1
|
Liao P, Zeng B, Li S, Zhang Y, Xiang R, Kang J, Liu Q, Li G. Cu-Bi Bimetallic Catalysts Derived from Metal-Organic Framework Arrays on Copper Foam for Efficient Glycine Electrosynthesis. Angew Chem Int Ed Engl 2024:e202417130. [PMID: 39344002 DOI: 10.1002/anie.202417130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/01/2024]
Abstract
Glycine as one of the most abundant amino acids in human proteins, with extensive applications in both life and industry, is conventionally synthesized through complex procedures or toxic feedstocks. In this study, we present a facile and benign electrochemical pathway for synthesis of glycine through reductive coupling of glyoxylic acid and nitrate over a copper-bismuth bimetal catalyst derived from a metal-organic framework (MOF) array on copper foam (Cu/Bi-C@CF). Remarkably, Cu/Bi-C@CF achieves a fantastic selectivity of 89 %, corresponding a high Faraday efficiency of 65.9 %. From control experiments, the introduction of Bi caused the binding energy of Cu shift to a lower state, which leads to a high selectivity towards the formation of key intermediate hydroxylamine rather than ammonia product, facilitating the formation of oxime and providing additional sites for subsequent hydrogenation reaction on the way to glycine. Moreover, the derivation of MOF arrays ensures the effective dispersion of Bi and enhances the stability of Cu/Bi-C@CF. This innovative approach not only presents sustainable pathways for the production of value-added organonitrogen compounds utilizing readily available carbon and nitrogen sources, but also provides novel insights into the design of multistage structural catalysts for sequential reactions.
Collapse
Affiliation(s)
- Peisen Liao
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Binning Zeng
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Suisheng Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yuhao Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Runan Xiang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jiawei Kang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Guangqin Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
2
|
Han C, Sun L, Han S, Liu B. Stabilizing Hydrogen Radicals in Two-Dimensional Cobalt-Copper Mesoporous Nanoplates for Complete Nitrate Reduction Electrocatalysis to Ammonia. Angew Chem Int Ed Engl 2024:e202416910. [PMID: 39319605 DOI: 10.1002/anie.202416910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 09/26/2024]
Abstract
Ambient electrochemical reduction of waste nitrate (NO3 -) represents an alternative green route for sustainable ammonia (NH3) electrosynthesis in water. Despites some encouraged achievements, sluggish eight electron and nine proton reduction routes that involve multi-step hydrogenation pathways have severely hindered their NH3 Faradaic efficiency (FENH3) and yield rate. Herein, we develop a robust two-dimensional mesoporous cobalt-copper (meso-CoCu) nanoplate electrocatalyst that delivers excellent performance of complete NO3 - reduction reaction (NO3RR), including superior FENH3 of 98.8 %, high NH3 yield rate of 3.39 mol h-1 g-1 and energy efficiency of 49.8 %, and good cycling stability. Mechanism investigations unveil that active hydrogen (*H) radicals produced from water splitting on Co sites spillover to adjacent Cu sites and further stabilize within confined mesopores, which kinetically promote its coupling hydrogenation reactions of nitrogen intermediates and thus facilitate complete NO3RR for favorable NH3 electrosynthesis. Moreover, meso-CoCu nanoplates perform well as a bifunctional electrocatalyst in the two-electrode coupling system that concurrently synthesizes NH3 from NO3 - at cathode and 2,5-furanedicarboxylic acid from 5-hydroxymethylfurfural at anode. This work in stabilizing *H radicals in mesoporous microenvironment provides some insights applied to various hydrogenation reactions for selective electrosynthesis of high value-added chemicals in water.
Collapse
Affiliation(s)
- Chenyu Han
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Lizhi Sun
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Shu Han
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Ben Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
3
|
Wang XZ, Chen Y, Cao XM, Li RY, Chen WY, Li Y, Guo DS. Ligand-Insertion Strategy for Constructing 2D Conjugated Metal-Organic Framework with Large Pore Size for Electrochemical Analytics. Angew Chem Int Ed Engl 2024:e202413115. [PMID: 39317992 DOI: 10.1002/anie.202413115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Two-dimensional conjugated metal-organic frameworks (2D c-MOFs) have shown great promise in various electrochemical applications due to their intrinsic electrical conductivity. A large pore aperture is a favorable feature of this type of material because it facilitates the mass transport of chemical species and electrolytes. In this work, we propose a ligand insertion strategy in which a linear ligand is inserted into the linkage between multitopic ligands, extending the metal ion into a linear unit of -M-ligand-M-, for the construction of 2D c-MOFs with large pore apertures, utilizing only small ligands. As a proof-of-concept trial of this strategy, a 2D c-MOF with mesopores of 3.2 nm was synthesized using commercially available ligands hexahydrotriphenylene and 2,5-dihydroxybenzoquinone. The facilitation of the diffusion of redox species by the large pore size of this MOF was demonstrated through a series of probes. With this feature, it showed superior performance in the electrochemical analysis of a variety of biological species.
Collapse
Affiliation(s)
- Xiu-Zhen Wang
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yue Chen
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Xiao-Min Cao
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Ru-Yi Li
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Wei-Yan Chen
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yue Li
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Dong-Sheng Guo
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China
| |
Collapse
|
4
|
Sun L, Lv H, Xiao J, Liu B. Enzymatic Mesoporous Metal Nanocavities for Concurrent Electrocatalysis of Nitrate to Ammonia Coupled with Polyethylene Terephthalate Upcycling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402767. [PMID: 38593229 DOI: 10.1002/adma.202402767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Indexed: 04/11/2024]
Abstract
Electrochemical upcycling of waste pollutants into high value-added fuels and/or chemicals is recognized as a green and sustainable solution that can address the resource utilization on earth. Despite great efforts, their progress has seriously been hindered by the lack of high-performance electrocatalysts. In this work, bimetallic PdCu mesoporous nanocavities (MCs) are reported as a new bifunctional enzymatic electrocatalyst that realizes concurrent electrocatalytic upcycling of nitrate wastewater and polyethylene terephthalate (PET) plastic waste. Abundant metal mesopores and open nanocavities of PdCu MCs provide the enzymatic confinement of key intermediates for the deeper electroreduction of nitrate and accelerate the transport of reactants/products within/out of electrocatalyst, thus affording high ammonia Faradic efficiency (FENH3) of 96.6% and yield rate of 5.6 mg h-1 mg-1 at the cathode. Meanwhile, PdCu MC nanozymes trigger the selective electrooxidation of PET-derived ethylene glycol (EG) into glycolic acid (GA) and formic acid with high FEs of >90% by a facile regulation of potentials at the anode. Moreover, concurrent electrosynthesis of value-added NH3 and GA is disclosed in the two-electrode coupling system, further confirming the high efficiency of bifunctional PdCu MC nanozymes in producing value-added fuels and chemicals from waste pollutants in a sustainable manner.
Collapse
Affiliation(s)
- Lizhi Sun
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Hao Lv
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Xiao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Ben Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
5
|
Jeong D, Oh W, Park JW. 3D-Continuous Nanoporous Covalent Framework Membrane Nanoreactors with Quantitatively Loaded Ultrafine Pd Nanocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309490. [PMID: 38651888 DOI: 10.1002/smll.202309490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/07/2024] [Indexed: 04/25/2024]
Abstract
The confinement effect of catalytic nanoreactors containing metal catalysts within nanometer-sized volumes has attracted significant attention for their potential to enhance reaction rate and selectivity. Nevertheless, unregulated catalyst loading, aggregation, leaching, and limited reusability remain obstacles to achieving an efficient nanoreactor. A robust and durable catalytic membrane nanoreactor prepared by incorporating palladium nanocatalysts within a 3D-continuous nanoporous covalent framework membrane is presented. The reduction of palladium precursor occurs on the pore surface within 3D nanochannels, producing ultrafine palladium nanoparticles (Pd NPs) with their number density adjustable by varying metal precursor concentrations. The precise catalyst loading enables controlling the catalytic activity of the reactor while preventing excess metal usage. The facile preparation of Pd NP-loaded free-standing membrane materials allows hydrodechlorination in both batch and continuous flow modes. In batch mode, the catalytic activity is proportional to the loaded Pd amount and membrane area, while the membrane retains its activity upon repeated use. In continuous mode, the conversion remains above 95% for over 100 h, with the reactant solution passing through a single 50 µm-thick Pd-loaded membrane. The efficient nanoporous film-type catalytic nanoreactor may find applications in catalytic reactions for small chemical devices as well as in conventional chemistry and processes.
Collapse
Affiliation(s)
- Dawoon Jeong
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Bukgu, Gwangju, 61005, South Korea
| | - Wangsuk Oh
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Bukgu, Gwangju, 61005, South Korea
| | - Ji-Woong Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Bukgu, Gwangju, 61005, South Korea
| |
Collapse
|
6
|
Kang Y, Gu Z, Ma B, Zhang W, Sun J, Huang X, Hu C, Choi W, Qu J. Unveiling the spatially confined oxidation processes in reactive electrochemical membranes. Nat Commun 2023; 14:6590. [PMID: 37852952 PMCID: PMC10584896 DOI: 10.1038/s41467-023-42224-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023] Open
Abstract
Electrocatalytic oxidation offers opportunities for sustainable environmental remediation, but it is often hampered by the slow mass transfer and short lives of electro-generated radicals. Here, we achieve a four times higher kinetic constant (18.9 min-1) for the oxidation of 4-chlorophenol on the reactive electrochemical membrane by reducing the pore size from 105 to 7 μm, with the predominate mechanism shifting from hydroxyl radical oxidation to direct electron transfer. More interestingly, such an enhancement effect is largely dependent on the molecular structure and its sensitivity to the direct electron transfer process. The spatial distributions of reactant and hydroxyl radicals are visualized via multiphysics simulation, revealing the compressed diffusion layer and restricted hydroxyl radical generation in the microchannels. This study demonstrates that both the reaction kinetics and the electron transfer pathway can be effectively regulated by the spatial confinement effect, which sheds light on the design of cost-effective electrochemical platforms for water purification and chemical synthesis.
