1
|
Tolbert GB, Jayawardana SB, Lee Y, Sun J, Qu F, Whitt LM, Shafaat HS, Wijeratne GB. Secondary Sphere Lewis Acid Activated Heme Superoxo Adducts Mimic Crucial Non-Covalent Interactions in IDO/TDO Heme Dioxygenases. Chemistry 2024; 30:e202402310. [PMID: 39222484 PMCID: PMC11747931 DOI: 10.1002/chem.202402310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Heme enzymes play a central role in a medley of reactivities within a wide variety of crucial biological systems. Their active sites are highly decorated with pivotal evolutionarily optimized non-covalent interactions that precisely choreograph their biological functionalities with specific regio-, stereo-, and chemo-selectivities. Gaining a clear comprehension of how such weak interactions within the active sites control reactivity offers powerful information to be implemented into the design of future therapeutic agents that target these heme enzymes. To shed light on such critical details pertaining to tryptophan dioxygenating heme enzymes, this study investigates the indole dioxygenation reactivities of Lewis acid-activated heme superoxo model systems, wherein an unprecedented kinetic behavior is revealed. In that, the activated heme superoxo adduct is observed to undergo indole dioxygenation with the intermediacy of a non-covalently organized precursor complex, which forms prior to the rate-limiting step of the overall reaction landscape. Spectroscopic and theoretical characterization of this precursor complex draws close parallels to the ternary complex of heme dioxygenases, which has been postulated to be of crucial importance for successful 2,3-dioxygenative cleavage of indole moieties.
Collapse
Affiliation(s)
- Garrett B Tolbert
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL 35487, United States
| | - Samith B Jayawardana
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL 35487, United States
| | - Yuri Lee
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, United States
| | - Junqi Sun
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL 35487, United States
| | - Fengrui Qu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, United States
| | - Logan M Whitt
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL 35487, United States
| | - Hannah S Shafaat
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, United States
| | - Gayan B Wijeratne
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL 35487, United States
| |
Collapse
|
2
|
Shen C, Wang Y. Recent Progress on Peroxidase Modification and Application. Appl Biochem Biotechnol 2024; 196:5740-5764. [PMID: 38180646 DOI: 10.1007/s12010-023-04835-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
Peroxdiase is one of the member of oxireductase super family, which has a broad substrate range and a variety of reaction types, including hydroxylation, epoxidation or halogenation of unactivated C-H bonds, and aromatic group or biophenol compounds. Here, we summarized the recently discovered enzymes with peroxidation activity, and focused on the special structures, sites, and corresponding strategies that can change the peroxidase catalytic activity, stability, and substrate range. The comparison of the structural differences between these natural enzymes and the mimic enzymes of binding nanomaterials and polymer materials is helpful to expand the application of peroxidase in industry. In addition, we also reviewed the catalytic application of peroxidase in the synthesis of important organic molecules and the degradation of pollutants.
Collapse
Affiliation(s)
- Chen Shen
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, 050018, China.
- State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Hebei University of Science & Technology, Shijiazhuang, 050018, China.
| | - Yongfa Wang
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, 050018, China
| |
Collapse
|
3
|
Ansari M, Bhattacharjee S, Pantazis DA. Correlating Structure with Spectroscopy in Ascorbate Peroxidase Compound II. J Am Chem Soc 2024; 146:9640-9656. [PMID: 38530124 PMCID: PMC11009960 DOI: 10.1021/jacs.3c13169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/27/2024]
Abstract
Structural and spectroscopic investigations of compound II in ascorbate peroxidase (APX) have yielded conflicting conclusions regarding the protonation state of the crucial Fe(IV) intermediate. Neutron diffraction and crystallographic data support an iron(IV)-hydroxo formulation, whereas Mössbauer, X-ray absorption (XAS), and nuclear resonance vibrational spectroscopy (NRVS) studies appear consistent with an iron(IV)-oxo species. Here we examine APX with spectroscopy-oriented QM/MM calculations and extensive exploration of the conformational space for both possible formulations of compound II. We establish that irrespective of variations in the orientation of a vicinal arginine residue and potential reorganization of proximal water molecules and hydrogen bonding, the Fe-O distances for the oxo and hydroxo forms consistently fall within distinct, narrow, and nonoverlapping ranges. The accuracy of geometric parameters is validated by coupled-cluster calculations with the domain-based local pair natural orbital approach, DLPNO-CCSD(T). QM/MM calculations of spectroscopic properties are conducted for all structural variants, encompassing Mössbauer, optical, X-ray absorption, and X-ray emission spectroscopies and NRVS. All spectroscopic observations can be assigned uniquely to an Fe(IV)═O form. A terminal hydroxy group cannot be reconciled with the spectroscopic data. Under no conditions can the Fe(IV)═O distance be sufficiently elongated to approach the crystallographically reported Fe-O distance. The latter is consistent only with a hydroxo species, either Fe(IV) or Fe(III). Our findings strongly support the Fe(IV)═O formulation of APX-II and highlight unresolved discrepancies in the nature of samples used across different experimental studies.
