1
|
Sarkar A, Jones ZR, Parashar M, Druga E, Akkiraju A, Conti S, Krishnamoorthi P, Nachuri S, Aman P, Hashemi M, Nunn N, Torelli MD, Gilbert B, Wilson KR, Shenderova OA, Tanjore D, Ajoy A. High-precision chemical quantum sensing in flowing monodisperse microdroplets. SCIENCE ADVANCES 2024; 10:eadp4033. [PMID: 39661672 PMCID: PMC11633744 DOI: 10.1126/sciadv.adp4033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/12/2024] [Indexed: 12/13/2024]
Abstract
A method is presented for high-precision chemical detection that integrates quantum sensing with droplet microfluidics. Using nanodiamonds (ND) with fluorescent nitrogen-vacancy (NV) centers as quantum sensors, rapidly flowing microdroplets containing analyte molecules are analyzed. A noise-suppressed mode of optically detected magnetic resonance is enabled by pairing controllable flow with microwave control of NV electronic spins, to detect analyte-induced signals of a few hundredths of a percent of the ND fluorescence. Using this method, paramagnetic ions in droplets are detected with low limit-of-detection using small analyte volumes, with exceptional measurement stability over >103 s. In addition, these droplets are used as microconfinement chambers by co-encapsulating ND quantum sensors with various analytes such as single cells, suggesting wide-ranging applications including single-cell metabolomics and real-time intracellular measurements from bioreactors. Important advances are enabled by this work, including portable chemical testing devices, amplification-free chemical assays, and chemical imaging tools for probing reactions within microenvironments.
Collapse
Affiliation(s)
- Adrisha Sarkar
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Zachary R. Jones
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Advanced Biofuels and Bioproducts Process Development Unit (ABPDU), Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley,CA 94720, USA
| | - Madhur Parashar
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Emanuel Druga
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Amala Akkiraju
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sophie Conti
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Pranav Krishnamoorthi
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Srisai Nachuri
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Parker Aman
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mohammad Hashemi
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nicholas Nunn
- Adamas Nanotechnologies Inc., Raleigh, NC 27617, USA
| | | | - Benjamin Gilbert
- Energy Geoscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kevin R. Wilson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Deepti Tanjore
- Advanced Biofuels and Bioproducts Process Development Unit (ABPDU), Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley,CA 94720, USA
| | - Ashok Ajoy
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- CIFAR Azrieli Global Scholars Program, 661 University Ave, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
2
|
Rodrigues NTL, Bland T, Ng K, Hirani N, Goehring NW. Quantitative perturbation-phenotype maps reveal nonlinear responses underlying robustness of PAR-dependent asymmetric cell division. PLoS Biol 2024; 22:e3002437. [PMID: 39652540 PMCID: PMC11627365 DOI: 10.1371/journal.pbio.3002437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 10/30/2024] [Indexed: 12/12/2024] Open
Abstract
A key challenge in the development of an organism is to maintain robust phenotypic outcomes in the face of perturbation. Yet, it is often unclear how such robust outcomes are encoded by developmental networks. Here, we use the Caenorhabditis elegans zygote as a model to understand sources of developmental robustness during PAR polarity-dependent asymmetric cell division. By quantitatively linking alterations in protein dosage to phenotype in individual embryos, we show that spatial information in the zygote is read out in a highly nonlinear fashion and, as a result, phenotypes are highly canalized against substantial variation in input signals. Our data point towards robustness of the conserved PAR polarity network that renders polarity axis specification resistant to variations in both the strength of upstream symmetry-breaking cues and PAR protein dosage. Analogously, downstream pathways involved in cell size and fate asymmetry are robust to dosage-dependent changes in the local concentrations of PAR proteins, implying nontrivial complexity in translating PAR concentration profiles into pathway outputs. We propose that these nonlinear signal-response dynamics between symmetry-breaking, PAR polarity, and asymmetric division modules effectively insulate each individual module from variation arising in others. This decoupling helps maintain the embryo along the correct developmental trajectory, thereby ensuring that asymmetric division is robust to perturbation. Such modular organization of developmental networks is likely to be a general mechanism to achieve robust developmental outcomes.
Collapse
Affiliation(s)
| | - Tom Bland
- The Francis Crick Institute, London, United Kingdom
- Institute for the Physics of Living Systems, University College London, London, United Kingdom
| | - KangBo Ng
- The Francis Crick Institute, London, United Kingdom
- Institute for the Physics of Living Systems, University College London, London, United Kingdom
| | - Nisha Hirani
- The Francis Crick Institute, London, United Kingdom
| | - Nathan W. Goehring
- The Francis Crick Institute, London, United Kingdom
- Institute for the Physics of Living Systems, University College London, London, United Kingdom
| |
Collapse
|
3
|
Sistemich L, Ebbinghaus S. Heat application in live cell imaging. FEBS Open Bio 2024; 14:1940-1954. [PMID: 39489617 PMCID: PMC11609584 DOI: 10.1002/2211-5463.13912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/29/2024] [Accepted: 10/01/2024] [Indexed: 11/05/2024] Open
Abstract
Thermal heating of biological samples allows to reversibly manipulate cellular processes with high temporal and spatial resolution. Manifold heating techniques in combination with live-cell imaging were developed, commonly tailored to customized applications. They include Peltier elements and microfluidics for homogenous sample heating as well as infrared lasers and radiation absorption by nanostructures for spot heating. A prerequisite of all techniques is that the induced temperature changes are measured precisely which can be the main challenge considering subcellular structures or multicellular organisms as target regions. This article discusses heating and temperature sensing techniques for live-cell imaging, leading to future applications in cell biology.
Collapse
Affiliation(s)
- Linda Sistemich
- Chair of Biophysical ChemistryRuhr‐University BochumGermany
- Research Center Chemical Sciences and Sustainability, Research Alliance RuhrBochumGermany
| | - Simon Ebbinghaus
- Chair of Biophysical ChemistryRuhr‐University BochumGermany
- Research Center Chemical Sciences and Sustainability, Research Alliance RuhrBochumGermany
| |
Collapse
|
4
|
Antonio Marín Guzmán J, Erker P, Gasparinetti S, Huber M, Yunger Halpern N. Key issues review: useful autonomous quantum machines. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:122001. [PMID: 39419064 DOI: 10.1088/1361-6633/ad8803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
Controlled quantum machines have matured significantly. A natural next step is to increasingly grant them autonomy, freeing them from time-dependent external control. For example, autonomy could pare down the classical control wires that heat and decohere quantum circuits; and an autonomous quantum refrigerator recently reset a superconducting qubit to near its ground state, as is necessary before a computation. Which fundamental conditions are necessary for realizing useful autonomous quantum machines? Inspired by recent quantum thermodynamics and chemistry, we posit conditions analogous to DiVincenzo's criteria for quantum computing. Furthermore, we illustrate the criteria with multiple autonomous quantum machines (refrigerators, circuits, clocks, etc) and multiple candidate platforms (neutral atoms, molecules, superconducting qubits, etc). Our criteria are intended to foment and guide the development of useful autonomous quantum machines.
Collapse
Affiliation(s)
- José Antonio Marín Guzmán
- Joint Center for Quantum Information and Computer Science, NIST and University of Maryland, College Park, MD 20742, United States of America
| | - Paul Erker
- Atominstitut, Technische Universität Wien, 1020 Vienna, Austria
- Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Boltzmanngasse 3 1090 Vienna, Austria
| | - Simone Gasparinetti
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Marcus Huber
- Atominstitut, Technische Universität Wien, 1020 Vienna, Austria
- Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Boltzmanngasse 3 1090 Vienna, Austria
| | - Nicole Yunger Halpern
- Joint Center for Quantum Information and Computer Science, NIST and University of Maryland, College Park, MD 20742, United States of America
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, United States of America
| |
Collapse
|
5
|
Hamoya T, Kaminaga K, Igarashi R, Nishimura Y, Yanagihara H, Morioka T, Suzuki C, Abe H, Ohshima T, Imaoka T. Intravital microscopic thermometry of rat mammary epithelium by fluorescent nanodiamond. NANOSCALE HORIZONS 2024; 9:1938-1947. [PMID: 39297440 DOI: 10.1039/d4nh00237g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Quantum sensing using the fluorescent nanodiamond (FND) nitrogen-vacancy center enables physical/chemical measurements of the microenvironment, although application of such measurements in living mammals poses significant challenges due to the unknown biodistribution and toxicity of FNDs, the limited penetration of visible light for quantum state manipulation/measurement, and interference from physiological motion. Here, we describe a microenvironmental thermometry technique using FNDs in rat mammary epithelium, an important model for mammary gland biology and breast cancer research. FNDs were injected directly into the mammary gland. Microscopic observation of mammary tissue sections showed that most FNDs remained in the mammary epithelium for at least 8 weeks. Pathological examination indicated no obvious change in tissue morphology, suggesting negligible toxicity. Optical excitation and detection were performed through a skin incision. Periodic movements due to respiration and heartbeat were mitigated by frequency filtering of the signal. Based on these methods, we successfully detected temperature elevation in the mammary epithelium associated with lipopolysaccharide-induced inflammation, demonstrating the sensitivity and relevance of the technique in biological contexts. This study lays the groundwork for expanding the applicability of quantum sensing in biomedical research, providing a tool for real-time monitoring of physiological and pathological processes.
Collapse
Affiliation(s)
- Takahiro Hamoya
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
- Department of Molecular-Targeting Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Kiichi Kaminaga
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Ryuji Igarashi
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Okayama, Meguro-ku, Tokyo 152-8550, Japan
- Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho Inage-ku, Chiba 263-8522, Japan
- Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yukiko Nishimura
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Hiromi Yanagihara
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Takamitsu Morioka
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Chihiro Suzuki
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | - Hiroshi Abe
- Quantum Materials and Applications Research Center, Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology, 1233 Watanuki-machi, Takasaki 370-1207, Japan
| | - Takeshi Ohshima
- Quantum Materials and Applications Research Center, Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology, 1233 Watanuki-machi, Takasaki 370-1207, Japan
| | - Tatsuhiko Imaoka
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
6
|
Addhya A, Tyne V, Guo X, Hammock IN, Li Z, Leung M, DeVault CT, Awschalom DD, Delegan N, Heremans FJ, High AA. Photonic-Cavity-Enhanced Laser Writing of Color Centers in Diamond. NANO LETTERS 2024; 24:11224-11231. [PMID: 39207952 PMCID: PMC11404486 DOI: 10.1021/acs.nanolett.4c02639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Color centers in diamond have widespread utility in quantum technologies, but their creation process remains stochastic in nature. Deterministic creation of color centers in device-ready diamond platforms can improve the yield, scalability, and integration. Recent work using pulsed laser excitation has shown impressive progress in deterministically creating defects in bulk diamond. Here, we extend this laser-writing process into nanophotonic devices etched into diamond membranes, including nanopillars and photonic resonators with writing and subsequent readout occurring in situ at cryogenic temperatures. We demonstrate the optically driven creation of carbon vacancy (GR1) and nitrogen vacancy (NV) centers in diamond nanopillars and observe enhanced photoluminescence collection from them. We also fabricate bullseye resonators and leverage their cavity modes to locally amplify the laser-writing field, yielding defect creation with picojoule write-pulse energies 100 times lower than those typically used in bulk diamond demonstrations.