Collapse
Affiliation(s)
- Yuyang Kang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenao Gu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing, 100085, China.
| | - Baiwen Ma
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- KENTECH Institute for Environmental & Climate Technology, Korea Institute of Energy Technology (KENTECH), Naju, 58330, Korea
| | - Wei Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jingqiu Sun
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyang Huang
- KENTECH Institute for Environmental & Climate Technology, Korea Institute of Energy Technology (KENTECH), Naju, 58330, Korea
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing, 100085, China
| | - Wonyong Choi
- KENTECH Institute for Environmental & Climate Technology, Korea Institute of Energy Technology (KENTECH), Naju, 58330, Korea
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Fu J, Mooraj S, Ng AK, Zhu C, Chen W, Detsi E. Sub-100 mA/cm 2 CO 2-to-CO Reduction Current Densities in Hierarchical Porous Gold Electrocatalysts Made by Direct Ink Writing and Dealloying. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37276347 DOI: 10.1021/acsami.3c02050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
While most research efforts on CO2-to-CO reduction electrocatalysts focus on boosting their selectivity, the reduction rate, directly proportional to the reduction current density, is another critical parameter to be considered in practical applications. This is because mass transport associated with the diffusion of reactant/product species becomes a major concern at a high reduction rate. Nanostructured Au is a promising CO2-to-CO reduction electrocatalyst for its very high selectivity. However, the CO2-to-CO reduction current density commonly achieved in conventional nanostructured Au electrocatalysts is relatively low (in the range of 1-10 mA/cm2) for practical applications. In this work, we combine direct ink writing-based additive manufacturing and dealloying to design a robust hierarchical porous Au electrocatalyst to improve the mass transport and achieve high CO2-to-CO reduction current densities on the order of 64.9 mA/cm2 with CO partial current density of 33.8 mA/cm2 at 0.55 V overpotential using an H-cell configuration. Although the current density achieved in our robust hierarchical porous Au electrocatalyst is one order of magnitude higher than the one achieved in conventional nanostructured electrocatalysts, we found that the selectivity of our system is relatively low, namely 52%, which suggests that mass transport remains a critical issue despite the hierarchical porous architecture. We further show that the bulk dimension of our electrocatalyst is a critical parameter governing the interplay between selectivity and reduction rate. The insights gained in this work shed new light on the design of electrocatalysts toward scale-up CO2 reduction and beyond.
Collapse
Affiliation(s)
- Jintao Fu
- Department of Materials Science & Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6272, United States
| | - Shahryar Mooraj
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, Massachusetts 01003-2210, United States
| | - Alexander K Ng
- Department of Materials Science & Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6272, United States
| | - Cheng Zhu
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Wen Chen
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, Massachusetts 01003-2210, United States
| | - Eric Detsi
- Department of Materials Science & Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6272, United States
| |
Collapse
|
8
|
Yue P, Zhong L, Deng Y, Li J, Zhang L, Ye D, Zhu X, Fu Q, Liao Q. Microstructure Design Strategy for Molecularly Dispersed Cobalt Phthalocyanine and Efficient Mass Transport in CO 2 Electroreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300051. [PMID: 36896999 DOI: 10.1002/smll.202300051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/19/2023] [Indexed: 06/15/2023]
Abstract
Cobalt phthalocyanine (CoPc) has attracted particular interest owing to its excellent activity during the electrochemical CO2 conversion to CO. However, the efficient utilization of CoPc at industrially relevant current densities is still a challenge owing to its nonconductive property, agglomeration, and unfavorable conductive substrate design. Here, a microstructure design strategy for dispersing CoPc molecules on a carbon substrate for efficient CO2 transport during CO2 electrolysis is proposed and demonstrated. The highly dispersed CoPc is loaded on a macroporous hollow nanocarbon sheet to act as the catalyst (CoPc/CS). The unique interconnected and macroporous structure of the carbon sheet forms a large specific surface area to anchor CoPc with high dispersion and simultaneously boosts the mass transport of reactants in the catalyst layer, significantly improving the electrochemical performance. By employing a zero-gap flow cell, the designed catalyst can mediate CO2 to CO with a high full-cell energy efficiency of 57% at 200 mA cm-2 .
Collapse
Affiliation(s)
- Pengtao Yue
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Liyang Zhong
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Yuhe Deng
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Jun Li
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Liang Zhang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Dingding Ye
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Qian Fu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
9
|
Wittstock G, Bäumer M, Dononelli W, Klüner T, Lührs L, Mahr C, Moskaleva LV, Oezaslan M, Risse T, Rosenauer A, Staubitz A, Weissmüller J, Wittstock A. Nanoporous Gold: From Structure Evolution to Functional Properties in Catalysis and Electrochemistry. Chem Rev 2023; 123:6716-6792. [PMID: 37133401 PMCID: PMC10214458 DOI: 10.1021/acs.chemrev.2c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Indexed: 05/04/2023]
Abstract
Nanoporous gold (NPG) is characterized by a bicontinuous network of nanometer-sized metallic struts and interconnected pores formed spontaneously by oxidative dissolution of the less noble element from gold alloys. The resulting material exhibits decent catalytic activity for low-temperature, aerobic total as well as partial oxidation reactions, the oxidative coupling of methanol to methyl formate being the prototypical example. This review not only provides a critical discussion of ways to tune the morphology and composition of this material and its implication for catalysis and electrocatalysis, but will also exemplarily review the current mechanistic understanding of the partial oxidation of methanol using information from quantum chemical studies, model studies on single-crystal surfaces, gas phase catalysis, aerobic liquid phase oxidation, and electrocatalysis. In this respect, a particular focus will be on mechanistic aspects not well understood, yet. Apart from the mechanistic aspects of catalysis, best practice examples with respect to material preparation and characterization will be discussed. These can improve the reproducibility of the materials property such as the catalytic activity and selectivity as well as the scope of reactions being identified as the main challenges for a broader application of NPG in target-oriented organic synthesis.
Collapse
Affiliation(s)
- Gunther Wittstock
- Carl
von Ossietzky University of Oldenburg, School of Mathematics and Science, Institute of Chemistry, D-26111 Oldenburg, Germany
| | - Marcus Bäumer
- University
of Bremen, Institute for Applied
and Physical Chemistry, 28359 Bremen, Germany
- University
of Bremen, MAPEX Center for
Materials and Processes, 28359 Bremen, Germany
| | - Wilke Dononelli
- University
of Bremen, MAPEX Center for
Materials and Processes, 28359 Bremen, Germany
- University
of Bremen, Bremen Center for
Computational Materials Science, Hybrid Materials Interfaces Group, Am Fallturm 1, Bremen 28359, Germany
| | - Thorsten Klüner
- Carl
von Ossietzky University of Oldenburg, School of Mathematics and Science, Institute of Chemistry, D-26111 Oldenburg, Germany
| | - Lukas Lührs
- Hamburg
University of Technology, Institute of Materials
Physics and Technology, 21703 Hamburg, Germany
| | - Christoph Mahr
- University
of Bremen, MAPEX Center for
Materials and Processes, 28359 Bremen, Germany
- University
of Bremen, Institute of Solid
State Physics, Otto Hahn
Allee 1, 28359 Bremen, Germany
| | - Lyudmila V. Moskaleva
- University
of the Free State, Department of Chemistry, P.O. Box 339, Bloemfontein 9300, South Africa
| | - Mehtap Oezaslan
- Technical
University of Braunschweig Institute of Technical Chemistry, Technical Electrocatalysis Laboratory, Franz-Liszt-Strasse 35a, 38106 Braunschweig, Germany
| | - Thomas Risse
- Freie
Universität Berlin, Institute of Chemistry
and Biochemistry, Arnimallee
22, 14195 Berlin, Germany
| | - Andreas Rosenauer
- University
of Bremen, MAPEX Center for
Materials and Processes, 28359 Bremen, Germany
- University
of Bremen, Institute of Solid
State Physics, Otto Hahn
Allee 1, 28359 Bremen, Germany
| | - Anne Staubitz
- University
of Bremen, MAPEX Center for
Materials and Processes, 28359 Bremen, Germany
- University
of Bremen, Institute for Organic
and Analytical Chemistry, Leobener Strasse 7, D-28359 Bremen, Germany
| | - Jörg Weissmüller
- Hamburg
University of Technology, Institute of Materials
Physics and Technology, 21703 Hamburg, Germany
- Helmholtz-Zentrum
Hereon, Institute of Materials Mechanics, 21502 Geesthacht, Germany
| | - Arne Wittstock
- University
of Bremen, MAPEX Center for
Materials and Processes, 28359 Bremen, Germany
- University
of Bremen, Institute for Organic
and Analytical Chemistry, Leobener Strasse 7, D-28359 Bremen, Germany
| |
Collapse
|
10
|
Zhang H, Zhang T, Zhang X. Perspective and Prospects for Ordered Functional Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300193. [PMID: 36890653 PMCID: PMC10161115 DOI: 10.1002/advs.202300193] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Indexed: 05/06/2023]
Abstract
Many functional materials are approaching their performance limits due to inherent trade-offs between essential physical properties. Such trade-offs can be overcome by engineering a material that has an ordered arrangement of structural units, including constituent components/phases, grains, and domains. By rationally manipulating the ordering with abundant structural units at multiple length scales, the structural ordering opens up unprecedented opportunities to create transformative functional materials, as amplified properties or disruptive functionalities can be realized. In this perspective article, a brief overview of recent advances in the emerging ordered functional materials across catalytic, thermoelectric, and magnetic materials regarding the fabrication, structure, and property is presented. Then the possibility of applying this structural ordering strategy to highly efficient neuromorphic computing devices and durable battery materials is discussed. Finally, remaining scientific challenges are highlighted, and the prospects for ordered functional materials are made. This perspective aims to draw the attention of the scientific community to the emerging ordered functional materials and trigger intense studies on this topic.