Collapse
Affiliation(s)
- Mursaleem Ansari
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz
1, Mülheim an der Ruhr 45470, Germany
| | - Sinjini Bhattacharjee
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz
1, Mülheim an der Ruhr 45470, Germany
| | - Dimitrios A. Pantazis
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz
1, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
4
|
Evans RM, Beaton SE, Rodriguez Macia P, Pang Y, Wong KL, Kertess L, Myers WK, Bjornsson R, Ash PA, Vincent KA, Carr SB, Armstrong FA. Comprehensive structural, infrared spectroscopic and kinetic investigations of the roles of the active-site arginine in bidirectional hydrogen activation by the [NiFe]-hydrogenase 'Hyd-2' from Escherichia coli. Chem Sci 2023; 14:8531-8551. [PMID: 37592998 PMCID: PMC10430524 DOI: 10.1039/d2sc05641k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 07/01/2023] [Indexed: 08/19/2023] Open
Abstract
The active site of [NiFe]-hydrogenases contains a strictly-conserved pendant arginine, the guanidine head group of which is suspended immediately above the Ni and Fe atoms. Replacement of this arginine (R479) in hydrogenase-2 from E. coli results in an enzyme that is isolated with a very tightly-bound diatomic ligand attached end-on to the Ni and stabilised by hydrogen bonding to the Nζ atom of the pendant lysine and one of the three additional water molecules located in the active site of the variant. The diatomic ligand is bound under oxidising conditions and is removed only after a prolonged period of reduction with H2 and reduced methyl viologen. Once freed of the diatomic ligand, the R479K variant catalyses both H2 oxidation and evolution but with greatly decreased rates compared to the native enzyme. Key kinetic characteristics are revealed by protein film electrochemistry: most importantly, a very low activation energy for H2 oxidation that is not linked to an increased H/D isotope effect. Native electrocatalytic reversibility is retained. The results show that the sluggish kinetics observed for the lysine variant arise most obviously because the advantage of a more favourable low-energy pathway is massively offset by an extremely unfavourable activation entropy. Extensive efforts to establish the identity of the diatomic ligand, the tight binding of which is an unexpected further consequence of replacing the pendant arginine, prove inconclusive.
Collapse
Affiliation(s)
- Rhiannon M Evans
- University of Oxford, Department of Chemistry South Parks Road Oxford UK
| | - Stephen E Beaton
- University of Oxford, Department of Chemistry South Parks Road Oxford UK
| | | | - Yunjie Pang
- College of Chemistry, Beijing Normal University 100875 Beijing China
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany
| | - Kin Long Wong
- University of Oxford, Department of Chemistry South Parks Road Oxford UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus Didcot UK
| | - Leonie Kertess
- University of Oxford, Department of Chemistry South Parks Road Oxford UK
| | - William K Myers
- University of Oxford, Department of Chemistry South Parks Road Oxford UK
| | - Ragnar Bjornsson
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany
- Univ Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire Chimie et Biologie des Métaux 17 Rue Des Martyrs F-38054 Grenoble Cedex France
| | - Philip A Ash
- School of Chemistry, The University of Leicester University Road Leicester LE1 7RH UK
| | - Kylie A Vincent
- University of Oxford, Department of Chemistry South Parks Road Oxford UK
| | - Stephen B Carr
- University of Oxford, Department of Chemistry South Parks Road Oxford UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus Didcot UK
| | - Fraser A Armstrong
- University of Oxford, Department of Chemistry South Parks Road Oxford UK
| |
Collapse
|
5
|
Zhang B, Lewis JA, Vermerris W, Sattler SE, Kang C. A sorghum ascorbate peroxidase with four binding sites has activity against ascorbate and phenylpropanoids. PLANT PHYSIOLOGY 2023; 192:102-118. [PMID: 36575825 PMCID: PMC10152656 DOI: 10.1093/plphys/kiac604] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 05/03/2023]
Abstract
In planta, H2O2 is produced as a by-product of enzymatic reactions and during defense responses. Ascorbate peroxidase (APX) is a key enzyme involved in scavenging cytotoxic H2O2. Here, we report the crystal structure of cytosolic APX from sorghum (Sorghum bicolor) (Sobic.001G410200). While the overall structure of SbAPX was similar to that of other APXs, SbAPX uniquely displayed four bound ascorbates rather than one. In addition to the ɣ-heme pocket identified in other APXs, ascorbates were bound at the δ-meso and two solvent-exposed pockets. Consistent with the presence of multiple binding sites, our results indicated that the H2O2-dependent oxidation of ascorbate displayed positive cooperativity. Bound ascorbate at two surface sites established an intricate proton network with ascorbate at the ɣ-heme edge and δ-meso sites. Based on crystal structures, steady-state kinetics, and site-directed mutagenesis results, both ascorbate molecules at the ɣ-heme edge and the one at the surface are expected to participate in the oxidation reaction. We provide evidence that the H2O2-dependent oxidation of ascorbate by APX produces a C2-hydrated bicyclic hemiketal form of dehydroascorbic acid at the ɣ-heme edge, indicating two successive electron transfers from a single-bound ascorbate. In addition, the δ-meso site was shared with several organic compounds, including p-coumaric acid and other phenylpropanoids, for the potential radicalization reaction. Site-directed mutagenesis of the critical residue at the ɣ-heme edge (R172A) only partially reduced polymerization activity. Thus, APX removes stress-generated H2O2 with ascorbates, and also uses this same H2O2 to potentially fortify cell walls via oxidative polymerization of phenylpropanoids in response to stress.