Collapse
Affiliation(s)
- Anchita Addhya
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Victor Tyne
- Department of Physics, University of Chicago, Chicago, Illinois 60637, United States
| | - Xinghan Guo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Ian N Hammock
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Zixi Li
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Melody Leung
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Clayton T DeVault
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - David D Awschalom
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Department of Physics, University of Chicago, Chicago, Illinois 60637, United States
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Nazar Delegan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - F Joseph Heremans
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Alexander A High
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
7
|
Gerasimova EN, Fatkhutdinova LI, Vazhenin II, Uvarov EI, Vysotina E, Mikhailova L, Lazareva PA, Kostyushev D, Abakumov M, Parodi A, Yaroshenko VV, Zuev DA, Zyuzin MV. Hybrid plasmonic nanodiamonds for thermometry and local photothermal therapy of melanoma: a comparative study. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:4111-4125. [PMID: 39635454 PMCID: PMC11501064 DOI: 10.1515/nanoph-2024-0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/02/2024] [Indexed: 12/07/2024]
Abstract
Hyperthermia plays a significant role in cancer treatment by inducing cell damage through temperature elevation, often used alongside other treatment modalities. During hyperthermia therapy, temperature control is crucial. Here, we report on a simple synthesis route of hybrid plasmonic nanodiamonds either completely wrapped with an Au shell (NV@Au) or densely covered with Au NPs (NV@SiO 2 @Au). Such integration of nanodiamonds with Au NPs is advantageous both for heating and precise thermometry at nanoscale. After structural and optical investigations, heating abilities of the obtained plasmonic nanodiamonds were thoroughly inspected on glass, in association with living cells, and in tissue slices ex vivo, revealing their effective heat generation under excitation with light using a single excitation source. The developed hybrid plasmonic nanodiamonds were finally applied for local photothermal therapy of melanoma in vivo, demonstrating their efficacy in eradicating cancer cells and monitoring temperature during the process.
Collapse
Affiliation(s)
- Elena N. Gerasimova
- School of Physics and Engineering, ITMO University, Lomonosova 9, 191002St. Petersburg, Russia
| | | | - Ivan I. Vazhenin
- School of Physics and Engineering, ITMO University, Lomonosova 9, 191002St. Petersburg, Russia
| | - Egor I. Uvarov
- School of Physics and Engineering, ITMO University, Lomonosova 9, 191002St. Petersburg, Russia
| | - Elizaveta Vysotina
- School of Physics and Engineering, ITMO University, Lomonosova 9, 191002St. Petersburg, Russia
| | - Lidia Mikhailova
- School of Physics and Engineering, ITMO University, Lomonosova 9, 191002St. Petersburg, Russia
| | - Polina A. Lazareva
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, Ostrovityanova 1 bldg. 6, 117997Moscow, Russia
| | - Dmitry Kostyushev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Maxim Abakumov
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, Ostrovityanova 1 bldg. 6, 117997Moscow, Russia
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology (MISIS), Leninskiy Prospekt 4, 119049Moscow, Russia
| | - Alessandro Parodi
- Sirius University of Science and Technology, Olympic Ave, 1, 354340 Nizhneimeretinskaya Bukhta, Krasnodarskiy Kray, Sochi, Russia
| | - Vitaly V. Yaroshenko
- School of Physics and Engineering, ITMO University, Lomonosova 9, 191002St. Petersburg, Russia
| | - Dmitry A. Zuev
- School of Physics and Engineering, ITMO University, Lomonosova 9, 191002St. Petersburg, Russia
| | - Mikhail V. Zyuzin
- School of Physics and Engineering, ITMO University, Lomonosova 9, 191002St. Petersburg, Russia
| |
Collapse
|
8
|
Hsiao WWW, Lam XM, Le TN, Cheng CA, Chang HC. Exploring nanodiamonds: leveraging their dual capacities for anticancer photothermal therapy and temperature sensing. NANOSCALE 2024; 16:14994-15008. [PMID: 39044543 DOI: 10.1039/d4nr01615g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Cancer has become a primary global health concern, which has prompted increased attention towards targeted therapeutic approaches like photothermal therapy (PTT). The unique optical and magnetic properties of nanodiamonds (NDs) have made them versatile nanomaterials with promising applications in biomedicine. This comprehensive review focuses on the potential of NDs as a multifaceted platform for anticancer therapy, mainly focusing on their dual functionality in PTT and temperature sensing. The review highlighted NDs' ability to enhance PTT through hybridization or modification, underscoring their adaptability in delivering small molecule reagents effectively. Furthermore, NDs, particularly fluorescent nanodiamonds (FNDs) with negatively charged nitrogen-vacancy centers, enable precise temperature monitoring, enhancing PTT efficacy in anticancer treatment. Integrating FNDs into PTT holds promise for advancing therapeutic efficacy by providing valuable insights into localized temperature variations and cell death mechanisms. This review highlights new insights into cancer treatment strategies, showcasing the potential of NDs to revolutionize targeted therapeutics and improve patient outcomes.
Collapse
Affiliation(s)
- Wesley Wei-Wen Hsiao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
| | - Xuan Mai Lam
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
| | - Trong-Nghia Le
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - Chi-An Cheng
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan.
| | - Huan-Cheng Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
- Department of Chemistry, National Taiwan Normal University, Taipei 106, Taiwan
| |
Collapse
|
9
|
Chuma S, Kiyosue K, Akiyama T, Kinoshita M, Shimazaki Y, Uchiyama S, Sotoma S, Okabe K, Harada Y. Implication of thermal signaling in neuronal differentiation revealed by manipulation and measurement of intracellular temperature. Nat Commun 2024; 15:3473. [PMID: 38724563 PMCID: PMC11082174 DOI: 10.1038/s41467-024-47542-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 03/28/2024] [Indexed: 05/12/2024] Open
Abstract
Neuronal differentiation-the development of neurons from neural stem cells-involves neurite outgrowth and is a key process during the development and regeneration of neural functions. In addition to various chemical signaling mechanisms, it has been suggested that thermal stimuli induce neuronal differentiation. However, the function of physiological subcellular thermogenesis during neuronal differentiation remains unknown. Here we create methods to manipulate and observe local intracellular temperature, and investigate the effects of noninvasive temperature changes on neuronal differentiation using neuron-like PC12 cells. Using quantitative heating with an infrared laser, we find an increase in local temperature (especially in the nucleus) facilitates neurite outgrowth. Intracellular thermometry reveals that neuronal differentiation is accompanied by intracellular thermogenesis associated with transcription and translation. Suppression of intracellular temperature increase during neuronal differentiation inhibits neurite outgrowth. Furthermore, spontaneous intracellular temperature elevation is involved in neurite outgrowth of primary mouse cortical neurons. These results offer a model for understanding neuronal differentiation induced by intracellular thermal signaling.
Collapse
Affiliation(s)
- Shunsuke Chuma
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Science, Osaka University, 1-1 Machikaneyamacho, Toyonaka, Osaka, 560-0043, Japan
| | - Kazuyuki Kiyosue
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan
| | - Taishu Akiyama
- Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-Ku, Kyoto, Kyoto, 606-8501, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyo-Ku, Kyoto, Kyoto, 606-8501, Japan
| | - Masaki Kinoshita
- Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-Ku, Kyoto, Kyoto, 606-8501, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyo-Ku, Kyoto, Kyoto, 606-8501, Japan
| | - Yukiho Shimazaki
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Science, Osaka University, 1-1 Machikaneyamacho, Toyonaka, Osaka, 560-0043, Japan
| | - Seiichi Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Shingo Sotoma
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kohki Okabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan.
- JST, PRESTO, 4-8-1 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Yoshie Harada
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyo-Ku, Kyoto, Kyoto, 606-8501, Japan.
- Center for Quantum Information and Quantum Biology, Osaka University, 1-2 Machikaneyamacho, Toyonaka, Osaka, 560-0043, Japan.
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
10
|
Wang W, Liu L, Zhu J, Xing Y, Jiao S, Wu Z. AI-Enhanced Visual-Spectral Synergy for Fast and Ultrasensitive Biodetection of Breast Cancer-Related miRNAs. ACS NANO 2024; 18:6266-6275. [PMID: 38252138 DOI: 10.1021/acsnano.3c10543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
In biomedical testing, artificial intelligence (AI)-enhanced analysis has gradually been applied to the diagnosis of certain diseases. This research employs AI algorithms to refine the precision of integrative detection, encompassing both visual results and fluorescence spectra from lateral flow assays (LFAs), which signal the presence of cancer-linked miRNAs. Specifically, the color shift of gold nanoparticles (GNPs) is paired with the red fluorescence from nitrogen vacancy color centers (NV-centers) in fluorescent nanodiamonds (FNDs) and is integrated into LFA strips. While GNPs amplify the fluorescence of FNDs, in turn, FNDs enhance the color intensity of GNPs. This reciprocal intensification of fluorescence and color can be synergistically augmented with AI algorithms, thereby improving the detection sensitivity for early diagnosis. Supported by the detection platform based on this strategy, the fastest detection results with a limit of detection (LOD) at the fM level and the R2 value of ∼0.9916 for miRNA can be obtained within 5 min. Meanwhile, by labeling the capture probes for miRNA-21 and miRNA-96 (both of which are early indicators of breast cancer) on separate T-lines, simultaneous detection of them can be achieved. The miRNA detection methods employed in this study may potentially be applied in the future for the early detection of breast cancer.
Collapse
Affiliation(s)
- Wei Wang
- School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Lei Liu
- School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Jianxiong Zhu
- School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Youqiang Xing
- School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Songlong Jiao
- School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Ze Wu
- School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| |
Collapse
|
11
|
Xu F, Zhang S, Ma L, Hou Y, Li J, Denisenko A, Li Z, Spatz J, Wrachtrup J, Lei H, Cao Y, Wei Q, Chu Z. Quantum-enhanced diamond molecular tension microscopy for quantifying cellular forces. SCIENCE ADVANCES 2024; 10:eadi5300. [PMID: 38266085 PMCID: PMC10807811 DOI: 10.1126/sciadv.adi5300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
The constant interplay and information exchange between cells and the microenvironment are essential to their survival and ability to execute biological functions. To date, a few leading technologies such as traction force microscopy, optical/magnetic tweezers, and molecular tension-based fluorescence microscopy are broadly used in measuring cellular forces. However, the considerable limitations, regarding the sensitivity and ambiguities in data interpretation, are hindering our thorough understanding of mechanobiology. Here, we propose an innovative approach, namely, quantum-enhanced diamond molecular tension microscopy (QDMTM), to precisely quantify the integrin-based cell adhesive forces. Specifically, we construct a force-sensing platform by conjugating the magnetic nanotags labeled, force-responsive polymer to the surface of a diamond membrane containing nitrogen-vacancy centers. Notably, the cellular forces will be converted into detectable magnetic variations in QDMTM. After careful validation, we achieved the quantitative cellular force mapping by correlating measurement with the established theoretical model. We anticipate our method can be routinely used in studies like cell-cell or cell-material interactions and mechanotransduction.
Collapse
Affiliation(s)
- Feng Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Shuxiang Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Linjie Ma
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Yong Hou
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Jie Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Andrej Denisenko
- 3rd Institute of Physics, Research Center SCoPE and IQST, University of Stuttgart, 70569 Stuttgart, Germany
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Joachim Spatz
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM), University of Heidelberg, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| | - Jörg Wrachtrup
- 3rd Institute of Physics, Research Center SCoPE and IQST, University of Stuttgart, 70569 Stuttgart, Germany
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Hai Lei
- National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yi Cao
- National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Qiang Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
- School of Biomedical Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
12
|
Zhou H, Martin LS, Tyler M, Makarova O, Leitao N, Park H, Lukin MD. Robust Higher-Order Hamiltonian Engineering for Quantum Sensing with Strongly Interacting Systems. PHYSICAL REVIEW LETTERS 2023; 131:220803. [PMID: 38101374 DOI: 10.1103/physrevlett.131.220803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/18/2023] [Indexed: 12/17/2023]
Abstract
Dynamical decoupling techniques constitute an integral part of many quantum sensing platforms, often leading to orders-of-magnitude improvements in coherence time and sensitivity. Most ac sensing sequences involve a periodic echolike structure, in which the target signal is synchronized with the echo period. We show that for strongly interacting systems, this construction leads to a fundamental sensitivity limit associated with imperfect interaction decoupling. We present a simple physical picture demonstrating the origin of this limitation, and further formalize these considerations in terms of concise higher-order decoupling rules. We then show how these limitations can be surpassed by identifying a novel sequence building block, in which the signal period matches twice the echo period. Using these decoupling rules and the resulting sequence building block, we experimentally demonstrate significant improvements in dynamical decoupling timescales and magnetic field sensitivity, opening the door for new applications in quantum sensing and quantum many-body physics.