Collapse
Affiliation(s)
- Hai‐Tian Zhang
- School of Materials Science and EngineeringBeihang UniversityBeijing100191China
| | - Tao Zhang
- School of Materials Science and EngineeringBeihang UniversityBeijing100191China
| | - Xiangyi Zhang
- State Key Laboratory of Metastable Materials Science and TechnologyYanshan UniversityQinhuangdao066004China
| |
Collapse
|
11
|
Gao Y, Liang S, Liu B, Jiang C, Xu C, Zhang X, Liang P, Elimelech M, Huang X. Subtle tuning of nanodefects actuates highly efficient electrocatalytic oxidation. Nat Commun 2023; 14:2059. [PMID: 37045829 PMCID: PMC10097648 DOI: 10.1038/s41467-023-37676-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Achieving controllable fine-tuning of defects in catalysts at the atomic level has become a zealous pursuit in catalysis-related fields. However, the generation of defects is quite random, and their flexible manipulation lacks theoretical basis. Herein, we present a facile and highly controllable thermal tuning strategy that enables fine control of nanodefects via subtle manipulation of atomic/lattice arrangements in electrocatalysts. Such thermal tuning endows common carbon materials with record high efficiency in electrocatalytic degradation of pollutants. Systematic characterization and calculations demonstrate that an optimal thermal tuning can bring about enhanced electrocatalytic efficiency by manipulating the N-centered annulation-volatilization reactions and C-based sp3/sp2 configuration alteration. Benefiting from this tuning strategy, the optimized electrocatalytic anodic membrane successfully achieves >99% pollutant (propranolol) degradation during a flow-through (~2.5 s for contact time), high-flux (424.5 L m-2 h-1), and long-term (>720 min) electrocatalytic filtration test at a very low energy consumption (0.029 ± 0.010 kWh m-3 order-1). Our findings highlight a controllable preparation approach of catalysts while also elucidating the molecular level mechanisms involved.
Collapse
Affiliation(s)
- Yifan Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Shuai Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Biming Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Chengxu Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Chenyang Xu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06520-8286, USA.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
12
|
Shin D, Choi G, Hong C, Han JW. Surface segregation machine-learned with inexpensive numerical fingerprint for the design of alloy catalysts. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
13
|
Jiang B, Xue H, Wang P, Du H, Kang Y, Zhao J, Wang S, Zhou W, Bian Z, Li H, Henzie J, Yamauchi Y. Noble-Metal-Metalloid Alloy Architectures: Mesoporous Amorphous Iridium-Tellurium Alloy for Electrochemical N 2 Reduction. J Am Chem Soc 2023; 145:6079-6086. [PMID: 36855832 DOI: 10.1021/jacs.2c10637] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Amorphous noble metals with high surface areas have attracted significant interest as heterogeneous catalysts due to the numerous dangling bonds and abundant unsaturated surface atoms created by the amorphous phase. However, synthesizing amorphous noble metals with high surface areas remains a significant challenge due to strong isotropic metallic bonds. This paper describes the first example of a mesoporous amorphous noble metal alloy [iridium-tellurium (IrTe)] obtained using a micelle-directed synthesis method. The resulting mesoporous amorphous IrTe electrocatalyst exhibits excellent performance in the electrochemical N2 reduction reaction. The ammonia yield rate is 34.6 μg mg-1 h-1 with a Faradaic efficiency of 11.2% at -0.15 V versus reversible hydrogen electrode in 0.1 M HCl solution, outperforming comparable crystalline and Ir metal counterparts. The interconnected porous scaffold and amorphous nature of the alloy create a complementary effect that simultaneously enhances N2 absorption and suppresses the hydrogen evolution reaction. According to theoretical simulations, incorporating Te in the IrTe alloy effectively strengthens the adsorption of N2 and lowers the Gibbs free energy for the rate-limiting step of the electrocatalytic N2 reduction reaction. Mesoporous chemistry enables a new route to achieve high-performance amorphous metalloid alloys with properties that facilitate the selective electrocatalytic reduction of N2.
Collapse
Affiliation(s)
- Bo Jiang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Hairong Xue
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Pei Wang
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Haoran Du
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Yunqing Kang
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jingjing Zhao
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Shengyao Wang
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Zhou
- Department of Applied Physics, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology Faculty of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Zhenfeng Bian
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Hexing Li
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Joel Henzie
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
14
|
Fan Z, Luo R, Zhang Y, Zhang B, Zhai P, Zhang Y, Wang C, Gao J, Zhou W, Sun L, Hou J. Oxygen-Bridged Indium-Nickel Atomic Pair as Dual-Metal Active Sites Enabling Synergistic Electrocatalytic CO 2 Reduction. Angew Chem Int Ed Engl 2023; 62:e202216326. [PMID: 36519523 DOI: 10.1002/anie.202216326] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/28/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Single-atom catalysts offer a promising pathway for electrochemical CO2 conversion. However, it is still a challenge to optimize the electrochemical performance of dual-atom catalysts. Here, an atomic indium-nickel dual-sites catalyst bridged by an axial oxygen atom (O-In-N6 -Ni moiety) was anchored on nitrogenated carbon (InNi DS/NC). InNi DS/NC exhibits superior CO selectivity with Faradaic efficiency higher than 90 % over a wide potential range from -0.5 to -0.8 V versus reversible hydrogen electrode (vs. RHE). Moreover, an industrial CO partial current density up to 317.2 mA cm-2 is achieved at -1.0 V vs. RHE in a flow cell. In situ ATR-SEIRAS combined with theory calculations reveal that the synergistic effect of In-Ni dual-sites and O atom bridge not only reduces the reaction barrier for the formation of *COOH, but also retards the undesired hydrogen evolution reaction. This work provides a feasible strategy to construct dual-site catalysts towards energy conversion.
Collapse
Affiliation(s)
- Zhaozhong Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Ruichun Luo
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanxue Zhang
- Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Bo Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Panlong Zhai
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yanting Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Chen Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Junfeng Gao
- Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Wu Zhou
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, Hangzhou, 310024, P. R. China.,Department of Chemistry, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Jungang Hou
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
15
|
She X, Wang Y, Xu H, Chi Edman Tsang S, Ping Lau S. Challenges and Opportunities in Electrocatalytic CO 2 Reduction to Chemicals and Fuels. Angew Chem Int Ed Engl 2022; 61:e202211396. [PMID: 35989680 PMCID: PMC10091971 DOI: 10.1002/anie.202211396] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 11/09/2022]
Abstract
The global temperature increase must be limited to below 1.5 °C to alleviate the worst effects of climate change. Electrocatalytic CO2 reduction (ECO2 R) to generate chemicals and feedstocks is considered one of the most promising technologies to cut CO2 emission at an industrial level. However, despite decades of studies, advances at the laboratory scale have not yet led to high industrial deployment rates. This Review discusses practical challenges in the industrial chain that hamper the scaling-up deployment of the ECO2 R technology. Faradaic efficiencies (FEs) of about 100 % and current densities above 200 mA cm-2 have been achieved for the ECO2 R to CO/HCOOH, and the stability of the electrolysis system has been prolonged to 2000 h. For ECO2 R to C2 H4 , the maximum FE is over 80 %, and the highest current density has reached the A cm-2 level. Thus, it is believed that ECO2 R may have reached the stage for scale-up. We aim to provide insights that can accelerate the development of the ECO2 R technology.
Collapse
Affiliation(s)
- Xiaojie She
- Department of Applied Physics, theHong Kong Polytechnic UniversityHung Hom, Hong KongP. R. China
| | - Yifei Wang
- Wolfson Catalysis CentreDepartment of ChemistryUniversity of OxfordOxfordOX1 3QRUK
| | - Hui Xu
- Institute for Energy ResearchSchool of the Environment and Safety EngineeringJiangsu UniversityZhenjiang212013P. R. China
| | - Shik Chi Edman Tsang
- Wolfson Catalysis CentreDepartment of ChemistryUniversity of OxfordOxfordOX1 3QRUK
| | - Shu Ping Lau
- Department of Applied Physics, theHong Kong Polytechnic UniversityHung Hom, Hong KongP. R. China
| |
Collapse
|
16
|
Sondhi P, Neupane D, Bhattarai JK, Demchenko AV, Stine KJ. Facile fabrication of hierarchically nanostructured gold electrode for bio-electrochemical applications. J Electroanal Chem (Lausanne) 2022; 924:116865. [PMID: 36405880 PMCID: PMC9673609 DOI: 10.1016/j.jelechem.2022.116865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Nanoporous gold (NPG) is one of the most extensively investigated nanomaterials owing to its tunable pore size, ease of surface modification, and range of applications from catalysis, actuation, and molecular release to the development of electrochemical sensors. In an effort to improve the usefulness of NPG, a simple and robust method for the fabrication of hierarchical and bimodal nanoporous gold electrodes (hb-NPG) containing both macro-and mesopores is reported using electrochemical alloying and dealloying processes to engineer a bicontinuous solid/void morphology. Scanning electron microscopy (color SEM) images depict the hierarchical pore structure created after the multistep synthesis with an ensemble of tiny pores below 100 nm in size located in ligaments spanning larger pores of several hundred nanometers. Smaller-sized pores are exploited for surface modification, and the network of larger pores aids in molecular transport. Cyclic voltammetry (CV) was used to compare the electrochemically active surface area of the hierarchical bimodal structure with that of the regular unimodal NPG with an emphasis on the critical role of both dealloying and annealing in creating the desired structure. The adsorption of different proteins was followed using UV-vis absorbance measurements of solution depletion revealing the high loading capacity of hb-NPG. The surface coverage of lipoic acid on the hb-NPG was analyzed using thermogravimetric analysis (TGA) and reductive desorption. The roughness factor determinations suggest that the fabricated hb-NPG electrode has tremendous potential for biosensor development by changing the scaling relations between volume and surface area which may lead to improved analytical performance. We have chosen to take advantage of the surface architectures of hb-NPG due to the presence of a large specific surface area for functionalization and rapid transport pathways for faster response. It is shown that the hb-NPG electrode has a higher sensitivity for the amperometric detection of glucose than does an NPG electrode of the same geometric surface area.