Collapse
Affiliation(s)
- Bixia Zhang
- Department of Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Jacob A Lewis
- Department of Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Wilfred Vermerris
- Department of Microbiology & Cell Science, UF Genetics Institute, and Florida Center for Renewable Chemicals and Fuels, University of Florida, Gainesville, Florida 32610, USA
| | - Scott E Sattler
- U.S. Department of Agriculture—Agricultural Research Service, Wheat, Sorghum and Forage Research Unit, Lincoln, Nebraska 68583, USA
| | - ChulHee Kang
- Department of Chemistry, Washington State University, Pullman, Washington 99164, USA
| |
Collapse
|
6
|
Zhang B, Lewis JA, Kovacs F, Sattler SE, Sarath G, Kang C. Activity of Cytosolic Ascorbate Peroxidase (APX) from Panicum virgatum against Ascorbate and Phenylpropanoids. Int J Mol Sci 2023; 24:1778. [PMID: 36675291 PMCID: PMC9864165 DOI: 10.3390/ijms24021778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
APX is a key antioxidant enzyme in higher plants, scavenging H2O2 with ascorbate in several cellular compartments. Here, we report the crystal structures of cytosolic ascorbate peroxidase from switchgrass (Panicum virgatum L., Pvi), a strategic feedstock plant with several end uses. The overall structure of PviAPX was similar to the structures of other APX family members, with a bound ascorbate molecule at the ɣ-heme edge pocket as in other APXs. Our results indicated that the H2O2-dependent oxidation of ascorbate displayed positive cooperativity. Significantly, our study suggested that PviAPX can oxidize a broad range of phenylpropanoids with δ-meso site in a rather similar efficiency, which reflects its role in the fortification of cell walls in response to insect feeding. Based on detailed structural and kinetic analyses and molecular docking, as well as that of closely related APX enzymes, the critical residues in each substrate-binding site of PviAPX are proposed. Taken together, these observations shed new light on the function and catalysis of PviAPX, and potentially benefit efforts improve plant health and biomass quality in bioenergy and forage crops.
Collapse
Affiliation(s)
- Bixia Zhang
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Jacob A. Lewis
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Frank Kovacs
- Chemistry Department, University of Nebraska-Kearney, Kearney, NE 68849, USA
| | - Scott E. Sattler
- Wheat, Sorghum and Forage Research Unit, U.S. Department of Agriculture—Agricultural Research Service, Lincoln, NE 68583, USA
| | - Gautam Sarath
- Wheat, Sorghum and Forage Research Unit, U.S. Department of Agriculture—Agricultural Research Service, Lincoln, NE 68583, USA
| | - ChulHee Kang
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
7
|
|
8
|
Jesse KA, Anferov SW, Collins KA, Valdez-Moreira JA, Czaikowski ME, Filatov AS, Anderson JS. Direct Aerobic Generation of a Ferric Hydroperoxo Intermediate Via a Preorganized Secondary Coordination Sphere. J Am Chem Soc 2021; 143:18121-18130. [PMID: 34698493 PMCID: PMC8569801 DOI: 10.1021/jacs.1c06911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Indexed: 01/19/2023]
Abstract
Enzymes exert control over the reactivity of metal centers with precise tuning of the secondary coordination sphere of active sites. One particularly elegant illustration of this principle is in the controlled delivery of proton and electron equivalents in order to activate abundant but kinetically inert oxidants such as O2 for oxidative chemistry. Chemists have drawn inspiration from biology in designing molecular systems where the secondary coordination sphere can shuttle protons or electrons to substrates. However, a biomimetic activation of O2 requires the transfer of both protons and electrons, and molecular systems where ancillary ligands are designed to provide both of these equivalents are comparatively rare. Here, we report the use of a dihydrazonopyrrole (DHP) ligand complexed to Fe to perform exactly such a biomimetic activation of O2. In the presence of O2, this complex directly generates a high spin Fe(III)-hydroperoxo intermediate which features a DHP• ligand radical via ligand-based transfer of an H atom. This system displays oxidative reactivity and ultimately releases hydrogen peroxide, providing insight on how secondary coordination sphere interactions influence the evolution of oxidizing intermediates in Fe-mediated aerobic oxidations.
Collapse
Affiliation(s)
- Kate A. Jesse
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Sophie W. Anferov
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Kelsey A. Collins
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | | | - Maia E. Czaikowski
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Alexander S. Filatov
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - John S. Anderson
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
9
|
Schröder GC, Meilleur F. Metalloprotein catalysis: structural and mechanistic insights into oxidoreductases from neutron protein crystallography. Acta Crystallogr D Struct Biol 2021; 77:1251-1269. [PMID: 34605429 PMCID: PMC8489226 DOI: 10.1107/s2059798321009025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/31/2021] [Indexed: 11/11/2022] Open
Abstract
Metalloproteins catalyze a range of reactions, with enhanced chemical functionality due to their metal cofactor. The reaction mechanisms of metalloproteins have been experimentally characterized by spectroscopy, macromolecular crystallography and cryo-electron microscopy. An important caveat in structural studies of metalloproteins remains the artefacts that can be introduced by radiation damage. Photoreduction, radiolysis and ionization deriving from the electromagnetic beam used to probe the structure complicate structural and mechanistic interpretation. Neutron protein diffraction remains the only structural probe that leaves protein samples devoid of radiation damage, even when data are collected at room temperature. Additionally, neutron protein crystallography provides information on the positions of light atoms such as hydrogen and deuterium, allowing the characterization of protonation states and hydrogen-bonding networks. Neutron protein crystallography has further been used in conjunction with experimental and computational techniques to gain insight into the structures and reaction mechanisms of several transition-state metal oxidoreductases with iron, copper and manganese cofactors. Here, the contribution of neutron protein crystallography towards elucidating the reaction mechanism of metalloproteins is reviewed.