Collapse
Affiliation(s)
- Hengyun Zhou
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Leigh S Martin
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Matthew Tyler
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Oksana Makarova
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Nathaniel Leitao
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Hongkun Park
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Mikhail D Lukin
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
13
|
Đačanin Far L, Dramićanin MD. Luminescence Thermometry with Nanoparticles: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2904. [PMID: 37947749 PMCID: PMC10647651 DOI: 10.3390/nano13212904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Luminescence thermometry has emerged as a very versatile optical technique for remote temperature measurements, exhibiting a wide range of applicability spanning from cryogenic temperatures to 2000 K. This technology has found extensive utilization across many disciplines. In the last thirty years, there has been significant growth in the field of luminous thermometry. This growth has been accompanied by the development of temperature read-out procedures, the creation of luminescent materials for very sensitive temperature probes, and advancements in theoretical understanding. This review article primarily centers on luminescent nanoparticles employed in the field of luminescence thermometry. In this paper, we provide a comprehensive survey of the recent literature pertaining to the utilization of lanthanide and transition metal nanophosphors, semiconductor quantum dots, polymer nanoparticles, carbon dots, and nanodiamonds for luminescence thermometry. In addition, we engage in a discussion regarding the benefits and limitations of nanoparticles in comparison with conventional, microsized probes for their application in luminescent thermometry.
Collapse
Affiliation(s)
| | - Miroslav D. Dramićanin
- Centre of Excellence for Photoconversion, Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia;
| |
Collapse
|
14
|
Ding H, Liu K, Zhao X, Su B, Jiang D. Thermoelectric Nanofluidics Probing Thermal Heterogeneity inside Single Cells. J Am Chem Soc 2023; 145:22433-22441. [PMID: 37812815 DOI: 10.1021/jacs.3c06085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Accurate temperature measurement in one living cell is of great significance for understanding biological functions and regulation. Here, a nanopipet electric thermometer (NET) is established for real-time intracellular temperature measurement. Based on the temperature-controlled ion migration, the temperature change in solution results in altered ion mobilities and ion distributions, which can be converted to the thermoelectric responses of NET in a galvanostatic configuration. The exponential relationship between the voltage and the temperature promises highly sensitive thermoelectric responses up to 11.1 mV K-1, which is over an order of magnitude higher than previous thermoelectric thermometry. Moreover, the NET exhibits superior thermal resolution of 25 mK and spatiotemporal resolution of 100 nm and 0.9 ms as well as excellent stability and reproducibility. Benefiting from these unique features, both thermal fluctuations in steady-state cells and heat generation and dissipation upon drug administration can be successfully monitored, which are hardly achieved by current methods. By using NET, thermal heterogeneities of single cancer cells during immunotherapy were reported first in this work, in which the increased intracellular temperature was demonstrated to be associated with the survival benefit and resistance of cancer cells in immunotherapy. This work not only provides a reliable method for microscopic temperature monitoring but also gains new insights to elucidate the mechanism of immune evasion and therapeutic resistance.
Collapse
Affiliation(s)
- Hao Ding
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Kang Liu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Xinlu Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, China
| |
Collapse
|
15
|
Le T, Hsin R, Vo D, Tzeng Y, Le, T, Hsiao W. Nanoscale Thermometry with Fluorescent Nanodiamonds. NANODIAMONDS IN ANALYTICAL AND BIOLOGICAL SCIENCES 2023:156-170. [DOI: 10.1002/9781394202164.ch9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
|
16
|
Brites CDS, Marin R, Suta M, Carneiro Neto AN, Ximendes E, Jaque D, Carlos LD. Spotlight on Luminescence Thermometry: Basics, Challenges, and Cutting-Edge Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302749. [PMID: 37480170 DOI: 10.1002/adma.202302749] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/05/2023] [Indexed: 07/23/2023]
Abstract
Luminescence (nano)thermometry is a remote sensing technique that relies on the temperature dependency of the luminescence features (e.g., bandshape, peak energy or intensity, and excited state lifetimes and risetimes) of a phosphor to measure temperature. This technique provides precise thermal readouts with superior spatial resolution in short acquisition times. Although luminescence thermometry is just starting to become a more mature subject, it exhibits enormous potential in several areas, e.g., optoelectronics, photonics, micro- and nanofluidics, and nanomedicine. This work reviews the latest trends in the field, including the establishment of a comprehensive theoretical background and standardized practices. The reliability, repeatability, and reproducibility of the technique are also discussed, along with the use of multiparametric analysis and artificial-intelligence algorithms to enhance thermal readouts. In addition, examples are provided to underscore the challenges that luminescence thermometry faces, alongside the need for a continuous search and design of new materials, experimental techniques, and analysis procedures to improve the competitiveness, accessibility, and popularity of the technology.
Collapse
Affiliation(s)
- Carlos D S Brites
- Phantom-g, CICECO, Departamento de Física, Universidade de Aveiro, Campus Santiago, Aveiro, 3810-193, Portugal
| | - Riccardo Marin
- Departamento de Física de Materiales, Nanomaterials for Bioimaging Group (NanoBIG), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Markus Suta
- Inorganic Photoactive Materials, Institute of Inorganic Chemistry and Structural Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Albano N Carneiro Neto
- Phantom-g, CICECO, Departamento de Física, Universidade de Aveiro, Campus Santiago, Aveiro, 3810-193, Portugal
| | - Erving Ximendes
- Departamento de Física de Materiales, Nanomaterials for Bioimaging Group (NanoBIG), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Madrid, 28034, Spain
| | - Daniel Jaque
- Departamento de Física de Materiales, Nanomaterials for Bioimaging Group (NanoBIG), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Madrid, 28034, Spain
| | - Luís D Carlos
- Phantom-g, CICECO, Departamento de Física, Universidade de Aveiro, Campus Santiago, Aveiro, 3810-193, Portugal
| |
Collapse
|
17
|
Wang G, Barr AR, Tang H, Chen M, Li C, Xu H, Stasiuk A, Li J, Cappellaro P. Characterizing Temperature and Strain Variations with Qubit Ensembles for Their Robust Coherence Protection. PHYSICAL REVIEW LETTERS 2023; 131:043602. [PMID: 37566832 DOI: 10.1103/physrevlett.131.043602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 05/30/2023] [Accepted: 06/20/2023] [Indexed: 08/13/2023]
Abstract
Solid-state spin defects, especially nuclear spins with potentially achievable long coherence times, are compelling candidates for quantum memories and sensors. However, their current performances are still limited by dephasing due to variations of their intrinsic quadrupole and hyperfine interactions. We propose an unbalanced echo to overcome this challenge by using a second spin to refocus variations of these interactions while preserving the quantum information stored in the nuclear spin free evolution. The unbalanced echo can be used to probe the temperature and strain distribution in materials. We develop first-principles methods to predict variations of these interactions and reveal their correlation over large temperature and strain ranges. Experiments performed in an ensemble of ∼10^{10} nuclear spins in diamond demonstrate a 20-fold dephasing time increase, limited by other noise sources. We further numerically show that our method can refocus even stronger noise variations than present in our experiments.
Collapse
Affiliation(s)
- Guoqing Wang
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Ariel Rebekah Barr
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Hao Tang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Mo Chen
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Thomas J. Watson, Sr., Laboratory of Applied Physics, California Institute of Technology, Pasadena, California 91125, USA
- Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125, USA
| | - Changhao Li
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Haowei Xu
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Andrew Stasiuk
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Ju Li
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Paola Cappellaro
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
18
|
Qian W, Good MC. Peeking under the hood of early embryogenesis: Using tools and synthetic biology to understand native control systems and sculpt tissues. Semin Cell Dev Biol 2023; 141:43-49. [PMID: 35525819 PMCID: PMC9633583 DOI: 10.1016/j.semcdb.2022.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/13/2022] [Indexed: 10/18/2022]
Abstract
Early embryogenesis requires rapid division of pluripotent blastomeres, regulated genome activation, precise spatiotemporal signaling to pattern cell fate, and morphogenesis to shape primitive tissue architectures. The complexity of this process has inspired researchers to move beyond simple genetic perturbation into engineered devices and synthetic biology tools to permit temporal and spatial manipulation of the control systems guiding development. By precise alteration of embryo organization, it is now possible to advance beyond basic analytical strategies and directly test the sufficiency of models for developmental regulation. Separately, advances in micropatterning and embryoid culture have facilitated the bottom-up construction of complex embryo tissues allowing ex vivo systems to recapitulate even later stages of development. Embryos fertilized and grown ex vivo offer an excellent opportunity to exogenously perturb fundamental pathways governing embryogenesis. Here we review the technologies developed to thermally modulate the embryo cell cycle, and optically regulate morphogen and signaling pathways in space and time, specifically in the blastula embryo. Additionally, we highlight recent advances in cell patterning in two and three dimensions that have helped reveal the self-organizing properties and gene regulatory networks guiding early embryo organization.
Collapse
Affiliation(s)
- Wenchao Qian
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Cell and Molecular Biology Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew C. Good
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA,Cell and Molecular Biology Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Lead Contact,Correspondence: (M.C.G), Address: 421 Curie Blvd, 1151 Biomedical Research Building, Philadelphia PA 19104
| |
Collapse
|
19
|
Romshin AM, Zeeb V, Glushkov E, Radenovic A, Sinogeikin AG, Vlasov II. Nanoscale thermal control of a single living cell enabled by diamond heater-thermometer. Sci Rep 2023; 13:8546. [PMID: 37236978 DOI: 10.1038/s41598-023-35141-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
We report a new approach to controllable thermal stimulation of a single living cell and its compartments. The technique is based on the use of a single polycrystalline diamond particle containing silicon-vacancy (SiV) color centers. Due to the presence of amorphous carbon at its intercrystalline boundaries, such a particle is an efficient light absorber and becomes a local heat source when illuminated by a laser. Furthermore, the temperature of such a local heater is tracked by the spectral shift of the zero-phonon line of SiV centers. Thus, the diamond particle acts simultaneously as a heater and a thermometer. In the current work, we demonstrate the ability of such a Diamond Heater-Thermometer (DHT) to locally alter the temperature, one of the numerous parameters that play a decisive role for the living organisms at the nanoscale. In particular, we show that the local heating of 11-12 °C relative to the ambient temperature (22 °C) next to individual HeLa cells and neurons, isolated from the mouse hippocampus, leads to a change in the intracellular distribution of the concentration of free calcium ions. For individual HeLa cells, a long-term (about 30 s) increase in the integral intensity of Fluo-4 NW fluorescence by about three times is observed, which characterizes an increase in the [Ca2+]cyt concentration of free calcium in the cytoplasm. Heating near mouse hippocampal neurons also caused a calcium surge-an increase in the intensity of Fluo-4 NW fluorescence by 30% and a duration of ~ 0.4 ms.