Collapse
Affiliation(s)
- Palak Sondhi
- Department of Chemistry and Biochemistry, University of Missouri–St. Louis, Saint Louis, MO 63121, USA
| | - Dharmendra Neupane
- Department of Chemistry and Biochemistry, University of Missouri–St. Louis, Saint Louis, MO 63121, USA
| | - Jay K. Bhattarai
- Department of Chemistry and Biochemistry, University of Missouri–St. Louis, Saint Louis, MO 63121, USA
| | | | - Keith J. Stine
- Department of Chemistry and Biochemistry, University of Missouri–St. Louis, Saint Louis, MO 63121, USA
| |
Collapse
|
17
|
Bimetallic Au-Cu gradient alloy for electrochemical CO2 reduction into C2H4 at low overpotential. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Xu S, Shen Q, Zheng J, Wang Z, Pan X, Yang N, Zhao G. Advances in Biomimetic Photoelectrocatalytic Reduction of Carbon Dioxide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203941. [PMID: 36008141 PMCID: PMC9631090 DOI: 10.1002/advs.202203941] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Emerging photoelectrocatalysis (PEC) systems synergize the advantages of electrocatalysis (EC) and photocatalysis (PC) and are considered a green and efficient approach to CO2 conversion. However, improving the selectivity and conversion rate remains a major challenge. Strategies mimicking natural photosynthesis provide a prospective way to convert CO2 with high efficiency. Herein, several typical strategies are described for constructing biomimetic photoelectric functional interfaces; such interfaces include metal cocatalysts/semiconductors, small molecules/semiconductors, molecular catalysts/semiconductors, MOFs/semiconductors, and microorganisms/semiconductors. The biomimetic PEC interface must have enhanced CO2 adsorption capacity, preferentially activate CO2 , and have an efficient conversion ability; with these properties, it can activate CO bonds effectively and promote electron transfer and CC coupling to convert CO2 to single-carbon or multicarbon products. Interfacial electron transfer and proton coupling on the biomimetic PEC interface are also discussed to clarify the mechanism of CO2 reduction. Finally, the existing challenges and perspectives for biomimetic photoelectrocatalytic CO2 reduction are presented.
Collapse
Affiliation(s)
- Shaohan Xu
- School of Chemical Science and EngineeringKey Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji HospitalTongji UniversityShanghai200092China
| | - Qi Shen
- School of Chemical Science and EngineeringKey Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji HospitalTongji UniversityShanghai200092China
- Institute of New Energy, School of Chemistry and Chemical EngineeringShaoxing University508 Huancheng West RoadShaoxingZhejiang312000China
| | - Jingui Zheng
- School of Chemical Science and EngineeringKey Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji HospitalTongji UniversityShanghai200092China
| | - Zhiming Wang
- School of Chemical Science and EngineeringKey Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji HospitalTongji UniversityShanghai200092China
| | - Xun Pan
- School of Chemical Science and EngineeringKey Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji HospitalTongji UniversityShanghai200092China
| | - Nianjun Yang
- Institute of Materials EngineeringUniversity of Siegen57076SiegenGermany
| | - Guohua Zhao
- School of Chemical Science and EngineeringKey Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji HospitalTongji UniversityShanghai200092China
| |
Collapse
|
19
|
Ying J, Lenaerts S, Symes MD, Yang X. Hierarchical Design in Nanoporous Metals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106117. [PMID: 35900062 PMCID: PMC9507373 DOI: 10.1002/advs.202106117] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Indexed: 05/28/2023]
Abstract
Hierarchically porous metals possess intriguing high accessibility of matter molecules and unique continuous metallic frameworks, as well as a high level of exposed active atoms. High rates of diffusion and fast energy transfer have been important and challenging goals of hierarchical design and porosity control with nanostructured metals. This review aims to summarize recent important progress toward the development of hierarchically porous metals, with special emphasis on synthetic strategies, hierarchical design in structure-function and corresponding applications. The current challenges and future prospects in this field are also discussed.
Collapse
Affiliation(s)
- Jie Ying
- School of Chemical Engineering and TechnologySun Yat‐sen University (SYSU)Zhuhai519082P. R. China
| | - Silvia Lenaerts
- Research Group of Sustainable Energy and Air Purification (DuEL), Department of Bioscience EngineeringUniversity of AntwerpGroenenborgerlaan 171Antwerp2020Belgium
| | - Mark D. Symes
- WestCHEM, School of ChemistryUniversity of GlasgowGlasgowG12 8QQUnited Kingdom
| | - Xiao‐Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
| |
Collapse
|
20
|
Hyun G, Cao S, Ham Y, Youn DY, Kim ID, Chen X, Jeon S. Three-Dimensional, Submicron Porous Electrode with a Density Gradient to Enhance Charge Carrier Transport. ACS NANO 2022; 16:9762-9771. [PMID: 35687870 DOI: 10.1021/acsnano.2c03480] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rapid charging capability is a requisite feature of lithium-ion batteries (LIBs). To overcome the capacity degradation from a steep Li-ion concentration gradient during the fast reaction, electrodes with tailored transport kinetics have been explored by managing the geometries. However, the traditional electrode fabrication process has great challenges in precisely controlling and implementing the desired pore networks and configuration of electrode materials. Herein, we demonstrate a density-graded composite electrode that arises from a three-dimensional current collector in which the porosity gradually decreases to 53.8% along the depth direction. The density-graded electrode effectively reduces energy loss at high charging rates by mitigating polarization. This electrode shows an outstanding capacity of 94.2 mAh g-1 at a fast current density of 59.7 C (20 A g-1), which is much higher than that of an electrode with a nearly constant density gradient (38.0 mAh g-1). Through these in-depth studies on the pore networks and their transport kinetics, we describe the design principle of rational electrode geometries for ultrafast charging LIBs.
Collapse
Affiliation(s)
- Gayea Hyun
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Shengkai Cao
- School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, 639798, Singapore
| | - Youngjin Ham
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Doo-Young Youn
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for NanoCentury (KINC), KAIST, Daejeon 34141, Republic of Korea
| | - Xiaodong Chen
- School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, 639798, Singapore
| | - Seokwoo Jeon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for NanoCentury (KINC), KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
21
|
Ahn J, Park J. Optimal Design of Surface Relief Grating for High‐Resolution Two‐Photon Interference Lithography. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jinseong Ahn
- School of Materials Science and Engineering Department of Energy Engineering Convergence Kumoh National Institute of Technology Gumi Gyeongbuk 39177 Republic of Korea
| | - Junyong Park
- School of Materials Science and Engineering Department of Energy Engineering Convergence Kumoh National Institute of Technology Gumi Gyeongbuk 39177 Republic of Korea
| |
Collapse
|
22
|
Bae H, Seong C, Burungale V, Seol M, Yoon CO, Kang SH, Jung WG, Kim BJ, Ha JS. Nanostructured Au Electrode with 100 h Stability for Solar-Driven Electrochemical Reduction of Carbon Dioxide to Carbon Monoxide. ACS OMEGA 2022; 7:9422-9429. [PMID: 35350324 PMCID: PMC8945059 DOI: 10.1021/acsomega.1c06720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/11/2022] [Indexed: 05/30/2023]
Abstract
Solar-to-chemical energy conversion is a potential alternative to fossil fuels. A promising approach is the electrochemical (EC) reduction of CO2 to value-added chemicals, particularly hydrocarbons. Here, we report on the selective EC reduction of CO2 to CO on a porous Au nanostructure (pAu) cathode in 0.1 M KHCO3. The pAu cathode anodized at 2.6 V exhibited maximum Faradaic efficiency (FE) for conversion of CO2 to CO (up to 100% at -0.75 V vs reversible hydrogen electrode (RHE)). Furthermore, commercial Si photovoltaic cells were combined with EC systems (PV-EC) consisting of pAu cathodes and IrO2 anodes. The triple-junction cell and EC system resulted in a solar-to-CO conversion efficiency (SCE) of 5.3% under 1 sun illumination and was operated for 100 h. This study provides a PV-EC CO2 reduction system for CO production and indicates the potential of the PV-EC system for the EC reduction of CO2 to value-added chemicals.
Collapse
Affiliation(s)
- Hyojung Bae
- Optoelectronics
Convergence Research Center, Chonnam National
University, 77 Yongbong-ro, Gwangju 61186, Korea
| | - Chaewon Seong
- School
of Chemical Engineering, Chonnam National
University, 77 Yongbong-ro, Gwangju 61186, Korea
| | - Vishal Burungale
- School
of Chemical Engineering, Chonnam National
University, 77 Yongbong-ro, Gwangju 61186, Korea
| | | | - Chul Oh Yoon
- McScience
Inc., Yeongtong-gu, Suwon 16690, Korea
| | - Soon Hyung Kang
- Optoelectronics
Convergence Research Center, Chonnam National
University, 77 Yongbong-ro, Gwangju 61186, Korea
- Department
of Chemistry Education, Chonnam National
University, 77 Yongbong-ro, Gwangju 61186, Korea
| | - Wan-Gil Jung
- School
of Materials Science and Engineering, Gwangju
Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Gwangju 61005, Korea
| | - Bong-Joong Kim
- School
of Materials Science and Engineering, Gwangju
Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Gwangju 61005, Korea
| | - Jun-Seok Ha
- Optoelectronics
Convergence Research Center, Chonnam National
University, 77 Yongbong-ro, Gwangju 61186, Korea
- School
of Chemical Engineering, Chonnam National
University, 77 Yongbong-ro, Gwangju 61186, Korea
- Energy Convergence
Core Facility, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Korea
| |
Collapse
|
23
|
Yang Y, Sun C, Huang Q, Yan J. Hierarchical porous structure formation mechanism in food waste component derived N-doped biochar: Application in VOCs removal. CHEMOSPHERE 2022; 291:132702. [PMID: 34710458 DOI: 10.1016/j.chemosphere.2021.132702] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/02/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Nitrogen-doped (N-doped) hierarchical porous carbon was widely utilized as an efficient volatile organic compounds (VOCs) adsorbent. In this work, a series of N-doped hierarchical porous carbons were successfully prepared from the direct pyrolysis process of three food waste components. The porous biochar that derived from bone showed a high specific surface area (1405.06 m2/g) and sizable total pore volume (0.97 cm3/g). The developed hierarchical porous structure was fabricated by the combined effect of self-activation (Carbon dioxide (CO2) and water vapor (H2O)) and self-template. The emission characteristics of activation gas analyzed by Thermogravimetric-Fourier transform infrared spectrometer (TG-FTIR) and the transformation of ash composition in the biochar help to illustrate the pore-forming mechanism. Calcium oxide (CaO) and hydroxylapatite were confirmed as the major templates for mesopores, while the decomposition processes of calcium carbonate (CaCO3) and hydroxylapatite provided a large amount of activation gas (CO2 and H2O) to form micropores. The materials also obtained abundant N-containing surface functional groups (up to 7.84 atomic%) from pyrolysis of protein and chitin. Finally, the porous biochar showed excellent performance for VOCs adsorption with a promising uptake of 288 mg/g for toluene and a high adsorption rate of 0.189 min-1. Aplenty of mesopores distributed in the materials effectively improved the mass transfer behaviors, the adsorption rate got a noticeable improvement (from 0.118 min-1 to 0.189 min-1) benefited from mesopores. Reusable potentials of the hierarchical porous carbons were also satisfying. After four thermal regeneration cycles, the materials still occupied 84.8%-87.4% of the original adsorption capacities.
