiliation(s)
- Thomas Stoeger
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL, USA.
- Center for Genetic Medicine, Northwestern University, Evanston, IL, USA.
| | - Rogan A Grant
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Evanston, IL, USA
| | | | - Kishore R Anekalla
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Evanston, IL, USA
| | - Sophia S Liu
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | | | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Evanston, IL, USA
- Simpson Querrey Lung Institute for Translational Science at Northwestern University (SQLIFTSNU), Evanston, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University, Evanston, IL, USA
| | - Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Evanston, IL, USA
| | - Michael Schwake
- Department of Neurology, Northwestern University, Evanston, IL, USA
- Faculty of Chemistry, University of Bielefeld, Bielefeld, Germany
| | - Marie-Pier Tetreault
- Division of Gastroenterology and Hepatology, Northwestern University, Evanston, IL, USA
| | - Harris Perlman
- Division of Rheumatology, Northwestern University, Evanston, IL, USA
| | | | - Navdeep S Chandel
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Evanston, IL, USA
- Simpson Querrey Lung Institute for Translational Science at Northwestern University (SQLIFTSNU), Evanston, IL, USA
| | - Karen M Ridge
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Evanston, IL, USA
- Simpson Querrey Lung Institute for Translational Science at Northwestern University (SQLIFTSNU), Evanston, IL, USA
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Evanston, IL, USA
- Simpson Querrey Lung Institute for Translational Science at Northwestern University (SQLIFTSNU), Evanston, IL, USA
| | - Richard I Morimoto
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
- Rice Institute for Biomedical Research, Northwestern University, Evanston, IL, USA.
| | - Alexander V Misharin
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Evanston, IL, USA.
- Simpson Querrey Lung Institute for Translational Science at Northwestern University (SQLIFTSNU), Evanston, IL, USA.
| | - G R Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Evanston, IL, USA.
- Simpson Querrey Lung Institute for Translational Science at Northwestern University (SQLIFTSNU), Evanston, IL, USA.
| | - Luis A Nunes Amaral
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL, USA.
- Department of Physics and Astronomy, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
16
|
Ferreira JV, da Rosa Soares A, Pereira P. Cell Non-autonomous Proteostasis Regulation in Aging and Disease. Front Neurosci 2022; 16:878296. [PMID: 35757551 PMCID: PMC9220288 DOI: 10.3389/fnins.2022.878296] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Aging is a risk factor for a number of diseases, being the more notorious ones perhaps neurodegenerative diseases such as Alzheimer's and Parkinson's. These and other age-related pathologies are often associated with accumulation of proteotoxic material inside cells, as well as with the accumulation of protein deposits extracellularly. It is widely accepted that this accumulation of toxic proteins trails a progressive decline in the mechanisms that regulate protein homeostasis, or proteostasis, during aging. However, despite significant efforts, the progress in terms of novel or improved therapies targeting accumulation of proteotoxic material has been rather limited. For example, clinical trials for new drugs aimed at treating Alzheimer's disease, by preventing accumulation of toxic proteins, have notoriously failed. On the other hand, it is becoming increasingly apparent that regulation of proteostasis is not a cell autonomous process. In fact, cells rely on complex transcellular networks to maintain tissue and organ homeostasis involving endocrine and paracrine signaling pathways. In this review we will discuss the impact of cell non-autonomous proteostasis mechanisms and their impact in aging and disease. We will focus on how transcellular proteostasis networks can shed new light into stablished paradigms about the aging of organisms.