Collapse
Affiliation(s)
- Gabriela C. Schröder
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Flora Meilleur
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
10
|
Lučić M, Wilson MT, Svistunenko DA, Owen RL, Hough MA, Worrall JAR. Aspartate or arginine? Validated redox state X-ray structures elucidate mechanistic subtleties of Fe IV = O formation in bacterial dye-decolorizing peroxidases. J Biol Inorg Chem 2021; 26:743-761. [PMID: 34477969 PMCID: PMC8463360 DOI: 10.1007/s00775-021-01896-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/23/2021] [Indexed: 11/26/2022]
Abstract
Structure determination of proteins and enzymes by X-ray crystallography remains the most widely used approach to complement functional and mechanistic studies. Capturing the structures of intact redox states in metalloenzymes is critical for assigning the chemistry carried out by the metal in the catalytic cycle. Unfortunately, X-rays interact with protein crystals to generate solvated photoelectrons that can reduce redox active metals and hence change the coordination geometry and the coupled protein structure. Approaches to mitigate such site-specific radiation damage continue to be developed, but nevertheless application of such approaches to metalloenzymes in combination with mechanistic studies are often overlooked. In this review, we summarize our recent structural and kinetic studies on a set of three heme peroxidases found in the bacterium Streptomyces lividans that each belong to the dye decolourizing peroxidase (DyP) superfamily. Kinetically, each of these DyPs has a distinct reactivity with hydrogen peroxide. Through a combination of low dose synchrotron X-ray crystallography and zero dose serial femtosecond X-ray crystallography using an X-ray free electron laser (XFEL), high-resolution structures with unambiguous redox state assignment of the ferric and ferryl (FeIV = O) heme species have been obtained. Experiments using stopped-flow kinetics, solvent-isotope exchange and site-directed mutagenesis with this set of redox state validated DyP structures have provided the first comprehensive kinetic and structural framework for how DyPs can modulate their distal heme pocket Asp/Arg dyad to use either the Asp or the Arg to facilitate proton transfer and rate enhancement of peroxide heterolysis.
Collapse
Affiliation(s)
- Marina Lučić
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Michael T Wilson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Dimitri A Svistunenko
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Robin L Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, Oxfordshire, UK
| | - Michael A Hough
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Jonathan A R Worrall
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
| |
Collapse
|
11
|
Kono F, Tamada T. Neutron crystallography for the elucidation of enzyme catalysis. Curr Opin Struct Biol 2021; 71:36-42. [PMID: 34214927 DOI: 10.1016/j.sbi.2021.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/08/2021] [Accepted: 05/22/2021] [Indexed: 11/26/2022]
Abstract
Hydrogen atoms and hydration water molecules in proteins are indispensable for many biochemical processes, especially enzymatic catalysis. The locations of hydrogen atoms in proteins are usually predicted based on X-ray structures, but it is still very difficult to know the ionization states of the catalytic residues, the hydration structure of the protein, and the characteristics of hydrogen-bonding interactions. Neutron crystallography allows the direct observation of hydrogen atoms that play crucial roles in molecular recognition and the catalytic reactions of enzymes. In this review, we present the current status of neutron crystallography in structural biology and recent neutron structural analyses of three enzymes: ascorbate peroxidase, the main protease of severe acute respiratory syndrome coronavirus 2, and copper-containing nitrite reductase.
Collapse
Affiliation(s)
- Fumiaki Kono
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Taro Tamada
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki 319-1106, Japan.
| |
Collapse
|
12
|
Kwon H, Basran J, Pathak C, Hussain M, Freeman SL, Fielding AJ, Bailey AJ, Stefanou N, Sparkes HA, Tosha T, Yamashita K, Hirata K, Murakami H, Ueno G, Ago H, Tono K, Yamamoto M, Sawai H, Shiro Y, Sugimoto H, Raven EL, Moody PCE. XFEL Crystal Structures of Peroxidase Compound II. Angew Chem Int Ed Engl 2021; 60:14578-14585. [PMID: 33826799 PMCID: PMC8251747 DOI: 10.1002/anie.202103010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 01/07/2023]
Abstract
Oxygen activation in all heme enzymes requires the formation of high oxidation states of iron, usually referred to as ferryl heme. There are two known intermediates: Compound I and Compound II. The nature of the ferryl heme-and whether it is an FeIV =O or FeIV -OH species-is important for controlling reactivity across groups of heme enzymes. The most recent evidence for Compound I indicates that the ferryl heme is an unprotonated FeIV =O species. For Compound II, the nature of the ferryl heme is not unambiguously established. Here, we report 1.06 Å and 1.50 Å crystal structures for Compound II intermediates in cytochrome c peroxidase (CcP) and ascorbate peroxidase (APX), collected using the X-ray free electron laser at SACLA. The structures reveal differences between the two peroxidases. The iron-oxygen bond length in CcP (1.76 Å) is notably shorter than in APX (1.87 Å). The results indicate that the ferryl species is finely tuned across Compound I and Compound II species in closely related peroxidase enzymes. We propose that this fine-tuning is linked to the functional need for proton delivery to the heme.