Collapse
Affiliation(s)
- Yuxuan Yang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Chen Sun
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Qunxing Huang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China.
| | - Jianhua Yan
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
24
|
Modern applications of scanning electrochemical microscopy in the analysis of electrocatalytic surface reactions. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63948-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
25
|
Suh JM, Cho D, Lee S, Lee TH, Jung JW, Lee J, Cho SH, Eom TH, Hong JW, Shim YS, Jeon S, Jang HW. Rationally Designed TiO 2 Nanostructures of Continuous Pore Network for Fast-Responding and Highly Sensitive Acetone Sensor. SMALL METHODS 2021; 5:e2100941. [PMID: 34928023 DOI: 10.1002/smtd.202100941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/13/2021] [Indexed: 06/14/2023]
Abstract
For the last several years, indoor air quality monitoring has been a significant issue due to the increasing time portion of indoor human activities. Especially, the early detection of volatile organic compounds potentially harmful to the human body by the prolonged exposure is the primary concern for public human health, and such technology is imperatively desired. In this study, highly porous and periodic 3D TiO2 nanostructures are designed and studied for this concern. Specifically, extremely high gas molecule accessibility throughout the whole nanostructures and precisely controlled internecks of 3D TiO2 nanostructures can achieve an unprecedented gas response of 299 to 50 ppm CH3 COCH3 with an extremely fast response time of less than 1s. The systematic approach to utilize the whole inner and outer surfaces of the gas sensing materials and periodically formed internecks to localize the current paths in this study can provide highly promising perspectives to advance the development of chemoresistive gas sensors using metal oxide nanostructures for the Internet of Everything application.
Collapse
Affiliation(s)
- Jun Min Suh
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Donghwi Cho
- Department of Materials Science and Engineering, KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sangmin Lee
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Tae Hyung Lee
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae-Wook Jung
- Structural Safety & Prognosis Research Division, Korea Atomic Energy Research Institute (KAERI), Daejeon, 34057, Republic of Korea
| | - Jinho Lee
- Department of Materials Science and Engineering, KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sung Hwan Cho
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tae Hoon Eom
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung-Wuk Hong
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Young-Seok Shim
- Division of Materials Science and Engineering, Silla University, Busan, 46958, Republic of Korea
| | - Seokwoo Jeon
- Department of Materials Science and Engineering, KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, 16229, Republic of Korea
| |
Collapse
|
26
|
Liang F, Zhang K, Zhang L, Zhang Y, Lei Y, Sun X. Recent Development of Electrocatalytic CO 2 Reduction Application to Energy Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100323. [PMID: 34151517 DOI: 10.1002/smll.202100323] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/12/2021] [Indexed: 06/13/2023]
Abstract
Carbon dioxide (CO2 ) emission has caused greenhouse gas pollution worldwide. Hence, strengthening CO2 recycling is necessary. CO2 electroreduction reaction (CRR) is recognized as a promising approach to utilize waste CO2 . Electrocatalysts in the CRR process play a critical role in determining the selectivity and activity of CRR. Different types of electrocatalysts are introduced in this review: noble metals and their derived compounds, transition metals and their derived compounds, organic polymer, and carbon-based materials, as well as their major products, Faradaic efficiency, current density, and onset potential. Furthermore, this paper overviews the recent progress of the following two major applications of CRR according to the different energy conversion methods: electricity generation and formation of valuable carbonaceous products. Considering electricity generation devices, the electrochemical properties of metal-CO2 batteries, including Li-CO2 , Na-CO2 , Al-CO2 , and Zn-CO2 batteries, are mainly summarized. Finally, different pathways of CO2 electroreduction to carbon-based fuels is presented, and their reaction mechanisms are illustrated. This review provides a clear and innovative insight into the entire reaction process of CRR, guiding the new electrocatalysts design, state-of-the-art analysis technique application, and reaction system innovation.
Collapse
Affiliation(s)
- Feng Liang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clear Utilization, Kunming University of Science and Technology, Kunming, 650093, China
| | - Kaiwen Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Lei Zhang
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| | - Yingjie Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Yong Lei
- Institute of Physics & IMN MacroNano (ZIK), Technical University of Ilmenau, 98693, Ilmenau, Germany
| | - Xueliang Sun
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| |
Collapse
|
27
|
Zhu ZH, Zhao BH, Hou SL, Jiang XL, Liang ZL, Zhang B, Zhao B. A Facile Strategy for Constructing a Carbon-Particle-Modified Metal-Organic Framework for Enhancing the Efficiency of CO 2 Electroreduction into Formate. Angew Chem Int Ed Engl 2021; 60:23394-23402. [PMID: 34406687 DOI: 10.1002/anie.202110387] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Indexed: 11/11/2022]
Abstract
Electrocatalytic reduction of CO2 by metal-organic frameworks (MOFs) has been widely investigated, but insufficient conductivity limits application. Herein, a porous 3D In-MOF {(Me2 NH2 )[In(BCP)]⋅2 DMF}n (V11) with good stability was constructed with two types of channels (1.6 and 1.2 nm diameter). V11 exhibits moderate catalytic activity in CO2 electroreduction with 76.0 % of Faradaic efficiency for formate (FEHCOO- ). Methylene blue molecules of suitable size and pyrolysis temperature were introduced and transformed into carbon particles (CPs) after calcination. The performance of the obtained CPs@V11 is significantly improved both in FEHCOO- (from 76.0 % to 90.1 %) and current density (2.2 times). Control experiments show that introduced CPs serve as accelerant to promote the charges and mass transfer in framework, and benefit to sufficiently expose active sites. This strategy can also work on other In-MOFs, demonstrating the universality of this method for electroreduction of CO2 .
Collapse
Affiliation(s)
- Zi-Hao Zhu
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, (Ministry of Education), Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300071, China
| | - Bo-Hang Zhao
- School of Science, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
| | - Sheng-Li Hou
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, (Ministry of Education), Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300071, China
| | - Xiao-Lei Jiang
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, (Ministry of Education), Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300071, China
| | - Ze-Long Liang
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, (Ministry of Education), Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300071, China
| | - Bin Zhang
- School of Science, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
| | - Bin Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, (Ministry of Education), Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300071, China
| |
Collapse
|
28
|
Zhu Z, Zhao B, Hou S, Jiang X, Liang Z, Zhang B, Zhao B. A Facile Strategy for Constructing a Carbon‐Particle‐Modified Metal–Organic Framework for Enhancing the Efficiency of CO
2
Electroreduction into Formate. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110387] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zi‐Hao Zhu
- Department of Chemistry Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center Nankai University Tianjin 300071 China
| | - Bo‐Hang Zhao
- School of Science, Institute of Molecular Plus Tianjin University Tianjin 300072 China
| | - Sheng‐Li Hou
- Department of Chemistry Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center Nankai University Tianjin 300071 China
| | - Xiao‐Lei Jiang
- Department of Chemistry Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center Nankai University Tianjin 300071 China
| | - Ze‐Long Liang
- Department of Chemistry Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center Nankai University Tianjin 300071 China
| | - Bin Zhang
- School of Science, Institute of Molecular Plus Tianjin University Tianjin 300072 China
| | - Bin Zhao
- Department of Chemistry Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center Nankai University Tianjin 300071 China
| |
Collapse
|
29
|
Yan WY, Zhang C, Liu L. Hierarchically Porous CuAg via 3D Printing/Dealloying for Tunable CO 2 Reduction to Syngas. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45385-45393. [PMID: 34519490 DOI: 10.1021/acsami.1c10564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrochemical CO2 reduction reaction (CO2RR) coupled with hydrogen evolution reaction (HER) is a renewable route to produce syngas (CO + H2), an essential feedstock for liquid fuel production. However, the development of high-performance electrocatalyst with tunable H2/CO ratio, high-rate syngas production, and long-term electrochemical stability remains challenging. Here, a metal three-dimensional (3D) printing technique followed by dealloying was utilized to develop three-dimensional hierarchical porous (termed as 3D hp) CuAg catalysts for the concurrent generation of CO and H2. By purposely designing the precursor compositions, the resultant 3D hp CuAg catalysts with a high density of phase-segregated Ag and Cu nanodomains exhibit a tunable H2/CO ratio from 3:1 to 1:2. Through further porosity engineering, the 3D hp CuAg catalysts show significantly enhanced syngas production rate of 140 μmol/h/cm2 and electrochemical stability up to 140 h (which is the highest value reported so far). The remarkable electrochemical stability of the 3D hp CuAg arises from three-level hierarchical porous configurations, wherein the macroporous structure benefits gas bubble growth and detachment, the microporous structure stabilizes the active nanoporous layer, while the nanoporous structure provides a large active surface area and enables efficient mass transfer. The results of this study offer a new vision for the development of hierarchically porous catalysts for CO2 reduction.