Collapse
Affiliation(s)
- Alexey M Romshin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov str. 38, Moscow, 119991, Russia.
| | - Vadim Zeeb
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Moscow Region, 142292, Russia.
| | - Evgenii Glushkov
- Laboratory of Nanoscale Biology, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Aleksandra Radenovic
- Laboratory of Nanoscale Biology, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Andrey G Sinogeikin
- NanThermix SA, Ecole Polytechnique Federale de Lausanne (EPFL) Innovation Park, 1015, Lausanne, Switzerland
| | - Igor I Vlasov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov str. 38, Moscow, 119991, Russia
| |
Collapse
|
20
|
Gu Y, Piñol R, Moreno-Loshuertos R, Brites CDS, Zeler J, Martínez A, Maurin-Pasturel G, Fernández-Silva P, Marco-Brualla J, Téllez P, Cases R, Belsué RN, Bonvin D, Carlos LD, Millán A. Local Temperature Increments and Induced Cell Death in Intracellular Magnetic Hyperthermia. ACS NANO 2023; 17:6822-6832. [PMID: 36940429 PMCID: PMC10100554 DOI: 10.1021/acsnano.3c00388] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
The generation of temperature gradients on nanoparticles heated externally by a magnetic field is crucially important in magnetic hyperthermia therapy. But the intrinsic low heating power of magnetic nanoparticles, at the conditions allowed for human use, is a limitation that restricts the general implementation of the technique. A promising alternative is local intracellular hyperthermia, whereby cell death (by apoptosis, necroptosis, or other mechanisms) is attained by small amounts of heat generated at thermosensitive intracellular sites. However, the few experiments conducted on the temperature determination of magnetic nanoparticles have found temperature increments that are much higher than the theoretical predictions, thus supporting the local hyperthermia hypothesis. Reliable intracellular temperature measurements are needed to get an accurate picture and resolve the discrepancy. In this paper, we report the real-time variation of the local temperature on γ-Fe2O3 magnetic nanoheaters using a Sm3+/Eu3+ ratiometric luminescent thermometer located on its surface during exposure to an external alternating magnetic field. We measure maximum temperature increments of 8 °C on the surface of the nanoheaters without any appreciable temperature increase on the cell membrane. Even with magnetic fields whose frequency and intensity are still well within health safety limits, these local temperature increments are sufficient to produce a small but noticeable cell death, which is enhanced considerably as the magnetic field intensity is increased to the maximum level tolerated for human use, consequently demonstrating the feasibility of local hyperthermia.
Collapse
Affiliation(s)
- Yuanyu Gu
- INMA,
Institute of Nanoscience and Materials of Aragon, CSIC-University of Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
- School
of Materials Science and Engineering, Nanjing
Tech University, 210009, Nanjing People’s Republic of China
| | - Rafael Piñol
- INMA,
Institute of Nanoscience and Materials of Aragon, CSIC-University of Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Raquel Moreno-Loshuertos
- Department
of Biochemistry and Molecular and Cellular Biology, and Institute
for Biocomputation and Physics of Complex Systems, University of Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Carlos D. S. Brites
- Phantom-g,
CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Justyna Zeler
- Phantom-g,
CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
- Faculty
of Chemistry, University of Wroclaw, 14. F. Joliot-Curie Street, 50-383 Wroclaw, Poland
| | - Abelardo Martínez
- Department
of Power Electronics, I3A, University of
Zaragoza, 50018 Zaragoza, Spain
| | - Guillaume Maurin-Pasturel
- INMA,
Institute of Nanoscience and Materials of Aragon, CSIC-University of Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Patricio Fernández-Silva
- Department
of Biochemistry and Molecular and Cellular Biology, and Institute
for Biocomputation and Physics of Complex Systems, University of Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Joaquín Marco-Brualla
- Department
of Biochemistry and Molecular and Cellular Biology, and Institute
for Biocomputation and Physics of Complex Systems, University of Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Pedro Téllez
- INMA,
Institute of Nanoscience and Materials of Aragon, CSIC-University of Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Rafael Cases
- INMA,
Institute of Nanoscience and Materials of Aragon, CSIC-University of Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Rafael Navarro Belsué
- INMA,
Institute of Nanoscience and Materials of Aragon, CSIC-University of Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Debora Bonvin
- Powder
Technology Laboratory, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Luís D. Carlos
- Phantom-g,
CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Angel Millán
- INMA,
Institute of Nanoscience and Materials of Aragon, CSIC-University of Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
21
|
Segawa TF, Igarashi R. Nanoscale quantum sensing with Nitrogen-Vacancy centers in nanodiamonds - A magnetic resonance perspective. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2023; 134-135:20-38. [PMID: 37321756 DOI: 10.1016/j.pnmrs.2022.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Nanodiamonds containing fluorescent Nitrogen-Vacancy (NV) centers are the smallest single particles, of which a magnetic resonance spectrum can be recorded at room temperature using optically-detected magnetic resonance (ODMR). By recording spectral shift or changes in relaxation rates, various physical and chemical quantities can be measured such as the magnetic field, orientation, temperature, radical concentration, pH or even NMR. This turns NV-nanodiamonds into nanoscale quantum sensors, which can be read out by a sensitive fluorescence microscope equipped with an additional magnetic resonance upgrade. In this review, we introduce the field of ODMR spectroscopy of NV-nanodiamonds and how it can be used to sense different quantities. Thereby we highlight both, the pioneering contributions and the latest results (covered until 2021) with a focus on biological applications.
Collapse
Affiliation(s)
- Takuya F Segawa
- Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland; Laboratory for Solid State Physics, ETH Zurich, 8093 Zurich, Switzerland.
| | - Ryuji Igarashi
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1, Anagawa, Inage-Ku, Chiba 263-8555, Japan; Takasaki Advanced Radiation Research Institute, National Institutes for Quantum Science and Technology, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan; JST, PRESTO, Kawaguchi, Japan.
| |
Collapse
|
22
|
Aslam N, Zhou H, Urbach EK, Turner MJ, Walsworth RL, Lukin MD, Park H. Quantum sensors for biomedical applications. NATURE REVIEWS. PHYSICS 2023; 5:157-169. [PMID: 36776813 PMCID: PMC9896461 DOI: 10.1038/s42254-023-00558-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 05/09/2023]
Abstract
Quantum sensors are finding their way from laboratories to the real world, as witnessed by the increasing number of start-ups in this field. The atomic length scale of quantum sensors and their coherence properties enable unprecedented spatial resolution and sensitivity. Biomedical applications could benefit from these quantum technologies, but it is often difficult to evaluate the potential impact of the techniques. This Review sheds light on these questions, presenting the status of quantum sensing applications and discussing their path towards commercialization. The focus is on two promising quantum sensing platforms: optically pumped atomic magnetometers, and nitrogen-vacancy centres in diamond. The broad spectrum of biomedical applications is highlighted by four case studies ranging from brain imaging to single-cell spectroscopy.
Collapse
Affiliation(s)
- Nabeel Aslam
- Department of Physics, Harvard University, Cambridge, MA USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA USA
- Institute of Condensed Matter Physics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Hengyun Zhou
- Department of Physics, Harvard University, Cambridge, MA USA
| | - Elana K. Urbach
- Department of Physics, Harvard University, Cambridge, MA USA
| | - Matthew J. Turner
- Quantum Technology Center, University of Maryland, College Park, MD USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD USA
| | - Ronald L. Walsworth
- Quantum Technology Center, University of Maryland, College Park, MD USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD USA
- Department of Physics, University of Maryland, College Park, MD USA
| | | | - Hongkun Park
- Department of Physics, Harvard University, Cambridge, MA USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA USA
| |
Collapse
|
23
|
Liu GQ, Liu RB, Li Q. Nanothermometry with Enhanced Sensitivity and Enlarged Working Range Using Diamond Sensors. Acc Chem Res 2023; 56:95-105. [PMID: 36594628 DOI: 10.1021/acs.accounts.2c00576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Nanothermometry is increasingly demanded in frontier research in physics, chemistry, materials science and engineering, and biomedicine. An ideal thermometer should have features of reliable temperature interpretation, high sensitivity, fast response, minimum disturbance of the target's temperature, applicability in a variety of environments, and a large working temperature range. For applications in nanosystems, high spatial resolution is also desirable. Such requirements impose great challenges in nanothermometry since the shrinking of the sensor volume usually leads to a reduction in sensitivity.Diamond with nitrogen-vacancy (NV) centers provides opportunities for nanothermometry. NV center spins have sharp resonances due to their superb coherence. NV centers are multimodal sensors. They can directly sense magnetic fields, electric fields, temperature, pressure, and nuclear spins and, through proper transduction, measure other quantities such as the pH and deformation. In particular, their spin resonance frequencies vary with temperature, making them a promising thermometer. The high thermal conductivity, high hardness, chemical stability, and biocompatibility of diamond enable reliable and fast temperature sensing in complex environments ranging from erosive liquids to live systems. Chemical processing of diamond surfaces allows various functionalities such as targeting. The small size and the targeting capability of nanodiamonds then enable site-specific temperature sensing with nanoscale spatial resolution. However, the sensitivity of NV-based nanothermometry is yet to meet the requirement of practical systems with a large gap of a few orders of magnitude. On the other hand, although NV-based quantum sensing works well from 0.3 to 600 K, extending the sensing scheme to high temperature remains challenging due to uncertainty in identifying the exact physical limits and possible solution at elevated temperatures.This Account focuses on our efforts to enhance the temperature sensitivity and widen the working temperature range of diamond-based nanothermometry. We start with explaining the working principle and features of NV-based thermometry with examples of applications. Then a transducer-based concept is introduced with practical schemes to improve the sensitivity of the nanodiamond thermometer. Specifically, we show that the temperature signal can be transduced and amplified by adopting hybrid structures of nanodiamond and magnetic nanoparticles, which results in a record temperature sensitivity of 76 μK/√Hz. We also demonstrate quantum sensing with NV at high temperatures of up to 1000 K by adopting a pulsed heating-cooling scheme to carry out the spin polarization and readout at room temperature and the spin manipulation (sensing) at high temperatures. Finally, unsolved problems and future endeavors of diamond nanothermometry are discussed.
Collapse
Affiliation(s)
- Gang-Qin Liu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | | | | |
Collapse
|
24
|
Sigaeva A, Norouzi N, Schirhagl R. Intracellular Relaxometry, Challenges, and Future Directions. ACS CENTRAL SCIENCE 2022; 8:1484-1489. [PMID: 36439313 PMCID: PMC9686197 DOI: 10.1021/acscentsci.2c00976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen vacancy (NV) centers change their optical properties on the basis of their magnetic surroundings. Since optical signals can be detected more sensitively than small magnetic signals, this technique allows unprecedented sensitivity. Recently, NV center-based relaxometry has been used for measurements in living cells with subcellular resolution. The aim of this Outlook is to identify challenges in the field, including controlling the location of sensing particles, limitations in reproducibility, and issues arising from biocompatibility. We further provide an outlook and point to new directions in the field. These include new diamond materials with NV centers, other defects, or even entirely new materials that might replace diamonds. We further discuss new and more challenging samples, such as tissues or even entire organisms, that might be investigated with NV centers. Then, we address future challenges that have to be resolved in order to achieve this goal. Finally, we discuss new quantities that could be measured with NV centers in the future.