Collapse
Affiliation(s)
- Joao Vasco Ferreira
- Proteostasis and Intercellular Communication Lab, Chronic Diseases Research Centre (CEDOC), NOVA Medical School, Faculdade de Ciencias Medicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ana da Rosa Soares
- Proteostasis and Intercellular Communication Lab, Chronic Diseases Research Centre (CEDOC), NOVA Medical School, Faculdade de Ciencias Medicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Paulo Pereira
- Proteostasis and Intercellular Communication Lab, Chronic Diseases Research Centre (CEDOC), NOVA Medical School, Faculdade de Ciencias Medicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
17
|
Aprison EZ, Dzitoyeva S, Angeles-Albores D, Ruvinsky I. A male pheromone that improves the quality of the oogenic germline. Proc Natl Acad Sci U S A 2022; 119:e2015576119. [PMID: 35576466 PMCID: PMC9173808 DOI: 10.1073/pnas.2015576119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/24/2022] [Indexed: 11/18/2022] Open
Abstract
Pheromones exchanged by conspecifics are a major class of chemical signals that can alter behavior, physiology, and development. In particular, males and females communicate with potential mating partners via sex pheromones to promote reproductive success. Physiological and developmental mechanisms by which pheromones facilitate progeny production remain largely enigmatic. Here, we describe how a Caenorhabditis elegans male pheromone, ascr#10, improves the oogenic germline. Before most signs of aging become evident, C. elegans hermaphrodites start producing lower-quality gametes characterized by abnormal morphology, increased rates of chromosomal nondisjunction, and higher penetrance of deleterious alleles. We show that exposure to the male pheromone substantially ameliorates these defects and reduces embryonic lethality. ascr#10 stimulates proliferation of germline precursor cells in adult hermaphrodites. Coupled to the greater precursor supply is increased physiological germline cell death, which is required to improve oocyte quality in older mothers. The hermaphrodite germline is sensitive to the pheromone only during a time window, comparable in duration to a larval stage, in early adulthood. During this period, prereproductive adults assess the suitability of the environment for reproduction. Our results identify developmental events that occur in the oogenic germline in response to a male pheromone. They also suggest that the opposite effects of the pheromone on gamete quality and maternal longevity arise from competition over resource allocation between soma and the germline.
Collapse
Affiliation(s)
- Erin Z. Aprison
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Svetlana Dzitoyeva
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | | | - Ilya Ruvinsky
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| |
Collapse
|
18
|
Babajanyan SG, Koonin EV, Allahverdyan AE. Thermodynamic selection: mechanisms and scenarios. NEW JOURNAL OF PHYSICS 2022; 24:053006. [PMID: 36776225 PMCID: PMC9910508 DOI: 10.1088/1367-2630/ac6531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Thermodynamic selection is an indirect competition between agents feeding on the same energy resource and obeying the laws of thermodynamics. We examine scenarios of this selection, where the agent is modeled as a heat-engine coupled to two thermal baths and extracting work from the high-temperature bath. The agents can apply different work-extracting, game-theoretical strategies, e.g. the maximum power or the maximum efficiency. They can also have a fixed structure or be adaptive. Depending on whether the resource (i.e. the high-temperature bath) is infinite or finite, the fitness of the agent relates to the work-power or the total extracted work. These two selection scenarios lead to increasing or decreasing efficiencies of the work-extraction, respectively. The scenarios are illustrated via plant competition for sunlight, and the competition between different ATP production pathways. We also show that certain general concepts of game-theory and ecology-the prisoner's dilemma and the maximal power principle-emerge from the thermodynamics of competing agents. We emphasize the role of adaptation in developing efficient work-extraction mechanisms.
Collapse
Affiliation(s)
- S G Babajanyan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
- Alikahanyan National Laboratory (Yerevan Physics Institute), 2 Alikhanyan Brothers Street, Yerevan 0036, Armenia
| | - E V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - A E Allahverdyan
- Alikahanyan National Laboratory (Yerevan Physics Institute), 2 Alikhanyan Brothers Street, Yerevan 0036, Armenia
- Yerevan State University, 1 A. Manoogian street, Yerevan 0025, Armenia
| |
Collapse
|
19
|
Kramer BH, Doorn GSV, Arani BMS, Pen I. Eusociality and the evolution of aging in superorganisms. Am Nat 2022; 200:63-80. [DOI: 10.1086/719666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
20
|
Abstract
The proteostasis network (PN) regulates protein synthesis, folding, and degradation and is critical for the health and function of all cells. The PN has been extensively studied in the context of aging and age-related diseases, and loss of proteostasis is regarded as a major contributor to many age-associated disorders. In contrast to somatic tissues, an important feature of germ cells is their ability to maintain a healthy proteome across generations. Accumulating evidence has now revealed multiple layers of PN regulation that support germ cell function, determine reproductive capacity during aging, and prioritize reproduction at the expense of somatic health. Here, we review recent insights into these different modes of regulation and their implications for reproductive and somatic aging.
Collapse
|
21
|
Rodrigues MA, Merckelbach A, Durmaz E, Kerdaffrec E, Flatt T. Transcriptomic evidence for a trade-off between germline proliferation and immunity in Drosophila. Evol Lett 2021; 5:644-656. [PMID: 34917403 PMCID: PMC8645197 DOI: 10.1002/evl3.261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 11/08/2022] Open
Abstract
Life-history theory posits that investment into reproduction might occur at the expense of investment into somatic maintenance, including immune function. If so, reduced or curtailed reproductive effort might be expected to increase immunity. In support of this notion, work in Caenorhabditis elegans has shown that worms lacking a germline exhibit improved immunity, but whether the antagonistic relation between germline proliferation and immunity also holds for other organisms is less well understood. Here, we report that transgenic ablation of germ cells in late development or early adulthood in Drosophila melanogaster causes elevated baseline expression and increased induction of Toll and Imd immune genes upon bacterial infection, as compared to fertile flies with an intact germline. We also identify immune genes whose expression after infection differs between fertile and germline-less flies in a manner that is conditional on their mating status. We conclude that germline activity strongly impedes the expression and inducibility of immune genes and that this physiological trade-off might be evolutionarily conserved.