Collapse
Affiliation(s)
- Hanna Kwon
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Jaswir Basran
- Department of Molecular and Cell Biology and Leicester Institute of Structural and Chemical BiologyUniversity of LeicesterLancaster RoadLeicesterLE1 7RHUK
| | - Chinar Pathak
- Department of Molecular and Cell Biology and Leicester Institute of Structural and Chemical BiologyUniversity of LeicesterLancaster RoadLeicesterLE1 7RHUK
| | - Mahdi Hussain
- Department of Molecular and Cell Biology and Leicester Institute of Structural and Chemical BiologyUniversity of LeicesterLancaster RoadLeicesterLE1 7RHUK
| | - Samuel L. Freeman
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Alistair J. Fielding
- Centre for Natural Products Discovery, Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityJames Parsons Building, Byrom StreetLiverpoolL3 3AFUK
| | - Anna J. Bailey
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Natalia Stefanou
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Hazel A. Sparkes
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | | - Keitaro Yamashita
- RIKEN SPring-8 Center1-1-1 KoutoSayoHyogo679-5148Japan
- Present address: MRC Laboratory of Molecular BiologyFrancis Crick Avenue, Cambridge Biomedical CampusCambridgeCB1 0QHUK
| | - Kunio Hirata
- RIKEN SPring-8 Center1-1-1 KoutoSayoHyogo679-5148Japan
| | - Hironori Murakami
- Japan Synchrotron Radiation Research Institute1-1-1 KoutoSayoHyogo679-5198Japan
| | - Go Ueno
- RIKEN SPring-8 Center1-1-1 KoutoSayoHyogo679-5148Japan
| | - Hideo Ago
- RIKEN SPring-8 Center1-1-1 KoutoSayoHyogo679-5148Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute1-1-1 KoutoSayoHyogo679-5198Japan
| | | | - Hitomi Sawai
- Graduate School of Life ScienceUniversity of Hyogo3-2-1 Kouto, Kamigori-choAko-gunHyogo678-1297Japan
| | - Yoshitsugu Shiro
- Graduate School of Life ScienceUniversity of Hyogo3-2-1 Kouto, Kamigori-choAko-gunHyogo678-1297Japan
| | | | - Emma L. Raven
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Peter C. E. Moody
- Department of Molecular and Cell Biology and Leicester Institute of Structural and Chemical BiologyUniversity of LeicesterLancaster RoadLeicesterLE1 7RHUK
| |
Collapse
|
13
|
Kwon H, Basran J, Pathak C, Hussain M, Freeman SL, Fielding AJ, Bailey AJ, Stefanou N, Sparkes HA, Tosha T, Yamashita K, Hirata K, Murakami H, Ueno G, Ago H, Tono K, Yamamoto M, Sawai H, Shiro Y, Sugimoto H, Raven EL, Moody PCE. XFEL Crystal Structures of Peroxidase Compound II. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:14699-14706. [PMID: 38505375 PMCID: PMC10947387 DOI: 10.1002/ange.202103010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 03/21/2024]
Abstract
Oxygen activation in all heme enzymes requires the formation of high oxidation states of iron, usually referred to as ferryl heme. There are two known intermediates: Compound I and Compound II. The nature of the ferryl heme-and whether it is an FeIV=O or FeIV-OH species-is important for controlling reactivity across groups of heme enzymes. The most recent evidence for Compound I indicates that the ferryl heme is an unprotonated FeIV=O species. For Compound II, the nature of the ferryl heme is not unambiguously established. Here, we report 1.06 Å and 1.50 Å crystal structures for Compound II intermediates in cytochrome c peroxidase (CcP) and ascorbate peroxidase (APX), collected using the X-ray free electron laser at SACLA. The structures reveal differences between the two peroxidases. The iron-oxygen bond length in CcP (1.76 Å) is notably shorter than in APX (1.87 Å). The results indicate that the ferryl species is finely tuned across Compound I and Compound II species in closely related peroxidase enzymes. We propose that this fine-tuning is linked to the functional need for proton delivery to the heme.
Collapse
Affiliation(s)
- Hanna Kwon
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Jaswir Basran
- Department of Molecular and Cell Biology and Leicester Institute of Structural and Chemical BiologyUniversity of LeicesterLancaster RoadLeicesterLE1 7RHUK
| | - Chinar Pathak
- Department of Molecular and Cell Biology and Leicester Institute of Structural and Chemical BiologyUniversity of LeicesterLancaster RoadLeicesterLE1 7RHUK
| | - Mahdi Hussain
- Department of Molecular and Cell Biology and Leicester Institute of Structural and Chemical BiologyUniversity of LeicesterLancaster RoadLeicesterLE1 7RHUK
| | - Samuel L. Freeman
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Alistair J. Fielding
- Centre for Natural Products Discovery, Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityJames Parsons Building, Byrom StreetLiverpoolL3 3AFUK
| | - Anna J. Bailey
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Natalia Stefanou
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Hazel A. Sparkes
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | | - Keitaro Yamashita
- RIKEN SPring-8 Center1-1-1 KoutoSayoHyogo679-5148Japan
- Present address: MRC Laboratory of Molecular BiologyFrancis Crick Avenue, Cambridge Biomedical CampusCambridgeCB1 0QHUK
| | - Kunio Hirata
- RIKEN SPring-8 Center1-1-1 KoutoSayoHyogo679-5148Japan
| | - Hironori Murakami
- Japan Synchrotron Radiation Research Institute1-1-1 KoutoSayoHyogo679-5198Japan
| | - Go Ueno
- RIKEN SPring-8 Center1-1-1 KoutoSayoHyogo679-5148Japan
| | - Hideo Ago
- RIKEN SPring-8 Center1-1-1 KoutoSayoHyogo679-5148Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute1-1-1 KoutoSayoHyogo679-5198Japan
| | | | - Hitomi Sawai
- Graduate School of Life ScienceUniversity of Hyogo3-2-1 Kouto, Kamigori-choAko-gunHyogo678-1297Japan
| | - Yoshitsugu Shiro
- Graduate School of Life ScienceUniversity of Hyogo3-2-1 Kouto, Kamigori-choAko-gunHyogo678-1297Japan
| | | | - Emma L. Raven
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Peter C. E. Moody
- Department of Molecular and Cell Biology and Leicester Institute of Structural and Chemical BiologyUniversity of LeicesterLancaster RoadLeicesterLE1 7RHUK
| |
Collapse
|
14
|
Wan Q, Bennett BC, Wymore T, Li Z, Wilson MA, Brooks CL, Langan P, Kovalevsky A, Dealwis CG. Capturing the Catalytic Proton of Dihydrofolate Reductase: Implications for General Acid-Base Catalysis. ACS Catal 2021; 11:5873-5884. [PMID: 34055457 PMCID: PMC8154319 DOI: 10.1021/acscatal.1c00417] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/19/2021] [Indexed: 02/04/2023]
Abstract
![]()
Acid–base
catalysis, which involves one or more proton transfer
reactions, is a chemical mechanism commonly employed by many enzymes.