Collapse
|
25
|
Petrini G, Tomagra G, Bernardi E, Moreva E, Traina P, Marcantoni A, Picollo F, Kvaková K, Cígler P, Degiovanni IP, Carabelli V, Genovese M. Nanodiamond-Quantum Sensors Reveal Temperature Variation Associated to Hippocampal Neurons Firing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202014. [PMID: 35876403 PMCID: PMC9534962 DOI: 10.1002/advs.202202014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Indexed: 05/17/2023]
Abstract
Temperature is one of the most relevant parameters for the regulation of intracellular processes. Measuring localized subcellular temperature gradients is fundamental for a deeper understanding of cell function, such as the genesis of action potentials, and cell metabolism. Notwithstanding several proposed techniques, at the moment detection of temperature fluctuations at the subcellular level still represents an ongoing challenge. Here, for the first time, temperature variations (1 °C) associated with potentiation and inhibition of neuronal firing is detected, by exploiting a nanoscale thermometer based on optically detected magnetic resonance in nanodiamonds. The results demonstrate that nitrogen-vacancy centers in nanodiamonds provide a tool for assessing various levels of neuronal spiking activity, since they are suitable for monitoring different temperature variations, respectively, associated with the spontaneous firing of hippocampal neurons, the disinhibition of GABAergic transmission and the silencing of the network. Conjugated with the high sensitivity of this technique (in perspective sensitive to < 0.1 °C variations), nanodiamonds pave the way to a systematic study of the generation of localized temperature gradients under physiological and pathological conditions. Furthermore, they prompt further studies explaining in detail the physiological mechanism originating this effect.
Collapse
Affiliation(s)
- Giulia Petrini
- Istituto Nazionale di Ricerca MetrologicaStrada delle cacce 91Torino10135Italy
- Physics Department, University of Torinovia P. Giuria 1Torino10125Italy
- Department of Drug and Science Technology, University of TorinoCorso Raffaello 30Torino10125Italy
| | - Giulia Tomagra
- Department of Drug and Science Technology, University of TorinoCorso Raffaello 30Torino10125Italy
- NIS Inter‐departmental Centrevia G. Quarello 15Torino10135Italy
| | - Ettore Bernardi
- Istituto Nazionale di Ricerca MetrologicaStrada delle cacce 91Torino10135Italy
| | - Ekaterina Moreva
- Istituto Nazionale di Ricerca MetrologicaStrada delle cacce 91Torino10135Italy
| | - Paolo Traina
- Istituto Nazionale di Ricerca MetrologicaStrada delle cacce 91Torino10135Italy
| | - Andrea Marcantoni
- Department of Drug and Science Technology, University of TorinoCorso Raffaello 30Torino10125Italy
- NIS Inter‐departmental Centrevia G. Quarello 15Torino10135Italy
| | - Federico Picollo
- Physics Department, University of Torinovia P. Giuria 1Torino10125Italy
- Istituto Nazionale di Fisica Nucleare (INFN) Sez. Torinovia P. Giuria 1Torino10125Italy
| | - Klaudia Kvaková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo nam. 2Prague 6166 10Czechia
- Institute of Medical Biochemistry and Laboratory DiagnosticsFirst Faculty of MedicineCharles University
Katerinska 1660/32Prague 2121 08Czechia
| | - Petr Cígler
- Institute of Medical Biochemistry and Laboratory DiagnosticsFirst Faculty of MedicineCharles University
Katerinska 1660/32Prague 2121 08Czechia
| | - Ivo Pietro Degiovanni
- Istituto Nazionale di Ricerca MetrologicaStrada delle cacce 91Torino10135Italy
- Istituto Nazionale di Fisica Nucleare (INFN) Sez. Torinovia P. Giuria 1Torino10125Italy
| | - Valentina Carabelli
- Department of Drug and Science Technology, University of TorinoCorso Raffaello 30Torino10125Italy
- NIS Inter‐departmental Centrevia G. Quarello 15Torino10135Italy
| | - Marco Genovese
- Istituto Nazionale di Ricerca MetrologicaStrada delle cacce 91Torino10135Italy
- Istituto Nazionale di Fisica Nucleare (INFN) Sez. Torinovia P. Giuria 1Torino10125Italy
| |
Collapse
|
26
|
Zwicker D. The intertwined physics of active chemical reactions and phase separation. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Zhou D, Zhuan Q, Luo Y, Liu H, Meng L, Du X, Wu G, Hou Y, Li J, Fu X. Mito-Q promotes porcine oocytes maturation by maintaining mitochondrial thermogenesis via UCP2 downregulation. Theriogenology 2022; 187:205-214. [PMID: 35644089 DOI: 10.1016/j.theriogenology.2022.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/02/2022] [Accepted: 05/11/2022] [Indexed: 12/30/2022]
Abstract
Mitochondrial thermogenesis is an adaptive response of cells to their surrounding stress. Oxidative stress is one of the common stresses during in vitro maturation (IVM) of oocytes, which leads to mitochondrial dysfunction. This study aimed to probe the effects of the mitochondria-targeted antioxidant Mito-Q on oocyte development and unravel the role of Mito-Q in mitochondrial ATP production and thermogenesis regulation. Our results showed that Mito-Q had a positive effect on porcine oocytes maturation and subsequent embryo development. During oocytes IVM, Mito-Q could reduce ATP levels and ROS, increase lipid droplets accumulation, induce autophagy, and maintain mitochondrial temperature stability. Moreover, in metaphase II (MII) oocytes, Mito-Q would induce mitochondrial uncoupling manifested by decreased ATP, attenuated mitochondrial membrane potential (MMP), and increased mitochondrial thermogenesis. Notably, the expression of mitochondrial uncoupling protein (UCP2) was significantly reduced in oocytes treated with Mito-Q. Further study indicated that specific depletion of UCP2 in oocytes also resulted in increased thermogenesis, decreased ATP and declined MMP, suggesting that UCP2 downregulation may participate in Mito-Q-induced mitochondrial uncoupling. In summary, our data demonstrate that Mito-Q promotes oocyte maturation in vitro and maintains the stability of mitochondrial thermogenesis by inhibiting UCP2 expression.
Collapse
Affiliation(s)
- Dan Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science, Beijing, 100193, China
| | - Qingrui Zhuan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science, Beijing, 100193, China
| | - Yuwen Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science, Beijing, 100193, China
| | - Hongyu Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science, Beijing, 100193, China
| | - Lin Meng
- State Key Laboratories of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xingzhu Du
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science, Beijing, 100193, China
| | - Guoquan Wu
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, 650224, China
| | - Yunpeng Hou
- State Key Laboratories of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jun Li
- Department of Reproductive Medicine, Reproductive Medical Center, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050031, China.
| | - Xiangwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science, Beijing, 100193, China; State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, Xinjiang, 832000, China.
| |
Collapse
|
28
|
Wu Y, Weil T. Recent Developments of Nanodiamond Quantum Sensors for Biological Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200059. [PMID: 35343101 PMCID: PMC9259730 DOI: 10.1002/advs.202200059] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/23/2022] [Indexed: 05/09/2023]
Abstract
Measuring certain quantities at the nanoscale is often limited to strict conditions such as low temperature or vacuum. However, the recently developed nanodiamond (ND) quantum sensing technology shows great promise for ultrasensitive diagnosis and probing subcellular parameters at ambient conditions. Atom defects (i.e., N, Si) within the ND lattice provide stable emissions and sometimes spin-dependent photoluminescence. These unique properties endow ND quantum sensors with the capacity to detect local temperature, magnetic fields, electric fields, or strain. In this review, some of the recent, most exciting developments in the preparation and application of ND sensors to solve current challenges in biology and medicine including ultrasensitive detection of virions and local sensing of pH, radical species, magnetic fields, temperature, and rotational movements, are discussed.
Collapse
Affiliation(s)
- Yingke Wu
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Tanja Weil
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| |
Collapse
|
29
|
Oshimi K, Nishimura Y, Matsubara T, Tanaka M, Shikoh E, Zhao L, Zou Y, Komatsu N, Ikado Y, Takezawa Y, Kage-Nakadai E, Izutsu Y, Yoshizato K, Morita S, Tokunaga M, Yukawa H, Baba Y, Teki Y, Fujiwara M. Glass-patternable notch-shaped microwave architecture for on-chip spin detection in biological samples. LAB ON A CHIP 2022; 22:2519-2530. [PMID: 35510631 DOI: 10.1039/d2lc00112h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report a notch-shaped coplanar microwave waveguide antenna on a glass plate designed for on-chip detection of optically detected magnetic resonance (ODMR) of fluorescent nanodiamonds (NDs). A lithographically patterned thin wire at the center of the notch area in the coplanar waveguide realizes a millimeter-scale ODMR detection area (1.5 × 2.0 mm2) and gigahertz-broadband characteristics with low reflection (∼8%). The ODMR signal intensity in the detection area is quantitatively predictable by numerical simulation. Using this chip device, we demonstrate a uniform ODMR signal intensity over the detection area for cells, tissue, and worms. The present demonstration of a chip-based microwave architecture will enable scalable chip integration of ODMR-based quantum sensing technology into various bioassay platforms.
Collapse
Affiliation(s)
- Keisuke Oshimi
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | - Yushi Nishimura
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
- Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Tsutomu Matsubara
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Masuaki Tanaka
- Department of Electrical and Information Engineering, Graduate School of Engineering, Osaka City University, Osaka 558-8585, Japan
| | - Eiji Shikoh
- Department of Electrical and Information Engineering, Graduate School of Engineering, Osaka City University, Osaka 558-8585, Japan
| | - Li Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Yajuan Zou
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Naoki Komatsu
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Yuta Ikado
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Yuka Takezawa
- Department of Human Life Science, Graduate School of Food and Human Life Science, Osaka City University, Osaka 558-8585, Japan
| | - Eriko Kage-Nakadai
- Department of Human Life Science, Graduate School of Food and Human Life Science, Osaka City University, Osaka 558-8585, Japan
| | - Yumi Izutsu
- Department of Biology, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Katsutoshi Yoshizato
- Synthetic biology laboratory, Graduate school of medicine, Osaka City University, Osaka 545-8585, Japan
| | - Saho Morita
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Masato Tokunaga
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Hiroshi Yukawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya 464-8603, Japan
- Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya 464-8603, Japan
- Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Yoshio Teki
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | - Masazumi Fujiwara
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| |
Collapse
|
30
|
Wu Y, Balasubramanian P, Wang Z, Coelho JAS, Prslja M, Siebert R, Plenio MB, Jelezko F, Weil T. Detection of Few Hydrogen Peroxide Molecules Using Self-Reporting Fluorescent Nanodiamond Quantum Sensors. J Am Chem Soc 2022; 144:12642-12651. [PMID: 35737900 PMCID: PMC9305977 DOI: 10.1021/jacs.2c01065] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Hydrogen peroxide
(H2O2) plays an important
role in various signal transduction pathways and regulates important
cellular processes. However, monitoring and quantitatively assessing
the distribution of H2O2 molecules inside living
cells requires a nanoscale sensor with molecular-level sensitivity.
Herein, we show the first demonstration of sub-10 nm-sized fluorescent
nanodiamonds (NDs) as catalysts for the decomposition of H2O2 and the production of radical intermediates at the
nanoscale. Furthermore, the nitrogen-vacancy quantum sensors inside
the NDs are employed to quantify the aforementioned radicals. We believe
that our method of combining the peroxidase-mimicking activities of
the NDs with their intrinsic quantum sensor showcases their application
as self-reporting H2O2 sensors with molecular-level
sensitivity and nanoscale spatial resolution. Given the robustness
and the specificity of the sensor, our results promise a new platform
for elucidating the role of H2O2 at the cellular
level.