Collapse
Affiliation(s)
| | | | - Esra Durmaz
- Department of BiologyUniversity of FribourgCH‐1700 FribourgSwitzerland
| | - Envel Kerdaffrec
- Department of BiologyUniversity of FribourgCH‐1700 FribourgSwitzerland
| | - Thomas Flatt
- Department of BiologyUniversity of FribourgCH‐1700 FribourgSwitzerland
| |
Collapse
|
22
|
Macartney EL, Bonduriansky R. Does female resistance to mating select for live-fast-die-young strategies in males? A comparative analysis in the genus Drosophila. J Evol Biol 2021; 35:192-200. [PMID: 34547153 DOI: 10.1111/jeb.13937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 11/29/2022]
Abstract
Female promiscuity is a pervasive selective force on male reproductive traits, and the strength of sexual selection is predicted to influence the trade-off between lifespan and reproduction. In species where sexual selection is intense, males are predicted to invest in sexual strategies that shorten their lifespan, potentially resulting in female-biased sexual dimorphism in longevity. However, comparative analyses have provided contrasting results, potentially due to the use of broad mating system categories or sexual size dimorphism as a proxy for sexual selection. Here, we used female remating rate (i.e. female promiscuity) as a more direct measure of sexual selection strength and conducted a phylogenetic comparative analysis of the relationship between female remating rate and sexual dimorphism in lifespan in 29 species of Drosophila. We did not find strong evidence that female remating rate was correlated with sexual dimorphism in lifespan. However, we found that male and female lifespans are positively correlated among species and that phylogeny and residual variance (i.e. variation in non-phylogenetic factors) are important in determining female remating rate, male and female lifespans separately, and the correlation between male and female lifespan. We suggest that variation in the nature of sexual competition and variation between studies could account for some of the unexplained variation among species in the relation between female remating rate and sexual dimorphism in lifespan.
Collapse
Affiliation(s)
- Erin L Macartney
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, Faculty of Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Russell Bonduriansky
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, Faculty of Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
23
|
Gaddy MA, Kuang S, Alfhili MA, Lee MH. The soma-germline communication: implications for somatic and reproductive aging. BMB Rep 2021. [PMID: 33407997 PMCID: PMC8167245 DOI: 10.5483/bmbrep.2021.54.5.198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Aging is characterized by a functional decline in most physiological processes, including alterations in cellular metabolism and defense mechanisms. Increasing evidence suggests that caloric restriction extends longevity and retards age-related diseases at least in part by reducing metabolic rate and oxidative stress in a variety of species, including yeast, worms, flies, and mice. Moreover, recent studies in invertebrates – worms and flies, highlight the intricate interrelation between reproductive longevity and somatic aging (known as disposable soma theory of aging), which appears to be conserved in vertebrates. This review is specifically focused on how the reproductive system modulates somatic aging and vice versa in genetic model systems. Since many signaling pathways governing the aging process are evolutionarily conserved, similar mechanisms may be involved in controlling soma and reproductive aging in vertebrates.
Collapse
Affiliation(s)
- Matthew A. Gaddy
- Department of Internal Medicine, Division of Hematology/Oncology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, United States
| | - Swana Kuang
- Department of Internal Medicine, Division of Hematology/Oncology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, United States
| | - Mohammad A. Alfhili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Myon Hee Lee
- Department of Internal Medicine, Division of Hematology/Oncology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, United States
| |
Collapse
|
24
|
Safian D, Wiegertjes GF, Pollux BJA. The Fish Family Poeciliidae as a Model to Study the Evolution and Diversification of Regenerative Capacity in Vertebrates. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.613157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The capacity of regenerating a new structure after losing an old one is a major challenge in the animal kingdom. Fish have emerged as an interesting model to study regeneration due to their high and diverse regenerative capacity. To date, most efforts have focused on revealing the mechanisms underlying fin regeneration, but information on why and how this capacity evolves remains incomplete. Here, we propose the livebearing fish family Poeciliidae as a promising new model system to study the evolution of fin regeneration. First, we review the current state of knowledge on the evolution of regeneration in the animal kingdom, with a special emphasis on fish fins. Second, we summarize recent advances in our understanding of the mechanisms behind fin regeneration in fish. Third, we discuss potential evolutionary pressures that may modulate the regenerative capacity of fish fins and propose three new theories for how natural and sexual selection can lead to the evolution of fin regeneration: (1) signaling-driven fin regeneration, (2) predation-driven fin regeneration, and (3) matrotrophy-suppressed fin regeneration. Finally, we argue that fish from the family Poeciliidae are an excellent model system to test these theories, because they comprise of a large variety of species in a well-defined phylogenetic framework that inhabit very different environments and display remarkable variation in reproductive traits, allowing for comparative studies of fin regeneration among closely related species, among populations within species or among individuals within populations. This new model system has the potential to shed new light on the underlying genetic and molecular mechanisms driving the evolution and diversification of regeneration in vertebrates.