The molecular basis for catalysis is often derived from structures
determined at the optimal pH for enzyme activity. However, direct
observation of protons from experimental structures is quite difficult;
thus, a complete mechanistic description for most enzymes remains
lacking. Dihydrofolate reductase (DHFR) exemplifies general acid–base
catalysis, requiring hydride transfer and protonation of its substrate,
DHF, to form the product, tetrahydrofolate (THF). Previous X-ray and
neutron crystal structures coupled with theoretical calculations have
proposed that solvent mediates the protonation step. However, visualization
of a proton transfer has been elusive. Based on a 2.1 Å resolution
neutron structure of a pseudo-Michaelis complex of E. coli DHFR determined at acidic pH, we report the
direct observation of the catalytic proton and its parent solvent
molecule. Comparison of X-ray and neutron structures elucidated at
acidic and neutral pH reveals dampened dynamics at acidic pH, even
for the regulatory Met20 loop. Guided by the structures and calculations,
we propose a mechanism where dynamics are crucial for solvent entry
and protonation of substrate. This mechanism invokes the release of
a sole proton from a hydronium (H3O+) ion, its
pathway through a narrow channel that sterically hinders the passage
of water, and the ultimate protonation of DHF at the N5 atom.
Collapse
Affiliation(s)
| | - Brad C. Bennett
- Biological and Environmental Science Department, Samford University, Birmingham, Alabama 35229, United States
| | - Troy Wymore
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Mark A. Wilson
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Charles L. Brooks
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Paul Langan
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | | |
Collapse
|
15
|
Petrik ID, Davydov R, Kahle M, Sandoval B, Dwaraknath S, Ädelroth P, Hoffman B, Lu Y. An Engineered Glutamate in Biosynthetic Models of Heme-Copper Oxidases Drives Complete Product Selectivity by Tuning the Hydrogen-Bonding Network. Biochemistry 2021; 60:346-355. [PMID: 33464878 PMCID: PMC7888536 DOI: 10.1021/acs.biochem.0c00852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Efficiently carrying out the oxygen reduction reaction (ORR) is critical for many applications in biology and chemistry, such as bioenergetics and fuel cells, respectively. In biology, this reaction is carried out by large, transmembrane oxidases such as heme-copper oxidases (HCOs) and cytochrome bd oxidases. Common to these oxidases is the presence of a glutamate residue next to the active site, but its precise role in regulating the oxidase activity remains unclear. To gain insight into its role, we herein report that incorporation of glutamate next to a designed heme-copper center in two biosynthetic models of HCOs improves O2 binding affinity, facilitates protonation of reaction intermediates, and eliminates release of reactive oxygen species. High-resolution crystal structures of the models revealed extended, water-mediated hydrogen-bonding networks involving the glutamate. Electron paramagnetic resonance of the cryoreduced oxy-ferrous centers at cryogenic temperature followed by thermal annealing allowed observation of the key hydroperoxo intermediate that can be attributed to the hydrogen-bonding network. By demonstrating these important roles of glutamate in oxygen reduction biochemistry, this work offers deeper insights into its role in native oxidases, which may guide the design of more efficient artificial ORR enzymes or catalysts for applications such as fuel cells.
Collapse
Affiliation(s)
- Igor D. Petrik
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Roman Davydov
- The Department of Chemistry, Northwestern University, Evanston, Illinois 60201
| | - Maximilian Kahle
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Braddock Sandoval
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sudharsan Dwaraknath
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Brian Hoffman
- The Department of Chemistry, Northwestern University, Evanston, Illinois 60201
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
16
|
Roos G, Harvey JN. Histidine versus Cysteine-Bearing Heme-Dependent Halogen Peroxidases: Parallels and Differences for Cl - Oxidation. J Phys Chem B 2021; 125:74-85. [PMID: 33350832 DOI: 10.1021/acs.jpcb.0c09409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The homodimeric myeloperoxidase (MPO) features a histidine as a proximal ligand and a sulfonium linkage covalently attaching the heme porphyrin ring to the protein. MPO is able to catalyze Cl- oxidation with about the same efficiency as chloroperoxidase at pH 7.0. In this study, we seek to explore the parallels and differences between the histidine and cysteine heme-dependent halogen peroxidases. Transition states, reaction barriers, and relevant thermodynamic properties are calculated on protein models. Together with electronic structure calculations, it gives an overview of the reaction mechanisms and of the factors that determine the selectivity between one- and two-electron paths. Conclusions point to the innate oxidizing nature of MPO with the ester and sulfonium linkages hiking up the reactivity to enable chloride oxidation. The installation of a deprotonated imidazolate as a proximal ligand does not shift the equilibrium from one- to two-electron events without influencing the chemistry of the oxidation reaction.