Collapse
Affiliation(s)
- Yingke Wu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Priyadharshini Balasubramanian
- Institute for Quantum Optics and IQST, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany.,Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm 89081, Germany
| | - Zhenyu Wang
- Institut für Theoretische Physik und IQST, Universität Ulm, Albert-Einstein-Allee 11, Ulm 89081, Germany.,Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China.,Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
| | - Jaime A S Coelho
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculty of Sciences, University of Lisbon, Campo Grande, Lisbon 1749-016, Portugal
| | - Mateja Prslja
- Institute for Quantum Optics and IQST, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm 89081, Germany
| | - Martin B Plenio
- Institut für Theoretische Physik und IQST, Universität Ulm, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Fedor Jelezko
- Institute for Quantum Optics and IQST, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.,Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| |
Collapse
|
31
|
Bardhan D, Chatterjee H, Sen D, Sengupta M, Ghosh SK. Photothermal Reshaping of One-Dimensional Plasmonic Polymers: From Colloidal Dispersion to Living Cells. ACS OMEGA 2022; 7:11501-11509. [PMID: 35415361 PMCID: PMC8992283 DOI: 10.1021/acsomega.2c01094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Cellular internalization of plasmonic metal nanostructured materials has recently become a requisite for biomedical engineering of several intracellular processes that could foster an extensive paradigm to perform desired functions in the living cells. While numerous anisotropic metal nanostructures can be employed to pursue the specific functions, their incorporation becomes restricted due to morphological specificity to be engulfed in the cells. Due to recent advent in the self-assembly strategies, individual gold nanospheres could be interdigitated to one-dimensional plasmonic polymers and undergo subsequent laser-induced photothermal reshaping to rod-like nanostructures. The salient feature of biological significance is merely the variation of particle size within the polymers that engenders a dramatic impact on the radiative and nonradiative properties expressed in the scale of Faraday number (F a) and Joule number (J 0), respectively, as a function of the aspect ratio (α) of the nanorods. The effect on the nonradiative properties augments designing of nanoscale thermometry essential for photothermal applications in living cells. The conception of the colloidal dispersion has been extended to the cellular environment in a mice model; the selective accumulation of the nanostructures in the cells could provide an invading relationship between plasmonic characteristics, temperature distribution, and the biological issues. The critical correlation between optical and thermal characteristics toward biomedical manipulation from both theoretical and experimental perspectives could augment a milestone toward the progress of modern medical sciences.
Collapse
Affiliation(s)
- Dorothy Bardhan
- Department
of Chemistry, Assam University, Silchar 788011, India
| | - Hirak Chatterjee
- Department
of Chemistry, Assam University, Silchar 788011, India
| | - Debarun Sen
- Department
of Chemistry, Assam University, Silchar 788011, India
| | - Mahuya Sengupta
- Department
of Biotechnology, Assam University, Silchar 788011, India
| | | |
Collapse
|
32
|
Zhang Q, Yin J, Yan Y, Chen S, Wei BY, Zhao S, Li M, Lei M, Lin Y, Shi F, Du J. Biocompatible Nanotomography of Tightly Focused Light. NANO LETTERS 2022; 22:1851-1857. [PMID: 35175061 DOI: 10.1021/acs.nanolett.1c03905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tightly focusing a spatially modulated laser beam lays the foundations for advanced optical techniques, such as a holographic optical tweezer and deterministic super-resolution imaging. Precisely mapping the subwavelength features of those highly confined fields is critical to improving the spatial resolution, especially in highly scattering biotissues. However, current techniques characterizing focal fields are mostly limited to conditions such as under a vacuum and on a glass surface. An optical probe with low cytotoxicity and resistance to autofluorescence is the key to achieving in vivo applications. Here, we use a newly emerging quantum reference beacon, the nitrogen-vacancy (NV) center in the nanodiamond, to characterize the focal field of the near-infrared (NIR) laser focus in Caenorhabditis elegans (C. elegans). This biocompatible background-free focal field mapping technique has the potential to optimize in vivo optical imaging and manipulation.
Collapse
Affiliation(s)
- Qi Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- School of Biomedical Engineering & Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Jun Yin
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yihao Yan
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Sanyou Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- School of Biomedical Engineering & Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Bing-Yan Wei
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Sheng Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Min Li
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Ming Lei
- MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yiheng Lin
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Fazhan Shi
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- School of Biomedical Engineering & Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Jiangfeng Du
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
33
|
Li C, Soleyman R, Kohandel M, Cappellaro P. SARS-CoV-2 Quantum Sensor Based on Nitrogen-Vacancy Centers in Diamond. NANO LETTERS 2022; 22:43-49. [PMID: 34913700 PMCID: PMC8691455 DOI: 10.1021/acs.nanolett.1c02868] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/04/2021] [Indexed: 05/05/2023]
Abstract
The development of highly sensitive and rapid biosensing tools targeted to the highly contagious virus SARS-CoV-2 is critical to tackling the COVID-19 pandemic. Quantum sensors can play an important role because of their superior sensitivity and fast improvements in recent years. Here we propose a molecular transducer designed for nitrogen-vacancy (NV) centers in nanodiamonds, translating the presence of SARS-CoV-2 RNA into an unambiguous magnetic noise signal that can be optically read out. We evaluate the performance of the hybrid sensor, including its sensitivity and false negative rate, and compare it to widespread diagnostic methods. The proposed method is fast and promises to reach a sensitivity down to a few hundreds of RNA copies with false negative rate less than 1%. The proposed hybrid sensor can be further implemented with different solid-state defects and substrates, generalized to diagnose other RNA viruses, and integrated with CRISPR technology.
Collapse
Affiliation(s)
- Changhao Li
- Research Laboratory of Electronics and Department of
Nuclear Science and Engineering, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United
States
| | - Rouhollah Soleyman
- Department of Applied Mathematics,
University of Waterloo, Waterloo, Ontario N2L 3G1,
Canada
| | - Mohammad Kohandel
- Department of Applied Mathematics,
University of Waterloo, Waterloo, Ontario N2L 3G1,
Canada
| | - Paola Cappellaro
- Research Laboratory of Electronics and Department of
Nuclear Science and Engineering, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United
States
- Department of Physics, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United
States
| |
Collapse
|
34
|
Feng G, Zhang H, Zhu X, Zhang J, Fang J. Fluorescence Thermometer: Intermediation of the Fontal Temperature and Light. Biomater Sci 2022; 10:1855-1882. [DOI: 10.1039/d1bm01912k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rapid advance of thermal materials and fluorescence spectroscopy has extensively promoted micro-scale fluorescence thermometry development in recent years. Based on the advantages of fast response, high sensitivity, simple operation,...
Collapse
|
35
|
Okabe K, Uchiyama S. Intracellular thermometry uncovers spontaneous thermogenesis and associated thermal signaling. Commun Biol 2021; 4:1377. [PMID: 34887517 PMCID: PMC8660847 DOI: 10.1038/s42003-021-02908-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
Conventional thermal biology has elucidated the physiological function of temperature homeostasis through spontaneous thermogenesis and responses to variations in environmental temperature in organisms. In addition to research on individual physiological phenomena, the molecular mechanisms of fever and physiological events such as temperature-dependent sex determination have been intensively addressed. Thermosensitive biomacromolecules such as heat shock proteins (HSPs) and transient receptor potential (TRP) channels were systematically identified, and their sophisticated functions were clarified. Complementarily, recent progress in intracellular thermometry has opened new research fields in thermal biology. High-resolution intracellular temperature mapping has uncovered thermogenic organelles, and the thermogenic functions of brown adipocytes were ascertained by the combination of intracellular thermometry and classic molecular biology. In addition, intracellular thermometry has introduced a new concept, "thermal signaling", in which temperature variation within biological cells acts as a signal in a cascade of intriguing biological events.
Collapse
Affiliation(s)
- Kohki Okabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
- JST, PRESTO, Saitama, Japan.
| | - Seiichi Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
36
|
Opto-thermal technologies for microscopic analysis of cellular temperature-sensing systems. Biophys Rev 2021; 14:41-54. [PMID: 35340595 PMCID: PMC8921355 DOI: 10.1007/s12551-021-00854-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
AbstractCould enzymatic activities and their cooperative functions act as cellular temperature-sensing systems? This review introduces recent opto-thermal technologies for microscopic analyses of various types of cellular temperature-sensing system. Optical microheating technologies have been developed for local and rapid temperature manipulations at the cellular level. Advanced luminescent thermometers visualize the dynamics of cellular local temperature in space and time during microheating. An optical heater and thermometer can be combined into one smart nanomaterial that demonstrates hybrid function. These technologies have revealed a variety of cellular responses to spatial and temporal changes in temperature. Spatial temperature gradients cause asymmetric deformations during mitosis and neurite outgrowth. Rapid changes in temperature causes imbalance of intracellular Ca2+ homeostasis and membrane potential. Among those responses, heat-induced muscle contractions are highlighted. It is also demonstrated that the short-term heating hyperactivates molecular motors to exceed their maximal activities at optimal temperatures. We discuss future prospects for opto-thermal manipulation of cellular functions and contributions to obtain a deeper understanding of the mechanisms of cellular temperature-sensing systems.
Collapse
|
37
|
Fujiwara M, Shikano Y. Diamond quantum thermometry: from foundations to applications. NANOTECHNOLOGY 2021; 32:482002. [PMID: 34416739 DOI: 10.1088/1361-6528/ac1fb1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Diamond quantum thermometry exploits the optical and electrical spin properties of colour defect centres in diamonds and, acts as a quantum sensing method exhibiting ultrahigh precision and robustness. Compared to the existing luminescent nanothermometry techniques, a diamond quantum thermometer can be operated over a wide temperature range and a sensor spatial scale ranging from nanometres to micrometres. Further, diamond quantum thermometry is employed in several applications, including electronics and biology, to explore these fields with nanoscale temperature measurements. This review covers the operational principles of diamond quantum thermometry for spin-based and all-optical methods, material development of diamonds with a focus on thermometry, and examples of applications in electrical and biological systems with demand-based technological requirements.
Collapse
Affiliation(s)
- Masazumi Fujiwara
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
- Department of Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Yutaka Shikano
- Graduate School of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510, Japan
- Quantum Computing Center, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama 223-8522, Japan
- Institute for Quantum Studies, Chapman University, 1 University Dr, Orange, CA 92866, United States of America
- JST PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
38
|
Gerasimova EN, Yaroshenko VV, Talianov PM, Peltek OO, Baranov MA, Kapitanova PV, Zuev DA, Timin AS, Zyuzin MV. Real-Time Temperature Monitoring of Photoinduced Cargo Release inside Living Cells Using Hybrid Capsules Decorated with Gold Nanoparticles and Fluorescent Nanodiamonds. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36737-36746. [PMID: 34313441 DOI: 10.1021/acsami.1c05252] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Real-time temperature monitoring within biological objects is a key fundamental issue for understanding the heating process and performing remote-controlled release of bioactive compounds upon laser irradiation. The lack of accurate thermal control significantly limits the translation of optical laser techniques into nanomedicine. Here, we design and develop hybrid (complex) carriers based on multilayered capsules combined with nanodiamonds (NV centers) as nanothermometers and gold nanoparticles (Au NPs) as nanoheaters to estimate an effective laser-induced temperature rise required for capsule rupture and further release of cargo molecules outside and inside cancerous (B16-F10) cells. We integrate both elements (NV centers and Au NPs) in the capsule structure using two strategies: (i) loading inside the capsule's cavity (CORE) and incorporating them inside the capsule's wall (WALL). Theoretically and experimentally, we show the highest and lowest heat release from capsule samples (CORE or WALL) under laser irradiation depending on the Au NP arrangement within the capsule. Applying NV centers, we measure the local temperature of capsule rupture inside and outside the cells, which is determined to be 128 ± 1.12 °C. Finally, the developed hybrid containers can be used to perform the photoinduced release of cargo molecules with simultaneous real-time temperature monitoring inside the cells.