Collapse
Affiliation(s)
- Wen-Yuan Yan
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Cheng Zhang
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lin Liu
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
30
|
Jin S, Hao Z, Zhang K, Yan Z, Chen J. Advances and Challenges for the Electrochemical Reduction of CO 2 to CO: From Fundamentals to Industrialization. Angew Chem Int Ed Engl 2021; 60:20627-20648. [PMID: 33861487 DOI: 10.1002/anie.202101818] [Citation(s) in RCA: 208] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 11/10/2022]
Abstract
The electrochemical carbon dioxide reduction reaction (CO2 RR) provides an attractive approach to convert renewable electricity into fuels and feedstocks in the form of chemical bonds. Among the different CO2 RR pathways, the conversion of CO2 into CO is considered one of the most promising candidate reactions because of its high technological and economic feasibility. Integrating catalyst and electrolyte design with an understanding of the catalytic mechanism will yield scientific insights and promote this technology towards industrial implementation. Herein, we give an overview of recent advances and challenges for the selective conversion of CO2 into CO. Multidimensional catalyst and electrolyte engineering for the CO2 RR are also summarized. Furthermore, recent studies on the large-scale production of CO are highlighted to facilitate industrialization of the electrochemical reduction of CO2 . To conclude, the remaining technological challenges and future directions for the industrial application of the CO2 RR to generate CO are highlighted.
Collapse
Affiliation(s)
- Song Jin
- Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhimeng Hao
- Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Kai Zhang
- Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhenhua Yan
- Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jun Chen
- Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
31
|
Ayyub MM, Rao CNR. Designing electrode materials for the electrochemical reduction of carbon dioxide. MATERIALS HORIZONS 2021; 8:2420-2443. [PMID: 34870308 DOI: 10.1039/d1mh00675d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrochemical reduction of carbon dioxide is a viable alternative for reducing fossil fuel consumption and reducing atmospheric CO2 levels. Although, a wide variety of materials have been studied for electrochemical reduction of CO2, the selective and efficient reduction of CO2 is still not accomplished. Complex reaction mechanisms and the competing hydrogen evolution reaction further complicates the efficiency of materials. An extensive understanding of reaction mechanism is hence essential in designing an ideal electrocatalyst material. Therefore, in this review article we discuss the materials explored in the last decade with focus on their catalytic mechanism and methods to enhance their catalytic activity.
Collapse
Affiliation(s)
- Mohd Monis Ayyub
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India.
| | - C N R Rao
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India.
| |
Collapse
|
32
|
Stojkovikj S, El-Nagar GA, Firschke F, Pardo Pérez LC, Choubrac L, Najdoski M, Mayer MT. Electrocatalyst Derived from Waste Cu-Sn Bronze for CO 2 Conversion into CO. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38161-38169. [PMID: 34370955 DOI: 10.1021/acsami.1c05015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To sustainably exist within planetary boundaries, we must greatly curtail our extraction of fuels and materials from the Earth. This requires new technologies based on reuse and repurposing of material already available. Electrochemical conversion of CO2 into valuable chemicals and fuels is a promising alternative to deriving them from fossil fuels. But most metals used for electrocatalysis are either endangered or at serious risk of limitation to their future supply. Here, we demonstrate a combined strategy for repurposing of a waste industrial Cu-Sn bronze as a catalyst material precursor and its application toward CO2 reuse. By a simple electrochemical transfer method, waste bronzes with composition Cu14Sn were anodically dissolved and cathodically redeposited under dynamic hydrogen bubble template conditions to yield mesoporous foams with Cu10Sn surface composition. The bimetal foam electrodes exhibited high CO2 electroreduction selectivity toward CO, achieving greater than 85% faradaic efficiency accompanied by a considerable suppression of the competing H2 evolution reaction. The Cu-Sn foam electrodes showed good durability over several hours of continuous electrolysis without any significant change in the composition, morphology, and selectivity for CO as a target product.
Collapse
Affiliation(s)
- Sasho Stojkovikj
- Helmholtz Young Investigator Group: Electrochemical Conversion of CO2, Helmholtz-Zentrum Berlin für Materialen und Energie GmbH, Hahn-Meitner-Platz 1, Berlin D-14109, Germany
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, Berlin D-14195, Germany
| | - Gumaa A El-Nagar
- Helmholtz Young Investigator Group: Electrochemical Conversion of CO2, Helmholtz-Zentrum Berlin für Materialen und Energie GmbH, Hahn-Meitner-Platz 1, Berlin D-14109, Germany
| | - Frederik Firschke
- Helmholtz Young Investigator Group: Electrochemical Conversion of CO2, Helmholtz-Zentrum Berlin für Materialen und Energie GmbH, Hahn-Meitner-Platz 1, Berlin D-14109, Germany
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, Berlin D-14195, Germany
| | - Laura C Pardo Pérez
- Helmholtz Young Investigator Group: Electrochemical Conversion of CO2, Helmholtz-Zentrum Berlin für Materialen und Energie GmbH, Hahn-Meitner-Platz 1, Berlin D-14109, Germany
| | - Léo Choubrac
- Department Structure and Dynamics of Energy Materials, Helmholtz-Zentrum Berlin für Materialen und Energie GmbH, Hahn-Meitner-Platz 1, Berlin D-14109, Germany
| | - Metodija Najdoski
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University Skopje, Arhimedova 5, Skopje 1000, Republic of North Macedonia
| | - Matthew T Mayer
- Helmholtz Young Investigator Group: Electrochemical Conversion of CO2, Helmholtz-Zentrum Berlin für Materialen und Energie GmbH, Hahn-Meitner-Platz 1, Berlin D-14109, Germany
| |
Collapse
|
33
|
Li J, Zitolo A, Garcés-Pineda FA, Asset T, Kodali M, Tang P, Arbiol J, Galán-Mascarós JR, Atanassov P, Zenyuk IV, Sougrati MT, Jaouen F. Metal Oxide Clusters on Nitrogen-Doped Carbon are Highly Selective for CO 2 Electroreduction to CO. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01702] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jingkun Li
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier 34090, France
| | - Andrea Zitolo
- Synchrotron SOLEIL, L’orme des Merisiers, BP 48, Saint Aubin, 91192 Gif-sur-Yvette, France
| | - Felipe A. Garcés-Pineda
- Institute of Chemical Research of Catalonia, ICIQ, The Barcelona Institute of Science and Technology, Av. Països Catalans, 16, Tarragona 43007, Spain
| | - Tristan Asset
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California Irvine, Irvine 92697, United States
| | - Mounika Kodali
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California Irvine, Irvine 92697, United States
| | - PengYi Tang
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona 08193, Catalonia, Spain
| | - Jordi Arbiol
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona 08193, Catalonia, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Catalonia, Spain
| | - José Ramón Galán-Mascarós
- Institute of Chemical Research of Catalonia, ICIQ, The Barcelona Institute of Science and Technology, Av. Països Catalans, 16, Tarragona 43007, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Catalonia, Spain
| | - Plamen Atanassov
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California Irvine, Irvine 92697, United States
| | - Iryna V. Zenyuk
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California Irvine, Irvine 92697, United States
| | | | - Frédéric Jaouen
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier 34090, France
| |
Collapse
|
34
|
Li Q, Zhang Y, Fan H, Gong Y, Xu Y, Lv Q, Xu Y, Xiao F, Wang S, Wang Z, Wang L. In vitro and in vivo detection of lactate with nanohybrid-functionalized Pt microelectrode facilitating assessment of tumor development. Biosens Bioelectron 2021; 191:113474. [PMID: 34246894 DOI: 10.1016/j.bios.2021.113474] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/17/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022]
Abstract
Accelerated glucose uptake and "aerobic glycolysis" of tumor cells generates a high-level lactate in extracellular space and within tumor tissue, which is thought to be a hallmark of tumor and closely correlated with tumor development. Here, we report the development of an enzyme-free electrochemical sensing platform based on a Pt-microneedle electrode functionalized with Au nanoparticles (Au-NPs) decorated polydopamine nanospheres (PDA-NSs), and explore its practical application in in vitro and in vivo detection of lactate in different biological samples. Our results demonstrate that in virtue of the nanostructured merits and high electrocatalytic activity, the resultant nanohybrid-microelectrode exhibits good sensitivity and selectivity to the nonenzymatic electrochemical detection of lactate, with a detection limit of 50 μM, a liner range of 0.375-12 mM, and a sensitivity of 11.25 mA mM-1 cm-2, as well as a good anti-interference ability to other active small molecules. The platform quantifies lactate in complex bio-fluids, including cancerous and non-cancerous cell culture media, as well as serum samples, with detecting time 7.5-fold faster than does a clinically-used approach. Moreover, owing to miniaturized size and satisfactory electrochemical performance, the sensor achieves in vivo recording of lactate-related characteristic voltammetric signals within a living tumor, which are positively correlated with tumor burden and growth. Therefore, the platform cannot only be employed for cancer metabolic investigation, but also potentially for clinical assessment of tumor progression, and even clinical diagnosis of other lactate metabolism disorders.
Collapse
Affiliation(s)
- Qilin Li
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Zhang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Huiling Fan
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuji Gong
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yun Xu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qiying Lv
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yunruo Xu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fei Xiao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Shuai Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
35
|
Yang Y, Lin B, Sun C, Tang M, Lu S, Huang Q, Yan J. Facile synthesis of tailored mesopore-enriched hierarchical porous carbon from food waste for rapid removal of aromatic VOCs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145453. [PMID: 33582357 DOI: 10.1016/j.scitotenv.2021.145453] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/08/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Due to the large amount, environmental impact, and complex properties of accumulated food waste, its disposal and valorization has become a growing global concern and challenges. In this study, a series of mesopore-enriched hierarchical porous carbons were synthesized from a mixture of two food waste components (peptone and bone). The prepared materials were employed for the rapid adsorption of aromatic volatile organic compounds (VOCs). The pore structures, morphology and surface chemistry of the food waste-based microporous activated carbon (PCs) and mesopore-enriched hierarchical porous carbons (PC/BCs) were characterized and then compared. PC/BCs presented larger pore volume (2.45 cm3/g vs. 1.25 cm3/g) than the PCs because of their activation and the template effect of the bone, allowing them to exhibit satisfactory adsorption capacities (139.5 mg/g for benzene and 440.7 mg/g for toluene) and adsorption rate (0.285 min-1 for benzene and 0.236 min-1 for toluene) for aromatic VOCs. In addition, a strong linear relationship (R2 = 0.957) was also established between the adsorption rate k and total pore volume, highlighting the role of mesopores in PC/BCs, which contributed 60% to the total pore volume, during the rapid capture of VOCs. Further, PC/BCs also showed excellent thermal regeneration performance for more than four runs. The results of this study provide a feasible approach to fabricating mesopore-enriched hierarchical porous carbon from food waste, which could enable the rapid removal of VOCs.