Collapse
Affiliation(s)
- Goedele Roos
- UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, University of Lille, CNRS, UMR 8576, F-59000 Lille, France
| | - Jeremy N Harvey
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| |
Collapse
|
17
|
Lučić M, Svistunenko DA, Wilson MT, Chaplin AK, Davy B, Ebrahim A, Axford D, Tosha T, Sugimoto H, Owada S, Dworkowski FSN, Tews I, Owen RL, Hough MA, Worrall JAR. Serial Femtosecond Zero Dose Crystallography Captures a Water-Free Distal Heme Site in a Dye-Decolorising Peroxidase to Reveal a Catalytic Role for an Arginine in Fe IV =O Formation. Angew Chem Int Ed Engl 2020; 59:21656-21662. [PMID: 32780931 PMCID: PMC7756461 DOI: 10.1002/anie.202008622] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Indexed: 01/06/2023]
Abstract
Obtaining structures of intact redox states of metal centers derived from zero dose X-ray crystallography can advance our mechanistic understanding of metalloenzymes. In dye-decolorising heme peroxidases (DyPs), controversy exists regarding the mechanistic role of the distal heme residues aspartate and arginine in the heterolysis of peroxide to form the catalytic intermediate compound I (FeIV =O and a porphyrin cation radical). Using serial femtosecond X-ray crystallography (SFX), we have determined the pristine structures of the FeIII and FeIV =O redox states of a B-type DyP. These structures reveal a water-free distal heme site that, together with the presence of an asparagine, imply the use of the distal arginine as a catalytic base. A combination of mutagenesis and kinetic studies corroborate such a role. Our SFX approach thus provides unique insight into how the distal heme site of DyPs can be tuned to select aspartate or arginine for the rate enhancement of peroxide heterolysis.
Collapse
Affiliation(s)
- Marina Lučić
- School of Life SciencesUniversity of EssexWivenhoe ParkColchesterEssexCO4 3SQUK
| | | | - Michael T. Wilson
- School of Life SciencesUniversity of EssexWivenhoe ParkColchesterEssexCO4 3SQUK
| | - Amanda K. Chaplin
- School of Life SciencesUniversity of EssexWivenhoe ParkColchesterEssexCO4 3SQUK
| | - Bradley Davy
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUK
| | - Ali Ebrahim
- School of Life SciencesUniversity of EssexWivenhoe ParkColchesterEssexCO4 3SQUK
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUK
| | - Danny Axford
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUK
| | | | | | - Shigeki Owada
- RIKEN Spring-8 Center1-1-1 KoutoSayoHyogo679-5148Japan
- Japan Synchrotron Radiation Research Institute1-1-1 KoutoSayoHyogo679-5198Japan
| | | | - Ivo Tews
- Biological SciencesInstitute for Life SciencesUniversity of SouthamptonUniversity RoadSouthamptonSO17 1BJUK
| | - Robin L. Owen
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUK
| | - Michael A. Hough
- School of Life SciencesUniversity of EssexWivenhoe ParkColchesterEssexCO4 3SQUK
| | | |
Collapse
|
18
|
Lučić M, Svistunenko DA, Wilson MT, Chaplin AK, Davy B, Ebrahim A, Axford D, Tosha T, Sugimoto H, Owada S, Dworkowski FSN, Tews I, Owen RL, Hough MA, Worrall JAR. Serial Femtosecond Zero Dose Crystallography Captures a Water‐Free Distal Heme Site in a Dye‐Decolorising Peroxidase to Reveal a Catalytic Role for an Arginine in Fe
IV
=O Formation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Marina Lučić
- School of Life Sciences University of Essex Wivenhoe Park Colchester Essex CO4 3SQ UK
| | | | - Michael T. Wilson
- School of Life Sciences University of Essex Wivenhoe Park Colchester Essex CO4 3SQ UK
| | - Amanda K. Chaplin
- School of Life Sciences University of Essex Wivenhoe Park Colchester Essex CO4 3SQ UK
| | - Bradley Davy
- Diamond Light Source Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE UK
| | - Ali Ebrahim
- School of Life Sciences University of Essex Wivenhoe Park Colchester Essex CO4 3SQ UK
- Diamond Light Source Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE UK
| | - Danny Axford
- Diamond Light Source Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE UK
| | - Takehiko Tosha
- RIKEN Spring-8 Center 1-1-1 Kouto Sayo Hyogo 679-5148 Japan
| | | | - Shigeki Owada
- RIKEN Spring-8 Center 1-1-1 Kouto Sayo Hyogo 679-5148 Japan
- Japan Synchrotron Radiation Research Institute 1-1-1 Kouto Sayo Hyogo 679-5198 Japan
| | | | - Ivo Tews
- Biological Sciences Institute for Life Sciences University of Southampton University Road Southampton SO17 1BJ UK
| | - Robin L. Owen
- Diamond Light Source Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE UK
| | - Michael A. Hough
- School of Life Sciences University of Essex Wivenhoe Park Colchester Essex CO4 3SQ UK
| | | |
Collapse
|
19
|
Kalita S, Shaik S, Kisan HK, Dubey KD. A Paradigm Shift in the Catalytic Cycle of P450: The Preparatory Choreography during O 2 Binding and Origins of the Necessity for Two Protonation Pathways. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02775] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Surajit Kalita
- Department of Chemistry and Center for Informatics, Shiv Nadar University, NH91 Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190400, Israel
| | - Hemanta K. Kisan
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190400, Israel
- Department of Chemistry, Utkal University, Bhubaneswar, Odisha 751004, India
| | - Kshatresh Dutta Dubey
- Department of Chemistry and Center for Informatics, Shiv Nadar University, NH91 Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| |
Collapse
|
20
|