Collapse
Affiliation(s)
- Elena N Gerasimova
- Department of Physics and Engineering, ITMO University, Kronverksky Pr. 49, bldg. A, St. Petersburg 197101, Russian Federation
| | - Vitaly V Yaroshenko
- Department of Physics and Engineering, ITMO University, Kronverksky Pr. 49, bldg. A, St. Petersburg 197101, Russian Federation
| | - Pavel M Talianov
- Department of Physics and Engineering, ITMO University, Kronverksky Pr. 49, bldg. A, St. Petersburg 197101, Russian Federation
| | - Oleksii O Peltek
- Department of Physics and Engineering, ITMO University, Kronverksky Pr. 49, bldg. A, St. Petersburg 197101, Russian Federation
| | - Mikhail A Baranov
- Faculty of Photonics and Optical Information, Center of Information Optical Technologies ITMO University, Kronverksky Pr. 49, bldg. A, St. Petersburg 197101, Russian Federation
| | - Polina V Kapitanova
- Department of Physics and Engineering, ITMO University, Kronverksky Pr. 49, bldg. A, St. Petersburg 197101, Russian Federation
| | - Dmitry A Zuev
- Department of Physics and Engineering, ITMO University, Kronverksky Pr. 49, bldg. A, St. Petersburg 197101, Russian Federation
| | - Alexander S Timin
- Research School of Chemical and Biomedical Engineering, National Research Tomsk Polytechnic University, Tomsk 634050, Russian Federation
- R.M. Gorbacheva Research Institute for Pediatric Oncology, Hematology and Transplantation, Pavlov University, St. Petersburg 197022, Russian Federation
| | - Mikhail V Zyuzin
- Department of Physics and Engineering, ITMO University, Kronverksky Pr. 49, bldg. A, St. Petersburg 197101, Russian Federation
| |
Collapse
|
39
|
Romshin AM, Zeeb V, Martyanov AK, Kudryavtsev OS, Pasternak DG, Sedov VS, Ralchenko VG, Sinogeykin AG, Vlasov II. A new approach to precise mapping of local temperature fields in submicrometer aqueous volumes. Sci Rep 2021; 11:14228. [PMID: 34244547 PMCID: PMC8270900 DOI: 10.1038/s41598-021-93374-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/16/2021] [Indexed: 11/09/2022] Open
Abstract
Nanodiamonds hosting temperature-sensing centers constitute a closed thermodynamic system. Such a system prevents direct contact of the temperature sensors with the environment making it an ideal environmental insensitive nanosized thermometer. A new design of a nanodiamond thermometer, based on a 500-nm luminescent nanodiamond embedded into the inner channel of a glass submicron pipette is reported. All-optical detection of temperature, based on spectral changes of the emission of "silicon-vacancy" centers with temperature, is used. We demonstrate the applicability of the thermometric tool to the study of temperature distribution near a local heater, placed in an aqueous medium. The calculated and experimental values of temperatures are shown to coincide within measurement error at gradients up to 20 °C/μm. Until now, temperature measurements on the submicron scale at such high gradients have not been performed. The new thermometric tool opens up unique opportunities to answer the urgent paradigm-shifting questions of cell physiology thermodynamics.
Collapse
Affiliation(s)
- Alexey M Romshin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov str. 38, Moscow, Russia, 119991
| | - Vadim Zeeb
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142292.
| | - Artem K Martyanov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov str. 38, Moscow, Russia, 119991
| | - Oleg S Kudryavtsev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov str. 38, Moscow, Russia, 119991
| | - Dmitrii G Pasternak
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov str. 38, Moscow, Russia, 119991
| | - Vadim S Sedov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov str. 38, Moscow, Russia, 119991
| | - Victor G Ralchenko
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov str. 38, Moscow, Russia, 119991
| | - Andrey G Sinogeykin
- Wonder Technologies LLC, Skolkovo Innovation Center, Bolshoy blvd. 42, Moscow, Russia
| | - Igor I Vlasov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov str. 38, Moscow, Russia, 119991.
| |
Collapse
|
40
|
Zhang T, Pramanik G, Zhang K, Gulka M, Wang L, Jing J, Xu F, Li Z, Wei Q, Cigler P, Chu Z. Toward Quantitative Bio-sensing with Nitrogen-Vacancy Center in Diamond. ACS Sens 2021; 6:2077-2107. [PMID: 34038091 DOI: 10.1021/acssensors.1c00415] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The long-dreamed-of capability of monitoring the molecular machinery in living systems has not been realized yet, mainly due to the technical limitations of current sensing technologies. However, recently emerging quantum sensors are showing great promise for molecular detection and imaging. One of such sensing qubits is the nitrogen-vacancy (NV) center, a photoluminescent impurity in a diamond lattice with unique room-temperature optical and spin properties. This atomic-sized quantum emitter has the ability to quantitatively measure nanoscale electromagnetic fields via optical means at ambient conditions. Moreover, the unlimited photostability of NV centers, combined with the excellent diamond biocompatibility and the possibility of diamond nanoparticles internalization into the living cells, makes NV-based sensors one of the most promising and versatile platforms for various life-science applications. In this review, we will summarize the latest developments of NV-based quantum sensing with a focus on biomedical applications, including measurements of magnetic biomaterials, intracellular temperature, localized physiological species, action potentials, and electronic and nuclear spins. We will also outline the main unresolved challenges and provide future perspectives of many promising aspects of NV-based bio-sensing.
Collapse
Affiliation(s)
- Tongtong Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Goutam Pramanik
- UGC DAE Consortium for Scientific Research, Kolkata Centre, Sector III, LB-8, Bidhan Nagar, Kolkata 700106, India
| | - Kai Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Michal Gulka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Lingzhi Wang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jixiang Jing
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Feng Xu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Qiang Wei
- College of Polymer Science and Engineering, College of Biomedical Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, 610065 Chengdu, China
| | - Petr Cigler
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, Joint Appointment with School of Biomedical Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
41
|
Wu Y, Alam MNA, Balasubramanian P, Ermakova A, Fischer S, Barth H, Wagner M, Raabe M, Jelezko F, Weil T. Nanodiamond Theranostic for Light-Controlled Intracellular Heating and Nanoscale Temperature Sensing. NANO LETTERS 2021; 21:3780-3788. [PMID: 33881327 PMCID: PMC8289278 DOI: 10.1021/acs.nanolett.1c00043] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Temperature is an essential parameter in all biological systems, but information about the actual temperature in living cells is limited. Especially, in photothermal therapy, local intracellular temperature changes induce cell death but the local temperature gradients are not known. Highly sensitive nanothermometers would be required to measure and report local temperature changes independent of the intracellular environment, including pH or ions. Fluorescent nanodiamonds (ND) enable temperature sensing at the nanoscale independent of external conditions. Herein, we prepare ND nanothermometers coated with a nanogel shell and the photothermal agent indocyanine green serves as a heat generator and sensor. Upon irradiation, programmed cell death was induced in cancer cells with high spatial control. In parallel, the increase in local temperature was recorded by the ND nanothermometers. This approach represents a great step forward to record local temperature changes in different cellular environments inside cells and correlate these with thermal biology.
Collapse
Affiliation(s)
- Yingke Wu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Md Noor A Alam
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | - Anna Ermakova
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
for Physics, Johannes Gutenberg University
Mainz, Staudingerweg
7, 55128 Mainz, Germany
| | - Stephan Fischer
- Institute
of Pharmacology and Toxicology, University
of Ulm Medical Center, 89081 Ulm, Germany
| | - Holger Barth
- Institute
of Pharmacology and Toxicology, University
of Ulm Medical Center, 89081 Ulm, Germany
| | - Manfred Wagner
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Marco Raabe
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Email for M.R.:
| | - Fedor Jelezko
- Institute
for Quantum Optics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Email for F.J.:
| | - Tanja Weil
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Email for T.W.:
| |
Collapse
|
42
|
Craigie K, Gauger EM, Altmann Y, Bonato C. Resource-efficient adaptive Bayesian tracking of magnetic fields with a quantum sensor. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:195801. [PMID: 33540392 DOI: 10.1088/1361-648x/abe34f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Single-spin quantum sensors, for example based on nitrogen-vacancy centres in diamond, provide nanoscale mapping of magnetic fields. In applications where the magnetic field may be changing rapidly, total sensing time is crucial and must be minimised. Bayesian estimation and adaptive experiment optimisation can speed up the sensing process by reducing the number of measurements required. These protocols consist of computing and updating the probability distribution of the magnetic field based on measurement outcomes and of determining optimized acquisition settings for the next measurement. However, the computational steps feeding into the measurement settings of the next iteration must be performed quickly enough to allow real-time updates. This article addresses the issue of computational speed by implementing an approximate Bayesian estimation technique, where probability distributions are approximated by a finite sum of Gaussian functions. Given that only three parameters are required to fully describe a Gaussian density, we find that in many cases, the magnetic field probability distribution can be described by fewer than ten parameters, achieving a reduction in computation time by factor 10 compared to existing approaches. ForT2*=1μs, only a small decrease in computation time is achieved. However, in these regimes, the proposed Gaussian protocol outperforms the existing one in tracking accuracy.
Collapse
Affiliation(s)
- K Craigie
- School of Engineering and Physical Sciences, SUPA, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| | - E M Gauger
- School of Engineering and Physical Sciences, SUPA, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| | - Y Altmann
- School of Engineering and Physical Sciences, SUPA, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| | - C Bonato
- School of Engineering and Physical Sciences, SUPA, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| |
Collapse
|
43
|
Rajagopal MC, Sinha S. Cellular Thermometry Considerations for Probing Biochemical Pathways. Cell Biochem Biophys 2021; 79:359-373. [PMID: 33797706 DOI: 10.1007/s12013-021-00979-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 12/28/2022]
Abstract
Temperature is a fundamental thermodynamic property that can serve as a probe of biochemical reactions. Extracellular thermometry has previously been used to probe cancer metabolism and thermoregulation, with measured temperature changes of ~1-2 K in tissues, consistent with theoretical predictions. In contrast, previous intracellular thermometry studies remain disputed due to reports of >1 K intracellular temperature rises over 5 min or more that are inconsistent with theory. Thus, the origins of such anomalous temperature rises remain unclear. An improved quantitative understanding of intracellular thermometry is necessary to provide a clearer perspective for future measurements. Here, we develop a generalizable framework for modeling cellular heat diffusion over a range of subcellular-to-tissue length scales. Our model shows that local intracellular temperature changes reach measurable limits (>0.1 K) only when exogenously stimulated. On the other hand, extracellular temperatures can be measurable (>0.1 K) in tissues even from endogenous biochemical pathways. Using these insights, we provide a comprehensive approach to choosing an appropriate cellular thermometry technique by analyzing thermogenic reactions of different heat rates and time constants across length scales ranging from subcellular to tissues. Our work provides clarity on cellular heat diffusion modeling and on the required thermometry approach for probing thermogenic biochemical pathways.
Collapse
Affiliation(s)
- Manjunath C Rajagopal
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sanjiv Sinha
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
44
|
Jankele R, Jelier R, Gönczy P. Physically asymmetric division of the C. elegans zygote ensures invariably successful embryogenesis. eLife 2021; 10:e61714. [PMID: 33620314 PMCID: PMC7972452 DOI: 10.7554/elife.61714] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
Asymmetric divisions that yield daughter cells of different sizes are frequent during early embryogenesis, but the importance of such a physical difference for successful development remains poorly understood. Here, we investigated this question using the first division of Caenorhabditis elegans embryos, which yields a large AB cell and a small P1 cell. We equalized AB and P1 sizes using acute genetic inactivation or optogenetic manipulation of the spindle positioning protein LIN-5. We uncovered that only some embryos tolerated equalization, and that there was a size asymmetry threshold for viability. Cell lineage analysis of equalized embryos revealed an array of defects, including faster cell cycle progression in P1 descendants, as well as defects in cell positioning, division orientation, and cell fate. Moreover, equalized embryos were more susceptible to external compression. Overall, we conclude that unequal first cleavage is essential for invariably successful embryonic development of C. elegans.