Collapse
|
25
|
Lemaître JF, Gaillard JM, Ramm SA. The hidden ageing costs of sperm competition. Ecol Lett 2020; 23:1573-1588. [PMID: 32906225 DOI: 10.1111/ele.13593] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/30/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022]
Abstract
Ageing and sexual selection are intimately linked. There is by now compelling evidence from studies performed across diverse organisms that males allocating resources to mating competition incur substantial physiological costs, ultimately increasing ageing. However, although insightful, we argue here that to date these studies cover only part of the relationship linking sexual selection and ageing. Crucially, allocation to traits important in post-copulatory sexual selection, that is sperm competition, has been largely ignored. As we demonstrate, such allocation could potentially explain much diversity in male and female ageing patterns observed both within and among species. We first review how allocation to sperm competition traits such as sperm and seminal fluid production depends on the quality of resources available to males and can be associated with a wide range of deleterious effects affecting both somatic tissues and the germline, and thus modulate ageing in both survival and reproductive terms. We further hypothesise that common biological features such as plasticity, prudent sperm allocation and seasonality of ejaculate traits might have evolved as counter-adaptations to limit the ageing costs of sperm competition. Finally, we discuss the implications of these emerging ageing costs of sperm competition for current research on the evolutionary ecology of ageing.
Collapse
Affiliation(s)
- Jean-François Lemaître
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, Villeurbanne, F-69622, France
| | - Jean-Michel Gaillard
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, Villeurbanne, F-69622, France
| | - Steven A Ramm
- Evolutionary Biology, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
| |
Collapse
|
26
|
Trade-off between somatic and germline repair in a vertebrate supports the expensive germ line hypothesis. Proc Natl Acad Sci U S A 2020; 117:8973-8979. [PMID: 32245815 PMCID: PMC7183174 DOI: 10.1073/pnas.1918205117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
“How can we stop aging?” is still a largely unanswered question. Understanding the possible mechanisms that lead to the gradual deterioration of the organism over time is key to answer this question and finding possible antidotes. A central tenet of the evolutionary theory of aging is the possible trade-off between the maintenance of the immortal germ line and the disposable soma. Male vertebrates continue somatic and germline proliferation throughout life, offering an ideal opportunity to study this hypothesis. We show that in male zebrafish exposed to stressful conditions, the experimental removal of the germ line improves somatic recovery. Our results provide direct evidence for the cost of the germ line in a vertebrate. The disposable soma theory is a central tenet of the biology of aging where germline immortality comes at the cost of an aging soma [T. B. L. Kirkwood, Nature 270, 301–304 (1977); T. B. L. Kirkwood, Proc. R. Soc. Lond. B Biol. Sci. 205, 531–546 (1979); T. B. L. Kirkwood, S. N. Austad, Nature 408, 233–238 (2000)]. Limited resources and a possible trade-off between the repair and maintenance of the germ cells and growth and maintenance of the soma may explain the deterioration of the soma over time. Here we show that germline removal allows accelerated somatic healing under stress. We tested “the expensive germ line” hypothesis by generating germline-free zebrafish Danio rerio and testing the effect of the presence and absence of the germ line on somatic repair under benign and stressful conditions. We exposed male fish to sublethal low-dose ionizing radiation, a genotoxic stress affecting the soma and the germ line, and tested how fast the soma recovered following partial fin ablation. We found that somatic recovery from ablation occurred substantially faster in irradiated germline-free fish than in the control germline-carrying fish where somatic recovery was stunned. The germ line did show signs of postirradiation recovery in germline-carrying fish in several traits related to offspring number and fitness. These results support the theoretical conjecture that germline maintenance is costly and directly trades off with somatic maintenance.
Collapse
|