Ouyang X, Li X, Liu J, Liu Y, Xie Y, Du Z, Xie H, Chen B, Lu W, Chen D. Structure-activity relationship and mechanism of four monostilbenes with respect to ferroptosis inhibition. RSC Adv 2020; 10:31171-31179. [PMID: 35520676 PMCID: PMC9056428 DOI: 10.1039/d0ra04896h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/08/2020] [Indexed: 12/20/2022] Open
Abstract
Erastin-treated bone marrow-derived mesenchymal stem cells (bmMSCs) were prepared and used to compare the ferroptosis inhibitory bioactivities of four monostilbenes, including rhapontigenin (1a), isorhapontigenin (1b), piceatannol-3'-O-glucoside (1c), and rhapontin (1d). Their relative levels were 1c ≈ 1b > 1a ≈ 1d in 4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-undecanoic acid (C11-BODIPY), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and flow cytometric assays. The comparison highlighted two 4'-OH-containing monostilbenes (1c and 1b) in ferroptosis inhibitory bioactivity. Similar structure-activity relationships were also observed in antioxidant assays, including 1,1-diphenyl-2-picryl-hydrazl radical (DPPH˙)-trapping, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical (PTIO˙)-trapping, and Fe3+-reducing assays. UPLC-ESI-Q-TOF-MS analysis of the DPPH˙-trapping reaction of the monostilbenes revealed that they can inhibit ferroptosis in erastin-treated bmMSCs through a hydrogen donation-based antioxidant pathway. After hydrogen donation, these monostilbenes usually produce the corresponding stable dimers; additionally, the hydrogen donation potential was enhanced by the 4'-OH. The enhancement by 4'-OH can be attributed to the transannular resonance effect. This effect can be used to predict the inhibition potential of other π-π conjugative phenolics.
Collapse
Affiliation(s)
- Xiaojian Ouyang
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Xican Li
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Jie Liu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine Guangzhou 510006 China
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Yangping Liu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine Guangzhou 510006 China
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Yulu Xie
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Zhongcun Du
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Hong Xie
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Ban Chen
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Wenbiao Lu
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Dongfeng Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine Guangzhou 510006 China
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| |
Collapse
|
21
|
Gajdos L, Forsyth VT, Blakeley MP, Haertlein M, Imberty A, Samain E, Devos JM. Production of perdeuterated fucose from glyco-engineered bacteria. Glycobiology 2020; 31:151-158. [PMID: 32601663 PMCID: PMC7874385 DOI: 10.1093/glycob/cwaa059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/29/2020] [Accepted: 06/16/2020] [Indexed: 12/31/2022] Open
Abstract
l-Fucose and l-fucose-containing polysaccharides, glycoproteins or glycolipids play an important role in a variety of biological processes. l-Fucose-containing glycoconjugates have been implicated in many diseases including cancer and rheumatoid arthritis. Interest in fucose and its derivatives is growing in cancer research, glyco-immunology, and the study of host–pathogen interactions. l-Fucose can be extracted from bacterial and algal polysaccharides or produced (bio)synthetically. While deuterated glucose and galactose are available, and are of high interest for metabolic studies and biophysical studies, deuterated fucose is not easily available. Here, we describe the production of perdeuterated l-fucose, using glyco-engineered Escherichia coli in a bioreactor with the use of a deuterium oxide-based growth medium and a deuterated carbon source. The final yield was 0.2 g L−1 of deuterated sugar, which was fully characterized by mass spectrometry and nuclear magnetic resonance spectroscopy. We anticipate that the perdeuterated fucose produced in this way will have numerous applications in structural biology where techniques such as NMR, solution neutron scattering and neutron crystallography are widely used. In the case of neutron macromolecular crystallography, the availability of perdeuterated fucose can be exploited in identifying the details of its interaction with protein receptors and notably the hydrogen bonding network around the carbohydrate binding site.
Collapse
Affiliation(s)
- Lukas Gajdos
- Life Sciences Group, Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble 38000, France.,Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, Grenoble 38000, France.,Université Grenoble Alpes, CNRS, CERMAV, Grenoble 38000, France
| | - V Trevor Forsyth
- Life Sciences Group, Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble 38000, France.,Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, Grenoble 38000, France.,Faculty of Natural Sciences, Keele University, Staffordshire ST5 5BG, UK
| | - Matthew P Blakeley
- Large Scale Structures Group, Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Michael Haertlein
- Life Sciences Group, Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble 38000, France.,Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, Grenoble 38000, France
| | - Anne Imberty
- Université Grenoble Alpes, CNRS, CERMAV, Grenoble 38000, France
| | - Eric Samain
- Université Grenoble Alpes, CNRS, CERMAV, Grenoble 38000, France
| | - Juliette M Devos
- Life Sciences Group, Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble 38000, France.,Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, Grenoble 38000, France
| |
Collapse
|