Collapse
Affiliation(s)
- Radek Jankele
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL)LausanneSwitzerland
| | - Rob Jelier
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenLeuvenBelgium
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL)LausanneSwitzerland
| |
Collapse
|
45
|
Nishimura Y, Oshimi K, Umehara Y, Kumon Y, Miyaji K, Yukawa H, Shikano Y, Matsubara T, Fujiwara M, Baba Y, Teki Y. Wide-field fluorescent nanodiamond spin measurements toward real-time large-area intracellular thermometry. Sci Rep 2021; 11:4248. [PMID: 33608613 PMCID: PMC7895939 DOI: 10.1038/s41598-021-83285-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/29/2021] [Indexed: 01/24/2023] Open
Abstract
Measuring optically detected magnetic resonance (ODMR) of diamond nitrogen vacancy centers significantly depends on the photon detectors used. We study camera-based wide-field ODMR measurements to examine the performance in thermometry by comparing the results to those of the confocal-based ODMR detection. We show that the temperature sensitivity of the camera-based measurements can be as high as that of the confocal detection and that possible artifacts of the ODMR shift are produced owing to the complexity of the camera-based measurements. Although measurements from wide-field ODMR of nanodiamonds in living cells can provide temperature precisions consistent with those of confocal detection, the technique requires the integration of rapid ODMR measurement protocols for better precisions. Our results can aid the development of camera-based real-time large-area spin-based thermometry of living cells.
Collapse
Affiliation(s)
- Yushi Nishimura
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
- Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Keisuke Oshimi
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
| | - Yumi Umehara
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
| | - Yuka Kumon
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Kazu Miyaji
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Hiroshi Yukawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, 464-8603, Japan
- Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Yutaka Shikano
- Quantum Computing Center, Keio University, Yokohama, 223-8522, Japan
- Institute for Quantum Studies, Chapman University, Orange , CA, 92866, USA
- JST PRESTO, Saitama, 332-0012, Japan
| | - Tsutomu Matsubara
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka City University, Osaka, 545-8585, Japan
| | - Masazumi Fujiwara
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan.
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, 464-8603, Japan
- Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Yoshio Teki
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
| |
Collapse
|
46
|
Delattre M, Goehring NW. The first steps in the life of a worm: Themes and variations in asymmetric division in C. elegans and other nematodes. Curr Top Dev Biol 2021; 144:269-308. [PMID: 33992156 DOI: 10.1016/bs.ctdb.2020.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Starting with Boveri in the 1870s, microscopic investigation of early embryogenesis in a broad swath of nematode species revealed the central role of asymmetric cell division in embryonic axis specification, blastomere positioning, and cell fate specification. Notably, across the class Chromadorea, a conserved theme emerges-asymmetry is first established in the zygote and specifies its asymmetric division, giving rise to an anterior somatic daughter cell and a posterior germline daughter cell. Beginning in the 1980s, the emergence of Caenorhabditis elegans as a model organism saw the advent of genetic tools that enabled rapid progress in our understanding of the molecular mechanisms underlying asymmetric division, in many cases defining key paradigms that turn out to regulate asymmetric division in a wide range of systems. Yet, the consequence of this focus on C. elegans came at the expense of exploring the extant diversity of developmental variation exhibited across nematode species. Given the resurgent interest in evolutionary studies facilitated in part by new tools, here we revisit the diversity in this asymmetric first division, juxtaposing molecular insight into mechanisms of symmetry-breaking, spindle positioning and fate specification, with a consideration of plasticity and variability within and between species. In the process, we hope to highlight questions of evolutionary forces and molecular variation that may have shaped the extant diversity of developmental mechanisms observed across Nematoda.
Collapse
Affiliation(s)
- Marie Delattre
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS, Inserm, UCBL, Lyon, France.
| | | |
Collapse
|
47
|
Sotoma S, Zhong C, Kah JCY, Yamashita H, Plakhotnik T, Harada Y, Suzuki M. In situ measurements of intracellular thermal conductivity using heater-thermometer hybrid diamond nanosensors. SCIENCE ADVANCES 2021; 7:7/3/eabd7888. [PMID: 33523906 PMCID: PMC7810374 DOI: 10.1126/sciadv.abd7888] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/30/2020] [Indexed: 05/21/2023]
Abstract
Understanding heat dissipation processes at nanoscale during cellular thermogenesis is essential to clarify the relationships between the heat and biological processes in cells and organisms. A key parameter determining the heat flux inside a cell is the local thermal conductivity, a factor poorly investigated both experimentally and theoretically. Here, using a nanoheater/nanothermometer hybrid made of a polydopamine encapsulating a fluorescent nanodiamond, we measured the intracellular thermal conductivities of HeLa and MCF-7 cells with a spatial resolution of about 200 nm. The mean values determined in these two cell lines are both 0.11 ± 0.04 W m-1 K-1, which is significantly smaller than that of water. Bayesian analysis of the data suggests there is a variation of the thermal conductivity within a cell. These results make the biological impact of transient temperature spikes in a cell much more feasible, and suggest that cells may use heat flux for short-distance thermal signaling.
Collapse
Affiliation(s)
- Shingo Sotoma
- Institute for Protein Research, Osaka University, Osaka, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Chongxia Zhong
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - James Chen Yong Kah
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Hayato Yamashita
- Graduate School of Engineering Science, Osaka University, Osaka, Japan
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Taras Plakhotnik
- School of Mathematics and Physics, The University of Queensland, QLD, Australia.
| | - Yoshie Harada
- Institute for Protein Research, Osaka University, Osaka, Japan.
- Quantum Information and Quantum Biology Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Madoka Suzuki
- Institute for Protein Research, Osaka University, Osaka, Japan.
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
48
|
Lv X, Walton J, Druga E, Nazaryan R, Mao H, Pines A, Ajoy A, Reimer J. Imaging Sequences for Hyperpolarized Solids. Molecules 2020; 26:E133. [PMID: 33396762 PMCID: PMC7795150 DOI: 10.3390/molecules26010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 11/18/2022] Open
Abstract
Hyperpolarization is one of the approaches to enhance Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) signal by increasing the population difference between the nuclear spin states. Imaging hyperpolarized solids opens up extensive possibilities, yet is challenging to perform. The highly populated state is normally not replenishable to the initial polarization level by spin-lattice relaxation, which regular MRI sequences rely on. This makes it necessary to carefully "budget" the polarization to optimize the image quality. In this paper, we present a theoretical framework to address such challenge under the assumption of either variable flip angles or a constant flip angle. In addition, we analyze the gradient arrangement to perform fast imaging to overcome intrinsic short decoherence in solids. Hyperpolarized diamonds imaging is demonstrated as a prototypical platform to test the theory.
Collapse
Affiliation(s)
- Xudong Lv
- Department of Chemistry, University of California, Berkeley, CA 94720, USA; (X.L.); (E.D.); (R.N.); (A.P.); (A.A.)
| | - Jeffrey Walton
- Nuclear Magnetic Resonance Facility, University of California Davis, Davis, CA 95616, USA;
| | - Emanuel Druga
- Department of Chemistry, University of California, Berkeley, CA 94720, USA; (X.L.); (E.D.); (R.N.); (A.P.); (A.A.)
| | - Raffi Nazaryan
- Department of Chemistry, University of California, Berkeley, CA 94720, USA; (X.L.); (E.D.); (R.N.); (A.P.); (A.A.)
| | - Haiyan Mao
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA;
| | - Alexander Pines
- Department of Chemistry, University of California, Berkeley, CA 94720, USA; (X.L.); (E.D.); (R.N.); (A.P.); (A.A.)
| | - Ashok Ajoy
- Department of Chemistry, University of California, Berkeley, CA 94720, USA; (X.L.); (E.D.); (R.N.); (A.P.); (A.A.)
| | - Jeffrey Reimer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA;
- Lawrence Berkeley National Laboratory, Materials Science Division, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
49
|
Zhou J, Del Rosal B, Jaque D, Uchiyama S, Jin D. Advances and challenges for fluorescence nanothermometry. Nat Methods 2020; 17:967-980. [PMID: 32989319 DOI: 10.1038/s41592-020-0957-y] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022]
Abstract
Fluorescent nanothermometers can probe changes in local temperature in living cells and in vivo and reveal fundamental insights into biological properties. This field has attracted global efforts in developing both temperature-responsive materials and detection procedures to achieve sub-degree temperature resolution in biosystems. Recent generations of nanothermometers show superior performance to earlier ones and also offer multifunctionality, enabling state-of-the-art functional imaging with improved spatial, temporal and temperature resolutions for monitoring the metabolism of intracellular organelles and internal organs. Although progress in this field has been rapid, it has not been without controversy, as recent studies have shown possible biased sensing during fluorescence-based detection. Here, we introduce the design principles and advances in fluorescence nanothermometry, highlight application achievements, discuss scenarios that may lead to biased sensing, analyze the challenges ahead in terms of both fundamental issues and practical implementations, and point to new directions for improving this interdisciplinary field.
Collapse
Affiliation(s)
- Jiajia Zhou
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, Australia.
| | - Blanca Del Rosal
- ARC Centre of Excellence for Nanoscale Biophotonics, RMIT University, Melbourne, Australia
| | - Daniel Jaque
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Madrid, Spain. .,Fluorescence Imaging Group, Departamento de Física de Materiales-Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Seiichi Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Dayong Jin
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, Australia.,Department of Biomedical Engineering, Southern University of Science and Technology, Guangdong, China
| |
Collapse
|
50
|
Fujiwara M, Sun S, Dohms A, Nishimura Y, Suto K, Takezawa Y, Oshimi K, Zhao L, Sadzak N, Umehara Y, Teki Y, Komatsu N, Benson O, Shikano Y, Kage-Nakadai E. Real-time nanodiamond thermometry probing in vivo thermogenic responses. SCIENCE ADVANCES 2020; 6:eaba9636. [PMID: 32917703 PMCID: PMC7486095 DOI: 10.1126/sciadv.aba9636] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/22/2020] [Indexed: 05/24/2023]
Abstract
Real-time temperature monitoring inside living organisms provides a direct measure of their biological activities. However, it is challenging to reduce the size of biocompatible thermometers down to submicrometers, despite their potential applications for the thermal imaging of subtissue structures with single-cell resolution. Here, using quantum nanothermometers based on optically accessible electron spins in nanodiamonds, we demonstrate in vivo real-time temperature monitoring inside Caenorhabditis elegans worms. We developed a microscope system that integrates a quick-docking sample chamber, particle tracking, and an error correction filter for temperature monitoring of mobile nanodiamonds inside live adult worms with a precision of ±0.22°C. With this system, we determined temperature increases based on the worms' thermogenic responses during the chemical stimuli of mitochondrial uncouplers. Our technique demonstrates the submicrometer localization of temperature information in living animals and direct identification of their pharmacological thermogenesis, which may allow for quantification of their biological activities based on temperature.
Collapse
Affiliation(s)
- Masazumi Fujiwara
- Department of Chemistry, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan.
| | - Simo Sun
- Food and Human Health Sciences, Graduate School of Human Life Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Alexander Dohms
- Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Yushi Nishimura
- Department of Chemistry, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Ken Suto
- Department of Chemistry, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Yuka Takezawa
- Food and Human Health Sciences, Graduate School of Human Life Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Keisuke Oshimi
- Department of Chemistry, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Li Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Nikola Sadzak
- Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Yumi Umehara
- Department of Chemistry, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Yoshio Teki
- Department of Chemistry, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Naoki Komatsu
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Oliver Benson
- Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Yutaka Shikano
- Quantum Computing Center, Keio University, 3-14-1 Hiyoshi Kohoku, Yokohama 223-8522, Japan.
- Institute for Quantum Studies, Chapman University, 1 University Dr., Orange, CA 92866, USA
| | - Eriko Kage-Nakadai
- Food and Human Health Sciences, Graduate School of Human Life Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan.
| |
Collapse
|