Collapse
Affiliation(s)
- Yuxuan Yang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Bingcheng Lin
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Chen Sun
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Minghui Tang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Shengyong Lu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Qunxing Huang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Jianhua Yan
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
36
|
Liu P, Liu H, Zhang S, Wang J, Wang C. A general strategy for obtaining BiOX nanoplates derived Bi nanosheets as efficient CO 2 reduction catalysts by enhancing CO 2•- adsorption and electron transfer. J Colloid Interface Sci 2021; 602:740-747. [PMID: 34153712 DOI: 10.1016/j.jcis.2021.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
Electroreduction of carbon dioxide (CO2) into formic acid/formate has been considered as one of the most promising strategies for obtaining value-added fuels and chemical productions. Herein, we present a general method for preparing Bi-based electrocatalysts via in situ reduction of bismuth oxyiodide (BiOI) in CO2-saturated electrolyte. The precursors of BiOI nanoplates (P-nanoplates) with thickness of 30-40 nm could be easily obtained and provide a concise model to probe the mechanisms of CO2 reduction to formate. BiOI nanoplates precursors derived Bi nanosheets (P-nanoplates-Bi) exhibited an excellent performance for CO2 reduction to formate, achieving Faradaic efficiencies (FEs) over 80% in a wide potential window and a maximum FE approaching of 95% with a current density of 13.3 ± 0.6 mA cm-2 at -0.9 V versus reverse hydrogen electrode (υs. RHE). Such P-nanoplates-Bi nanosheets showed a stable electrocatalytic actitivity during 15 h operation in 0.5 M KHCO3 aqueous solution. The superior performance is mainly attributed to the two-dimensional (2D) Bi nanosheets, which can increase CO2•- adsorption, enlarge active surface area, show better reaction kinetics and provide lower contact resistance with accelerated electron transfer. For comparison, precursors of BiOI plate-like (P-bulk) with doubled thicknesses and ultrathin BiOI with a few nanometers derived Bi catalysts tend to agglomerate and appear as irregular structured Bi nanoparticles during the reaction. Their peak FEs for formate are much lower than those of P-nanoplates derived Bi nanosheets at -0.9 V.
Collapse
Affiliation(s)
- Peng Liu
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Huiling Liu
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Shun Zhang
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jie Wang
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Cheng Wang
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
37
|
Li C, Chai OJH, Yao Q, Liu Z, Wang L, Wang H, Xie J. Electrocatalysis of gold-based nanoparticles and nanoclusters. MATERIALS HORIZONS 2021; 8:1657-1682. [PMID: 34846497 DOI: 10.1039/d0mh01947j] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Gold (Au)-based nanomaterials, including nanoparticles (NPs) and nanoclusters (NCs), have shown great potential in many electrocatalytic reactions due to their excellent catalytic ability and selectivity. In recent years, Au-based nanostructured materials have been considered as one of the most promising non-platinum (Pt) electrocatalysts. The controlled synthesis of Au-based NPs and NCs and the delicate microstructure adjustment play a vital role in regulating their catalytic activity toward various reactions. This review focuses on the latest progress in the synthesis of efficient Au-based NP and NC electrocatalysts, highlighting the relationship between Au nanostructures and their catalytic activity. This review first discusses the parameters of Au-based nanomaterials that determine their electrocatalytic performance, including composition, particle size and architecture. Subsequently, the latest electrocatalytic applications of Au-based NPs and NCs in various reactions are provided. Finally, some challenges and opportunities are highlighted, which will guide the rational design of Au-based NPs and NCs as promising electrocatalysts.
Collapse
Affiliation(s)
- Chunjie Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
38
|
Su Z, Chen T. Porous Noble Metal Electrocatalysts: Synthesis, Performance, and Development. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005354. [PMID: 33733551 DOI: 10.1002/smll.202005354] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/25/2020] [Indexed: 06/12/2023]
Abstract
Active sites (intrinsic activity, quantity, and distribution), electron transfer, and mass diffusion are three important factors affecting the performance of electrocatalysts. Composed of highly active components which are built into various network structures, porous noble metal is an inherently promising electrocatalysts. In recent years, great efforts have been made to explore new efficient synthesis methods and establish structural-performance relationships in the field of porous noble metal electrocatalysis. In this review, the very recent progress in strategies for preparing porous noble metal, including innovation and deeper understanding of traditional methods is summarized. A discussion of relationship between porous noble metal structure and electrocatalytic performance, such as accessibility of active sites, connectivity of skeleton structures, channels dimensions, and hierarchical structures, is provided.
Collapse
Affiliation(s)
- Zhipeng Su
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300350, P. R. China
| | - Tiehong Chen
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
39
|
Jin S, Hao Z, Zhang K, Yan Z, Chen J. Advances and Challenges for the Electrochemical Reduction of CO
2
to CO: From Fundamentals to Industrialization. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101818] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Song Jin
- Key Laboratory of Advanced Energy Materials Chemistry Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 China
| | - Zhimeng Hao
- Key Laboratory of Advanced Energy Materials Chemistry Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 China
| | - Kai Zhang
- Key Laboratory of Advanced Energy Materials Chemistry Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 China
| | - Zhenhua Yan
- Key Laboratory of Advanced Energy Materials Chemistry Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 China
| | - Jun Chen
- Key Laboratory of Advanced Energy Materials Chemistry Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
40
|
Müller D, Zámbó D, Dorfs D, Bigall NC. Cryoaerogels and Cryohydrogels as Efficient Electrocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007908. [PMID: 33749130 DOI: 10.1002/smll.202007908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/01/2021] [Indexed: 05/14/2023]
Abstract
Additive-free cryoaerogel coatings from noble metal nanoparticles are prepared and electrochemically investigated. By using liquid nitrogen or isopentane as cooling medium, two different superstructures are created for each type of noble metal nanoparticle. These materials (made from the same amount of particles) have superior morphological and catalytic properties as compared to simply immobilized, densely packed nanoparticles. The morphology of all materials is investigated with scanning electron microscopy (SEM). Electrochemically active surface areas (ECSAs) are calculated from cyclic voltammetry measurements. The catalytic activity is studied for the ethanol oxidation reaction (EOR). Both are found to be increased for superstructured materials prepared by cryoaerogelation. Furthermore, cryoaerogels with cellular to dendritic structure that arise from freezing with isopentane show the best catalytic performance and highest ECSA. Moreover, as a new class of materials, cryohydrogels are created for the first time by thawing flash-frozen nanoparticle solutions. Structure and morphology of these materials match with the corresponding types of cryoaerogels and are confirmed via SEM. Even the catalytic activity in EOR is in accordance with the results from cryoaerogel coatings. As a proof of concept, this approach offers a novel platform towards the easier and faster production of cryogelated materials for wet-chemical applications.
Collapse
Affiliation(s)
- Dennis Müller
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstraße 3A, 30167, Hannover, Germany
- Laboratory for Nano and Quantum Engineering, Leibniz Universität Hannover, Schneiderberg 39, 30167, Hannover, Germany
| | - Dániel Zámbó
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstraße 3A, 30167, Hannover, Germany
- Laboratory for Nano and Quantum Engineering, Leibniz Universität Hannover, Schneiderberg 39, 30167, Hannover, Germany
| | - Dirk Dorfs
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstraße 3A, 30167, Hannover, Germany
- Laboratory for Nano and Quantum Engineering, Leibniz Universität Hannover, Schneiderberg 39, 30167, Hannover, Germany
- Cluster of Excellence PhoenixD, Photonics, Optics and Engineering-Innovation Across Disciplines, 30167, Hannover, Germany
| | - Nadja C Bigall
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstraße 3A, 30167, Hannover, Germany
- Laboratory for Nano and Quantum Engineering, Leibniz Universität Hannover, Schneiderberg 39, 30167, Hannover, Germany
- Cluster of Excellence PhoenixD, Photonics, Optics and Engineering-Innovation Across Disciplines, 30167, Hannover, Germany
| |
Collapse
|
41
|
Wang M, Meng AC, Fu J, Foucher AC, Serra-Maia R, Stach EA, Detsi E, Pikul JH. Surface Facet Engineering in Nanoporous Gold for Low-Loading Catalysts in Aluminum-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13097-13105. [PMID: 33715346 DOI: 10.1021/acsami.0c20163] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The performance of metal-air batteries and fuel cells depends on the speed and efficiency of electrochemical oxygen reduction reactions at the cathode, which can be improved by engineering the atomic arrangement of cathode catalysts. It is, however, difficult to improve upon the performance of platinum nanoparticles in alkaline electrolytes with low-loading catalysts that can be manufactured at scale. Here, the authors synthesized nanoporous gold catalysts with increased (100) surface facets using electrochemical dealloying in sodium citrate surfactant electrolytes. These modified nanoporous gold catalysts achieved an 8% higher operating voltage and 30% greater power density in aluminum-air batteries over traditionally prepared nanoporous gold, and their performance was superior to commercial platinum nanoparticle electrodes at a 10 times lower mass loading. The authors used rotation disc electrode studies, backscattering of electrons, and underpotential deposition to show that the increased (100) facets improved the catalytic activity of citrate dealloyed nanoporous gold compared to conventional nanoporous gold. The citrate dealloyed samples also had the highest stability and least concentration of steps and kinks. The developed synthesis and characterization techniques will enable the design and synthesis of metal nanostructured catalysts with controlled facets for low-cost and mass production of metal-air battery cathodes.
Collapse
Affiliation(s)
- Min Wang
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Andrew C Meng
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jintao Fu
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alexandre C Foucher
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Rui Serra-Maia
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Eric Detsi
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - James H Pikul
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
42
|
Bae G, Jang D, Jeon S. Scalable Fabrication of High-Performance Thin-Shell Oxide Nanoarchitected Materials via Proximity-Field Nanopatterning. ACS NANO 2021; 15:3960-3970. [PMID: 33591718 DOI: 10.1021/acsnano.0c10534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanoarchitected materials are considered as a promising research field, deriving distinctive mechanical properties by combining nanomechanical size effects with conventional structural engineering. Despite the successful demonstration of the superiority and feasibility of nanoarchitected materials, scalable and facile fabrication techniques capable of macroscopically producing such materials at a low cost are required to take advantage of the nanoarchitected materials for specific applications. Unlike conventional techniques, proximity-field nanopatterning (PnP) is capable of simultaneously obtaining high spatial resolution and mass producibility in synthesizing such nanoarchitected materials in the form of an inch-scale film. Herein, we focus on the feasibility of using PnP as a scalable fabrication technique for three-dimensional nanostructures and the superiority of the resultant thin-shell oxide nanoarchitected materials for specific applications, such as lightweight structural materials, mechanically robust nanocomposites, and high-performance piezoelectric materials. This review will discuss and summarize the relevant results obtained for nanoarchitected materials synthesized by PnP and provide suggestions for future research directions for scalable manufacturing and application.
Collapse
Affiliation(s)
- Gwangmin Bae
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Dongchan Jang
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Seokwoo Jeon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KAIST Institute for Nanocentury (KINC), Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
43
|
Wang G, Chen J, Ding Y, Cai P, Yi L, Li Y, Tu C, Hou Y, Wen Z, Dai L. Electrocatalysis for CO2 conversion: from fundamentals to value-added products. Chem Soc Rev 2021; 50:4993-5061. [DOI: 10.1039/d0cs00071j] [Citation(s) in RCA: 205] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This timely and comprehensive review mainly summarizes advances in heterogeneous electroreduction of CO2: from fundamentals to value-added products.
Collapse
|
44
|
|
45
|
Electroplated Functional Materials with 3D Nanostructures Defined by Advanced Optical Lithography and Their Emerging Applications. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10248780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Electroplating has been favored to date as a surface treatment technology in various industries in the development of semiconductors, automobiles, ships, and steel due to its advantages of being a simple, solution-based process, with low cost and high throughput. Recently, classical electroplating has been reborn as an advanced manufacturing process for functional materials by combining it with unconventional optical three-dimensional (3D) nanofabrication techniques capable of generating polymer templates with high-resolution 3D periodic nanostructures. The bottom-up filling behavior of electroplating rising from a seed layer makes it possible to densely fill the nanoporous network of the template with heterogeneous inorganic materials. At this time, understanding and optimizing the process parameters (e.g., additive, current density, type of current waveform, etc.) of electroplating is critical for defect control. In addition, since electroplating is generally performed near room temperature, unlike other thin film deposition techniques, structural damage to the polymer template by heat during electroplating is almost negligible. Based on the excellent compatibility of electroplating and optical 3D nanofabrication, innovative functional materials with 3D periodic nanostructures targeting electrochemical or energy-related applications have been created. In this mini review, a strategy for producing functional materials with 3D periodic nanostructures through a templating process will be covered, and the recent cases of successful applications to electrodes for energy storage devices, electrocatalysts, and thermoelectric materials will be summarized. We will also discuss technical issues that need to be considered in the process to improve the quality of the resulting functional materials with 3D nanoarchitectures.
Collapse
|
46
|
Chen H, Liang X, Liu Y, Ai X, Asefa T, Zou X. Active Site Engineering in Porous Electrocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002435. [PMID: 32666550 DOI: 10.1002/adma.202002435] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Electrocatalysis is at the center of many sustainable energy conversion technologies that are being developed to reduce the dependence on fossil fuels. The past decade has witnessed significant progresses in the exploitation of advanced electrocatalysts for diverse electrochemical reactions involved in electrolyzers and fuel cells, such as the hydrogen evolution reaction (HER), the oxygen reduction reaction (ORR), the CO2 reduction reaction (CO2 RR), the nitrogen reduction reaction (NRR), and the oxygen evolution reaction (OER). Herein, the recent research advances made in porous electrocatalysts for these five important reactions are reviewed. In the discussions, an attempt is made to highlight the advantages of porous electrocatalysts in multiobjective optimization of surface active sites including not only their density and accessibility but also their intrinsic activity. First, the current knowledge about electrocatalytic active sites is briefly summarized. Then, the electrocatalytic mechanisms of the five above-mentioned reactions (HER, ORR, CO2 RR, NRR, and OER), the current challenges faced by these reactions, and the recent efforts to meet these challenges using porous electrocatalysts are examined. Finally, the future research directions on porous electrocatalysts including synthetic strategies leading to these materials, insights into their active sites, and the standardized tests and the performance requirements involved are discussed.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiao Liang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yipu Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xuan Ai
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Tewodros Asefa
- Department of Chemistry and Chemical Biology & Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Xiaoxin Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
47
|
|
48
|
Cho D, Jang JS, Nam SH, Ko K, Hwang W, Jung JW, Lee J, Choi M, Hong JW, Kim ID, Jeon S. Focused Electric-Field Polymer Writing: Toward Ultralarge, Multistimuli-Responsive Membranes. ACS NANO 2020; 14:12173-12183. [PMID: 32880440 DOI: 10.1021/acsnano.0c05843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The cost-effective direct writing of polymer nanofibers (NFs) has garnered considerable research attention as a compelling one-pot strategy for obtaining key building blocks of electrochemical and optical devices. Among the promising applications, the changes in optical response from external stimuli such as mechanical deformation and changes in the thermal environment are of great significance for emerging applications in smart windows, privacy protection, aesthetics, artificial skin, and camouflage. Herein, we propose a rational design for the mass production of customized NFs through the development of focused electric-field polymer writing (FEPW) coupled with the roll-to-roll technique. As a proof of key applications, we demonstrate multistimuli-responsive (mechano- and thermochromism) membranes with an exceptional production scale (over 300 cm2). Specifically, the membranes consist of periodically aligned ultrathin (∼60 nm) alumina nanotubes inserted in the elastomers. We performed a two-phase finite element analysis of the unit cells to verify the underlying physics of light scattering at heterogeneous interfaces of the strain-induced air gaps. By adding thermochromic dye during the FEPW, the optical modulation of transmittance change (∼83% to 37% at visible wavelength) was successfully extended to high-contrast thermal-dependent coloration.
Collapse
Affiliation(s)
- Donghwi Cho
- Department of Materials Science and Engineering, Center for Bio-Integrated Electronics at the Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ji-Soo Jang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Sang-Hyeon Nam
- Department of Materials Science and Engineering, KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kwonhwan Ko
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Wontae Hwang
- Department of Materials Science and Engineering, KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jae-Wook Jung
- Structural Safety and Prognosis Research Division, Korea Atomic Energy Research Institute (KAERI), Daedeok-daero 989-111, Yusung-gu, Daejeon 34057, Republic of Korea
| | - Jiyoung Lee
- Department of Materials Science and Engineering, KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Myungwoo Choi
- Department of Materials Science and Engineering, KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jung-Wuk Hong
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seokwoo Jeon
- Department of Materials Science and Engineering, KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
49
|
Hui S(R, Shaigan N, Neburchilov V, Zhang L, Malek K, Eikerling M, Luna PD. Three-Dimensional Cathodes for Electrochemical Reduction of CO 2: From Macro- to Nano-Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1884. [PMID: 32962288 PMCID: PMC7558977 DOI: 10.3390/nano10091884] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
Rising anthropogenic CO2 emissions and their climate warming effects have triggered a global response in research and development to reduce the emissions of this harmful greenhouse gas. The use of CO2 as a feedstock for the production of value-added fuels and chemicals is a promising pathway for development of renewable energy storage and reduction of carbon emissions. Electrochemical CO2 conversion offers a promising route for value-added products. Considerable challenges still remain, limiting this technology for industrial deployment. This work reviews the latest developments in experimental and modeling studies of three-dimensional cathodes towards high-performance electrochemical reduction of CO2. The fabrication-microstructure-performance relationships of electrodes are examined from the macro- to nanoscale. Furthermore, future challenges, perspectives and recommendations for high-performance cathodes are also presented.
Collapse
Affiliation(s)
- Shiqiang (Rob) Hui
- Energy, Mining and Environment, National Research Council Canada, Vancouver, BC V6T 1W5, Canada; (N.S.); (V.N.); (L.Z.); (K.M.); (P.D.L.)
| | - Nima Shaigan
- Energy, Mining and Environment, National Research Council Canada, Vancouver, BC V6T 1W5, Canada; (N.S.); (V.N.); (L.Z.); (K.M.); (P.D.L.)
| | - Vladimir Neburchilov
- Energy, Mining and Environment, National Research Council Canada, Vancouver, BC V6T 1W5, Canada; (N.S.); (V.N.); (L.Z.); (K.M.); (P.D.L.)
| | - Lei Zhang
- Energy, Mining and Environment, National Research Council Canada, Vancouver, BC V6T 1W5, Canada; (N.S.); (V.N.); (L.Z.); (K.M.); (P.D.L.)
| | - Kourosh Malek
- Energy, Mining and Environment, National Research Council Canada, Vancouver, BC V6T 1W5, Canada; (N.S.); (V.N.); (L.Z.); (K.M.); (P.D.L.)
| | - Michael Eikerling
- Institute of Energy and Climate Research, IEK-13: Modelling and Simulation of Energy Materials, Forschungszentrum Jülich, 52425 Jülich, Germany;
| | - Phil De Luna
- Energy, Mining and Environment, National Research Council Canada, Vancouver, BC V6T 1W5, Canada; (N.S.); (V.N.); (L.Z.); (K.M.); (P.D.L.)
| |
Collapse
|